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In this supplement we present additional details and re-
sults for the methods presented in the main text. Specifi-
cally, we present

• Regularization (Section 1)

• Continued optimization without rank-1 height map
factorization and without regularization (Section 2)

• Scene depth experiments (Section 3)

• Limitations (Section 4)

• Details for reconstruction network (Section 5)

• Training details (Section 6)

• Details on ablation study (Section 7)

• Fabrication details (Section 8)

• PSF calibration (Section 9)

• Additional results (Section 10)

• Experimental setup (Section 11)

• Dataset sources (Section 12)

1. Regularization
As described in Section 3 of the paper, we apply a regu-

larization loss during training. This loss is applied by using
the energy distribution mask shown in Figure 1c and keep-
ing 94% of the energy in the center and 6% in the line-like
satellite regions. Our regularizer is formally given by

Lreg = τc|0.94− p�Mc|+ τs|0.06− p�Ms| (1)

where p is the PSF, Mc is the energy mask corresponding
to the center, and Ms is the energy mask corresponding to
the satellite regions. In our experiments we used τc = 0.05
and τs = 0.1 .

We also performed an experiment where we trained us-
ing our optical model but without regularization. We found
that the final PSF converges to a Dirac point instead of
spreading out energy from the saturated area and the per-
formance is only 36.9 dB PSNR and 61.45 points on HDR-
VDP 2 [2] on the test set. This experiment illustrates the
importance of our regularizer.

a b c

Figure 1. PSF corresponding to Rank-1 height map parameteriza-
tion. (a) Simulated PSF. (b) PSF captured in the real-world. (c)
Energy distribution mask used for regularization.

2. Continued optimization without rank-1
height map factorization and without reg-
ularization

To validate that we achieve a good local optimum with
our optical design we continued to train without our rank-
1 factorization and without our regularizer for 25 epochs.
That is, we take our learned height map profile and con-
tinue to train as an unconstrained height map where each
location is a learnable parameter. For this experiment the
starting learning rate of the optical model is lowered from
1e−3 to 1e−6 while all other hyperparameters are the same
as the original model training process. We observe that af-
ter 25 epochs the height map has changed insignificantly, as
illustrated in Figure 2. This suggests that we do indeed find
a good local optimum.
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Figure 2. Height map comparison. (a) Our learned height map. (b)
Continued training height map without rank-1 factorization and
without regularization. (c) Absolute difference between (a) and
(b). All figures are normalized by the maximum fabrication height
hmax = 1.125 µm
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3. Scene depth experiments
Our optical model assumes that the point light source is

placed 5 m away from the DOE plane. However, the PSF
varies with different scene depth. As such, we investigate
the robustness of our reconstruction network for handling
PSFs corresponding to different scene depths in simulation.
We change the position of the point light source from 1 m
to infinity (while adjusting the distance between the sensor
and focusing lens accordingly). Figure 3 shows our PSNR
results on the test set in simulation. Our reconstruction net-
work does best for 5 m depth as expected, and the perfor-
mance is slightly degraded for other depths.
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Figure 3. PSNR performance in simulation over different depths.

4. Limitations
Large saturated regions Our method is most effective
for recovering highly saturated, small area regions, but
struggles like other optical encoding methods when the sat-
urated regions are larger in area.

We performed simulation experiments on scenes with
larger saturated regions to further illustrate the capabili-
ties and limitations of our method, which can be seen in
Fig. 4. The left images contain large saturated regions
which causes some of the encoding streaks to be saturated.
In spite of this, our method is still able to recover lost de-
tails and remove the encoding artifacts. The middle images
show that our method is able to accurately detect and re-
cover highlights of different intensities even if they all lie
within the same saturated region. Specifically, the high in-
tensity ceiling lights are correctly determined to be of higher
intensity than the reflected light from the windows, even
though both are saturated in the LDR measurement. The
right image illustrates a failure mode consisting of a very
complex scene within a large saturated region. Neverthe-
less, our method is still able to recover details and with cor-
rect intensity levels.

Layer Convolution layer Activation Normalization

0 conv-n64-k1-d1 Leaky Relu nm
1 conv-n64-k3-d1 Leaky Relu nm
2 conv-n64-k3-d2 Leaky Relu nm
3 conv-n64-k3-d4 Leaky Relu nm
4 conv-n64-k3-d8 Leaky Relu nm
5 conv-n64-k3-d16 Leaky Relu nm
6 conv-n64-k3-d32 Leaky Relu nm
7 conv-n64-k3-d64 Leaky Relu nm
8 conv-n64-k3-d1 Leaky Relu nm
9 conv-n6-k1-d1 - -

Table 1. Configuration of residual splitting network. In the ta-
ble, “conv-n(a)-k(b)-d(c)” represents a convolution layer with a
output channels, using a b × b kernel, and using a dilation rate
c. Each “Leaky Relu” has slope 0.2 and nm(x) = w0x +
w1Instance norm(x), where w0 and w1 are trainable variables.

5. Details for reconstruction network

In Fig 5 we show intermediate network outputs for the
first scene in Fig. 4 of the paper.

Reference (-8 EV) !I𝕊 (-8 EV)!I𝕌 (0 EV) !I% (0 EV)Reference (0 EV)

Figure 5. Intermediate images of our network for the first scene in
Fig. 4 of the paper. ÎU shows that the streak encodings have been
correctly removed. ÎS is displayed at -8 EV and shows accurate
reconstruction of highlights. The residual image Îr shows that the
streaks have been identified and separated from the input image.

Details for residual splitting network Our residual split-
ting network configuration is shown in Table 1. As de-
scribed in Section 4 of the paper, we use the pre-trained
VGG-19 model to extract feature maps (1472 channels in
total) and upsample them to the same size as the input im-
age (3 channels). Then we concatenate them together (1475
channels) and feed into our residual splitting network. We
use a skip connection so that the output unsaturated image
estimate ÎU is given by the sum of the first three channels
of the output of our residual splitting network and the input
image Is. The last three channels of the output of our resid-
ual splitting network gives the encoded residual estimate Îr.
We clip ÎU to [0, 1] and Îr to [0, 24].

Details for highlight reconstruction network Our high-
light reconstruction network configuration is shown in Ta-
ble 2. We avoid using normalization in the last two-layers
’9 1’ and ’9 2’, and the last layer ’10’ to allow the network
to output a larger range of values. The output of the network
ÎS is clipped to [1, 28].
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Figure 4. We provide additional simulation results on area with larger saturation regions. These larger saturated highlights are more difficult
to recover, but we are still able to provide accurate reconstructions. Note that different highlight intensities within saturated regions are
reconstructed with the correct intensity, for example, the ceiling lights in the middle image have higher intensity than light reflected from
the windows.

Details for fusion network As shown in Table 3, we first
convolve inputs ÎU and ÎS separately using two convolu-
tion layers for each input. Then we concatenate the feature
maps together and generate the final HDR prediction using
another two convolution layers. In addition, we mask out
the unsaturated region for ÎS before it is sent to the fusion
network.

6. Training details
We implement our rank-1 DOE height map model and

reconstruction network in TensorFlow 1.14. Our recon-
struction network assumes inputs are in the range [0, 1], and
outputs are in the range [0, 28]. The model is jointly opti-
mized using the Adam optimizer with polynomial learning
rate decay. The optic was optimized using a starting learn-
ing rate of 1e−3 and the reconstruction network was opti-
mized using a starting learning rate of 1e−4. The network
was then fine-tuned with the trained optic by adding the ex-
clusion loss Lexcl with a starting learning rate of 1e−5. Fi-
nally, we fine-tune the fusion network with a starting learn-
ing rate of 1e−5. Each of the three stages is trained for 200
epochs and the learning rates are decayed after 60000 train-
ing iterations to 1e−10. The model is trained on a single
Titan RTX, and the training process lasts around 48 hours
for every 200 epochs described above.

We used the following loss coefficients:

• ν2 2 = 1/4.8, ν3 2 = 1/3.7, ν4 2 = 1/5.6 for LVGG

• α1 = 0.2, α2 = 0 during training and α1 = 0.2,
α2 = 0.01 during fine-tuning for LU

• β = 0.5 for LS

We found that using Huber loss for LF produced better
results than using MAE or MSE and was better at handling
the large dynamic range of the output image.

7. Details on ablation study
As illustrated in Table 1 of the paper, our method out-

performs the state-of-the-art methods by more than 7 dB in
PSNR and 6 points on HDR-VDP 2 [2].

HDR-CNN [1] estimates the HDR image directly from
a single LDR image without using any encodings. While
their method works well for small dynamic ranges, it fails
to reconstruct highlights with a higher dynamic range ac-
curately. This can be seen in Figures 10, 11, 12 where the
−8 EV reconstructions show that highlight intensities are
severely under-estimated.

Glare HDR [4] encodes saturated information into sur-
rounding areas using off-the-shelf glare filters. However,
their reconstruction algorithm often leaves behind strong
artifacts and fails to correctly reconstruct the saturated re-
gions. Furthermore, the algorithm takes several seconds to
process a single LDR image, making it impractical for real-
time applications. We also performed an experiment using
our reconstruction algorithm instead of theirs while still us-
ing the “Star PSF”. We found that by simply changing the
reconstruction algorithm, we improve by more than 10 dB
in PSNR and 11 points on HDR-VDP 2 on the test set.

Deep Optics [3] was done in parallel to our work and is
most similar to our approach. For our comparison exper-
iments, we fixed their learned “Dual Peak PSF” and only
trained their reconstruction network. We found that the
copied peaks produced by their PSF are easily saturated, or
overlap with the saturated regions, which makes them inef-
fective for highlight reconstruction. We also performed an



Layer Convolution layer Activation Normalization

1 1 conv-n32-k7-d1 Leaky Relu Instance
1 2 conv-n32-k3-d1 Leaky Relu Instance

Max Pooling

2 1 conv-n64-k3-d1 Leaky Relu Instance
2 2 conv-n64-k3-d1 Leaky Relu Instance

Max Pooling

3 1 conv-n128-k3-d1 Leaky Relu Instance
3 2 conv-n128-k3-d1 Leaky Relu Instance

Max Pooling

4 1 conv-n256-k3-d1 Leaky Relu Instance
4 2 conv-n256-k3-d1 Leaky Relu Instance

Max Pooling

5 1 conv-n512-k3-d1 Leaky Relu Instance
5 2 conv-n512-k3-d1 Leaky Relu Instance

Upsampling & Concat

6 1 conv-n256-k3-d1 Leaky Relu Instance
6 2 conv-n256-k3-d1 Leaky Relu Instance

Upsampling & Concat

7 1 conv-n128-k3-d1 Leaky Relu Instance
7 2 conv-n128-k3-d1 Leaky Relu Instance

Upsampling & Concat

8 1 conv-n64-k3-d1 Leaky Relu Instance
8 2 conv-n64-k3-d1 Leaky Relu Instance

Upsampling & Concat

9 1 conv-n32-k3-d1 Leaky Relu -
9 2 conv-n32-k3-d1 Leaky Relu -

10 conv-n3-k1-d1 - -

Table 2. Configuration of highlight reconstruction network. In the
table, “conv-n(a)-k(b)-d(c)” represents a convolution layer with a
output channels, using a b × b kernel, and using a dilation rate c.
Each “Leaky Relu” has slope 0.2 and “Max Pooling” represents a
max pooling layer with a 2×2 kernel and a stride of 2. Each “Up-
sampling” represents nearest neighbor upsampling with a factor 2
followed by a convolution layer with a 3× 3 kernel.

experiment using our reconstruction network while using
their Dual Peak PSF. By changing the reconstruction net-
work, we improve by more than 2 dB PSNR and 2 points
on HDR-VDP 2 on the test set.

Finally, we observed that if we used our reconstruction
network but varied the PSF between the Dirac PSF (no en-
coding), the Star PSF, the Dual Peak PSF, and our PSF, then
using our PSF has the best performance. This suggests that
our PSF provides the best encoding for our reconstruction
network.

Layer Convolution layer Activation Normalization

1 1U conv-n64-k3-d1 Leaky Relu -
1 2U conv-n64-k3-d1 Leaky Relu -

1 1S conv-n64-k3-d1 Leaky Relu -
1 2S conv-n64-k3-d1 Leaky Relu -

Concat

2 1 conv-n32-k3-d1 Leaky Relu -
2 2 conv-n3-k3-d1 Leaky Relu -

Table 3. Configuration of fusion network. In the table, “conv-n(a)-
k(b)-d(c)” represents a convolution layer with a output channels,
using a b×b kernel, and using a dilation rate c. Each “Leaky Relu”
has slope 0.2 and nm(x) = w0x+w1Instance norm(x), wherew0

and w1 are trainable variables. 1 1U, 1 2U are applied to ÎU while
1 1S, 1 2S are applied to ÎS.

8. Fabrication details

The optimized DOE is fabricated by multilevel pho-
tolithography techniques on a fused silica wafer. Since it
is difficult and costly to fabricate continuous height pro-
files in the micro-scale, we first slice the continuous height
map into N = 24 levels. This allows us to approximate
the continuous target shape with 16 staircases to compro-
mise between manufacturability and diffraction efficiency
because 16-level DOEs offer > 90% diffraction efficiency
while providing good control over alignment between adja-
cent layers.

The fabrication procedure consists of two major parts,
photolithography and reactive ion etching (RIE). The pho-
tolithography step is used to form and transfer desired
patterns onto the substrate. The sliced binary pattern is
first written by a Heidelberg DWL 2000 laser direct writer
on a 5 inch soda-lime mask. Each pixel in the mask is
6 µm × 6 µm. For the substrate, we use a 4 inch fused
silica wafer. It is sputter deposited with 200 nm Chrome
(Cr) as a reflective layer, and then spin-coated with 0.6 µm
thick photoresist AZ1505. Next, the mask and substrate are
brought together through an i-line contact aligner EVG6200
for precise alignment between the two. The typical align-
ment error that can be achieved is ±1 µm. Once alignment
is done, the wafer is exposed to UV light with 15 mJ/cm2

dose. The exposed wafer is then developed in AZ MIF726
developer for 20 s to generate the pattern on the photore-
sist. To transfer the pattern from photoresist to Cr, we use
Cr etchant to remove the Cr in open areas. The photoresist
is then removed by acetone. At the end of this step, we have
a patterned Cr layer on a fused silica wafer.

The RIE step is then used to create final height reliefs in
the substrate. We use a mixture of Sulfur tetrafluoride (SF4)
and Argon (Ar) gases at 10 ◦C as the plasma source. The
etching depths are time controlled and monitored by mea-
surement on a profilometer. In each RIE cycle, we double



the depth that is done in the previous step in order to ap-
proximate 2π phase modulation. We design the DOE for
550 nm wavelength and the etching depths are 75 nm, 150
nm, 300 nm, and 600 nm respectively. After the etching, we
remove the residual Cr layer by Cr etchant.

We apply successive iterations of the photolithography
and RIE steps to have the final 16-level DOE. The final di-
mension of the sample is 20 mm× 20 mm× 0.5 mm.

9. PSF calibration
To obtain the high dynamic range real-world PSF, we

place a point white light source 5 m away from the sensor.
We take three images in rapid succession at 0 EV, −4 EV,
and−8 EV, which we then combine into one HDR PSF. We
then fine-tune our trained reconstruction network using the
obtained HDR PSF. Our fine-tuning process lasts for 200
epochs and uses a starting learning rate of 1e−5 and poly-
nomial decay after 60000 training steps to 1e−10.

Since the DOE is not installed on the aperture plane, the
shift-invariance of the PSF is not guaranteed at every posi-
tion on the sensor. Nevertheless, as shown in Figure 6 we
demonstrate that the PSF is almost constant across the field-
of-view of our designed frame size.

a b c

Figure 6. PSF corresponding to different sensor positions. (a) PSF
located at the center of the frame. (b) PSF located at the center-left
of the frame. (c) PSF located at the top-left of the frame.

10. Additional results
10.1. Real-world dynamic scene

We perform an additional experiment for capturing dy-
namic scenes consisting of moving high-intensity light
sources. As shown in Figure 7, we capture a swinging pen-
dulum fixture that has red and blue light sources. Since we
only use one snapshot for HDR reconstruction, our method
successfully recovers highlights of this dynamic scene with-
out motion blur artifacts. However, burst HDR, which takes
five images for every two stops, fails to handle this dynamic
scene.

10.2. Real captures

Figures 8 and 9 show real capture results using our pro-
totype. Note that all real captured results are shown at
1024 × 1024 resolution, please zoom in to see the encod-
ing streaks and the reconstructed details.
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Figure 7. Visual comparison of our method against burst HDR on
a dynamic scene. The scene consists of a set of lights affixed to a
swinging pendulum.

10.3. Simulation comparisons

Figures 10, 11, 12 show additional qualitative compar-
isons in simulation.

10.4. Automotive streak removal

We model streaks using a 2-point star PSF with the same
parameterization from Rouf et al. [4]. We set α = 1.0,
β = 0.00025, γ = 0,m = 0.014 in order to closely approx-
imate the streaks seen in the video sequence. To remove the
streaks we train our residual splitting network with the un-
saturated loss LU described in Section 4.1 and use ÎU as the
output. We do not use the highlight reconstruction network
or the fusion network for this task. Figure 13 shows addi-
tional qualitative results for automotive streak removal.

10.5. Automotive highlight reconstruction

Highlight reconstruction can also be performed with the
automotive streaks. Figures 14 and 15 show highlight re-
construction results when training our full network on the
same glare streaks described in Section 10.4.

11. Experimental setup

Figure 16 shows a close up frontal view of our camera
prototype. Figure 17 shows a close up of our manufactured
optic.
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Figure 8. Additional real-world captures using our fabricated DOE prototype. Note that in the top left image set, the orange lights were
shut off when taking the reference image. Please zoom in to see details.

12. Dataset sources

Table 4 shows the list of dataset sources that were used
for training and testing. To accommodate different image
sizes, 512× 512 crops containing saturated highlights were
taken.
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Figure 10. Additional qualitative comparisons for different snapshot HDR methods.
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Figure 11. Additional qualitative comparisons for different snapshot HDR methods (continued).
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Figure 12. Additional qualitative comparisons for different snapshot HDR methods (continued). Note that the bottom image set does not
contain highly saturated regions.
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Figure 13. Additional qualitative results for automotive streak removal.



Sensor Images (0 EV) Sensor Images (-4 EV) Output Image (-4 EV)

Figure 14. Qualitative results for HDR image reconstruction from automotive windshield streaks.
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Figure 15. Qualitative results for HDR image reconstruction from automotive windshield streaks.



Figure 16. Close up front view of camera prototype.

Figure 17. Close up of manufactured optic.



Name Website Image Names

HDRI Haven https://hdrihaven.com Hansaplatz, Neuer Zollhof, Preller Drive, Satara Night, Vignaioli Night,
Moonless Golf, Night Bridge, Rathaus, Shanghai Bund, Zwinger Night,
Rooftop Night, Carpentry Shop 1, Indoor Pool, Modern Buildings Night,
Moonlit Golf, Industrial Pipe and Valve 1, Industrial Pipe and Valve 2,
Viale Giuseppe Garibaldi, Winter Evening, Street Lamp, Blue Lagoon Night,
Concrete Tunnel, De Balie, Garage, Boiler Room, Mutianyu, Pump House,
Subway Entrance, Courtyard Night, Hospital Room, Circus Arena,
Leadenhall Market, Carpentry Shop 2, Machine Shop 2, Abandoned Hall 1,
Vintage Measuring Lab, Aircraft Workshop 1, Pond Bridge Night,
Old Bus Depot, Entrance Hall, Small Hanger 1, Brick Lounge

HDRI Hub https://www.hdri-hub.
com

HDR City Road Night Lights, HDR Night

HiDynamic https://shop.
hidynamicproductions.
com

KAH-005836-02-HDR

HDRILand https://hdriland.com Office Lobby, Bathroom, Sheldrake Hallway HDRI,
Valley Forge Soldiers Quarters HDRI

HDRMAPS https://hdrmaps.com Night in Calahonda, Basketball court at night, Expressway at night,
Blue hour at pier, By concert hall at night

HDRLabs http://www.hdrlabs.com Factory Catwalk

Joost Vanhoutte https://joost3d.com Amsterdam Night, Amsterdam Night 2, Amsterdam Castle,
11 Night HDRIs, 26 Free HDRIs

Ward http://www.anyhere.
com/gward/hdrenc/pages/
originals.html

Atrium Night, Montreal Float

Stanford http://scarlet.
stanford.edu/˜brian/
hdr/hdr.html

night1, night2, night3, night4, night5, night6, night7

MCSL Not available Lecture Hall 2, Night car

HDRCNN http://hdrv.org/hdrcnn/ Testset reconstructions

MPI http://resources.
mpi-inf.mpg.de/hdr/
video/

Tunnel

Stuttgart https://hdr-2014.
hdm-stuttgart.de

Carousel fireworks, Beerfest lightshow

Eisklotz https://www.eisklotz.
com

Night - Church Laufenburg

LollipopShaders http://www.
lollipopshaders.com

Traffic Light on Pacifica (Night), The Parking Lot (Night)

Openfootage https://www.
openfootage.net

River power station, Trainstation Salzburg

Zwischendrin https://www.
zwischendrin.com/en/
home

00065, 00080

Vlad Kuzmin https://www.artstation.
com/ssh4/store

GionSmallStreet01, SmallGion02, Gion at Night, Yard, Underpass, Tower

Corentin Defrance https://www.artstation.
com/corentindefrance

HDRI Indoor & Night Outdoor

Table 4. List of dataset sources along with specific image scenes and sets that were used.
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