
Hardware-in-the-loop End-to-end Optimization of
Camera Image Processing Pipelines

(Supplemental Material)

Ali Mosleh1

Fahim Mannan1
Avinash Sharma1

Nicolas Robidoux1
Emmanuel Onzon1

Felix Heide1,2

1Algolux 2Princeton University

1. Details on ISPs used for Assessment
1.1. ARM Mali-C71 ISP

The ARM Mali-C71 ISP [2] is a state-of-the-art hardware ISP for real-time applications in consumer devices, robotics,
and automotive imaging. Its processing stages include demosaicking, white balancing, denoising, edge enhancement, gamma
and tone control [2]. The hyperparameters of this ISP span a 31-dimensional space that we optimize for specific downstream
tasks, for example, to process RAW pixel data so it can be displayed, or used for further processing by computer vision
algorithms. Table 1 lists the ARM Mali-C71 ISP hyperparameters modified in our experiments. Three of the thirty-one
parameters are associated with white balance. These were kept fixed during our object detection and perceptual image
quality optimization experiments (Sec. 6.1 and 6.3 of the main document). A preliminary color calibration was performed
before the experiments and the white balance gains were kept constant thereafter. Therefore, optimization experiments only
involved the remaining 28 hyperparameters.

Table 1: ARM Mali-C71 ISP hyperparameters and their operational ranges. Hyperparameters are discrete; they are relaxed
to continuous values in the optimization process.

Denoising Color & Tone Correction
Parameter Operational Range Parameter Operational Range
thresh 1h {0, . . . , 255} lut knee {0, . . . , 255}
strength 1 {0, . . . , 255} lut power {0, . . . , 255}
thresh 4th {0, . . . , 255} lut shadow {0, . . . , 255}
thresh long {0, . . . , 255}

Demosaicking
White Balance Parameter Operational Range

Parameter Operational Range vh slope {0, . . . , 255}
gain 00 {0, . . . , 4095} vh thresh {0, . . . , 4095}
gain 01 {0, . . . , 4095} va slope {0, . . . , 255}
gain 11 {0, . . . , 4095} va thresh {0, . . . , 4095}

aa slope {0, . . . , 255}
Color Space Conversion aa thresh {0, . . . , 4095}

Parameter Operational Range uu slope {0, . . . , 255}
coef a 11 {0, . . . , 5880} uu thresh {0, . . . , 4095}
coef a 12 {0, . . . , 5880} sharp alt ld {0, . . . , 255}
coef a 21 {0, . . . , 5880} sharp alt ldu {0, . . . , 255}
coef a 22 {0, . . . , 5880} sharp alt lu {0, . . . , 255}
coef a 31 {0, . . . , 5880} fc alias slope {0, . . . , 255}
coef a 32 {0, . . . , 5880} fc alias thresh {0, . . . , 255}

fc slope {0, . . . , 255}
np offset {0, . . . , 255}

1

1.2. OnSemi AP0202AT ISP

The AP0202AT ISP is a state-of-the-art automotive ISP targeting high dynamic range (HDR) sensors. Its processing stages
include defect pixel correction, demosaicking, denoising, black level adjustment, tone mapping, color correction and aperture
correction [1]. Table 2 lists the fourteen OnSemi AP0202AT ISP hyperparameters modified by our experiments. Although
this ISP is vendor-optimized to provide “full auto-functions support” and thus its hyperparameter space is considerably
smaller than most ISPs, further optimization for the target end-use task is still required, as shown in Sec. 6.3 of the main
document.

Table 2: OnSemi AP0202AT ISP hyperparameters and their operational ranges. Hyperparameters are discrete; they are
relaxed to continuous values in the optimization process.

Aperture Correction Gamma Correction
Parameter Operational Range Parameter Operational Range
ap gain bright {0, . . . , 255} contrast gradient bright {0, . . . , 255}
ap thresh high {0, . . . , 255} contrast intercept point bright {0, . . . , 255}
ap gain dark {0, . . . , 255} contrast gradient dark {0, . . . , 255}
ap thresh dark {0, . . . , 255} contrast intercept point dark {0, . . . , 255}

Demosaicking Denoising (Adaptive Color Difference)
Parameter Operational Range Parameter Operational Range
demosaic low {0, . . . , 255} adacd gr weights strength low {0, . . . , 16}
demosaic high {0, . . . , 255} adacd gr weights strength high {0, . . . , 16}

1.3. Synthetic ISP

Given that a large number of images are required to evaluate computer vision performance, and following [6, 7, 9, 24], we
developed a synthetic software ISP in order to speed up prototyping and evaluation. This synthetic ISP consists of a sequence
of processing blocks that perform white balancing, demosaicking, denoising, sharpening, tone and color correction, and
compression1.

The synthetic ISP is used in the experiments of Sec. 6.1, 6.2 and 6.4 of the main document. The processing blocks
optimized in these experiments are the denoising, sharpening, and tone and color correction blocks. A summary of their
operation, with a description of the hyperparameters optimized by the proposed method, follows:

Denoiser The denoiser block includes 3 different methods;

• Luminance NLM Denoiser: A non-local means (NLM) filtering algorithm is applied to the luminance component of
the image with patch size ‘nlm templateWindowSize’, patch search distance ‘nlm searchWindowSize’ in pixels, and
filter strength ‘nlm h’ [8].

• Trichromatic Gaussian Denoiser: A Gaussian filter Gσ is convolved (∗) with each of three color channels to suppress
high-frequency noise in the input image I , i.e., I ∗ Gσ . The standard deviation σ of the Gaussian filter can be varied
with the hyperparameter ‘gaussian sigma’.

• Chroma Denoiser: “Blotchy” color noise artifacts that appear in the image are treated as low-frequency chrominance
features. They are removed with an approximation of Laplacian-of-Gaussian filtering [13]. Specifically, let Gσ1

and
Gσ2

(σ2 > σ1) denote two different Gaussian kernels with standard-deviations ‘chroma sigma1’ and ‘chroma sigma2’,
and let k denote a scalar ‘chroma gain’. The chroma denoiser is applied to the chrominance I of the image giving
I − k |I ∗Gσ1 − I ∗Gσ2 |.

Sharpening Unsharp masking [13] is applied on the luminance component of the image to enhance edges. It replaces the
luminance I by I + k (I − I ∗Gσ), where Gσ denotes a Gaussian kernel with standard-deviation σ ‘unsharp sigma’, and the
gain control parameter ‘unsharp strength’ is denoted by k.

1ISP and RAW data provided by the authors upon request.

2

Tone and Color Correction The tone and color correction block has two different blocks:

• Contrast Stretching: A sigmoid function [11] is applied to shift the characteristic curve along the horizontal direction
with the cutoff parameter ‘contrast knee’ and the gain parameter ‘contrast gain’ which serves as the constant multiplier
in the exponential in the sigmoid function. Let g and c denote ‘contrast gain’ and ‘contrast knee’, respectively. Contrast
stretching is applied on the input image pixel x as 1/ (1 + exp (g(c− x))).

• Tone Mapping: This tone mapper maps each color channel, normalized to the interval R[0,1], independently as follows.
It transforms x ∈ R[0,1], the value of the color channel before being modified by the tone mapper, into

x
1
γ where

1

γ
=

1

γ1
· 1− (1− γ2)x

1
γ1

1− (1− γ2) k
1
γ1

.

γ1 ≥ 1 is a gamma correction that mostly affects highlights, γ2 ≤ 1 is a gamma correction that mostly affects shadows,
and 0 < k < 1 is a knee, specifically, k is the fixed point of the transformation when γ1 = 1. (The actual fixed point
is left of the value of k then γ1 > 1.) The corresponding synthetic ISP hyperparameters are called ‘gamma gamma1’,
‘gamma gamma2’ and ‘gamma knee’. Their useful ranges are remapped to 16-bit integers.

Table 3 lists the synthetic ISP hyperparameters optimized in our experiments. Note that, like the hyperparameters of the
hardware ISPs which the synthetic ISP crudely models, the hyperparameters of the synthetic ISP only take discrete values.
As explained in Sec. 3 of the main document and Sec. 2.1 below, these discrete values are relaxed to continuous real numbers
and then normalized to the interval R[0,1] within the optimizer.

Table 3: Hyperparameters of the synthetic ISP and their operational ranges. Like hardware ISPs, the synthetic ISP takes
discrete hyperparameters by design, but we map them to continuous space in the optimization process.

Denoising Tone and Color Correction Sharpening
Parameter Operational Range Parameter Operational Range Parameter Operational Range
nlm templateWindowSize {0, . . . , 13} contrast knee {0, . . . , 4095} unsharp sigma {0, . . . , 4095}
nlm searchWindowSize {0, . . . , 31} contrast gain {0, . . . , 255} unsharp strength {0, . . . , 255}
nlm h {0, . . . , 14} gamma knee {0, . . . , 65535}
gaussian sigma {0, . . . , 4095} gamma gamma1 {0, . . . , 65535}
chroma sigma1 {0, . . . , 4095} gamma gamma2 {0, . . . , 65535}
chroma sigma2 {0, . . . , 4095}
chroma gain {0, . . . , 4095}

2. Detailed Description of the Proposed Solver
The proposed solver has two main stages: Search Space Reduction, an exploration/coarse convergence stage, and CMA-

ES (Covariance Matrix Adaptation-Evolution Strategy [17, 18, 15, 4, 16]), a refinement/fine convergence stage. Stages can
be repeated, together or individually. Both are stochastic. As is common with stochastic and evolutionary search methods,
several algorithmic details are motivated by heuristics.

Many times in the following discussion, a “best so far” hyperparameter setting is mentioned. Generally, the best so far
is the best known hyperparameter setting for the image capture conditions and downstream task under consideration. At the
start of optimization with the proposed method to produce the results presented in this paper, the initial search point and
best so far was invariably taken to be the ISP vendor default. Later in the optimization process, the best so far is inherited
from previous stages. Specifically, the best so far hyperparameter setting is selected based on its max-rank loss, a novel loss
construction for Multi-Objective Optimization (MOO) which we now motivate and explain in detail.

2.1. Continuous Relaxation of Native Hyperparameter Values

As mentioned in the main document, we relax native, integer, ISP hyperparameter values to continuous values in R[0,1].
When we optimize a native ISP hyperparameter θp over the range of discrete integer values

{lowest value, lowest value+1, . . . , lowest value+B−1} ,

the corresponding relaxed hyperparameter in the unit interval is

Θp =
θp − lowest value

B− 1
.

This affine transformation maps the lowest native ISP hyperparameter value under consideration to 0, and the highest to 1.

3

2.2. Max-rank Loss Scalarization

Scalarization is the process of converting a multi-objective loss vector into a single, scalar, loss. Scalarization thus allows
single objective optimizers to tackle MOO problems. The most common scalarization is weighted convex combination, in
which the scalar loss is a weighted sum, with positive weights, of the vector loss components. The proposed hardware-in-
the-loop optimization method uses a different, novel, scalarization: the (dynamically) weighted max-rank loss.

2.2.1 Motivation

Recall that a trial is an hyperparameter setting for which the loss is computed and thus known. Also recall that when
performing MOO, the loss has several components, each derived from one or more task-specific evaluation metric. In
principle, each of the loss components is to be made as low as possible; only in principle however, for the following reason.
Loss components are often in opposition. For one thing, if all losses were in agreement, we could optimize using only one.
Using more than one evaluation metric indicates that multiple ways of ranking results are being considered. In fact, losses
that address different, possibly conflicting, aspects of performance are often used. For example, a loss component that only
sees noise is likely to be inversely correlated with one that only sees texture. Generally, when optimizing for perceptual
quality, we aim for output images which have both low noise and a lot of texture: No noise and no texture, or lots of texture
and lots of noise, are considered unacceptable. Precision and recall are another example: perfect precision but very poor
recall, or vice versa, is generally considered unacceptable.

In summary: When performing MOO, we often desire “balanced” solutions; Getting good values for some but not all
evaluation metrics is generally not enough.

Thus, when performing MOO, we aim to find a Pareto point which is a good compromise between conflicting objectives.
The dynamically weighted max-rank loss scalarization was designed to guide a single objective optimizer toward such a
solution. Leaving aside the dynamic aspect of the weighting, the weighted max-rank loss is the weighted Chebyshev Scalar-
ization [12] computed after converting loss components to ranks. Because it involves ranks and, consequently, other trials, the
max-rank loss is an optimization device: For a given hyperparameter setting, the max-rank loss scalarization is only defined
with respect to a population: the trials that enter in the ranking. Thus, unlike typical loss functions (PSNR, SSIM, etc.), the
max-rank loss is not an absolute quantity: the value of the max-rank loss is relative to the loss values of a group of trials.
Accordingly, let us call a group of trials with respect to which ranks are computed a reference population.

Being rank-based, both the proposed Search Space Reduction and CMA-ES are invariant with respect to strictly monotone
transformations of loss function values. This is a well-known property of CMA-ES. For example, CMA-ES optimization with
respect to RMSE is the same as CMA-ES optimization with respect to PSNR. When performing single objective optimization
with such methods, there is in principle no difference between optimizing directly with respect to the loss (“as is”) and
optimizing with respect to weighted max-rank loss, because they order trials exactly the same way. (Weighting does not
impact single objective optimization provided the weight is fixed within the ranking, which it is, and provided the weight is
never 0, which is trivially enforced.) Consequently, switching to max-rank loss only impacts single objective optimization
when the optimizer is not invariant with respect to monotone loss value transformations (most gradient-based methods are
not). Switching to max-rank loss however almost invariably impacts multi-objective optimization.

Performing MOO using max-rank scalarization instead of, e.g., the commonly used convex combination scalarization,
has several advantages. The first is that it provides a natural normalization of the different losses, that is, it removes the
need for the loss components to be rescaled so that they have commensurate responses. Without conversion to ranks, the
needed rescaling generally depends on capture conditions. In addition, such rescalings are often folded into the loss weights
themselves. The weights then serve double duty: communicating the desired relative importance of loss components to the
solver; and rescaling the loss components so that they are commensurate. This obfuscates their impact. Consequently, the
rescaling, which not only needs to make ranges of values commensurate but also their variations (their “gradients”), often
needs to be changed when capture conditions and other context specifics change. As a result, weights often need to be
recalibrated and risk being fragile. Worse yet, the weight factors which encapsulate the relative importance of the various
loss components, being folded into the weight factors used to make the loss components and their variations commensurate,
can have unpredictable side effects.

In contrast, turning loss components into ranks automatically normalizes their range of values and, to some extent, their
variations. Multiplying ranks by weights is then more likely to lead the optimizer as intended: Using the maximum rank
across all loss components, a small rank multiplier for a loss component means that it will only be “active” if the value of that
loss is atypically bad; Conversely, a large rank multiplier means that the corresponding loss component will often determine
the maximum rank, unless the loss component often reaches its very best value within the reference population (the very best

4

value of a loss component gets the rank 0). In short, the max-rank loss, weighted or not, has built-in loss normalization.
The second advantage of using max-rank scalarization is that it leads to good compromises between conflicting objectives.

In other words, it tends to point the optimizer toward regions within hyperparameter space where no loss component attains an
atypically bad value. The reason (ignoring weights for the sake of discussion) is that very low ranks for loss components are
penalized if they come at the expense of high ranks for other loss components. Thus, the max-rank scalarization effectively
communicates to the solver that an hyperparameter setting for which any of the loss components is atypically bad is itself
undesirable.

The main disadvantage of using the max-rank loss is that its alignment with good results depends on the reference popu-
lation. All trials sampled so far within Search Space Reduction are used to compute the corresponding max-ranks. Similarly,
all trials visited so far by CMA-ES, including the initial centroid, are used to compute the corresponding max-ranks.

We have found that the max-rank loss effectively guides the proposed optimizer toward better vector losses. For example,
optimizing the synthetic ISP’s SSIM at both low and high gain, high gain SSIM is significantly better when scalarizing high
and low gain losses with the max-rank loss (0.739) than with weighted convex combination (0.716), even though low gain
SSIMs are equivalent. (Experiments performed with the same initial hyperparameter setting, the same number of trials, and
loss weights set to 1.)

2.2.2 Definition

Consider a set of nonnegative real weights {wj}Ll=1. Also consider a collection of N trials {Θk}Nk=1 ⊂ RP
[0,1] with corre-

sponding multi-objective losses {Lk = (L1 (s (Θk)) , . . . ,LL (s (Θk)))}Nk=1⊂RL.
The set {Θk}Nk=1 of (stochastically generated) trials over which the max-rank loss is computed could be all the trials

since CMA-ES initialization, initial centroid Θ(0) included; or all the trials computed so far as is the case at the end of every
sampling round of Search Space Reduction.

The set of nonnegative weights {wl}Ll=1, the loss weights, could be based on statistical analysis (this is the case at the
end of each round of Search Space Reduction sampling when used to compute the reduced hyperparameter search intervals);
or provided by the user to prioritize some loss components (at the end of Search Space Reduction to compute the “best so
far” hyperparameter setting used to initialize CMA-ES, up to the end of the last generation), as is or evolved from these
user-supplied values (from the second generation of CMA-ES on).

In any case, once chosen the set of trials (“reference population”) and the loss weights, the max-rank loss is computed
as follows. First, convert each loss component to a rank. Specifically, one loss component Ll at a time, sort the loss
values {Ll (s (Θk))}Nk=1 in non-decreasing order, that is, from best to worse. Rl (Θk) is then the rank of the kth trial’s loss
component value within the sorted list, the very lowest rank being set to 0 and ties resolved by taking the smallest rank among
the alternatives so that, for example, if all trials get the exact same value for the loss component Ll, all the corresponding
ranks equal 0. In summary,

Rl (Θk) = rank{Ll(s(Θ1)),...,Ll(s(ΘN))}(Ll (s (Θk)) .

Once the loss components Ll are converted to ranksRl, the weighted max-rank lossM associated with a trial is simply

M (s (Θk)) = max
l∈{1,...,L}

wl ·Rl (Θk) .

Each with their own set of trials and weights, the following computations all use the max-rank loss.

2.3. Search Space Reduction

Search Space Reduction is dual-purpose. Firstly, Search Space Reduction smoothly remaps the (relaxed to continuous
values and normalized) hyperparameter search hypercube RP

[0,1] to itself in such a way that, for each hyperparameter, that is,
for each dimension, an hyperparameter range correlated with better loss values takes up a larger portion of the unit interval.
Secondly, Search Space Reduction provides an improved best so far initial search point to the final optimizer, namely CMA-
ES.

Following Search Space Reduction, the entire original search space is still reachable. No hyperparameter value is excluded
as would be the case with a hard box approach. A hard box approach, which rigidly narrows the search range of each
parameter, prevents further optimization from visiting an hyperparameter value that falls outside of the interval estimated to
contain best values. Consequently, hard boxes prevent further optimization from recovering from an imperfect Search Space
Reduction. Instead, the proposed soft box approach biases the search instead of restricting it.

5

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y

Nested Sampling Rounds

Round 1
Round 2
Round 3

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Boxes of Search Space Reduction Rounds

Round 1
Round 2
Round 3

1
Figure 1: Search Space Reduction example with two hyperparameters (x and y) and three rounds.

We perform three essentially identical Search Space Reduction rounds (Fig. 1). Each round has three steps. First, sample
the current hard box, initially the entire hyperparameter space RP

[0,1] but a smaller hyperrectangle in later rounds. Second,
perform statistical analysis over all known trials (samples from the latest sampling round as well as earlier ones) to determine,
separately for each hyperparameter, the subinterval of R[0,1] most likely to contain optimal values, as well as the most likely
optimal hyperparameter value. Third, assemble the intervals into a hard hyperrectangular box within which the next Search
Space Reduction sampling round, if any, is restricted. Following the last Search Space Reduction round, remap RP

[0,1] so that
the final hard box occupies a larger portion of search space volume. This remapped hypercube search domain, along with a
(remapped) best so far extracted from the known trials, is then used by CMA-ES. Additional details follow.

2.3.1 Approximately Latin Hypercube Sampling

Entering each round of Search Space Reduction which uses Gaussian sampling (they all perform some by default), a centroid
Θ̂ is chosen. In the first round, Θ̂ is taken to be the default ISP hyperparameter setting. In later rounds, Θ̂ is assembled from
hyperparameter values found by statistical analysis; this assembled hyperparameter setting is consequently not a best so far
since its loss is not known until the next round of sampling. That is, the centroid is invariably included in the sampling of the
next round, bypassing random generation for one trial.

Hard box sampling is performed as follows: Trials are independent. The proportion of the random trials with hyperpa-
rameter values sampled from a Gaussian distribution is initially half (by default: increase when the vendor default is a good
fit for the end use; reduce otherwise). This proportion increases from one round to the next. The remaining trials are drawn
from a uniform distribution. Coordinates are drawn independently, with a fixed standard deviation (scaled by the width of the
reduced search interval in later rounds) in the case of Gaussian sampling. If the generated hyperparameter coordinate falls
outside of the corresponding unit interval (hard box, in later rounds), it is repeatedly reflected about the nearest boundary
until it falls within.

Because the probability of repeating the same hyperparameter coordinate value is 0 in continuous parameter space (ignor-
ing the limitations of machine floating point and random generators, since the set of hyperparameter settings with one fixed
coordinate has measure 0), this procedure yields a sampling of the hypercube which is approximately Latin. Note however
that since the ISP uses discrete values, hyperparameter values passed to the ISP may repeat. For example, in the first round,
each of the two branches of a binary toggle is sampled half the time by the uniform distribution component of the random
sampling. That is: In “native ISP register space”, search space sampling is generally not Latin. Approximate Latinness only
holds in floating point.

2.3.2 Estimated Narrowed Search Interval

At the conclusion of each round of sampling, the newly acquired trial data is aggregated with trial data acquired earlier and
statistical analysis is performed on the entire lot. Let N be the total number of trials thus aggregated.

The goal of the interval narrowing procedure described in this subsection is to find a small search box within which
the CMA-ES-based search will be biased to stay. This smaller search box is obtained by “discarding” large regions of the
full (normalized) hyperparameter space. “Discarded” regions are estimated to be unlikely to contain “good” trials, “good”

6

0.0 0.2 0.4 0.6 0.8 1.0
Original search range

0.0

0.2

0.4

0.6

0.8

1.0

R
em

ap
pe

d
fo

r
C

M
A

-E
S

Remapping

Soft box lower limit

Soft box upper limit

Best so far

Figure 2: Search Space Reduction soft box remapping for the hyperparameter y of Fig. 1.

trials being those for which no loss component “fails” significantly as assessed by its rank among all known trials. Such
“unbalanced” trials, for with at least one loss component has an atypically bad value (weights taken into account), are
generally not interesting from the point of view of ISP optimization, and consequently the solver avoids them.

We speak of a “soft box” approach because in the end we do not actually discard “bad” hyperparameter space regions but
instead reduce their effective volume, as “seen” by the CMA-ES component of the optimizer, within the full (normalized)
search space RP

[0,1]. In a “hard box” approach, the optimizer cannot leave narrowed search ranges; in a “soft box” one, the
optimizer can, but it is “discouraged” to do so. This is in fact accomplished by increasing the volume of the “good” hyperbox
within RP

[0,1] by remapping each coordinate (see Fig. 2).
Specifically, for each of the P ISP hyperparameters Θp, a narrowed search interval

[
lowp,highp

]
⊂ [0, 1], estimated to

contain likely better values of Θp, is produced. [lowp,highp] is basically a one-dimensional convex hull: It is the smallest
interval containing all the Θp-values of the best performing trials according to a weighted max-rank loss specific to that
hyperparameter. The rank of each loss component is weighted in such a way that the loss components most impacted by
Θp have larger weights. These weights, and consequently, the best performing trials, are computed independently for each
hyperparameter. The “best” hyperparameter values assembled into the centroid used by the next round’s Gaussian sampling
are also computed coordinate by coordinate; they are not taken from one single trial. By construction, they automatically
fall within the corresponding “hard box”. Details are found in Algorithm 1. (The function computeWeight referenced in
Algorithm 1 is detailed in Algorithm 2.)

The real-valued weights are in R[0,1]. For each hyperparameter Θp, and each loss component Ll, the weightwp,l quantifies
the impact of the hyperparameter Θp on the loss Ll. A value of 0 for the weight wp,l is understood to mean that the value of
Θp has no impact on loss Ll; a value of 1 corresponds to a strong impact.

Specifically, weights are set to the value 1 − pvalue, where pvalue is the p-value of the two-sample Kolgomorov-Smirnov
independence test computed by setting the number of observations to a small value (nref). The computation of the narrowed
search interval and best value is detailed in Algorithm 2, where the function K is the large sample Kolgomorov cumulative
distribution function described in [10], and cdf stands for “cumulative distribution function”.

When performing single objective optimization, the algorithm reduces to finding the smallest box containing the best
bpgood ·Nc trials, where pgood stands for the proportion of best trials to consider. bestp is then the pth coordinate of the best
trial, namely the trial which minimizes the loss among those within the reference population.

Given that search intervals for different hyperparameters are reduced independently, one may wonder whether this proce-
dure could discard regions of the hyperparameter space where synergies between several hyperparameters give good results.
For instance we may have a low loss when both hyperparameters Θ1 and Θ2 are close to 1 but a high loss when only one of
them is close to 1. Would the values of those hyperparameters be (softly) bounded away from 1 by the narrowing procedure?
This is not the case (provided the synergy is “sampled”): Regions of hyperparameter space that are good because of syner-
gies between several hyperparameters are not discarded because, even though we project hyperparameter vectors onto one
dimension and separably reduce intervals, we keep all good trials. In particular, we do not base the narrowing on some local
statistics, like local averages, as those could lose the information contained in a good trial which sampled an hyperparameter
setting close enough to the synergy.

7

Algorithm 1 Reduced search interval computation for hyperparameter Θp.

Require: p ∈ {1, . . . ,P} , (pgood, pL, pU) ∈ R3
(0,1),N ∈ N∗, {Θk}Nk=1⊂RP

[0,1]

1: for k = 1 to N do
2: for l = 1 to L do
3: rk,l ← rank{Ll(s(Θ1)),...,Ll(s(ΘN))} (Ll (s (Θk)))
4: end for
5: end for
6: for l = 1 to L do
7: Ll ← {k ∈ N∗ | k 6 N, rk,l 6 pL ·N}
8: Ul ← {k ∈ N∗ | k 6 N, rk,l > pU ·N}
9: end for

10: P ← (Θk,p)k=1,...,N
11: for l = 1 to L do
12: wl ← computeWeight(P, Ll, Ul) (Algorithm 2)
13: end for
14: M←

(
maxl∈{1,...,L} wl ·rk,l

)
k=1,...,N

15: S ← argsort(M)
16: B ← (Sk)k=1,...,bpgood·Nc
17: low← mink∈B Θk,p

18: high← maxk∈B Θk,p

19: best← ΘS1,p
20: return (low,high,best)

Algorithm 2 Function computeWeight:
Loss component weight computation based on estimated dependence.

Require: P = (p1, . . . , pN) ∈ RN
[0,1], L ⊂ {1, . . . ,N}, U ⊂ {1, . . . ,N}, nref ∈ N∗

1: PL ← {pi | i ∈ L}
2: PU ← {pi | i ∈ U}
3: d =

√
0.5 · nref sup | cdf(PL)− cdf(PU)|

4: w = K(d)
5: return w

It should also be noted that even though the narrowing procedure conservatively keeps good trials, it still achieves a
considerable reduction of the volume in hyperparameter space. Typically, one round of the narrowing procedure roughly
halves the interval (typical length ratios range from 0.4 to 0.7), which leads to a large volume reduction when there are many
hyperparameters. For an ISP with 25 hyperparameters, three rounds of the proposed Search Space Reduction have been
found to reduce the volume of the search hyperbox by a factor of 10−4 to 10−10.

The use of rank weights tied to p-values results in significantly more aggressive narrowing of the interval in some cases.
When trials with both high and low values of some loss component Ll are spread across the range of a given hyperparameter
Θp, the unweighted version cannot achieve a significant narrowing of the corresponding interval. For this reason, it is desir-
able to reduce the impact of this loss component by multiplying the corresponding ranks by a small weight. Such a weight
is produced by the function computeWeight (Algorithm 2). Correlating weights with the impact of each hyperparameter on
loss components allows significant narrowing while making it unlikely that regions likely to contain “balanced” Pareto points
are “discarded”. The value of nref impacts the aggressiveness of the weighting; specifically, a lower value tends to equalize
the weights. We use nref = 10.

2.3.3 Separable Search Hypercube Remapping

Once the final reduced search interval
[
lowp,highp

]
for each of the P hyperparameter coordinates is obtained, the bijective

remapping of the unit search hypercube RP
[0,1] onto itself is constructed as follows. Note that we actually construct the

8

mapping from remapped space to non-remapped space, since what we really need is to connect hyperparameter values
generated by CMA-ES to native ISP hyperparameter values. The construction is separable. First,

[
lowp,highp

]
is stretched

within [0, 1], growing outward so that the left and right pieces of the unit interval which are outside of it are reduced by the
same factor. This factor is chosen so that the length of the “good” interval is doubled (by default). Let [LOWp,HIGHp]
be the stretched interval. The mapping from “CMA-ES space” to “normalized hyperparameter space” is then defined by the
unique twice continuously differentiable natural cubic spline with knots at 0, LOW, HIGH and 1 which maps 0 to 0, LOW
to low, HIGH to high and 1 to 1. Degenerate cases are stably handled. For example,

[
lowp,highp

]
is stretched outward by

a small amount if its length is very close to 0. This may happen, for example, if the value of the pth hyperparameter of the
“best” trials all correspond to the same ISP register value.

Fig. 2 shows the spline remapping for one hyperparameter.
Internal CMA-ES parameters are then scaled so that the effect is the same as making the remapped softbox a unit hypercube

(thus stretching the search domain so that values outside of the softbox are “far”).

2.3.4 Max-rank Initialization

At the conclusion of Search Space Reduction, the trial with the lowest value for the the max-rank loss computed over all the
trials with known losses, using the rank weights chosen by the user (instead of those computed by Algorithm 2) is chosen as
initial hyperparameter setting for CMA-ES. This best so far almost invariably falls within the final Search Space Reduction
hard box which is used as a soft box by CMA-ES.

2.4. CMA-ES (Covariance Matrix Adaptation Evolution Strategy)

The last stage of the proposed optimization method is a variant of so-called Active CMA-ES [4]. CMA-ES optimization
is driven by the weighted max-rank losses of the trials of each generation (together with a “best so far” updated at every
generation). The proposed variant of CMA-ES uses a fixed generation size λ equal to 4

3 times the number of parameters,
rounded up to a multiple of 4. One quarter of the trials of every generation, less than usual, is discarded to compute the
centroid used for the Gaussian generation of the hyperparameter values of the trials of the next generation, as well as other
CMA-ES internals like the covariance σ, the normalized covariance matrix C and the path variables ps and pc. The number
of non-discarded trials is consequently at least equal to the number of hyperparameters being optimized.

The proposed active CMA-ES uses the best so far described in Sec. 2.3.4 as initial centroid, and uses the search domain
remapping described in Sec. 2.3.3. Additional modifications are detailed below.

2.4.1 Adaptive Weighted Max-rank Loss

Within each generation, the rank associated with each loss component is multiplied by an optional weight chosen by the
user to prioritize some loss components in the computation of the weighted max-rank loss. (These weights are 1 by default.)
As mentioned earlier, weights have no impact when performing single objective optimization. The following additional
modification, adaptive loss weighting, also has no impact when none of the MOO loss components can attain the “good
enough” or “pass” value 0. When optimizing for perceptual IQ, however, “good enough” values for some quality metrics
are often known. (For example, they may be based on Just Noticeable Differences (JND).) In that case, the following
methodology often leads to converged hyperparameter settings which fall just a bit short of “passing” when multiple losses
are in opposition.

The purpose of this novel CMA-ES modification is to focus the optimization on the loss components which are harder to
“pass”. Here is how adaptive max-rank loss weighting is implemented: The loss weights are fixed within a generation and
are updated at its conclusion. Within each generation and for each loss component, the proportion of trials that fail to attain
the “good enough” loss value 0 is noted. These proportions, one per loss component, are initialized to 1 and are updated in a
Markovian fashion with a time horizon just long enough to prevent oscillations. When computing the weighted max-rank loss
with reference population set to the last completed generation, these evolving weights which track, for each loss component,
how difficult it has been to attain the “good enough” value 0 in recent generations, are folded into the user-specified loss
component weights by multiplication. In any case, a loss component which has reached the value 0 often in recent history
has its impact on the max-rank loss diminished.

Adaptive max-rank loss could be used with other optimization methods than CMA-ES, the necessary ingredient being that
the method have a notion of “generation” over which the weights are fixed and between which they change.

9

2.4.2 Active Centroid Weights

The centroid used to generate the next generation’s trials is a weighted average of the coordinates of the non-discarded trials
of the current generation. The proposed CMA-ES variant uses so-called “active” centroid weights, meaning that some of
them are negative [4]. (Early versions of CMA-ES only used positive weights.) Unlike the weights discussed so far, these
geometrical weights multiply hyperparameter coordinate values instead of losses.

A novel weight construction is used by the proposed CMA-ES variant. Taking note that the number of non-discarded
trials is automatically a multiple of three (because we retain three quarter of a number of trials which is a multiple of four),
they are constructed as follows, before being normalized by their sum, as befits a weighted averaging computation. Based
on the weighted max-rank loss, rank the non-discarded trials of the generation from best to worse (the discarded trials would
have worse ranks anyway). Let r be the rank associated with a trial, and let 3n (n ∈ N∗) be the number of non-discarded
trials, within the generation. The rank r consequently ranges from 0 (best) to 3n− 1 (worst non-discarded). Resolve ties by
averaging; For example, if the four best trials have the exact same weighted max-rank loss (and the fifth does not), the four
best trials all get r = (0 + 1 + 2 + 3)/4 = 1.5. Then, the pre-normalization centroid weight ω used with the hyperparameter
coordinates of this trial is set to 2n − r − 1/2. Ignoring ties, the negative weights are canceled in a pairwise manner by the
smallest positive ones. Thus, one can interpret the contribution of the second and third quartiles (the fourth quartile being
discarded) to the centroid computation as vector differences, the vector pointing from poor values to better ones. Following
normalization, the weights are 4n−2r−1

3n2 .

2.4.3 Greedy “Best So Far” Centroid Substitution

As seen above, as in vanilla CMA-ES, centroids are computed by weighted averaging of the trials of the last generation.
Under some conditions however the proposed method branches out and uses a different centroid.

At all times, a “best so far” is maintained and updated. Using the current values of the adaptive weights, the max-rank
of the best so far is compared to the trials of the generation. If the generation contains trials that have a better weighted
max-rank loss, the best one (with ties resolved randomly) replaces the “best so far” as well as the weighted average centroid.
Internal CMA-ES parameters are computed before this substitution. This guides the convergence more aggressively toward
balanced hyperparameter settings within the Pareto front.

When performing single objective optimization, this new “best so far” is actually a global best so far. (Note that in order
to foster exploration and the discovery of stable solutions, the above branch switches to a new best so far when there is a
global tie.) When performing MOO, however, it may not be. The reason is that an earlier trial may happen to have a better
max-rank with respect to the new weights. Such “historical best so far’s” are ignored. (They are, of course, included in the
final Pareto sort.)

We performed an ablation test to validate the effectiveness of the proposed greedy variant of vanilla CMA-ES: The domain
of the 10-dimensional Rosenbrock function was discretized. Using the same number of trials (set so that the normalized
standard deviation is smaller than 5) and initial starting point, we obtained a 10.4 loss with the proposed greedy centroid
substitution, and a 11.3 loss turning it off.

2.4.4 Boundary Handling by Reflection

As is standard with CMA-ES, the trials of the next generation are generated by random Gaussian generation. (Normalized)
hyperparameters that fall outside of the unit hypercube RP

[0,1] are mapped back into it by repeatedly reflecting each coordinate
about the closest unit interval endpoint until it lands inside [3]. This is efficiently implemented with a combination of the
modulo 2 and absolute value operations, and is done first thing, before CMA-ES’ internal statistics are computed. Because
some of the active centroid weights are negative, centroids may also fall outside of the unit hypercube; they are likewise
mapped back into it before use.

2.4.5 Robustness with Respect to Discrete Nature of ISP Hyperparameters

CMA-ES uses an estimated covariance matrix—the product of a scaling factor generally called “σ” and of an approximately
normalized symmetric positive definite matrix generally called “C”—to change the scale to localise or globalise the explo-
ration and to stretch the Gaussian sampling in directions estimated to be desirable (at the current scale), and shrink it in
directions estimated to be less desirable. This estimated covariance matrix is updated every generation. Convergence and
random variations may cause σ and/or some eigenvalues of C to get so small that most of the trials of a generation have

10

hyperparameters with the exact same value once converted to native, discrete, ISP register values. This leads to insufficient
exploration of the configuration space, and affects the accuracy of the internal statistics that guide optimization, for example,
the estimated covariance matrix itself.

This is addressed by the proposed CMA-ES variant as follows. In order to prevent an ISP hyperparameter from getting
stuck at a fixed discrete value, Gaussian noise is added to each drawn hyperparameter value with a standard deviation chosen
so that the proportion of trials without a bit change is approximately the proportion of trials with positive centroid weights.

Specifically, after a trial’s hyperparameter coordinates have been generated, and before they are reflected back, if necessary,
into the unit hypercube, random Gaussian noise is added to each coordinate. This Gaussian noise is separate from, in fact
independent of, the (vanilla) CMA-ES σ and C used to draw the trials. That is: Unlike vanilla CMA-ES trial generation
which varies along with the covariance matrix, the distribution of the added noise is constant through optimization.

The distribution of the Gaussian noise added to an hyperparameter coordinate in R[0,1] depends on two quantities: First,
the number B of different values found in the range of values of the corresponding ISP register; Second, the total number
P of hyperparameters being optimized. For example, if optimizing an 8-bit hyperparameter over its full range, B would be
256; when optimizing over only part of its range (because some values are known to give suboptimal values), B would be the
actual number of discrete values within the narrowed range.

Recall that native, discrete, integer values of the hyperparameter {lowest value, . . . , lowest value+B−1} are relaxed to
the unit interval R[0,1]. Also, let p be the proportion of the trials of each generation which do not have a positive centroid
weight (p = 1/2 with the proposed variant of CMA-ES). The standard deviation of the added Gaussian noise is chosen so
that, on the one hand, the probability of triggering a bit change is the same for all hyperparameters, and on the other hand,
so that the proportion of trials with one or more changed bit as a result of adding noise is at least p (on average). Ignoring
boundary issues, the simplifying assumption that each relaxed hyperparameter is at the center of the basin of attraction of an
integer ISP register value (this is the most stable position) leads to a value of the standard deviation equal to

σnoise =
1

2 (B− 1) cdf−1
(
1
2 + 1

2

(
1− p)1/P

)) ,

where cdf−1 is the inverse of the Cumulative Density Function of the Gaussian distribution with unit standard deviation.
(Note that if the relaxed hyperparameter value is at the edge of the basin of attraction, the probability of triggering a bit
change is at least one half (ignoring boundary issues).) Adding Gaussian noise with standard deviation σnoise, the probability
that one hyperparameter have a bit change in ISP native space is consequently 1−(1− p)

1/P . This implies that the probability
that none of the coordinates of a trial’s hyperparameters have a bit change is((

1−
(

1− (1− p)
1/P

)))P

= 1− p

as prescribed.
We performed an ablation test to evaluate the impact of this CMA-ES enhancement by optimizing 3-, 4- and 8-bit OnSemi

AP0202AT ISP hyperparameters (one of them restricted to a 7-bit range outside of which the parameter has little effect). (See
Sec. 1.2.) The experiments were consequently performed in a context in which the correspondence between discrete values
and the unit interval is not contrived. Only one evaluation metric, namely PSNR, was used, to keep MOO issues out of the
way; the experiment was otherwise similar to OnSemi experiment described in Sec. 6.3 of the main document. With the same
initial hyperparameter setting and total number of trials, PSNR reached 11.6 dB with vanilla CMA-ES trial generation, and
12.0 dB with Gaussian noise added as described above.

2.4.6 Monte Carlo Simulation of Deviations from Randomness

Vanilla CMA-ES estimates deviations from randomness using a χN estimate based on the assumption that the hyperparame-
ters’ distribution is Gaussian. This assumption, however, is both explicitly and implicitly violated by the proposed optimizer.
In the proposed variant of CMA-ES, the usual estimates are replaced by a tracking Monte Carlo simulation based on random
rank generation.

We performed an ablation test to validate the effectiveness of the proposed Monte Carlo statistics generation: The domain
of the 10-dimensional Rosenbrock function was discretized. Using the same number of trials (set so that the normalized
standard deviation is smaller than 5) and initial starting point, we obtained a 10.4 loss with Monte Carlo simulation, and a
14.3 loss using standard CMA-ES estimates.

11

2.4.7 Postmortem Pareto Sort

At the conclusion of CMA-ES, all (known) trials, sampled during Search Space Reduction and CMA-ES, intial points in-
cluded, are aggregated, and a Pareto sort performed over the entire set. The Pareto point that appeared last is generally taken
to be the final, optimal, hyperparameter setting. The Pareto front itself is generally informative in and by itself.

3. Comparisons with Other Solvers
We benchmarked the proposed ISP optimization algorithm against three other state-of-the-art hyperparameter optimization

methods, namely HyperOpt [5], BayesOpt [20] and vanilla CMA-ES [16], in two domain applications: perceptual image
quality and automotive 2D object detection.

First, we present comparative results for the synthetic ISP. The synthetic ISP was optimized for the perceptual image
quality loss LPERC = 5L̂PERC + `1 described in Sec. 6.3 of the main document. In all the experiments, we set the maximum
number of function evaluations to 10000, and the initial point was the same. Fig. 3 shows convergence profiles for the
single objective optimization experiments. Only vanilla CMA-ES and the proposed method converged within 10000 function
evaluations. The proposed method converged within 5000 function evaluations; vanilla CMA-ES within 7000. Table 4 shows
the values of the perceptual image quality loss LPERC for the final result of each of the methods. Additional perceptual image
quality metrics, namely SSIM, PSNR and CIELAB∆E, are also shown. The proposed optimization method outperforms the
other optimization methods with respect to all evaluation metrics.

With the synthetic ISP, we also performed a comparison of MOO optimization of automotive 2D object detection. Two
evaluation metrics were used: mAP and mAR. With HyperOpt, BayesOpt and vanilla CMA-ES, we used the average of mAP
and mAR as objective function; this is equivalent to scalarizing the losses with equal weight convex combination. With the
proposed optimization method, we used the proposed adaptive weighted max-rank scalarization (with “user weights” equal
to 1). As shown in Table 5, the proposed method resulted in significantly better mAP and mAR scores than the alternatives.

0 2000 4000 6000 8000 10000
Number of Function Evaluation

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pe
rc

ep
tu

al
 Im

ag
e

D
iff

er
en

ce
 M

et
ric

(a) Convergence with BayesOpt

0 2000 4000 6000 8000 10000
Number of Function Evaluation

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pe
rc

ep
tu

al
 Im

ag
e

D
iff

er
en

ce
 M

et
ric

(b) Convergence with HyperOpt

0 2000 4000 6000
Number of Function Evaluation

1

2

3

Pe
rc

ep
tu

al
 Im

ag
e

D
iff

er
en

ce
 M

et
ric

(c) Convergence with Vanilla CMA-ES

0 1000 2000 3000 4000 5000
Number of Function Evaluation

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pe
rc

ep
tu

al
 Im

ag
e

D
iff

er
en

ce
 M

et
ric

(d) Convergence with Proposed Optimization

1
Figure 3: Convergence profiles for the optimization of the synthetic ISP for the perceptual loss 5L̂PERC +`1 with (a) BayesOpt
[20], (b) HyperOpt [5], (c) Vanilla CMA-ES[16], and (d) the proposed optimization method.

12

Table 4: Perceptual image quality evaluation metrics measured on the final results of synthetic ISP optimization.

BayesOpt [20] HyperOpt [5] Vanilla CMA-ES [16] Proposed Optimization
5L̂PERC + `1 0.566 0.448 0.468 0.442

SSIM 0.656 0.680 0.677 0.697
PSNR 19.25 19.41 19.55 19.79

CIELAB∆E 10.10 9.85 9.41 8.31

Table 5: Effect of Optimization Method for ISP Hyperparameter Optimization.

BayesOpt [20] HyperOpt [5] Vanilla CMA-ES [16] Proposed Optimization
mAP 0.60 0.68 0.69 0.75
mAR 0.57 0.64 0.66 0.71

4. Additional Assessment
4.1. ISP Optimization for Image Understanding

To validate the proposed approach with the ARM MALI-C71 ISP, we collected 500 RAW images with the SONY IMX249
sensor for automotive object detection. Of the 500, 60 were used for ISP optimization and the rest for evaluation. Captures
were made in various conditions including snowfall, rainfall, high sunlight and tunnels, in daytime and nightime. The RAW
images were carefully annotated to include all pedestrians and cars appearing within the RAW with a height and width of
more than 10 pixels. Prior to expert tuning and optimization, as explained in Sec. 1.1, the ISP’s white balance gains were
calibrated, and they were kept fixed thereafter.

Comparison Figures 4, 5, 6, 7, 8 show images processed with the default vendor ISP hyperparameters; with ISP hyper-

(a) Detection with Default ISP Hyperparameters (b) Expert-tuned ISP Hyperparameters for Perceptual Image Quality

(c) End-to-end ISP Optimization with ISP Approximation
from Tseng et al. [23]

(d) Hardware-in-the-loop ISP End-to-end Optimization
for Object Detection

1

Figure 4: ARM MALI-C71 ISP automotive 2D object detection example in a tunnel. With the ISP optimized using the
proposed hardware-in-the loop approach, noise is visible; however, the object detector manages to detect smaller objects
with this ISP hyperparameter setting than with hyperparameters obtained with alternative methods, presumably because
smoother images have less detail.

13

(a) Detection with Default ISP Hyperparameters (b) Expert-tuned ISP Hyperparameters for Perceptual Image Quality

(c) End-to-end ISP Optimization with ISP Approximation
from Tseng et al. [23]

(d) Hardware-in-the-loop ISP End-to-end Optimization
for Object Detection

1
Figure 5: ARM MALI-C71 ISP automotive 2D object detection example in strong sunlight. The image obtained with
hyperparameters optimized with the proposed hardware-in-the-loop method has more saturated pixels than those obtained
with alternatives, a setting which most experts would find undesirable for human viewing; however, more cars are correctly
detected.

(a) Detection with Default ISP Hyperparameters (b) Expert-tuned ISP Hyperparameters for Perceptual Image Quality

(c) End-to-end ISP Optimization with ISP Approximation
from Tseng et al. [23]

(d) Hardware-in-the-loop ISP End-to-end Optimization
for Object Detection

1
Figure 6: ARM MALI-C71 ISP for 2D automotive object detection example in snowfall condition.

14

(a) Detection with Default ISP Hyperparameters (b) Expert-tuned ISP Hyperparameters for Perceptual Image Quality

(c) End-to-end ISP Optimization with ISP Approximation
from Tseng et al. [23]

(d) Hardware-in-the-loop ISP End-to-end Optimization
for Object Detection

1

Figure 7: ARM MALI-C71 ISP for 2D automotive object detection example in rainy condition.

(a) Detection with Default ISP Hyperparameters (b) Expert-tuned ISP Hyperparameters for Perceptual Image Quality

(c) End-to-end ISP Optimization with ISP Approximation
from Tseng et al. [23]

(d) Hardware-in-the-loop ISP End-to-end Optimization
for Object Detection

1

Figure 8: ARM MALI-C71 ISP for 2D automotive object detection example in night snowfall conditions.

15

Default ISP Hyperparameters

(a)

Default ISP Hyperparameters

(b)

Expert-tuned ISP for Perceptual Image Quality Expert-tuned ISP for Perceptual Image Quality

Hardware-in-the-loop Optimized ISP for Detection Loss Hardware-in-the-loop Optimized ISP for Detection Loss

Default ISP Hyperparameters

(c)

Default ISP Hyperparameters

(d)

Expert-tuned ISP for Perceptual Image Quality Expert-tuned ISP for Perceptual Image Quality

Hardware-in-the-loop Optimized ISP for Detection Loss Hardware-in-the-loop Optimized ISP for Detection Loss

1
Figure 9: Additional image understanding results for automotive object detection on KITTI using [22]: default ISP hyper-
parameters; hyperparameters expert-tuned for perceptual image quality; and task-specific-optimized ISP hyperparameters,
respectively. (a)-(b) correspond to four different images from the evaluation dataset.

parameters expert-tuned for perceptual image quality; with ISP hyperparameters optimized for object detection loss using
the differentiable ISP approximation [23]; and with ISP hyperparameters optimized for the same loss with the proposed
hardware-in-the-loop end-to-end method.

The ISP optimized with the proposed hardware-in-the-loop method denoises less; this is clearly visible in the tunnel image
(Fig. 4). However, the loss of detail associated with the other methods’ stronger denoising caused the downstream automotive

16

object detector to miss smaller cars detected with the proposed approach.
Fig. 5 illustrates automotive object detection in strong sunlight. The proposed method resulted in inaccurate colors and

a larger number of saturated pixels. This however minimally impacted detection performance: The ISP optimized using the
proposed method still outperformed the alternatives. Note however that if color accuracy had been key for the downstream
application, as is the case for traffic-light detection, this hyperparameter setting, produced by optimizing with respect to an
end-to-end loss for which color is relatively unimportant, would most likely not be optimal. Optimization results depend
strongly on the loss, which itself depends on the downstream task (pedestrians and cars vs. traffic lights, for example).

ISP hyperparameters obtained with the proposed hardware-in-the-loop method also outperformed the alternatives at night
(Fig. 8), in snowfall (Fig. 6, 8), and in rainfall (Fig. 7).

We also show additional visual results for the synthetic ISP image understanding experiments (Sec. 6.1 and 6.2 of the
main document) in Fig. 9 and Fig. 10.

4.2. ISP Optimization for Human Viewing

We also validated the proposed hardware-in-the-loop approach by optimizing two hardware ISPs, namely the ARM Mali-
C71 and the OnSemi AP0202ATISP, for perceptual (human viewing) image quality. Details omitted in the main document
are found below.

First, the camera was aligned and focused on a LCD with the help of a chart filled with spoke targets. We positioned the
LCD so that each of its pixels was smaller than the sensor pixel in the output image. In our experiments a single iMac 5K
LCD was sufficient to cover most of each camera’s field of view. Multiple displays are used with cameras with a larger field
of view.

Like in [23], we measure the correspondence between sensor and LCD pixels using Gray code calibration [14]. We
then resample the displayed target using the inverse of the calibrated light-transport matrix, resulting in an aligned reference
registered to the ISP output. Downsampling was performed as a weighted average applied to the nearest neighbors within the
displayed chart as determined by a kd-tree computation, with weights that vary inverse linearly with distance. This emulates
Elliptical Weighted Averaging with a “cone” kernel.

To compute full reference image difference metrics, we used the random ellipses region of a variant of the Rainbow Chart
described in [23], the main differences being that the random ellipses region does not contain a grayscale sub-region and
that the linear light average of the random ellipses corresponds to middle gray instead of the average of the patches of an
X-Rite ColorChecker. The aligned reference was also tone mapped with a contrast-boosting S-curve and sharpened. The
resulting enhanced (aligned) reference (Fig. 11) was used as the reference in the loss function. One loss was computed per
gain. Specifically, the loss function corresponding to each capture was the value of the image difference between the output
image and the enhanced reference quantified with LPERC = 5L̂PERC + `1 within a region of interest that covers the random
ellipses.

Some of the hyperparameters of ARM Mali-C71 are gain-specific. They include: thresh 1h, strength 1, thresh 4h,
thresh long, sharp alt ld, sharp alt ldu, sharp alt lu and np offset. These parameters were modulated for each gain. All
other hyperparameters were shared across the gains. The optimizer evaluated the losses for both the low and high gain cap-
tures, and simultaneously updated all ISP parameters, whether shared by all gains, low gain-specific, or high gain-specific.
Note that, for each gain, an appropriate combination of LCD brightness and exposure time was found such that there was no
flickering and the output was not over or underexposed using the chosen, fixed, manual settings.

4.3. Details of Blockwise ISP Optimization

In the main document, we validated the proposed method against the blockwise ISP optimization method of Nishimura et
al. [21]. The authors optimize the blocks of an ISP sequentially, one set of hyperparameters, associated with a specific block
of the ISP, at a time, which requires detailed knowledge of the operation of each processing block. We used the synthetic ISP.

Evaluation was performed with the eighty-class object detection end-to-end loss described in the main document. Recall
that the synthetic ISP has six tunable blocks, see Sec. 1.3. Optimization was initialized with default hyperparameters. Each
block was optimized with Algorithm 1 (see the main document) restricted to the hyperparameters specific to the considered
block, keeping the hyperparameters of the other blocks fixed. Specifically, when optimizing the nth tunable block of the ISP,
the hyperparameters for the earlier blocks 1, ..., n− 1 were fixed to the optimal values found in previous optimization stages,
and the hyperparameters of the later blocks n+ 1, ..., 6 were set to ISP default values.

Table 6 shows the mAP and mAR scores after each of the optimization stages performed for the processing blocks listed
in Sec. 1.3. As explained above, at each stage, blocks that appear later in the pipeline use default hyperparameter values,
and blocks that appear earlier use previously optimized ones. Consequently, the final end-to-end optimized hyperparameters

17

Default ISP Hyperparameters Expert-tuned for Perceptual Image Quality Optimized using Hardware-in-the-loop
Approach

1
Figure 10: Additional image understanding results for instance segmentation on COCO using [19]: default ISP hyper-
parameters; hyperparameters expert-tuned for perceptual image quality; and task-specific-optimized ISP hyperparameters,
respectively. Each row corresponds to an image from the evaluation dataset.

18

ARM Mali-C71
Aligned Reference

ARM Mali-C71
Aligned Reference

ARM Mali-C71
Aligned Reference

OnSemi AP0202AT
Aligned Reference

OnSemi AP0202AT
Aligned Reference

OnSemi AP0202AT
Aligned Reference

Expert-tuned ARM Mali-C71Expert-tuned ARM Mali-C71

Expert-tuned ARM Mali-C71

Expert-tuned OnSemi AP0202ATExpert-tuned OnSemi AP0202AT

Expert-tuned OnSemi AP0202AT

ARM Mali-C71 Optimized using
ISP-approximation Approach [23]

ARM Mali-C71 Optimized using
ISP-approximation Approach [23]

ARM Mali-C71 Optimized using
ISP-approximation Approach [23]

OnSemi AP0202AT Optimized using
ISP-approximation Approach [23]

OnSemi AP0202AT Optimized using
ISP-approximation Approach [23]

OnSemi AP0202AT Optimized using
ISP-approximation Approach [23]

ARM Mali-C71 Optimized using
Hardware-in-the-loop Approach

ARM Mali-C71 Optimized using
Hardware-in-the-loop Approach

ARM Mali-C71 Optimized using
Hardware-in-the-loop Approach

OnSemi AP0202AT Optimized using
Hardware-in-the-loop Approach

OnSemi AP0202AT Optimized using
Hardware-in-the-loop Approach

OnSemi AP0202AT Optimized using
Hardware-in-the-loop Approach

1

Figure 11: Aligned reference images used in the optimization of ARM Mali-C71 and OnSemi AP0202AT ISPs for perceptual
image quality loss alongside the results of processing with hyperparameters obtained by an expert, with the approximation-
based optimization method [23], and with the proposed hardware-in-the-loop optimization method.

19

Table 6: mAP and mAR scores measured over the evaluation set after each stage of the blockwise optimization process for
the eight-class object detection loss.
Optimization Stage default Luminance Denoiser Gaussian Denoiser Chroma Denoiser Sharpening Contrast Stretching Tone Mapping

mAP 0.147 0.160 0.165 0.17 0.168 0.185 0.204
mAR 0.126 0.127 0.145 0.14 0.145 0.158 0.173

are those obtained at the last stage, when the hyperparameters that modulate the tone mapping block of the synthetic ISP are
optimized. Scores improve significantly when the 5th and 6th blocks are optimized. This suggests that the contrast stretching
and tone mapping blocks of the ISP most impact the object-detection loss. This is not surprising since contrast amplifies
image gradients.

The evaluation scores, with the final end-to-end hyperparameter setting obtained with blockwise optimization, did not
match that obtained with the proposed joint optimization method: As shown in Table 2 of the main document, both the
mAP and mAR are 19% better with the proposed joint optimization. This suggests that ISP blocks do not independently
affect end-to-end loss. This also suggests that overall performance cannot be significantly improved by expert tuning if, as
suggested in [25], it only touches the hyperparameters that appear to have the most impact on the downstream task (e.g.
contrast enhancement).

References
[1] AP0202AT high-dynamic range (HDR) image signal processor (ISP). https://www.mouser.com/datasheet/2/308/

AP0202AT-D-932936.pdf. Accessed: 2020-03-30. 2
[2] MALI CAMERA C71 image signal processing for automotive. https://www.arm.com/products/

silicon-ip-multimedia/image-signal-processor/mali-c71. Accessed: 2020-03-30. 1
[3] Jarosłlaw Arabas, Adam Szczepankiewicz, and Tomasz Wroniak. Experimental comparison of methods to handle boundary con-

straints in differential evolution. In Robert Schaefer, Carlos Cotta, Joanna Kołodziej, and Günter Rudolph, editors, Parallel Problem
Solving from Nature, PPSN XI, pages 411–420, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. 10

[4] Dirk V. Arnold and Nikolaus Hansen. Active covariance matrix adaptation for the (1+1)-CMA-ES. In Proceedings of the 12th Annual
Conference on Genetic and Evolutionary Computation, pages 385–392, 2010. 3, 9, 10

[5] James Bergstra, Daniel Yamins, and David Daniel Cox. Making a science of model search: Hyperparameter optimization in hundreds
of dimensions for vision architectures. In International Conference on Machine Learning (ICML), 2013. 12, 13

[6] Henryk Blasinski, Joyce Farrell, Trisha Lian, Zhenyi Liu, and Brian Wandell. Optimizing image acquisition systems for autonomous
driving. Electronic Imaging, 2018(5):1–7, 2018. 2

[7] Michael S. Brown. Understanding the in-camera image processing pipeline for computer vision. IEEE International Conference on
Computer Vision (ICCV) - Tutorial, 2019. 2

[8] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. Non-local means denoising. Image Processing On Line, 1:208–212, 2011.
2

[9] Mark Buckler, Suren Jayasuriya, and Adrian Sampson. Reconfiguring the imaging pipeline for computer vision. In IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 975–984, 2017. 2

[10] James Durbin. Distribution Theory for Tests Based on the Sample Distribution Function. SIAM, 1973. 7
[11] Gabriel Eilertsen, Rafał K Mantiuk, and Jonas Unger. A comparative review of tone-mapping algorithms for high dynamic range

video. In Computer Graphics Forum, volume 36, pages 565–592. Wiley Online Library, 2017. 3
[12] Michael T. Emmerich and André H. Deutz. A tutorial on multiobjective optimization: Fundamentals and evolutionary methods.

17(3):585–609, Sept. 2018. 4
[13] Rafael C. Gonzales and Richard E Woods. Digital image processing. Prentice hall New Jersey, 2002. 2
[14] Mohit Gupta, Amit Agrawal, Ashok Veeraraghavan, and Srinivasa G Narasimhan. Structured light 3d scanning in the presence of

global illumination. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 713–720, 2011. 17
[15] Nikolaus Hansen. Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed. In Workshop Proceedings of the

GECCO Genetic and Evolutionary Computation Conference, pages 2389–2395, July 2009. 3
[16] Nikolaus Hansen, Youhei Akimoto, and Petr Baudis. CMA-ES/pycma on Github. https://doi.org/10.5281/zenodo.

2559634, Feb. 2019. 3, 12, 13
[17] Nikolaus Hansen and Andreas Ostermeier. Adapting arbitrary normal mutation distributions in evolution strategies: The covariance

matrix adaptation. In IEEE International Conference on Evolutionary Computation, pages 312–317, 1996. 3
[18] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution strategies. Evolutionary Compu-

tation, 9(2):159–195, 2001. 3
[19] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN. In IEEE International Conference on Computer

Vision (CVPR), pages 2961–2969, 2017. 18

20

https://www.mouser.com/datasheet/2/308/AP0202AT-D-932936.pdf
https://www.mouser.com/datasheet/2/308/AP0202AT-D-932936.pdf
https://www.arm.com/products/silicon-ip-multimedia/image-signal-processor/mali-c71
https://www.arm.com/products/silicon-ip-multimedia/image-signal-processor/mali-c71
https://doi.org/10.5281/zenodo.2559634
https://doi.org/10.5281/zenodo.2559634

[20] Ruben Martinez-Cantin. Bayesopt: A bayesian optimization library for nonlinear optimization, experimental design and bandits. The
Journal of Machine Learning Research, 15(1):3735–3739, 2014. 12, 13

[21] Jun Nishimura, Timo Gerasimow, Rao Sushma, Aleksandar Sutic, Chyuan-Tyng Wu, and Gilad Michael. Automatic ISP image
quality tuning using nonlinear optimization. In IEEE International Conference on Image Processing (ICIP), pages 2471–2475, 2018.
17

[22] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-time object detection with region proposal
networks. In Advances in Neural Information Processing Systems, pages 91–99, 2015. 16

[23] Ethan Tseng, Felix Yu, Yuting Yang, Fahim Mannan, Karl ST Arnaud, Derek Nowrouzezahrai, Jean-François Lalonde, and Felix
Heide. Hyperparameter optimization in black-box image processing using differentiable proxies. ACM Transactions on Graphics
(SIGGRAPH), 38(4):27, 2019. 16, 17, 19

[24] Chyuan-Tyng Wu, Leo F Isikdogan, Sushma Rao, Bhavin Nayak, Timo Gerasimow, Aleksandar Sutic, Liron Ain-kedem, and Gilad
Michael. VisionISP: Repurposing the image signal processor for computer vision applications. In IEEE International Conference on
Image Processing (ICIP), pages 4624–4628, 2019. 2

[25] Lucie Yahiaoui, Ciarán Hughes, Jonathan Horgan, Brian Deegan, Patrick Denny, and Senthil Yogamani. Optimization of ISP param-
eters for object detection algorithms. Electronic Imaging, 2019(15):44–1, 2019. 20

21

