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Fig. 1. We combine a radiometrically calibrated screen with a hardware-in-the-loop camera to generate stimulus/processed image pairs. We then train a

differentiable proxy model on the displayed target (A), before using the model to optimize application-specific imaging tasks. Here, we optimize hyperparameters

of a hardware ISP (ARMMali C71) for perceptual accuracy. Our prototype improves image quality (C & E), compared to a three-month-long tuning by imaging

experts (B & D). Our method is automatic and generates results in under an hour, enabling rapid prototyping for domain-specific imaging systems.

Nearly every commodity imaging system we directly interact with, or indi-

rectly rely on, leverages power efficient, application-adjustable black-box

hardware image signal processing (ISPs) units, running either in dedicated

hardware blocks, or as proprietary software modules on programmable

hardware. The configuration parameters of these black-box ISPs often have

complex interactions with the output image, and must be adjusted prior

to deployment according to application-specific quality and performance

metrics. Today, this search is commonly performedmanually by “golden eye”

experts or algorithm developers leveraging domain expertise. We present

a fully automatic system to optimize the parameters of black-box hard-

ware and software image processing pipelines according to any arbitrary
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(i.e., application-specific) metric. We leverage a differentiable mapping be-

tween the configuration space and evaluation metrics, parameterized by a

convolutional neural network that we train in an end-to-end fashion with

imaging hardware in-the-loop. Unlike prior art, our differentiable proxies
allow for high-dimension parameter search with stochastic first-order opti-

mizers, without explicitly modeling any lower-level image processing trans-

formations. As such, we can efficiently optimize black-box image processing

pipelines for a variety of imaging applications, reducing application-specific

configuration times from months to hours. Our optimization method is fully

automatic, evenwith black-box hardware in the loop.We validate ourmethod

on experimental data for real-time display applications, object detection, and

extreme low-light imaging. The proposed approach outperforms manual

search qualitatively and quantitatively for all domain-specific applications

tested. When applied to traditional denoisers, we demonstrate that—just by

changing hyperparameters—traditional algorithms can outperform recent

deep learning methods by a substantial margin on recent benchmarks.
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1 INTRODUCTION

We routinely interact with commodity imaging systems. The grow-

ing ubiquity of customizable image signal processors (ISPs) underly-

ing these systems is evidenced in their varied uses: communication,

entertainment, personal security, surveillance, and emerging appli-

cations such as autonomous driving. Power and compute efficient

hardware ISPs transform signals captured by imaging sensors into

images suitable for either human or automated consumption (e.g.,

in computer vision). Hardware ISPs are orders of magnitude faster,

cheaper, and more power-efficient than software image processing

pipelines, albeit less programmable. Many applications, e.g. safety-

critical real-time robotic systems, require real-time imaging systems

to process almost double-digit megapixel streams without frame

drops, e.g. Sony IMX324, mandating such hardware ISPs.

Most hardware ISPs are black-box units: their behavior is config-

urable according to a set of user-adjustable hyperparameters, how-

ever the details of their inner-workings are not usually revealed to

the user. Emerging software-based ISPs allow for some programma-

bility [Barry et al. 2015], while individual accelerator blocks or

custom software algorithms are still often proprietary black-box sys-

tems. As such, a common design workflow involves the adjustment

of the hyperparameters in order to (ideally) maximize an application-

specific performance metric, such as texture accutance [Baxter et al.

2012], modulation transfer function (MTF), or contrast detection

probability for computer vision applications [Stead 2016]. Unfor-

tunately, many factors complicate this ISP parameter adjustment

problem: the subcomponents that form the ISP pipeline are typically

non-differentiable; and, for researchers, the exact forms of these sub-

components are typically well-guarded trade secrets, purposefully

obfuscated from the users performing the parameter adjustment.

The standard industry practice relies on so-called “golden eye”

experts to adjust the parameters manually (i.e., by hand) while com-

bining traditional key performance index (KPI) metrics with visual

inspection across a necessarily small dataset of standardized natural

images. The downsides of a such a manual process are that it is both

extremely time consuming (i.e., on the order of several man-months

of work per problem instance), and that there is no guarantee that

the hyperparameters resulting from the incremental iterative pro-

cess are optimal in any local or global measure. Moreover, this

process is only feasible for visual tasks and for white-box systems.

With only black-box implementations available, experts cannot rely

on domain knowledge given the obscured nature of the parameters.

For higher-level vision analytic tasks, such as object detection, it

is unclear how to tune the ISP in an optimal way, and hence ex-

perts do not exist. Work on automating this process has focused

on optimizing individual white-box algorithmic blocks of software

ISPs with 0
th
-order parameter search methods. Unfortunately, these

solutions do not scale to the high-dimensional parameter spaces of

30–50 parameters or more of modern ISPs, do not apply to closed-

source or hardware systems available, and cannot jointly optimize

all parameters of the mixed categorical and continuous variable set.

In this paper, we propose a fully automatic method for optimizing

black-box ISPs. To do so, we model the ISP with a differentiable

proxy function that learns to reproduce the entire ISP image transfor-

mation process as a function of its input configuration parameters.

In practice, we parameterize our differentiable proxy functions using
convolutional neural networks (CNN) and, for any given hardware

ISP, we automatically generate training data using a hardware-in-

the-loop system. This system creates training pairs by displaying

control images on a calibrated high-resolution monitor, setting ISP

configuration parameters, and recording the ISP-processed output

image. We perform a one-time calibration to ensure accurate pixel

alignment between the input and output images, before training

our differentiable proxy functions in a supervised learning fashion.

We apply differentiable proxy functions to several domain-specific

problems. These include optimizing human-viewable outputs for

specific imaging systems according to tailored perceptual metrics,

and optimizing imaging system output for consumption by sec-

ondary computer vision systems for, e.g., pedestrian and car detec-

tion in autonomous driving scenarios, and low-light imaging by

tuning traditional denoising algorithms.

Our approach presents several advantages over the state-of-the-

art: first, it is fully automatic, requiring no human intervention;

second, calibrated screen-based stimuli generalize to unseen testing

scenarios without the need for custom datasets (i.e., those captured

in the wild or annotated by hand); third, differentiable proxy func-

tions scale to optimization problems with discrete and continuous

trainable hyperparameters without knowing their specific function

in the processing pipeline; lastly, we model the entire imaging sys-

tem in an end-to-end manner. We make the following contributions:

• the first automatic, scalable hyper-parameter optimizationmethod

for black-box imaging systems;

• we introduce differentiable proxy functions to model arbitrary

black box imaging systems;

• a hardware-in-the-loop setup to train the differentiable proxy

functions for parameter optimization and benchmarking tasks

according to application-specific performance metrics;

• we analyze and benchmark against experimental data for sev-

eral applications, including automotive object detection and ex-

treme low-light smartphone imaging. Our approach outperforms

manual search qualitatively and quantitatively on all domain-

specific applications tested. When applied to existing denoisers,

we demonstrate that—just by changing hyperparameters—these

algorithms can outperform recent deep image processing meth-

ods by a substantial margin on recent low-light benchmarks.

Our prototype is compatible with any imaging system due to the

hardware-in-the-loop nature of our calibration and training, without

any knowledge of the imaging system (i.e., regardless of whether

the form or function of the ISPs constituent parts are known, let

alone differentiable). This is essential for end-to-end training, utility

and scalability for many real-world applications.

2 RELATED WORK

We review prior art most related to our contributions, below.

Camera Image Processing Pipelines. Raw measurements from dig-

ital camera sensors are degraded by many factors, including photon

shot noise, read-out noise, optical aberrations, sub-sampling on

color-filter arrays, and cross-talk. Recovering a latent high-quality

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: April 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Hyperparameter Optimization in Black-box Image Processing using Differentiable Proxies • 3

image from these measurements on modern camera modules man-

dates complex low-level image processing pipelines, typically imple-

ments with highly-optimized ASICs [MT9P111 2015; Ramanath et al.

2005; Shao et al. 2014; Zhang et al. 2011]. Moreover, the demands for

real-time processing of high throughput and high resolution image

sequences further motivate the use of such custom hardware solu-

tions, e.g., commodity smartphones can capture 4K video at ≥ 30 FPS

and the next-generation of cameras will soon support slow-motion

video capture in HD. In sharp contrast to portrait capture applica-

tions, allowing for seconds per photo, these real-time applications

require immediate processing — multi-capture processing, e.g. burst

imaging [Hasinoff et al. 2016] in low light settings, are not possible

if per frame capture and compute exceed hundreds of milliseconds.

These performance and throughput constraints apply outside of

photographic applications. Imaging systems for driver assistant sys-

tems, fully-autonomous vehicles or other robotic usage scenarios, for

example, require real-time reaction and often with only enough time

to capture two or three sequential HDR images. Such constraints

have lead to the emergence of split-pixel sensors (e.g., OmniVision

OV10640, OV10650) and domain specific ISPs (e.g., ARM Mali C71).

These stringent performance constraints lead to challenging algo-

rithmic and hardware design constraints, and so most hardware ISPs

are proprietary designs with highly optimized processing modules.

Here, control of the underlying processing units are only exposed

through a (potentially large) set of hyperparameters, chosen often

by the hardware vendors and not, e.g., application developers.

Alternative ISP designs are today restricted to off-line processing

tasks. For example, Heide et al. [2014] pose low-level image process-

ing as an optimization problem, which is computationally intensive

and an order of magnitude slower than real-time ISPs. Recent data-

driven approaches address individual subproblems of the image

processing pipeline with deep neural networks, such as demosaick-

ing [Gharbi et al. 2016], tonemapping [Gharbi et al. 2017], low-light

denoising [Chen et al. 2018] and other operators [Chen et al. 2017;

Fan et al. 2018; Xu et al. 2015]. These methods substantially improve

runtime performance but are still orders of magnitudes slower than

hardware ISPs, requiring on the order of a second to process a

12 Megapixel image on a >100 Watt desktop GPU [Gharbi et al.

2016], precluding high-resolution or real-time processing. One in-

teresting property of data-driven methods, however, is that they can

be automatically optimized for specific tasks, while standard ISPs

require application-specific manual tuning. More generally, works

in graphics substitute complex simulation models with more effi-

cient or flexible proxies. NeuroAnimator [Grzeszczuk et al. 1998]

models complex physics-based simulations with neural networks,

whereas deep networks have also been used to supplement [Chai-

tanya et al. 2017], replace [Li et al. 2018] or invert [Liu et al. 2019]

image synthesis pipelines.

Our work bridges the performance of hardware and data-driven

ISPs by addressing this problem, efficiently and automatically opti-

mizing black-box hardware ISPs capable of delivering application-

tailored real-time performance with high power efficiency.

Image Quality Analysis. The complexity of the Human Visual

System (HVS), and that of modern imaging systems, both contribute

to artifacts in end-to-end capture-to-consumption imaging pipelines.

Image Quality (IQ) assessment of camera systems and ISPs is a

complex and evolving field [ISO [n. d.]a,n; Phillips and Eliasson

2018] that aims to quantify application-specific quality measures.

Another complication in the design of reliable and useful IQ metrics

is the fact that (even geographically-dependent) users may prefer

images that are “artificially” enhanced, e.g., with boosted chroma.

Typical spatial IQ metrics focus on one aspect of image quality,

such as sharpness, noise or blur [Baxter et al. 2012]. Measuring a key

performance indicator (KPI) typically involves performing captures

of printed paper or transmissive calibration charts under controlled

lighting, computing statistics from one or more ROI (Region Of

Interest) in the measured output images. In order for these statistics

to yield meaningful quality metrics, not only are the charts and

capture conditions standardized, but normalization procedures (i.e.,

subtracting noise estimates obtained on a flat patch from the power

spectrum of a textured area, or inverting the tonemap) aremandated.

Even with a well-calibrated KPI, better performance on the metrics

may not necessarily correlate with improved perceptual quality:

e.g., excessively denoised images tend to appear “plastic-y” and

unrealistic. As a result, any claim of “good image quality” can at

best be attributed to scoring sufficiently well on many KPIs, each of

which is ideally correlated with a different (meaningful, application-

tailored) artifact. Even then, subjective evaluation by a “golden eye”

expert and field testing are mandated for quality assurance.

Automated Camera Design. While no end-to-end automated de-

sign tools exist for ISP pipelines, the design of other components

of the imaging stack have been automated, including optics, elec-

tronic integrated circuits ISP controllers and camera controllers.

Optical systems are designed to minimize optical aberrations, i.e.,

deviations from a perfect linear optics model [Gauss 1843], un-

der the constraints of available footprint, cost, and lens element

types/shapes (e.g., spherical elements). State-of-the-art optical de-

sign software, such as Zemax [Geary 2002] or Code5 V [Garrard

et al. 2005] can optimize the surface profiles and types of refractive

lenses. These tools use a mid-level metric, a so-called merit function,

which typically strikes a compromise between a variety of crite-

ria [Malacara-Hernández and Malacara-Hernández 2016]: trading

off the point-spread-function (PSF) shape across sensor locations,

lens configurations (e.g., zoom levels), and target wavelength bands.

Recent work has explored automated design of diffractive optical

elements [Sitzmann et al. 2018; Stork and Gill 2013, 2014] with an

image quality metric loss instead of an intermediate merit function.

Note that, here, simplified design tasks are employed due to the

complex, non-differentiable behavior of modern ISPs. We address

this limitation, training differentiable proxies of hardware ISPs with
a calibrated, hardware-in-the-loop methodology.

Recently, Nishimura et al. [2018] optimize individual blocks of

white-box software ISPs using 0
th
-order Nelder-Mead. Their ap-

proach differs in a number of important ways from the proposed

method. While the proposed system supports hardware ISPs with

more than 30 jointly trained discrete and continuous parameters,

the 0
th
-order search in [Nishimura et al. 2018] is limited to 3-4

continuous parameters per block. As a result, this approach can

only be applied per ISP block (which has less than a hand-full of

continuous parameters), requires the knowledge of the blocks and
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their role, and does not allow for joint optimization. The authors

are therefore limited to a software ISP with known nodes (that have

a few continuous parameters), which are sequentially optimized.

Note that hardware ISPs, including those in this work, may actually

have dozens of discrete and continuous parameters. Higher-level

applications that require first-order training on large datasets, as

well as hardware ISPs cannot use [Nishimura et al. 2018].

0
th-order Optimization. Efficient and effective non-differentiable

black-box optimization remains an open research problem with

a variety of solutions. For low-dimensional problems and where

fast function evaluation is an option, grid search is a commonly

used strategy in practice [Bergstra and Bengio 2012]. The cost of

this method grows exponentially with input dimension, making it

impractical for larger problems.

Early work on 0
th
-order optimization methods for real-valued

relaxations rely on geometric search procedures. Powell’s widely

adopted method [Powell 1965] applies bisection search, and the

Nelder-Mead method [Nelder and Mead 1965] relies on various

geometric simplexes to define its search region. More recently, ran-

dom search methods have been proposed for hyperparameter opti-

mization problems with mixed categorical and continuous parame-

ters [Bergstra and Bengio 2012]. Instead of pure stochastic search,

these methods build a probabilistic prior over a history of function

evaluations, using this probabilistic proxy to approximate the objec-

tive landscape and update subsequent random samples. Bayesian

optimization methods differ in their modeling of the surrogate func-

tions they rely on [Bergstra et al. 2013; Shahriari et al. 2016; Snoek

et al. 2012; Swersky et al. 2013], but operate similarly on a high level.

While domain-agnostic Bayesian optimization methods are chal-

lenging to scale to higher dimensions, we show that domain-specific

proxies allow us to efficiently solve high-dimensional hyperparam-

eter optimization problems for image processing pipelines. Evolu-

tionary algorithms, such as [Hansen et al. 2003; Loshchilov et al.

2017], can scale to higher-dimensional spaces but require objectives

that are efficient to evaluate for the generation of large populations.

This prohibits loss functions defined over large training datasets.

3 THE IMAGING PIPELINE AND ITS PARAMETERS

ISPs are composed of many processing stages, most generally con-

verting an incoming light field into a (potentially displayable) image.

We briefly review the most common ISP stages, and their associated

parameters, keeping in mind that specialized parameter settings are

necessary to obtain a desirable application-specific output.

3.1 Common Imaging Pipeline Stages

We decompose typical imaging pipelines into the following stages:

(1) Optics: first, a lens (or more general optical system) focuses the

light field onto an array of photo-diodes, which subsequently

converts the photon flux of incoming irradiance to RAW digital

values via analog-to-digital converter circuits.

(2) White Balance & Gain: after removing the black level bias,

correcting for defect pixels and vignetting, the RAW pixel values

are color-corrected and gain-adjusted according to the (preset

or estimated) illuminant color [Ramanath et al. 2005].

(3) Demosaicking: since the RAW pixel values are most commonly

captured with a Bayer mosaic (alternating R-G-G-B 2 × 2 color

filter array), trichromatic RGB values are reconstructed, for ex-

ample by interpolation [Zhang et al. 2011].

(4) Denoising: resulting RGB values are filtered to attenuate sen-

sor noise, for example with edge-preserving filters (Bilateral

Filter [Choi et al. 2014; Tomasi and Manduchi 1998]) or even

non-local patch matching [Dabov et al. 2007; Zhang et al. 2016].

(5) Color & Tone Correction: several adjustments can be per-

formed afterwards to improve overall image appearance. For

example, global operations (applying a gamma curve, adjusting

image contrast via histogram manipulation), or local operations

(emphasizing edges with sharpening) can be applied here.

(6) ColorspaceConversion&Compression: pixel values are con-

verted to a specific colorspace (e.g. to sRGB) before compression

(e.g. to jpg), storage, or further processing.

We model stages two to six, assuming RAW sensor pixel measure-

ments as input.While one could incorporate potentially parametrized

optics (stage one) in our framework, we choose to simplify our pro-

totype and fix the optics without tunable parameters.

3.2 Imaging Pipeline Hyperparameters

Since any specific ISP hyperparameterization depends on the pa-

rameterization of, i.e. algorithms employed at each stage, the exact

number of hyperparameters will vary across ISPs. Table 1 provides

one such example, theARMMali-C71 ISPwe use in our experiments.

This ISP is a next-generation (pre-mass-production) state-of-the-art

hardware ISP for real-time applications in robotics, consumer de-

vices and automotives. It has a 32-dimensional hyperparameter

space that can be tuned to the application-specific needs of a user.

Optimizing such an ISP according to an application-specific per-

formance metric is challenging. In addition to the complexity in-

troduced by the large number of hyperparameters, the relationship

between any single parameter’s variation and the output perfor-

mance metric is typically a complex, non-linear function. Fig. 2

visualizes the behavior of example performance metrics as a func-

tion of the value of two hyperparameters from the ARM Mali-C71

ISP. As such, the coupled sensitivity of the performance to changes

acrossmany hyperparameters is complex and highly non-linear. Un-

fortunately, traditional 0
th
-order search methods are ineffective on

high-dimensional, non-convex, non-differentiable error landscapes.

Similarly, grid-based search cannot scale to the high-dimensional

spaces of such real-world ISPs. As such, experts rely on traditional

heuristics and domain knowledge to manually adjust parameters.

4 DIFFERENTIABLE PROXY MODELS

We now describe an end-to-end model for arbitrary ISP pipelines (ig-

noring optics, Sec. 4.1) using a differentiable proxy function (Sec. 4.2)

parameterized by a single convolutional neural network (CNN;

Sec. 4.3). This will allow us to leverage existing 1
st
-order meth-

ods to efficiently perform application-specific ISP hyperparameter

optimization. We then specialize our methodology to both software-
based (Sec. 5) and hardware-in-the-loop realizations (Sec. 6).

We consider only those tunable ISP stages succeeding the optical

system and sensor readout. Wewill assume, moving forward, that an
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Fig. 2. Traditional image analysis metrics as a function of varying one

ISP hyperparameter value at a time. We show values for a white balance

accuracy and color accuracy metric [Koren 2006]. Changing the values of

two hyperparameters, controlling demosaicking and tonemapping, results

in metric values with highly rugged, non-differentiable objective landscapes.

ISP expects an image (sRGB or RAW) as input, and outputs processed

image data for either human or automated consumption.

4.1 ISP Modeling

We model ISPs as functions fisp that map an input image I to an

output/processed image Oisp. ISPs are parameterized by hyperpa-

rameters P, and so we denote Oisp = fisp(I;P). We are interested in

solving hyperparameter optimization problems of the form

P∗ =arg min

{P }

N∑
i=1

Ltask (fisp(Ii ;P),Ti ) , (1)

where we seek a set of optimal ISP parameter settings P∗
by opti-

mizing a task-specific performance metric. We model this as a loss

function Ltask that measures performance deviation between the

ISP output and N known “control” target images Ti .

4.2 Optimizing Black-box Imaging Systems

Hyperparameters with Differentiable Proxies

We propose the following 2-stage procedure to minimize Eq. 1, that

is, to recover the hyperparameters of a black-box ISP for a particular

task. Our approach relies on a Differentiable Proxy Function (DPF)

that learns to reproduce the behavior of a given ISP.

(1) Training theDPF to learn the ISP function: the DPF is trained

to approximate the function applied by the ISP on an input image,

as a function of its hyperparameters;

(2) Optimizing the ISPhyperparameterswith the trainedDPF:

the learned DPF is then used to recover the best ISP hyperpa-

rameters for a given task.

Each of these stages is described in more details below.

4.2.1 Stage 1: Training the DPF to learn the ISP function. In a general
setting, fisp is either unknown (as with a black-box system) or non-

differentiable which, combined with the high dimensionality of P,

increases the challenge of solving Eq. 1. Here, we assume the only

operation available to us is the ability to “evaluate” fisp on example

input images and parameter settings.

In order to solve Eq. 1 under such constraints, we introduce a

representation fproxy that will allow us to solve it by proxy. We

will train fproxy so as to mimic the functional behavior of fisp as
closely as possible (see Fig. 3). As with fisp, this proxy model also

maps input images to output images, however it also expects ISP

hyperparameters P as additional inputs.

We parameterize fproxy by its own weights W and constrain the

form of our proxy to those that are differentiable w.r.t. P andW,

Oproxy = fproxy(I,P;W) , (2)

where we can evaluate fproxy and ∂ fproxy/∂pn , for every pn ∈ P

(equivalently for everywn ∈ W).

Indeed, if fproxy is differentiable and sufficiently expressive to

approximate an arbitrary, black-box fisp, then we can optimize for

weightsW that yield a proxy representation that behaves similarly

to the ISP. Specifically, we seek a proxy representation that is able

to produce Oproxy ≈ Oisp for any combination of input image I and
hyperparameters P. To obtain this representation, we solve the

following optimization problem for the proxy weights

W∗ =arg min

{W}

M∑
i=1

∥ fproxy(Ii ,Pi ;W) − fisp(Ii ;Pi )∥2 , (3)

over theM images and sampled hyperparameters. Here, the L2 loss

ensures that the proxy function image Oproxy is as close as possible

to that produced by the ISP Oisp. Since fproxy is differentiable with
respect toW, we can employ 1

st
-order techniques to solve Eq. 3.

4.2.2 Stage 2: Optimizing ISP Hyperparameters with Differentiable
Proxies. Solving Eq. 3 yields weights W∗

that we use to instantiate

a relaxed instance of the hyperparameter search problem (Eq. 1),

P∗ =arg min

{P }

N∑
i=1

Ltask

(
fproxy(Ii ,P;W∗),Ti

)
. (4)

Here, substituting fisp with fproxy from Eq. 1 to Eq. 4 results in a

more tractable problem, since we can not only evaluate fproxy but
also any of its partial derivatives with respect to the (proxy) ISP

hyperparameters, ∂ fproxy/∂pn . This allows us to employ modern

1
st
-order optimization techniques, including variants of stochastic

White Balance

Parameter Value Max

gain 00 583 2
12

gain 01 271 2
12

gain 11 587 2
12

Demoisaicking

Parameter Value Max

vh slope 190 2
8

vh thresh 220 2
12

va slope 175 2
8

va thresh 210 2
12

aa slope 170 2
8

aa thresh 100 2
12

uu slope 165 2
8

uu thresh 210 2
12

sharp alt ld 45 2
8

sharp alt ldu 45 2
8

sharp alt lu 25 2
8

fc alias slope 85 2
8

fc alias thresh 0 2
8

fc slope 130 2
8

np offset 3 2
8

Denoising

Parameter Value Max

thresh 1h 5 2
8

strength 1 190 2
8

thresh 4h 10 2
8

strength 4 255 2
8

thresh long 48 2
8

Color & Tone Correction

Parameter Value Max

lut knee 207 2
8

lut power 129 2
8

lut shadow 31 2
8

Colorspace Conversion

Parameter Value Max

coef a 11 4461 5880

coef a 12 4001 5880

coef a 21 4068 5880

coef a 22 4398 5880

coef a 31 4135 5880

coef a 32 3842 5880

Table 1. Parameters for each stage of the ARM Mali-C71 ISP we use in

our experiments. This ISP has a total of 32 hyperparameters to tune. It

took several “golden eye” experts several months to manually tune the

parameter settings (included in the table for completeness) for a visual

tuning application, while the proposed system requires less than one hour.
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gradient descent, where backpropagation allows us to now com-

pute partial derivatives of arbitrary (i.e., task-specific) performance

losses with respect to the (proxy) ISP hyperparameters, ∂Ltask/∂pn ,
for every pn ∈ P. These techniques scale more robustly to larger

hyperparameter spaces and non-linearities.

4.3 Differentiable Proxies: Form & Parameterization

Deep convolutional neural networks (CNNs) are a natural archi-

tectural choice for differentiable proxy functions fproxy: they have

proven both flexible and powerful in a variety of image-based

tasks [Ulyanov et al. 2017], well-established techniques exist to train

such models in an end-to-end fashion, and we can naturally impose

differentiability for the hyperparameteric inputs to the model.

In practice, we employ a variant of the UNet CNN architecture

([Ronneberger et al. 2015]; see Fig. 3) with {32, 64, 128, 256, 512}

encoder channels (and vice versa for the decoder), with minor vari-

ations depending on whether we employ a software- or hardware-

based training regime (detailed in Secs. 5 and 6, respectively).

Mirroring the localized processing behavior of modern ISPs, as

well as echoing well-established practice in the machine learning

and computer vision literature (i.e., [Isola et al. 2017]), our CNN

operates on local image patches (specifically of 512×512 resolution).

In addition to the patch input channels (e.g. three for sRGB input),

we concatenate as many channels as there are hyperparameters P

in the ISP, where each channel is simply the value of the hyperpa-

rameter replicated over the spatial dimension. For example, a proxy

CNN modeling a 32-parameter ISP taking as input an sRGB image,

would receive a 35-channel (32+3) input patch. To encourage the

model to learn the effects of the hyperparameters on the output

image, we further append the input hyperparameter channels to

each downsample layer (shown as blue layers in Fig. 3). To avoid

introducing unwanted dependencies between channel layers, each

up-/down-sampling operation is performed independently per chan-

nel. The hyperparameter inputs are normalized to lie in the [0, 1]

interval for more stable training. We train the model using latin-

hypercube (LHC) random sampling of the ISP hyperparameters.

Application-specific details are provided in Sec. 5 and 6.

5 SOFTWARE VALIDATION EXPERIMENTS

We first validate the utility and effectiveness of differentiable proxy

functions on challenging imaging problems using existing black-box

software processing blocks, before presenting our hardware-in-the-
loop end-to-end ISP hyperparameter optimization setup (Sec. 6). All

of these experiments use the UNet architecture from Sec. 4.3, trivially

adapted to expect a 3-channel sRGB 512 × 512 image subpatch as

input, and produce a 512 × 512 output.

5.1 Low-light Black-box Denoising Task

We train a proxy fproxy to mimic the behavior of the BM3D software

denoiser [Dabov et al. 2007] (i.e., fisp) on a standardized low-light

denoising task, using the SIDD sRGB dataset [Abdelhamed et al.

2018] which contains noisy/clean natural images pairs acquired from

five different smartphone cameras. We use the original black-box

obstructed MATLAB binaries provided by the authors [Dabov et al.

2007], and we set the standard deviation value using standard shifted

difference estimation (see supplemental document). We optimize the

Wiener transform category, neighborhood size, patch size, a linear

scale for sigma, and aggregation color space. These parameters are

both categorical and continuous (see the supplemental document).

We extractM = 6900 random 512 × 512 image patches across the

entire noisy image dataset to serve as input training images Inoisy.
We then execute the BM3D denoiser on each patch with randomly

selected hyperparameters values to obtain the corresponding Oisp.

We optimize for the proxy weights W with the Adam optimizer on

this training set (see the supplemental document).

Once trained, we apply our trained proxy to this sRGB denoising

instance of the hyperparameter optimization problem, in order to

obtain optimal BM3D parameters. Specifically, we now rely on both

the noisy image patches Inoisy as well as their ground truth denoised

counterparts Iclean, from the SIDD sRGB training dataset. The BM3D

parameters are obtained as the result of solving the following task-

specific specialization of Eq. 4,

P∗
BM3D

=arg min

{PBM3D }

N∑
i=1

fproxy(Inoisy,PBM3D;W
∗) − Iclean


2
, (5)

where we minimize the mean squared error between the clean,

ground truth images Iclean and the output of our proxy.

Table 2 summarizes the quantitative results of this black-box de-

noising experiment. Our proxy-optimized BM3D ISP substantially

outperforms all other alternatives, yielding new state-of-the-art re-

sults for sRGB-to-sRGB denoising on this dataset. Fig. 4 illustrates

some representative qualitative results on this task. These results
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Method PSNR SSIM

Proxy-opt. BM3D (Ours) 34.34 0.911

CBDNet [Guo et al. 2018] 33.28 0.868

KSVD-DCT [Elad and Aharon 2006] 27.51 0.780

KSVD-G [Elad and Aharon 2006] 27.19 0.771

EPLL [Zoran and Weiss 2011] 27.11 0.870

KSVD [Aharon et al. 2006] 26.88 0.842

NLM [Buades et al. 2005] 26.75 0.699

WNNM [Gu et al. 2014] 25.78 0.809

BM3D [Dabov et al. 2007] 25.65 0.685

FoE [Roth and Black 2005] 25.58 0.792

TNRD [Chen and Pock 2017] 24.73 0.643

MLP [Burger et al. 2012] 24.71 0.641

GLIDE [Talebi and Milanfar 2014] 24.71 0.774

LPG-PCA [Zhang et al. 2010] 24.49 0.681

DnCNN [Zhang et al. 2017] 23.66 0.583

DemosaicNet
1

[Gharbi et al. 2016] 22.38 0.369

Table 2. Quantitative sRGB-to-sRGB denoising results on the SIDD sRGB

dataset [Abdelhamed et al. 2018]. Previous benchmark leader indicated in

light blue. The dataset uses ground truth, stored on an external server and

hidden from the user, to ensure fairness. Our method finds better hyperpa-

rameters for the existing BM3D algorithm, significantly outperforming the

state-of-the-art. Corresponding qualitative results are shown in Fig. 4.

highlight the importance of the hyperparameter optimization prob-

lem and the impact that better hyperparameter settings can have

on task-specific performance, even when relying on a fixed ISP.

Optimization Performance & Alternatives. Our proxy-based hy-

perparameter optimization completes in under three (3) hours (on

a single, modern desktop GPU), including the time to train the

differentiable proxy. This is owed, in part, to the effectiveness of

1
st
-order optimization methods enabled by the differentiable nature

of our proxies. It is not feasible to rely, alternatively, on 0
th
-order

techniques commonly applied to this problem, such as Bayesian

optimization methods: these methods would require evaluating the

BM3D ISP once per 6900 training image patches per iteration, lead-

ing to roughly 5 × 10
3
seconds or one hour per iteration. These

methods typically require roughly 500 iterations for image process-

ing tasks, and so a total optimization time of about 21 days.

5.2 Validation

Next, we demonstrate the flexibility of DPFs on distinct hyperpa-

rameter optimization problems: setting the hyperparameters of a

global tone mapping operator (Sec. 5.2.1) and general, noise-polluted

non-linear optimization benchmark functions (Sec. 5.2.2).

The validation test results demonstrate the applicability of proxy

models to efficient global image operator optimization (i.e., beyond

local demosaicking or per-pixel operations), and their ability to scale

to challenging high-dimensional non-linear search problems.

5.2.1 Global Image Tonemapping. To validate the applicability of

DPFs to different scenarios such as global image processing op-

erations, we train a proxy to reproduce the behavior of a global

tonemapping operator, ftonemap [Paris et al. 2011].

1
We use an unmodified DemosaicNet (trained on its original RAW dataset) and evaluate

it on RAW using its default parameters. Note that all other methods map sRGB to sRGB.

Here, we set the proxy input space to match that of the tonemap-

ping operator, fproxy(Ii ,α , β , ϵ ;W), where α and β control the form

of an underlying Laplacian filtering pyramid and ϵ is a numerical

stability parameter [Paris et al. 2011].

Outside of differences in the parameterization of the problem,

we proceed similarly to Sec. 5.1: we generate M = 10
4
random

512 × 512 input/output image patches extracted from a dataset of

1,000 natural images (Iin and Otonemap = ftonemap(Iin;α , β , ϵ)) with
randomly selected hyperparameters {α , β, ϵ}, and we optimize the

proxy weights W with the Adam optimizer (training details are in

the supplementary document), solving Eq. 3 with P ≡ {α , β , ϵ}.
We then manually select user-defined values for (α , β, ϵ), and

tonemap all the training images with these fixed hyperparameters.

Finally, we use the trained proxy to estimate the hyperparameters

from the set of tonemapped images. As in Sec. 5.1, we employ an L2

image loss as the task-specific metric Ltask. Keeping in mind that

the inner-workings of the original tonemapping operator are kept

entirely opaque during proxy training and tonemapper hyperpa-

rameter optimization, we show first that both the tonemapper with

the optimized tonemapping hyperparameters as well as the proxy

itself reproduce the target output behavior (see Fig. 5). We obtain a

PSNR of 44.31 dB on a test set of 19 manually tonemapped images.

5.2.2 Hyperparameter Optimization of Complex, Noisy, Non-linear
Benchmark Functions. Next, we validate the proposed DPFs for gen-

eral black-box non-linear optimization. To this end, we find the

(apriori known) minima of several non-linear optimization bench-

marking functions. Here, we employ 20-dimensional generalizations

of four such functions, namely the Ackley [2012], Rastrigin [1974],

Step-2 [Jamil and Yang 2013], and the Alpine-1 [Jamil and Yang

2013] functions (see the supplemental document for equations). We

pollute each function with 0-mean Gaussian noise with a standard

deviation equal to 3% of the maximum function value. The Ack-

ley function is non-convex and multimodal; the Rastrigin function

is convex, separable and multimodal; the Step-2 function is dis-

continuous, non-differentiable, separable and unimodal; and, the

Alpine function is non-convex, multimodal and non-separable. All

functions have a minimum output value of 0 at the origin. Our ex-

periments confirm that differentiable proxies are a powerful tool

for general non-linear optimization problems (Fig. 6). Of note, we

outperform state-of-the-art Bayesian optimizers typically used for

hyperparameter search in machine learning applications [Snoek

et al. 2012].

6 HARDWARE ISP EXPERIMENTS

We will apply our differentiable proxy framework to black-box

hardware ISP optimization.

6.1 Hardware ISP with RAW Injection

We first experiment on the ARM Mali-C71 ISP, a state-of-the-art

hardware ISP with the ability to inject pre-captured RAW images

to the ISP, bypassing optics and sensor. This allows us to directly

evaluate fproxy function outputs for any input RAW image Iraw and

hyperparameter setting P.

Here, we slightly modify the our DPF UNet architecture (Sec. 4.3)

to expect RAW image patch inputs, i.e., untiled into four different
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Fig. 4. Low-light smartphone denoising with proxy optimization. We illustrate sRGB-to-sRGB denoising on the SIDD sRGB dataset [Abdelhamed et al. 2018],

consisting of measured smartphone images. By simply optimizing the hyperparameters of an established ISP, such as BM3D, we can improve its performance

substantially. In fact, here, we outperform state-of-the-art methods (see Table 2, and the supplemental material for additional qualitative results).

channels (corresponding to R-G-G-B; as in [Chen et al. 2018]). With

a 512 × 512 input image patch I, the actual CNN input is therefore

256 × 256 × 4. We shuffle the 256 × 256 × 12 UNet output according

to the sub-pixel layer described in [Shi et al. 2016] to reconstruct a

three-channel 512 × 512 RGB output patch Oisp.

Similarly to our sRGB denoising experiment (Sec. 5.1), we op-

timize the hyperparameters of the ARM hardware ISP for a RAW

denoising task on the SIDD dataset [Abdelhamed et al. 2018]. In

a first stage (Sec. 4.2.1) we select 5 × 10
3
random 512 × 512 image

patches from the RAW SIDD dataset, sampling random hyperparam-

eters and injecting the RAW image patches directly to the ARM ISP

to recover corresponding output images. With these input/output

images, we train the DPF weights (Eq. 3).

In a second stage (Sec. 4.2.2), we fix the proxy weights and back-

propagate the denoising loss back to the input hyperparameters.

Here, we rely on the noisy image patches Inoisy and their ground

truth denoised counterparts Iclean from the SIDD RAW training

dataset. We obtain optimized ISP hyperparameters by solving Eq. 5,

except now with a task-specific loss Ltask = Lperc + λL1, where

Lperc is a perceptual loss (we use the AlexNet variant [Zhang et al.
2018]), L1 is a per-pixel L1 loss, and we use scalar weight λ = 2 in

all our experiments to balance between the two losses.

Fig. 7 qualitatively compares the ISP’s output generated default

parameters and our proxy-optimized parameters. Images generated

using our approach are higher quality, exhibit less noise, and more

closely resemble the ground truth. Unfortunately, RAW injection

capabilities are exceedingly rare as the vast majority of hardware

ISPs do not support this feature and so, in these practical scenarios,

fproxy cannot be directly evaluated. As such, we require another

solution to support a broader set of modern hardware ISPs.

6.2 Prototype for Generic Black-box Hardware ISPs

To optimize hyperparameters for these more general hardware ISPs,

we design a novel hardware prototype that directly measures ISP
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Fig. 5. Qualitative example of global image tonemapping, where a differen-

tiable proxy is trained to accurately fit the tonemapping operator of Paris

et al. [2011]. The proposed proxy models can accurately learn global image

operations, beyond local, stencil-based image processing operations such

as demosaicking or unsharp masking.

output resulting from captured stimuli: Fig. 9 summarizes our hard-

ware setup, which consists of an LCD monitor to display stimuli

images I, a camera calibrated to image these stimuli, an ISP that

processes each capture with programmable ISP hyperparameters,

and storage to recover the corresponding ISP output image Oisp. We

use a Sony IMX290 capture board with a 10-bit interface and a fixed

exposure time of 20ms. We auto-select and fix the analog gain once,

according to the lighting conditions. The camera board is equipped

with a Sunex PN DSL219 lens. Our capture setup is compact, flexible,

and fast, allowing us to automatically generate of large training

dataset of images. We will further describe its calibration that al-

lows us to obtain images Oisp with pixel accurate alignment with

I, before discussing how we generate training data. After which,

we apply our hardware prototype to two applications: improving

human-consumable image quality and automated object detection.

6.2.1 Prototype Calibration. We find accurate geometric correspon-

dence between the output Oisp and displayed I images by displaying

a Gray code sequence
2
[Gupta et al. 2011] that allows us to cali-

brate a full light transport mapping matrix between camera and

display pixels [Peers et al. 2009; Sen et al. 2005]. We keep the ISP

tonemapping close to linear during this calibration process.

We position the monitor so that every one of its pixels is smaller

than a sensor pixel in the output image. We assume a single iMac

2
In practice, we employ green-and-black codes, since green is generally best resolved

by Bayer sensors, minimizing the impact of chromatic aberration.

Test Functions Differentiable BayesOpt HyperOpt Powell Nelder-Mead

(20D variants) Proxies [2014] [2013] [1965] [1965]

Ackley 16.84 21.65 20.27 20.95 21.18

Rastrigin 94.35 124.91 137.79 209.42 258.51

Step-2 6359.0 14018.0 22444.0 49120.0 51669.0

Alpine 24.48 24.96 29.02 50.85 24.48

Fig. 6. Optimization performance benchmark—using differentiable proxies

during optimization (i.e., with Adam) compares well to state-of-the-art 0
th
-

order methods on a number of well-establish benchmark functions. We

visualize 2D variants of these test functions, but perform our test on 20D

instances. The table reports loss function values after optimization. The best

competing method, “BayesOpt”, runs at around 10 minutes for these simple

functions, while the proposed proxy model requires only a few seconds. This

validates that simplex methods such as used in [Nishimura et al. 2018] do

not scale to complex hyperparameter optimization problems.

5K monitor sufficiently covers the camera’s field of view but, if not,

multiple displays can trivially be used (and independently calibrated

using the aforementioned procedure). We then resample the dis-

played target using the inverse of the calibrated light-transport ma-

trix, using linear interpolation. Furthermore, we color-calibrate the

monitor to emulate different illuminants (e.g., A, D65 and TL84). We

validate hardware results (under different illuminants) and demon-

strate that this calibration holds up to real-world capture scenarios.

6.2.2 Training Data Generation. To train a DPF to approximate a

hardware ISP (Sec. 4.2.1) with our prototype, we acquire 1080× 1920

RAW images of a specially-designed rainbow chart (see Fig. 1a). We

designed the chart using random ellipse chart components for full

reference image difference metrics. Using ellipses instead of discs,

as is typical with Dead Leaves/Spilled Coins charts, ensures that the

shape family is robust to lens distortion. It also ensures that a signif-

icant number of long/thin features are present in output images. To

prevent demosaicking, denoising and sharpening thresholds due to

overfitting of fixed contrast, we include a constrast gradient in the

random ellipses chart: at one end, color values of nearby ellipses are

close to each other (low contrast), and at the other end they are far-

ther (high contrast). We also use hyperbolic wedge blocks modified
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Fig. 7. Denoising results on the RAW SIDD dataset with an ARM Mali-C71

hardware ISP. We leverage RAW injection capabilities of this ISP to directly

evaluate its performance on input RAW images, bypassing the optics and

sensor. Compared to default ISP parameters (left), our approach (middle)

finds hyperparameters that significantly improve visual quality compared to

ground truth (right). See the supplemental document for additional results.

so that each frequency fills the width of the block. We lay out color

and grey patches in two concentric “rainbows”. In addition to mini-

mizing the impact of lens shading, this configuration leads to patch

interfaces at a variety of angles with respect to sensor lines. This

minimizes horizontal and vertical bias tuning losses that measure in-

terface cleanliness. Moreover, when used to quantify color accuracy,

we compare output image patch averages to chromatically-adapted

values derived from direct photospectrometer measurements. We

insert skin gradients (or gradients between somewhat similar colors)

in the chart to allow us to measure structured noise on patches that

are smooth but not “flat”, thus mitigating the tendency of some ISPs

to posterize. Smooth gradients are generally included where lens

shading is strong, i.e., near the edges of the field of view.

6.2.3 Modeling a Generic Hardware ISP with a Differentiable Proxy.
We apply the first stage of our approach (Sec. 4.2.1) to generic hard-

ware ISPs (that cannot accept direct RAW injection, unlike Sec. 6.1),

we use the aforementioned prototype system to display our rainbow

Fig. 8. Example sample image crops Oisp obtained by imaging the same

rainbow chart with an ISP while varying its hyperparameters in the first

stage of the proxy training. A larger, randomly sampled training dataset is

recorded as the training set for the initial proxy model fitting.

chart. Again, we randomly sampleM = 5× 10
3
ISP hyperparameter

settings P and capture the corresponding post-ISP output sRGB im-

agesOisp. We also store the corresponding (resampled) ground truth

chart image Ichart before training the UNet CNN weights (Sec. 4.3;

Eq. 3). Fig. 8 illustrates example images Oisp. Note that, while the

proxy is only trained on the rainbow chart, it does not overfit to

this particular image and generalizes well to other real images, as

we demonstrate in the next section.

6.3 Applications for Optimized Black-box Hardware ISPs

We use our trained DPFs to optimize hyperparameters of a black-

box ARM Mali-C71 hardware ISP for two tasks: perceptual quality

improvement and object detection. We detail the second stage of

our approach (Sec. 4.2.2) for these applications, below.

6.3.1 Improving Perceptual ImageQuality. We optimize hyperpa-

rameters to improve perceptual quality of the ISP output. We first

train a DPF fproxy for the ARM Mali-C71 hardware ISP with our

display prototype (Sec. 6.2): as in Sec. 6.1, we use a sum of L1 and

perceptual losses [Zhang et al. 2018]. Here, however, we compute

the loss on the (resampled) rainbow chart (Sec. 6.2.2) and the ISP

output image produced. Results, illustrated in Fig. 1 and 10, demon-

strate visually-pleasing, high-quality images now produced by the

hyperparameter-optimized ISP. Table 3 validates theses results quan-

titatively on perceptual and traditional image metrics. We generate

these results automatically in less than three hours and they improve
IQ compared to a three-month manual tuning by imaging experts.

We can also apply our method to modify the appearance of ISP

output images in a deliberate manner: Fig. 11 illustrates an exam-

ple where an end-user can force the proxy to learn purposefully

over-sharpened, high-contrast images. Since no specific ISP hyper-

parameters directly control sharpening, obtaining such a tailored

result by manual ISP tuning would be challenging. With our method,
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Fig. 9. Our hardware-in-the-loop system for optimizing black-box hardware

ISPs. We image synthetic chart images (for the first stage proxy training),

and task-specific images (for second stage optimization) on a display, which

is placed in front of the camera. The mapping from display to camera pixels

is calibrated accurately using a full light-transport calibration. We use a

hardware capture board with Sony IMX 290 sensor and next-generation

ARM Mali C71 hardware prototype ISP, running on an FPGA.

an end-user need simply modify the rainbow chart to the desired

look in order to yield a proxy that replicates this effect.

6.3.2 2D Object Detection Task. We also apply our method to op-

timizing the ISP output in order to improve object detection re-

sults. Here, after training a DPF fproxy for the ARM Mali-C71 hard-

ware ISP as above (Sec. 6.2), we additionally train an object detec-

tion network ffrcnn to detect object bounding boxes on the KITTI

dataset [Geiger et al. 2013]. We employ the commonly-used Faster

R-CNN model [Ren et al. 2015] with a Resnet-101 backbone [He

et al. 2016] (pretrained on ImageNet [Deng et al. 2009]), and fine-

tuned on the KITTI training dataset. Our detector obtains 91.3%

on a 20/80 KITTI test/training set split (measured for cars only;

see [Geiger et al. 2013]). We can therefore consider this object de-

tector as state-of-the-art. The ffrcnn outputs bounding boxes and

associated detection scores, and we train it by maximizing a typi-

cal intersection-over-union (IoU) object detection loss Liou on the

KITTI dataset [Ren et al. 2015]. To obtain a DPF for the end-to-

end object detection pipeline, we chain the two networks to obtain

fdetect = ffrcnn(fproxy). In other words, the ISP output image is fed

directly to the Faster R-CNN object detector.

Fig. 10. Low-noise imaging example. This example demonstrates that the

current approach achieves golden-eye tuned parameters which required

months of manual optimization. The bottom inset examples visualize the

improvement in color moire, measured in Table. 3.
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Our second stage (Sec. 4.2.2), for this application, relies on the

chained proxy fdetect when optimizing ISP hyperparameters. Here,

DPF and Faster R-CNN weights are both fixed during hyperparame-

ter optimization.We acquire 50 training images from an autonomous

test vehicle in populated urban scenes (including cars, trucks, pedes-

trians, etc.) From these, we extract 50 low-resolution patches per

image, and display them to the ISP with our display prototype. We

obtain the ISP hyperparameters by back-propagating the IoU loss

Liou computed between detections made by fdetect and the ground

truth annotations.

To evaluate our approach, we acquire another non-overlapping

set of 1068 RAW images using our hardware prototype system. Each

object class is also hand-labelled (we use an external labeling service

to avoid any bias), and we evaluate a total of 10590 ground truth

objects. To avoid overfitting to our specific display prototype, we

do not display these images to the ISP and instead adopt another

strategy. As in Sec. 6.1, we record the test images in RAW (using the

car camera) and inject the RAW images directly to the ISP, identical

to the ISP used in real-world conditions.

Table 4 summarizes our quantitative tests, demonstrating a signif-

icant performance increase of 0.31 to 0.37 in mean average precision

(50–90 mAP according to COCO metrics [Lin et al. 2014]) with the
same Faster R-CNN network, when the ISP is optimized for object

detection. As in Fig. 12, and as opposed to manual expert-tuned

parameters, the optimized ISP does not output images suitable for

human consumption (note the pink hue), but images that are rather

preferred by the Faster R-CNN network. Of note, the solver learns

to slightly blur objects, reducing noise, but also substantially im-

proving bounding-box tightness and inter-class uncertainties.

7 DISCUSSION AND CONCLUSION

Limitations. Our approach has two notable limitations. First, our

hardware-in-the-loop system is limited by the display’s dynamic

range. The range of real-world luminance cannot therefore be accu-

rately reproduced. While we validate that our method generalizes

to real scenes despite display gamut and dynamic range limitations

(Sec. 6.3), we ignore distance-dependent aberrations and sensor dy-

namic range edge regions with the proposed setup. As such, HDR

tasks require RAW-injection as described in Sec. 6.1. We could poten-

tially mitigate this with recent, high dynamic range displays. Second,

even though DPFs can apply to non-imaging optimization tasks (see

ARM Mali ISP (1× gain) ARM Mali ISP (16× gain)

Manual

Tuning

Proxy

Optimized

Manual

Tuning

Proxy

Optimized

Perceptual Loss 0.244 0.217 0.523 0.403

Detail Accuracy 14.94 13.03 19.56 18.79

Color Accuracy 10.49 10.23 12.50 12.36

Zipper 0.111 0.096 0.227 0.200

Color Moire 2676 727 2836 888

Table 3. Quantitative evaluation on Fig. 10 and at 16× gain. Results of the

hardware ISP output after tuning are tested on the perceptual loss [Zhang

et al. 2018] and traditional image quality metrics (lower is better), see Sup-

plemental Material for details. Our method starts from a random input and

improves on the human-tuned parameters.

Fig. 11. Customized functions in our second stage: we oversharpen and

contrast-boost the target, resulting in an unnatural target that the user can
adjust.

Sec. 5.2.2), we rely on the convolutional nature of images in our

image-based proxy models. Prior work shows that (even untrained)

CNNs can serve as powerful image priors [Ulyanov et al. 2017], and

so unnatural images (e.g., noise) may challenge our approach.

Conclusion. We present a fully automatic approach for optimizing

black-box ISPs, relying on differentiable proxy functions to model

the parameterized ISP behavior. We learn to reproduce the totality

of transformations an ISP applies to input images, as a function

of the IPS’s input hyperparameters. We parameterize DPFs with a

well-established UNet CNN architecture. For black-box hardware

ISPs, DPF training relies on a novel hardware-in-the-loop system that

displays input images to the ISP with a calibrated high-resolution

monitor. In this way we generate images suitable for proxy training

in a supervised learning fashion. Once trained, we freeze proxy

weights and backpropagate arbitrary task-specific loss through to

the input ISP hyperparameters with standard 1
st
-order methods.

We demonstrate the utility of DPFs on several domain-specific

applications, broadly organized in two categories. First, we vali-

date our approach on two software-based ISPs and four complex,

non-linear optimization benchmarks; here, we outperform recent

state-of-the-art image processing methods based on deep learn-

ing for extreme low-light denoising, automatically determining a

more optimal set of parameters to apply to existing models. Second,

we apply our method on hardware ISPs, where we test two tasks:

optimizing the human-consumable outputs of an imaging system

according to tailored perceptual metrics, and optimizing an imaging

system for consumption by an object detector used in autonomous

driving prototypes. Our more controllable calibration and testing

Method

car/

van/

suv

bus/

truck/

tram

person

True

positives

False

negatives

mAP @[.5,.9]

(COCO)

Hand-tuned 4101 97 662 4860 778 0.31

Optimized 4917 134 713 5764 587 0.37

Table 4. Quantitative object detection results. By optimizing images for

consumption by a pretrained object detection network, our approach (“Op-

timized”) yields improved mean average precision (mAP) scores compared

to a hand-tuned ISP (“Hand-tuned”) on a challenging set of test images.

Corresponding qualitative results are shown in Fig. 12.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: April 2019.
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Detection with expert-tuned parameters Initial iterate parameters IoU-optimized parameters

Fig. 12. Qualitative object detection results. While the images produced by an ISP with expert-tuned parameters (left) may look more natural to the human

eye, the performance of a pretrained object detector can be improved by adjusting the ISP parameters to maximize the intersection-over-union score (IoU) of

the detector (right). The middle column shows the detection results with the initial tuning parameters.

framework generate images better suited to the application-specific

optimization task, improving false positive rates and IoU on chal-

lenging low-light scenes. In the future, it would be interesting to

explore how the estimation of dynamic control parameters, e.g.,

for auto-exposure. We also envision to expand the proposed proxy

model across optics, sensor and detector hyperparameters, as a step

towards a fully automated “evolution” of tomorrow’s cameras.
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