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Abstract

Cameras that capture color and depth information have
become an essential imaging modality for applications in
robotics, autonomous driving, virtual, and augmented real-
ity. Existing RGB-D cameras rely on multiple sensors or ac-
tive illumination with specialized sensors. In this work, we
propose a method for monocular single-shot RGB-D imag-
ing. Instead of learning depth from single-image depth cues,
we revisit double-refraction imaging using a birefractive
medium, measuring depth as the displacement of differently
refracted images superimposed in a single capture. How-
ever, existing double-refraction methods are orders of mag-
nitudes too slow to be used in real-time applications, e.g.,
in robotics, and provide only inaccurate depth due to cor-
respondence ambiguity in double reflection. We resolve this
ambiguity optically by leveraging the orthogonality of the
two linearly polarized rays in double refraction – introduc-
ing uneven double refraction by adding a linear polarizer
to the birefractive medium. Doing so makes it possible to
develop a real-time method for reconstructing sparse depth
and color simultaneously in real-time. We validate the pro-
posed method, both synthetically and experimentally, and
demonstrate 3D object detection and photographic appli-
cations.

1. Introduction
RGB-D cameras that simultaneously acquire color and

depth information have emerged as a critical imaging
modality for applications in computer vision and graphics,
including autonomous driving, robotics, photography, and
mixed reality. However, broadly adopted RGB-D cameras
either rely on multiple cameras [18] or combine a conven-
tional camera with a separate depth sensor. These latter
typically rely on an active illumination module that mod-
ulates light either spatially [23, 14, 11] or temporally [15],
such as a time-of-flight (TOF) camera. Existing approaches
to monocular RGB-D imaging, i.e., using only a single
camera, aim to recover depth-from-defocus [28, 17], depth-
from-focus [5], and depth-from-refraction [20, 4, 7, 1]. Al-
though all of these methods rely only on a conventional
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Figure 1. (a) Our prototype, consisting of a linear polarizer and
a calcite crystal in front of a conventional camera. (b) and (c)
estimated depth map and restored color image from the input. Our
algorithm provides both sparse depth and clear RGB image within
34ms. Refer to the supplemental material for real-time demo.

camera with small footprint and cost, they require multiple
shots to obtain depth, which prohibits their use in dynamic
real-world scenes.

The ultimate goal of monocular RGB-D imaging is to
obtain color and depth simultaneously from a single shot.
Plenoptic imaging, i.e., light-field imaging, approaches this
problem by combining the objective lens with a micro-lens
array in front of the sensor to capture multi-perspective
sub-images of a scene. Unfortunately, this angular reso-
lution comes at the cost of a loss in spatial resolution, and
the depth range is fundamentally limited by the short base-
line [19]. Alternative approaches relying on pixel arrays
that alternately see half of the aperture [30, 8], thereby cap-
turing subsampled stereo views, suffer from a narrow base-
line at the long distances that TOF RGB-D cameras excel at.

To tackle all of the above limitations, instead of separat-
ing angular measurements, we superpose them by revisiting
depth-from-double-refraction, while lifting existing ambi-
guity and runtime restrictions of double-refraction methods.
Baek et al. [1] use a birefringent medium in front of the
camera lens, such as a calcite crystal, to overlap two shifted
images that encode depth via their local disparity. However,
the intensities of these two images are identical. This fun-
damental ambiguity of searching stereo correspondences in
double refraction images results in very low computational



efficiency, with more than half a minute compute time for
single RGB-D frame, and inaccurate depth estimates, pro-
hibiting real-time RGB-D imaging applications.

In this work, we introduce a real-time single-shot
monocular RGB-D camera. Specifically, we make the fol-
lowing contributions:

To tackle double-refraction ambiguity, we exploit the op-
tical phenomenon that each refraction is linearly polarized
in double refraction by a birefringent medium and that these
two refractions are orthogonal to each other. This allows
us to optically control to make the ratio of each polarimet-
ric refraction uneven, by combining a linear polarizer with
the birefringent medium. This uneven double refraction
resolves the ambiguity of correspondence in depth-from-
double-refraction. We present a novel joint reconstruction
method for depth and color. Our key idea is to restore a
clear color image using only the higher intensity by itera-
tively eliminating the refraction of the weaker intensity in
uneven double refraction, while estimating depth from dis-
placement in double refraction. Building on this resolved
ambiguity in the image formation, we achieve real-time
RGB-D acquisition by devising a novel rectification method
for double-refraction images achieving a speedup of over a
factor of 1000 over state-of-the-art methods. This feat al-
lows us to acquire high-quality depth and color with real-
time performance on consumer GPU hardware. Figure 1
shows our prototype and a captured RGB-D image.

We validate our method synthetically and on exper-
imental data, where our approach outperforms state-of-
the-art monocular RGB-D methods in accuracy, depth-
range, and runtime. We demonstrate a variety of ap-
plications using the proposed RGB-D imager, includ-
ing 3D object detection and photographic applications.
All codes, models, and detailed optical designs are pub-
lished to ensure reproducibility (https://github.
com/KAIST-VCLAB/fastbirefstereo.git).

2. Related Work

In this section, we discuss existing single-shot monocu-
lar RGB-D imaging methods.

Depth from Defocus Depth information can be estimated
by analyzing the level of defocus in the image [24], i.e., the
distance is proportional to the amount of blurriness. How-
ever, due to the low-frequency nature of defocus blur, its
depth cues often are not sufficient to provide accurate depth.
Changing the shape of the aperture [17, 2, 34] and employ-
ing a mask on the sensor [29] improves depth estimation
over isotropic kernels; however, such approaches still pro-
vide inaccurate depth and color due to the fundamentally
low-frequency depth cues. The proposed method utilizes
uneven double refraction as a high-frequency depth cue, al-
lowing for improved depth and high-quality color images.

Depth from Light Field Light fields contain subimages
with short baselines that allow for depth estimation. Exist-
ing methods make use of disparity among subimages in hor-
izontal and vertical directions to estimate depth [19]. Wang
et al. [31, 32] account for occlusion to estimate sharp depth
transition around edges. However, existing light field cam-
eras need to be equipped with a lenticular lens array, fun-
damentally limiting the spatial resolution as a tradeoff for
angular resolution.

Recently, a reduction of this concept to subsampled
stereo images has been proposed to estimate depth, using
customized dual pixels sensors [30, 8]. In this approach, the
micro-lens array on the sensor is used similarly to the lentic-
ular lens in a light field camera. Specifically, pixels alter-
nately block half of the aperture by blocking light in half of
a pixel’s active area, resulting in subsampled stereo views.
However, the disparity range of this dual-pixel sensing is
limited to a few pixels. In contrast, the proposed method
uses an unmodified conventional sensor, and our birefrin-
gent medium provides large disparity ranges of more than
20 pixels allowing for larger depth ranges.

Depth from Reflection Double reflection methods capture
depth using a slanted mirror in front of the camera [26, 33].
This approach requires a very large mirror, sacrificing mo-
bility due to the large form factor. Different from depth
from reflection, our imaging setup consists of only one cam-
era with two flat optical materials, a birefringent medium,
and a linear polarizer, making the system compact and
maintaining the optical axis of the original camera.

Depth from Refraction Traditional depth-from-refraction
methods [20, 4, 6, 7] estimate depth from the displacement
of multiple differently refracted images. Besides, special-
ized imaging setups with an optical component, such as a
prism or a micro-lens array, have been devised to capture
depth from a single-shot input. Lee et al. [16] installs two
prisms of a camera to capture two perspective images in a
single shot, at the cost of sacrificing sensor resolution and
high-quality imagery. Baek et al. [1] propose to estimate
depth from double refraction. However, due to the intrinsic
ambiguity of two displaced images with equal intensities,
the accuracy of the reconstructed depth and color image is
fundamentally limited, and complex recovery methods re-
quire more than half a minute per single image. In contrast,
we rely on the cross linear polarization states of the dis-
placed images and attenuate one displaced component by an
additional polarizer, resolving the ambiguity and enabling
efficient recovery of both depth and color.

Learning Depth from a Single Image Many recent works
have explored learning depth from a single image depth
cues, such as defocus, perspective, and parallax, using neu-
ral networks [24, 9, 13]. While demonstrating remarkable
results, such approaches still suffer low accuracy and do not
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generalize across cameras and scene semantics, e.g., out-
door versus indoor. In contrast, our method uses optically
encoded disparity from uneven double refraction to measure
depth, instead of learning it from indirect depth cues.

3. Uneven Double Refraction

Optical Design In double refraction, a pair of rays, the cor-
responding ordinary ray (o-ray) and extraordinary ray (e-
ray) generate shifted copies of the same latent scene image,
which are captured as superposition. These rays have equal
intensities for typical unpolarized natural incident light, cre-
ating ambiguity in determining whether an edge is gener-
ated by the o-ray or the e-ray. While existing depth-from-
double-refraction methods [1] partially address this issue
with the sophisticated optimization methods that use the
dual cost function in the image gradient domain, such com-
putationally expensive algorithms prohibit real-time pro-
cessing and are fundamentally limited in depth and image
quality by the double refraction ambiguity.

In contrast, we propose to optically resolve this ambi-
guity by exploiting the fact that the o-ray and the e-ray are
linearly polarized and perpendicular to each other. Owing
to the polarimetric properties of o-/e-ray, we can control the
intensity proportion of both light rays by combining a linear
polarizer and a birefringent medium, see Figure 2. Specif-
ically, we adjust the angle of polarizer so that the e-ray be-
comes attenuated with the lower intensity and can be effec-
tively removed with the proposed reconstruction method.

Image Formation Next, we describe the image formation
model for uneven double refraction. Assuming a pinhole
camera model with focal length f , a light ray from scene
point Ps is projected to the direct pixel Pd if there is no bire-
fringent medium, as shown in Figure 2. Once a birefractive
material that exhibits optical anisotropy to the polarization
states of light waves, e.g., a calcite crystal, is placed in the
light path and an unpolarized incident ray passes through
the medium, this ray is split into two, which have different
directions of propagation, with the o-ray following Snell’s
law and the e-ray violating Snell’s law. The o-ray and the
e-ray follow different paths and project to pixels Po and Pe,
respectively. To achieve uneven double refraction, we place
a linear polarizer in front of the medium. The rotation of
this polarizer adjusts the ratio between the o-ray and the e-
ray. Note that we assume the linear polarizer is thin enough
not to refract the light rays. Birefractive disparity roe is then
defined as the displacement vector from Po to Pe. Figure 2
shows the optical light transport of polarized double refrac-
tion in our setup.

Although birefractive disparity exists in both horizontal
and vertical directions [1], we assume a rectified birefrac-
tive disparity image in the following. To this end, we in-
troduce an efficient novel rectification method later in this
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Figure 2. Our image formation for uneven double refraction. A
scene point Ps is directly projected to Pd, while o-ray and e-ray of
Ps are captured at different points Po and Pe, respectively. Using
the linear polarizer, e-ray has less intensity than o-ray. We estimate
depth from birefractive disparity roe.

work. The rectified image formed by o-ray and e-ray, Ĩo
and Ĩe, are displaced with the rectified birefractive dispar-
ity r̃oe (z). The intensities of Ĩo and Ĩe are also different
because of the linear polarizer, which introduces uneven
double refraction with an amount of τ , obtained through
calibration (refer to the supplemental document for more
details). Therefore, the e-ray image Ĩe can be formulated
as: Ĩe = τA(Ĩo, r̃oe(z)), where A(Ĩo, r̃oe(z)) is a function
that translates the o-ray image Ĩo according to the disparity
r̃oe(z). The captured image Ĩc = Ĩo + Ĩe can be refor-
mulated as a superimposition of the o-ray image and the
transformed o-ray image, corresponding to the e-ray image:

Ĩc = Ĩo + τA
(
Ĩo, r̃oe(z)

)
. (1)

4. Joint Reconstruction of Color and Depth

Given an uneven rectified input image, we propose an
efficient and effective joint depth and color reconstruction
method. We devise a non-blind color restoration method
that can efficiently and effectively remove uneven double
refraction. The key idea here is to iteratively eliminate the
weak refraction component (the e-ray image) from the un-
even double refraction. Analogous to the concept of the
cost volume in traditional stereo imaging [12], we use our
non-blind color restoration method to calculate a restoration
volume that stores a set of restored color images for every
depth candidate. Then, we estimate the sparse depth by se-
lecting among the restoration candidates the depth at which
color reconstruction is optimal. Note that obtaining a clean
color image is the byproduct of this depth estimation.
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Figure 3. (a) We remove the e-ray component of the gray slashed
bar by using the two purple bars generated by translation by known
r̃oe(z) and scaled by τ . This causes a new residual error denoted
as the purple slashed bar, which can also be removed similarly. We
repeat this process until the intensity of the residual error becomes
lower than a threshold. (b) Given a wrong disparity r̃oe(z), we
cannot correctly remove residuals, yielding restoration artifacts.

4.1. Color Image Restoration

The goal of our color image restoration is to recover the
latent o-ray image Ĩo from the captured image Ĩc. Since
depth is also as yet unknown, we restore images for all depth
candidates z within a range resulting in a restoration volume
that contains image restoration values Îzo for each depth can-
didate. Next, we describe our image restoration method for
depth candidate z.

Using our birefractive model, we first compute the cor-
responding birefractive disparity for z (Equation (9)). The
key idea of our image restoration is to iteratively remove the
e-ray intensity, which is weaker than that of o-ray, from the
captured image Ĩc.

We denote the current restoration of Ĩo at the n-th iter-
ation as Îz,(n)o . For initialization at the first iteration, we
start with the captured input image: Îz,(0)o = Ĩc. Next, we
define a residual image that we want to remove from the
current estimate: ∆z,(0) = Î

z,(0)
o − Ĩo = τA(Ĩo, r̃oe(z)).

However, the residual ∆z,(0) cannot be calculated directly
because the ground truth Ĩo is also unknown. We there-
fore compute an approximated residual image ∆̂z,(0) using
our current estimate Îz,(0)o instead of the ground truth Ĩo;
this is similar to the mirror-reflection calculation by Yano et
al. [33]: ∆̂z,(0) = τA(Î

z,(0)
o , r̃oe(z)) = τA(Ĩo, r̃oe(z)) +

τ2A(Ĩo, 2r̃oe(z)). We then update the current estimate of
the o-ray image by subtracting the approximated residual:

Îz,(1)o = Îz,(0)o − ∆̂z,0 = Ĩo − τ2A
(
Ĩo, 2r̃oe(z)

)
. (2)

As the attenuation ratio of e-ray τ is by definition less
than one, the new residual ∆z,(1) = −τ2A(Ĩo, 2r̃oe(z))
has a lower intensity level than that of the previous resid-
ual ∆z,(0), making our current estimate Î

z,(1)
o closer to

the ground truth than the previous estimate Î
z,(0)
o . In

the next iteration, the approximated residual is similarly
defined as follows: ∆̂z,(1) = −τ2A(Î

z,(1)
o , 2r̃oe(z)) =

−τ2A(Ĩo, 2r̃oe(z)) + τ4A(Ĩo, 4r̃oe(z)). The current image

estimate is then also updated as: Î(2)o = Î
z,(1)
o − ∆̂z,(1) =

Ĩo + τ4A
(
Ĩo, 4r̃oe(z)

)
. We repeat this process until the

intensity level of the approximated residual is less than the
threshold. We found that three iterations are sufficient to
allow the joint estimation to converge (see Figure 3).

We can see from Equation (2) that the residual error of
our algorithm after N iterations is

∆z,(N) = −τ2
N

·A(Ĩo, 2
N · r̃oe(z)). (3)

Note that our restoration method converges with the speed
of τ powered by 2N , faster than the Taylor expansion [33],
which converges at (−τ)N+1 ·A(Ĩo, (N + 1) · r̃oe(z)) with
the sameN number of iterations and speed of τ powered by
(N + 1).

4.2. Depth Estimation

To use double refraction to estimate depth, the existing
birefractive stereo method estimates the correspondence be-
tween the o-ray and e-ray pixels by defining the cost volume
Cz(P ) as the similarity of the gradient profiles of the o-ray
and e-ray pixels [1]. They calculate the cost volume twice
due to the ambiguity in double refraction, and then apply a
non-local cost aggregation [36] that also costs as much as
the dual cost calculation. This results in high computational
cost and not easily parallelizable.

In contrast, by making use of uneven double refraction
and the efficient image restoration method, we can esti-
mate depth Z (P ) for each pixel P from the restoration
volume Îzo (P ) by defining a depth cost volume Cz(P ) to
indicate the cost of selecting depth candidate z for pixel P .

The key insight of our method is that our image recon-
struction produces a clear natural image only if the given
depth candidate z is correct. Otherwise, the restored im-
age contains multi-refraction artifacts, as shown in Figure 3.
This is because wrong depth values cannot correctly remove
the image residuals, but instead introduce false edges as
artifacts. Therefore, we define the depth cost Cz(P ) as
the sum of the gradient magnitudes of neighboring pixels
about P in the restoration volume Îzo (P ). The depth cost
Cz(P ) is defined as follows:

Cz(P ) =
∑

P ′∈K(P )

∣∣∣∣∣∂Îzo∂x (P ′)

∣∣∣∣∣ , (4)

where K(P ) is the set of pixels in a window centered at P
of size 61×61. We implement this calculation using two
linear filters: an efficient Sobel filter for the gradient and the
box filter for the neighborhood. Once we have computed the
depth cost volume for every depth candidate z, we assign
the depth of P so as to minimize the cost:

Z(P ) = arg min
z

Cz(P ). (5)



With the estimated depth Z, we can reconstruct the fi-
nal color image ÎZo from the restoration volume Îzo (Sec-
tion 4.1). Note that our estimated depth values are valid
around edges, where uneven double refraction is clearly
visible and without ambiguity. Therefore, we compute
a validity mask so that we can retain only pixels hav-
ing strong horizontal gradients (

∣∣∣∂ÎZ
o

∂x (P )
∣∣∣ > Thresgrad)

and top score among depth candidate in terms of cost
(maxzC

z(P ) − minzC
z(P ) > Threscost).

5. Rectification for Double Refraction
In this section, we describe the proposed rectification

method to transform horizontal and vertical birefractive
baseline vectors into vertical baseline vectors only.

Traditional binocular stereo model formulates disparity
as rbinocular (P, z) = (f/z)bbinocular, where rbinocular is binoc-
ular disparity and bbinocular is the binocular baseline between
stereo cameras [10]. The birefractive stereo model from [1]
also has a similar form, explaining the birefractive disparity
roe, the disparity between Po and Pe, as follows:

roe(Po, z) = (f/z)boe (Po, z) , (6)

where boe is the birefractive baseline vector, defined as:

boe (Po, z) = bod (Po) + bde
(
Po + rod(Po, z)

)
. (7)

bod and bde are the baselines between Po and Pd and be-
tween Pd and Pe. rod is the disparity between Po and Pd.

The key difference between the binocular and birefrac-
tive models is that bbinocular in the binocular stereo model is a
constant while boe in the birefractive stereo model changes
depending on pixel position Po and depth z. Owing to these
two dependencies, to estimate depth per pixel, the current
birefractive stereo model needs to estimate the birefractive
baseline for every depth candidate and pixel position. Con-
sequently, computation is expensive and has a large memory
footprint. To overcome this limitation, we devise a novel
rectification method for double refraction images that has
no dependency on either depth or pixel position, enabling
efficient birefractive stereo imaging with low memory foot-
print that is as fast as traditional binocular stereo imaging.

5.1. Depth Dependency of Birefractive Baseline

The birefractive baseline boe depends on both Po and z,
as shown in Equation (7). We evaluate the impact of Po

and z on the changes of boe. We first found that the depth
dependency of the baseline can be safely detached. Note
that our goal is to derive a new disparity function r̂oe(Po)

with a depth-invariant baseline b̂oe(Po) as follows:

r̂oe(Po, z) = (f/z)b̂oe (Po) . (8)
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Figure 4. (a) We use Equation (8) to quantify errors induced by
our approximation w.r.t. depth. (b) Our approximated model accu-
rately predicts double refraction (measured at center), with results
similar to those of a professional optics simulator, Zemax.

We found that, when depth z is larger than a specific value
(410 mm in our optical setup (refer to Section 6 for de-
tails)), the depth dependency in the birefractive baseline of
Equation (7) can be removed with errors of less than one
pixel, resulting in the approximated baseline: b̂oe(Po) =
bod(Po) + bde(Po), which was used in our approximated
birefractive stereo model in Equation (8). Refer to the sup-
plementary document for our mathematical derivation de-
tails. Figure 4(a) shows that our approximated model is
valid in terms of maximum error when z > 410 mm, and
Figure 4(b) shows that our approximated model accurately
simulates double refraction, with results similar to full opti-
cal ray tracing via Zemax.

5.2. Spatial Dependency of Birefractive Baseline

The approximated birefractive baseline b̂oe has no depen-
dency on the depth, but it still depends on the spatial po-
sition of pixel Po, resulting in spatially-varying magnitude
and direction of the birefractive disparity r̂oe(Po).

Here, we aim to detach the spatial dependency from the
approximated birefractive baseline b̂oe(Po) so that we can
use line scans on the rectified input image to estimate the
depth from the per-pixel refractive disparity and achieve our
final birefractive stereo model, as follows:

r̃oe(z) = (f/z)b̃oe, (9)

where r̃oe is the birefractive disparity and b̃oe =
[
b̃avg
oe , 0

]
is the birefractive baseline, whose horizontal and vertical
components are set at b̃avg

oe and zero, respectively. It is worth
noting that b̃avg

oe is a constant scalar as we set it as the aver-
age of b̂oe along the horizontal axis. Equation (9) now has
a form with a constant baseline b̃oe, similar to that of the
popular binocular stereo model. This change of the original
spatially-varying baseline b̂oe(Po) into the constant baseline
b̃oe causes the input image to follow the constant baseline
setup via the ensuing rectification step.

Rectification via Dynamic Programming We introduce a
novel rectification method that eliminates the spatial depen-
dency of the birefractive baseline b̂oe(Po) by warping the
captured image. Our aim is to estimate a rectification func-



(a) Captured (b) Rectified
Figure 5. Spatial dependency of disparity and rectification. (a) Im-
age captured before rectification exhibiting non-horizontal dispar-
ity. (b) Rectified image with horizontal and standardized disparity.

tion T that maps the input pixel P to the corresponding rec-
tified pixel P̃ : P = T (P̃ ). Once the function T is known,
we can transform the input image Ic into the rectified ver-
sion Ĩc: Ĩc(P̃ ) = Ic(T (P̃ )).

The rectification function T is defined to make Equa-
tion (9) hold for the rectified image. To this end, we pro-
pose a dynamic programming algorithm, which defines T
for each column from left to right. Following the principle
of dynamic programming, we first initialize T for the first
column in order for it to have an identical location before
and after the rectification: T ([0, y]) = [0, y], where y is a
row. As the second step of dynamic programming, we de-
fine T for a column x by assuming that T is known for the
previous columns:

T (P̃ ) = T (P̃ − [1, 0]) + b̂oe

(
T (P̃ − [1, 0])

)
/b̃avg

oe . (10)

Equation (10) starts with the known T of the
previous column and has an additional offset:
b̂oe

(
T (P̃ − [1, 0])

)
/b̃avg

oe . This offset simply maps

the previous spatially-varying baseline b̂oe
(
T (P̃ − [1, 0])

)
to the target constant baseline b̃avg

oe . Therefore, it ensures
that function T satisfies Equation (9). Figure 5 shows
that our algorithm is able to warp a captured image with
non-constant and non-horizontal disparity into a rectified
image that satisfies both requirements.

6. Results

Hardware Implementation We built our experimental
setup using a machine-vision camera (GS3-U3-123S6C-C)
with the pixel pitch of 3.45µm. For optical elements, we
used a 35 mm lens, a glass-type linear polarizer from Ed-
mund Optics, and a 15 mm thick calcite crystal from New-
light Photonics. Note that by increasing the thickness of the
calcite, we can increase the disparity range in our method.
The refractive indices of the calcite crystal are given as 1.65
and 1.48 for o-ray and e-ray, respectively, within the visible
spectrum. To obtain deep depth-of-field, the aperture was
set to f /22. The attenuation ratio τ between the o-ray and
e-ray was calibrated by capturing stripe patterns and mea-
suring the intensity ratios around the edges. Note that fol-
lowing Zhang [37] and Baek et al. [1], we also calibrated
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Figure 6. Our results with different polarizer orientations: (a) 0.15,
(b) 0.3, (c) 0.45. Lower values of τ , (a) & (b), lead to clean
restorations of the image, with fast convergence. The lowest e-
ray proportion (a) leads to lower depth accuracy. Higher values
of τ (c) result in image artifacts. For a reliable reconstruction of
depth and color, we finally chose τ = 0.3.

camera parameters and birefringent properties of the calcite
crystal. Refer to the supplemental material for more details.

Software Implementation We implemented our main al-
gorithm for joint depth and color reconstruction in C++ us-
ing OpenCL GPU acceleration, while the birefractive model
computation and the calibration process were written in
MATLAB. We tested our reconstruction implementation on
a computer configuration with an Intel core i7-7700K 4.2
GHz and an NVIDIA GTX 1080 Ti. For the image resolu-
tion of 2048×1500 and 16 depth candidates, our algorithm
runs within 34 ms per each frame (30 Hz) for depth and
color estimation. In details, rectification and restoration-
volume generation take 16 ms. Cost computation and depth
selection take 14 ms and 4 ms for computing validity mask.

Unevenness of Double Refraction It is critical to deter-
mine the intensity proportion of e-ray to o-ray, τ ; accurate
determination of this value results in a clear reconstruction
of image and depth. The residual error of our color restora-
tion algorithm after N iterations is given by Equation 3.
This demonstrates that the residual error is lower if τ is
small. However, this holds only when the weak refraction
clearly stands from the image noise. To determine the best
value of τ , we captured a scene with panels (Figure 6). By
adjusting the angle between the linear polarizer and the cal-
cite crystal, we tested three different values of τ : 0.15, 0.3
and 0.45. We experimentally chose τ = 0.3 and use it in all
experiments.

Evaluation on Real Data For evaluation on real data with
ground truth, we used the panel scene in Figure 6 with
known panel distances. To validate the accuracy of our
method, Figure 7(a) shows a 1D plot of depth estimates for
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Figure 8. Comparison with the existing double refraction method.
Baek’s method (a) shows errors with the front clock and the back
bottle in the depth estimate. The restored image severely suffers
from ringing artifacts. Our method (b) can estimate depth more
accurately, yielding a high-quality color image. The table com-
pares computational time and accuracy of color and depth with
synthetic ground truth. On the same CPU platform, our method
is ∼55-times faster than Baek’s method. Our GPU implementa-
tion is ∼20-times faster than our CPU version. Note that Baek’s
method is not GPU-friendly because it includes non-local cost ag-
gregation [36] and dual cost computation [1].
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Figure 9. Image restoration comparison. (a) Input. Images (b)–(d)
are restored images by state-of-the-art methods [25, 33] and ours.
They all are competitive in terms of image quality; however, the
computational time is significantly different. It took the shortest
time, just 16ms, for our method to restore the color.

the panel scene, compared to the ground truth (measured by
a Bosch GLM 80 laser meter). The averaged depth error
of all the panels is 4.7 cm. Compared with the ground-
truth photograph of the o-ray image, our restored image
achieved a peak-signal-to-noise-ratio (PSNR) of 34.82 dB
(Figure 7(b)), validating the effectiveness of our method.
See Supplemental Material for additional image results.

Comparison with Depth-from-Double-Refraction We
compared our method with the existing depth-from-double-
refraction method [1], using the authors’ original imple-
mentation. We achieved high accuracy on both color and
depth estimates (Figure 8). While the previous method suf-
fers from artifacts in color restoration (PSNR 26.71 dB),
degraded depth quality (RMSE 212 mm) with high com-
putational burden (runtime for depth 38 sec., runtime for
color 78 sec., and memory footprint 4.1 GB), our method
exploits the uneven double refraction with our joint recon-
struction equipped with our rectification, outperforming the
previous art by significant margins: color accuracy (PSNR
36.63 dB), depth accuracy (RMSE 116 mm), and computa-
tional efficiency (runtime 694/34 ms (CPU/GPU) and mem-
ory footprint (0.46 GB)). Refer to the supplemental material
for more comparisons with a light-field camera, a dual-pixel
camera, and a learned-based method [35].

Evaluation on Synthetic Data For evaluation with per-
pixel ground truth, we created a synthetic dataset by sim-
ulating our image formation with 23 images of Middlebury
dataset [22] with depth values between 400 and 1600 mm
and inserted Gaussian noise of standard deviation 0.0005.
The average PSNR of the restored color image is 36.63 dB
and the average depth RMSE is 116 mm. Refer to the sup-
plemental document for further qualitative and quantitative
results on the dataset.

Ablation Study We ablate each component of our method
to evaluate their respective impact on the performance using
the same dataset on Table 1. Compared with [1], our novel
rectification method reduces memory footprint and compu-
tational time significantly. Our optical design makes the
color restoration problem much less ill-posed, which dra-



matically improves the color image quality.

Rectification × ◦ ◦ ◦
Uneven double refraction × × ◦ ◦
Joint reconstruction × × × ◦
Avg. runtime ms 38000 27000 27000 34
Max. memory (GB) 4.10 2.70 2.70 0.46
Output color PSNR (dB) 26.71 26.80 33.23 36.63
Depth RMSE (mm) 212 193 445 116

Table 1. Averaged ablation study results with the synthetic dataset.

Comparison with Image Restoration Methods We com-
pare our method on image restoration of uneven dou-
ble refraction with those of existing deconvolution meth-
ods [25, 33]. While the restored image qualities are highly
competitive, the computational costs are significantly dif-
ferent. It took just 16 ms for our method to restore the color
image (see the table in Figures 9). We use the authors’ im-
plementation for Shih et al. [25] (written in Matlab); hence,
speed is not directly comparable. We implemented Yano et
al. [33] and ours using OpenCL for a fair comparison.

Applications Our method provides a sparse depth map and
a restored image per each frame input enabling 3D object
detection with the estimated sparse depth. We used Frus-
tumNet v1 architecture [21] and retrained it for taking the
sparse depth estimates of our method. To this end, we gen-
erated another synthetic dataset of 300 pairs of an uneven
double-refraction image, a sparse depth map estimated by
our method, and object labels. Specifically, we used 300 im-
ages of SUNRGBD dataset [27] captured by Kinect v2 de-
vices, which provide high spatial and depth resolution. Note
that the selected 300 images contain three object classes
of table, desk, and chair mostly. We then simulate un-
even double-refraction images from which we can estimate
a sparse depth map assuming 30 mm thick calcite to handle
the large depth range of the dataset. Figure 10 shows the
detected 3D objects on test scenes. This experiment vali-
dates that our RGB-D output can be used successfully for
the 3D object detection task. In Table 2, our mean average
precision (mAP) value is highly competitive to the detection
results trained with the full depth input.

We demonstrate three depth-aware image refocusing by
densifying our sparse depth estimates guided by the restored
RGB image, as shown in Figure 10. For densification, we
used the fast bilateral solver [3], which runs in 70 ms, re-
sulting in 104 ms for the full pipeline. Refer to the supple-
mentary for details and other image editing applications.

7. Discussion and Conclusions
Our method is not free from limitations that can lead to

interesting future work. Specifically, saturated regions and
defocus and motion blur pose challenges for reconstruction.
Future methods may rely on semantic feedback to the recon-
struction algorithm to tackle these scenarios.
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Figure 10. (a) Synthetic defocus on the background of the scene
using our estimated color and depth. (b), (c) We trained the Frus-
tumNet model [21] for our RGB-D camera. We use the SUN-
RGBD dataset [27] to generate synthetic birefractive images to
train this model. (b) The synthetic result shows that our detection
result has a good agreement with the ground truth. (c) The de-
tection result captured by our real prototype. It detects 3D object
volumes of chairs and their orientation successfully.

Table Desk Chair mAP
Trained with our sparse depth 0.79 0.73 0.67 0.74
Trained with dense depth (GT) 0.86 0.80 0.94 0.86

Table 2. 3D object detection AP trained with sparse depth maps
and the ground truth dense depth, using the AP metric [21].

We have presented a real-time monocular RGB-D imag-
ing method relying on uneven double refraction, i.e., the
cross-polarization property of double refraction. The pro-
posed joint depth and color reconstruction method effi-
ciently and accurately estimates sparse depth and dense
color, outperforming previous depth-from-double refraction
methods in accuracy, while being orders of magnitudes
faster. We have validated the proposed method both syn-
thetically and experimentally, and demonstrate 3D object
detection and photographic applications.
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