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Chapter 1

Introduction

The adoption of computer checked methods for verifying properties of programming languages is
overdue in the programming languages community. We are not the first to express a this sentiment;
theorem proving researchers have been declaring since 1998 that “the technology for producing
machine-checked programming language designs has arrived” [7]. However, the PL community has
been slow to adopt computer-verified means of understanding properties of computer languages. In
response to this slow adoption, a group of theorists, primarily at the University of Pennsylvania,
announced PoplMark [3], issuing a challenge that involved a machine-checked formalization of a
theoretically interesting computer language, System F<:.

Nine days later, Karl Crary, Robert Harper, and Michael Ashley-Rollman at Carnegie Mellon
announced that they had provisionally completed the challenge, and while parts of their solution
remain controversial, their solution, which used similar methods to the ones which form the core of
this project, has the potential to increase the adoption of these methods in the wider programming
languages community.

This report describes a project aimed at developing the practice of formally establishing the
type safety of programming languages using Twelf’s metatheory capabilities. From the beginning,
the goal was to use Twelf to develop a realistic language formalization; a formalization where the
abstract syntax might reasonably be generated by a parser, and where the static and dynamic
semantics are specified in algorithmic way, so that they could actually be run on the abstract syntax
representation of programs. Chapter 2 will present a full formalization of a minimalist imperative
language, introducing the methods of this project and the challenges involved; like the rest of
this report, it assumes a basic understanding of the foundations of programming language theory.
Chapter 3 will consider the extension of this formalization to a more interesting language named Fun,
which is defined in Appendix A; furthermore, it will describe the integration of that formalization
into a compiler frontend. Chapter 4 concludes with a brief description of other work done as part of
the project, as well as with commentary on the future of language formalization, especially in Twelf.

1.1 Formalizing programming languages

At its core, this project deals with writing mathematical proofs about the behavior of programs.
When we call this a “formalization” project, we are following Norrish in our understanding that
“the term ‘formal’ implies ‘admits logical reasoning’” [8, Section 1.2]. Therefore, the first part of a
formalization process is a mathematical specification of a language. This is desirable on its own, as
it removes much of the ambiguity inherent in any English description of a computer language, and
is therefore a valuable resource for a compiler author.

Because any realistically usable modern computer language will have a relatively large amount
of of detail when compared to most theoretical programming languages or logical frameworks, and
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because much of this detail is often not very theoretically interesting (which is why it is typically
excluded from theoretical programming languages), it is difficult to effectively maintain, test, and
reason a formalization unless that formalization is in a computer-accessible format.

This computerized formal encoding of the syntax and semantics of a programming language is
then useful in other ways as well; the formal reasoning system in which the language is encoded can
be used to reason about the language. There are two different approaches to reasoning about the
behavior of a computer program.

The first approach, exemplified by Norrish’s work on C [8], involves creating proofs about the
behavior of individual programs. These approaches often use Hoare logic, which deals with the
way that facts about a language change at each step of its execution. These proofs are hard to do
automatically, however, and while they can potentially allow many properties of individual programs
to be established, doing so typically requires an enormous amount of effort.

The second approach is more common - rather than reasoning about the behavior of individual
programs, properties of all programs written in a certain language are established. The classic
example involves the safety guarantee made by many languages like Java and ML, a promise which
is presented in English as statements like “programs that pass the type checker will not go wrong,
for instance by accessing private data or crashing the computer.”

In the first approach, the goal is essentially to reason about programs written in our formalized
language, about the relationship between the language’s semantics and objects, i.e. the mathematical
representations of individual programs. In the second example, the goal is to reason about any
program that can be written in a certain language, about the relationship between judgements that
can be made about programs, judgements such as “the expression e has type int” or “the program
state e1 steps to the program state e2.” Because the derivation of a certain judgement can be
seen as the proof of a theorem, verified statements concerning the relationships between different
judgements are called metatheorems. Because these proofs are generally very tedious and complex
for realistic full-scale programming languages, proof assisting systems are needed to assist in the
proving of these kinds of metatheorems.

1.2 The Twelf system

Twelf is one such system that allows for efficient and natural encoding of the syntax of programming
languages, and has powerful capabilities for proving metatheorems about these encodings. Twelf’s
approach is somewhat unique among modern theorem proving systems. Rather than a single rea-
soning system, it has two logic systems that coexist with each other. The inner system is an object
logic using the higher-order abstract syntax of LF, which is just the pure dependently typed lambda
calculus. The outer system is a much more powerful metalogic which the user interacts with through
a logic programming metaphor.

1.2.1 Reasoning in the parametric function space of LF

The dependently typed object logic by itself is very powerful, and can be used AUTOMATH-style
to write proofs by hand that can be mechanically verified by a relatively small trusted prover. The
object logic is not extraordinarily interesting computationally - the only functions that exist are
ones that implement capture-avoiding substitution. This is enough computational power, however,
to describe the syntax of most programming languages in a natural way.

More computationally interesting programs can be written using a logic programming metaphor
built into Twelf. The author has previously worked on using this logic programming capability to
build a tactical prover that automatically generates proofs about facts related to simple arithmetic
[14]; however, the current Twelf system’s logic programming capabilities are less powerful than the
logic programming system used in Appel and Felty’s general discussion of these tactical provers [1].
Twelf only allows definition of what can be thought of as constructive, recursively defined functions.
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1.2.2 Reasoning in the recursive function space of M+
2

There is an extremely good reason for Twelf limiting the computational abilities of its logic pro-
gramming capabilities. Proving metatheorems about the relationship between various judgements
requires that the function space of those judgements be well defined; more computationally interest-
ing systems, for instance those that allow the cut operator for fine-tuned control over backtracking,
have a function space that is too complex and cannot be reasoned about in a metatheoretic way [10,
Section 5.8].

The function space of Twelf is referred to as M+
2 , and while it is limited in many ways, it is

quite adequate in most cases for both describing the semantics of programming languages and for
writing metatheorems about those semantics. Proving metatheorems in Twelf in the style used by
this project is roughly equivalent to writing a detailed induction proof by cases - the assistance Twelf
gives is in examining the purported inductive proof and giving one of two responses, either “yes,
this represents a metatheorem,” or “no, this purported metatheorem is incomplete for the following
(potentially spurious) reasons...” The information as to why proofs are incomplete is one of the
most useful aspects of the theorem-proving environment.

1.2.3 The (once and future) Twelf theorem prover

Twelf also includes an automated theorem prover, which takes the declaration of a metatheorem and
returns whether or not it is able to establish that metatheorem by induction. In its original form, it
returned the inductive proof by cases that the previous section describes being written by hand.

This ability was disabled with the release of Twelf 1.4; due to this, and to the fact that the prover
in general is tagged as “even more experimental” than the rest of Twelf [10, Chapter 10], and to
the theorem prover’s current inability to produce the useful error messages that are generated when
writing inductive proofs by hand, the theorem prover was completely ignored by this project.

1.3 The language of type checkers

Almost all other theorem provers use first-order abstract syntax, and thus have significant issues
with dealing with binders [3], leading to an enormous and mostly uninteresting proof burden dealing
with problems related to capture-avoiding substitution. The essential problem may be simply that
they are not the right tool for the job; indeed, many were designed for hardware verification and
not for programming language formalization [16].

The type systems that emerge in these systems are often unnatural, and the formalizations of
type safety are often not the usual “safety = progress + preservation” style proofs, instead relying
on indexed types or other unfamiliar additions. These approaches are useful in many ways, and
there is ongoing research into creating more natural formalizations without resorting to Twelf-
style metatheorems [19]. However, we believe that while there probably is a place for these more
“foundational” approaches to type safety, there is a unique opportunity made available through the
Twelf metatheorem prover to write language specifications simply, realistically, and productively,
satisfying the PoplMark goal of bringing “mechanized metatheory to the masses” [3].

Regular expressions are the language of parsers, context-free grammar is the language of lexers,
and inductive definitions in higher-order abstract syntax are probably the best candidate for the
language of type checkers [18]. In a conversation with Aquinas Hobor around the time of this project’s
inception, he expressed joking concern that the result of this project would be yet another specialized
system to add to several that complier writers already have to learn. He was probably right to be
concerned; we believe that the strategies described by this paper may represent the precursors to
specialized languages for describing and generating type checkers directly from formal type system
specifications, specifications which can also be reasoned about by the language’s designers to establish
type safety and other properties of the language.
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1.4 The view from outside

The fast completion of PoplMark by two professors and an undergraduate at Carnegie Mellon
follows the unsurprising tendency for the primary users, or at least the early adopters, of theorem
proving systems to be in close connection with the developers of those systems. We believe that
this project represents, if not the largest, then surely one of the largest language formalizations
created outside of Carnegie Mellon and the Twelf developer community; it is also one of what to
our knowledge is a very small number of attempts to gain a practical understanding of Twelf’s
metatheory capabilities without a significant understanding of Twelf’s mathematical foundations.

We believe that this outsiders’ perspective makes this project a significant contribution to the
knowledge of how Twelf metatheory is learned, and it has led to a number of responses. First, we
recognized a need for an educational resource for Twelf beyond the ones currently available. The
primary resources available to beginning users of Twelf are the Twelf User’s Guide [10] and two
mailing lists for users and developers of Twelf. The User’s Guide is substantially more devoted
to system description than to troubleshooting and problem solving, and while mailing lists are
often helpful, the archives are not an organized information source and do not always follow the
description of a problem through to its resolution. With the help of Twelf co-designer Frank Pfenning
we established The Twelf Wiki, aimed at providing a resource for users outside of the developer
community that is more flexible than the ones currently available. While most of its material is
currently descriptions of problems encountered in the course of this project and solutions to those
problems, the Wiki is coming to be utilized by other members of the non-CMU Twelf community,
receiving contributions from Stephen Tse at the University of Pennsylvania and Todd Wilson at
CSU Fresno.

The second response is this report, which is substantially dedicated to a description of the choices
made and challenges encountered in the course of this year-long project. In particular, the second
chapter is designed as a crash course in Twelf metatheory as well as an account of the methods
utilized this project; it is furthermore an experiment in using Twelf code as a readable description of
inductive proofs. Finally, we presented some of the methods used in this project to the programming
languages community at Princeton through the TACL seminar series on April 27, 2005.
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Chapter 2

Formalizing safe languages in Twelf

This chapter presents a formalization of a simplified version of the Fun language which is discussed in
the next chapter and defined in Appendix A. This presentation will discuss not only the mathematical
description of the language and safety proof, but also the Twelf encoding of that description. The
first section discusses the logical encoding of the example language’s syntax and semantics, and the
second section introduces metalogic proofs and walks through the metatheorem asserting the type
safety of the example language. The chapter concludes by taking a look at how the type checker
can report failure information.

This chapter is not intended to be simply a commentary on the code presented, but also an
introduction to the concepts involved in the development of that code. It will present many Twelf
concepts informally by explaining them in terms of equivalent concepts in the theory of programming
languages, and we hope that this approach will allow this chapter to serve as a practical introduction
and tutorial for someone with an understanding of programming language theory but without a
background Twelf metatheory.

2.1 Encoding syntax and semantics

This section, with one exception (lists of expressions), will present all of the Twelf code needed to
formalize the minimalist Fun. Rather than explaining the code itself, it will be presented side by
side with the equivalent mathematical representation, which itself serves as an explanation of the
Twelf code.

2.1.1 Representing primitive operations

Most languages do useful work by manipulating primitive data types, for instance 32-bit num-
bers, strings, or objects. Twelf supports “importing” strings, infinite-precision integers, and 32-bit
unsigned integers into the pure LF framework, but in the current implementation doing so is com-
pletely incompatible with Twelf’s ability to prove metatheorems - misusing the 32-bit unsigned
integer package, for instance, can in some cases result in Twelf appearing to assert the truth of
untrue metatheorems [15, Constraint Domains].

Because Twelf’s “built in” integers and strings cannot currently be safely or usefully used in a
language formalization process that involves a safety proof, a different approach is needed; there are
essentially two options. The first is to have a single “dummy” value which stands in for all of the
possible values of a given primitive type. This is perfectly fine from the perspective of typechecking,
but if the language has control flow capabilities, such as while or if, which behave differently based
on the value of a primitive data type, then this approach will result in a specification of the dynamic
semantics which does not match the language’s actual behavior; however, the dynamic semantics

9



Natural numbers: n ::= z | s(n)

z + n ⇓ n
sum-z

n1 + n2 ⇓ n3

s(n1) + n2 = s(n3)
sum-s

nat : type.
z : nat.
s : nat -> nat.

sum : nat -> nat -> nat -> type.
%mode sum +A +B -C.

sum-z : sum z N N.
sum-s : sum (s N1) N2 (s N3)

<- sum N1 N2 N3.
%worlds () (sum A B C).
%total A (sum A B C).

Encoding 1: The natural numbers

could still be simulated in a nondeterministic way - for instance, if there was only a single integer,
then a while loop that branched according to whether that integer was 0 could be specified as
branching each of the two possible ways.

The second approach is to create (or find) a formalization of whatever primitive data types
the language manipulates. This solution has much more overhead, but it is crucial if using the
specification as a “runnable” simulation of the language is a goal. This project uses a binary
number specification based on work done by the TALT project, but the formalization in this chapter
will use the natural number specification (Encoding 1) discussed in more detail by Crary [4].

The construction of nat as zero and successors of other natural numbers should be clear, but a
couple of important points are highlighted by sum. In the context of this section, we will view sum
as a logic program which can be executed. In this view, the %mode declaration checks that sum can
be thought of as implementing a partial function with two inputs (+A and +B) and one output (-C).
%worlds and %total will be discussed later in relation to metatheorems, but for now it suffices to
say that they cause Twelf to check that the partial funciton sum is in fact a total function, i.e. a
logic program that accepcts all inputs and always sucessfully terminates after a finite number of
steps. The first A in the %total declaration gives Twelf the hint it needs to determine why sum
always terminates: the first argument, A, gets smaller with each recursive call to sum, so if the input
has finite size, then sum cannot keep making recursive calls forever.

Finally, Encoding 1 demonstrates the crucial point that identifiers starting with uppercase letters
represent metavariables. Twelf reconstructs the type of all metavariables (for instance, N in the
definition of sum-z has type nat) and allows the metavariable to represent any derivable object with
that type.

2.1.2 Syntax: types and expressions

The language used here is intended to be the smallest that is useful for discussing all the interesting
aspects of the Fun formalization. As such, it has let statements, the ability to create and dereference
references, and natural numbers with an addition operator. There is no assignment operation only for
brevity’s sake - assignment does not pose any especially interesting theoretical or practical problems,
but assignment is included in the full formalization. To the definition of natural numbers, Encoding
2 adds the expressions and types of the minimalist Fun language.

Except for let, all the constructs in the syntax encoding should be fairly self-explanatory. Most
of the expression constructors take one or more objects with a certain type (for instance, ref takes
an expression) and construct an expression. Twelf also has the ability to represent infix operators
with left, right, or no associativity, which + demonstrates.
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Locations: l ::= n

Expressions: e ::= n(n) | e + e
| ref(e) | !e | loc(l)
| let x=e in e

Types: τ ::= int | ref(τ)

%abbrev location = nat.

exp : type.
n : nat -> exp.
+ : exp -> exp -> exp. %infix left 10 +.
ref : exp -> exp.
! : exp -> exp.
loc : location -> exp.
let : exp -> (exp -> exp) -> exp.

tp : type.
int-tp : tp.
ref-tp : tp -> tp.

Encoding 2: Basic syntax of the toy language

What makes let more interesting is that the second object it expects has type (exp -> exp).
This indicates that there will be a λ-binding, which is introduced using the bracket symbols. Take,
for example, these three definitions:

foo1 : exp -> exp = [x] x + x + (n (s z)).
foo2 : exp = let (n z) ([x] x + x + (n (s z))).
foo3 : exp = foo1 (n z).

The definition of foo1 can be read as “foo1 has type exp -> exp and is the object [x] x + x
+ (n (s z)),” and it demonstrates using brackets to introduce the λ-bound variable x. foo2 is the
Twelf encoding of the expression let x=n(z) in x + n(s(z)), and foo3 represents how an expression
(n z) is applied to foo1; Twelf sees foo3 as equivalent to the expression (n z) + (n z) + (n (s
z)).

The ability to represent binders for the underlying language as a binders in the higher-order
abstract syntax, as this example illustrates, was cited by the designers of PoplMark as one of
the greatest strengths of using a higher-order abstract syntax implementation like Twelf for formal-
ization, though the approach has significant limits, such as representing lists of mutually recursive
binders. Other limits include the apparent inability to specify a closure conversion algorithm, or to
establish certain properties such as strong normalization, which are not dealt with by this project
[3].

2.1.3 Lists of types and expressions

Notice from the previous section that a location in this language is simply an abbreviation for a
natural number. We define the store and store typing as lists of expressions and types. Dereferencing
is implemented as projection, so that dereferencing the pointer loc(n) will be done by accessing the
nth element in the list which represents the store. Allocation will append new values to the end
of the list. Unfortunately, Twelf does not offer any kind of list polymorphism, and so each list is
a new data type - in the larger specification where several lists needed similar capabilities, a single
“master” file was written that introduced the type any and lists of anys. When a new kind of list
was needed, say lists of tps, an automatic find/replace function renamed all instances of any in the
master file with tp, and the result was saved as a new file. Synchronization was obviously an issue,
but as the requirements on lists stayed relatively stable, it was not a major problem. Encoding 3
describes lists of types, which can be converted into the encoding for lists of expressions by replacing
all instances of tp with exp and, optionally, all instances of T with E.
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Lists of types: τlist ::= nil | τ :: τlist

Lists of expressions: elist ::= nil | e :: elist

(τ :: τlist).z ⇓ τ
proj-tp-z

(τlist).n ⇓ τ

(τ ′ :: τlist).s(n) ⇓ τ
proj-tp-s

nil @ τ ⇓ (τ :: nil , z)
append-tp-z

τlist @ τ ⇓ (τ ′list , n)
τ ′ :: τlist @ τ ⇓ (τ ′ :: τ ′list , s(n))

append-tp-s

nil ⊆ τlist
subset-tp-z

τlist ⊆ τ ′list
τ :: τlist ⊆ τ :: τ ′list

subset-tp-s

tplist : type.
$tp : tp -> tplist -> tplist.
%infix right 5 $tp.
nil-tp : tplist.

proj-tp : tplist -> nat -> tp -> type.
%mode proj-tp +TL +N -T.
proj-tp-z : proj-tp (T $tp TL) z T.
proj-tp-s : proj-tp (T $tp TL) (s N) T’

<- proj-tp TL N T’.

append-tp : tplist -> tp
-> tplist -> nat -> type.

%mode append-tp +TL +T -TL’ -N.
append-tp-z : append-tp nil-tp T

(T $tp nil-tp) z.
append-tp-s : append-tp (T’ $tp TL) T

(T’ $tp TL’) (s N)
<- append-tp TL T TL’ N.

subset-tp : tplist -> tplist -> type.
subset-tp-z : subset-tp nil-tp T.
subset-tp-s : subset-tp (T $tp TL)

(T $tp TL’)
<- subset-tp TL TL’.

Encoding 3: Lists of types

Store: µ ::= elist

Store typing: Σ ::= τlist

%abbrev store = explist.
%abbrev storetp = tplist.

Encoding 4: Store abbreviations

Encoding 3 also demonstrates the ways in which the mathematical notation will appear to use
polymorphism in some cases (for instance, the apparently polymorphic or overloaded cons (::) oper-
ator) when such a usage makes the notation simpler, even though this does not perfectly match the
representation in Twelf.

2.1.4 Shortcuts for the store

The store and store typing may just be a list of expressions and types, but in order for the rest of
the formalization to be clearer we will use the symbol µ for the store and Σ for the store typing,
following Pierce [11, Chapter 13]. Encoding 4 shows this and the related abbreviations in Twelf.

2.1.5 Values

The last piece of the puzzle before we define the semantics of the language is a judgement defining
which expressions are values. Values are here defined as a subset of expressions that satisfy a certain
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isval(n(n))
v-int

isval(loc(l))
v-loc

isval(nil)
vl-z

isval(e) isval(elist)
isval(e :: elist)

vl-s

isval : exp -> type.
%mode isval +E.
v-int : isval (n N).
v-loc : isval (loc L).

isval-list : explist -> type.
%mode isval-list +E.
vl-z : isval-list nil-exp.
vl-s : isval-list (E $exp EL)

<- isval E
<- isval-list EL.

Encoding 5: Values

predicate (Encoding 5).

2.1.6 Dynamic semantics

Now all the pieces necessary to define the language’s dynamic syntax are in place (Encoding 6). The
program state is a pair of a store and an expression.

Notice that the operation of e-let is to apply the expression E to the higher-order function EF,
which could have equivalently been represented in its eta-expanded form ([x] EF x). As it was
demonstrated in Section 2.1.2, this will replace all instances of EF’s bound variable with E.

2.1.7 Static semantics

It was mentioned in Section 2.1.2 that one of the great benefits of formalizing a language in a
system like Twelf is that it allowed for binders to be introduced into the language using binders
from the metalogic. The typing relation demonstrates another huge convenience: Twelf in some
sense provides the context Γ “for free.”

When the typing derivation reaches t-let, it adds to the LF context a fresh expression x, about
which the only derivable statement is var-typed x T for some already-determined T. If we view
typed as a logic program which is determining the type of the expression by recursion, then what
is happening in the second part of t-let is that that recursion is “traversing the λ-binding,” since
the metavariable EF represents some object with type (exp -> exp) - a fact which will later have
important consequences for parts of the safety proof. The only way that Twelf will successfully
determine the type of an introduced expression x is by attempting t-var, which will check the LF
context, find the simultaneously introduced var-typed x T, and will thus derive typed ST E T for
whatever storetype ST is currently being used.

This approach requires the use of a substitution lemma later on - it is worth noting that where
there is no store or store typing, the assumption typed x T can itself be placed into the LF context
for the introduced expression x, which makes the substitution lemma unnecessary. Introducing a
store typing to the typed judgement, however, prevents this method from being used. Trying to
introduce into the context a judgement typed ST x T would make it impossible to prove the store
type weakening lemma that is needed later on [15, Worlds and Weakening].

2.1.8 Running a logic program

It was previously mentioned that sum, typed, proj-tp, and eval all represented logic programs or
partial functions, without explaining what this actually means. Without going into too much detail
as to how Twelf works internally, consider the encoding of “let x=ref(n(s(z))) in n(s(z)) + !x”:
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µ | e1 −→ µ′ | e1
′

µ | e1 + e2 −→ µ′ | e1
′ + e2

s1-add

isval(e1) µ | e2 −→ µ′ | e2
′

µ | e1 + e2 −→ µ′ | e1 + e2
′ s2-add

n1 + n2 ⇓ n3

µ | n(n1) + n(n2) −→ µ | n(n3)
e-add

µ | e −→ µ′ | e′

µ | ref(e) −→ µ′ | ref(e′) s-ref

isval(e) µ @ e ⇓ (µ′ , l)
µ | ref(e) −→ µ′ | loc(l)

e-ref

µ | e −→ µ′ | e′

µ | !e −→ µ′ | !e′
s-bang

(µ).l ⇓ e

µ | !loc(l) −→ µ | e
e-bang

µ | e1 −→ µ′ | e1
′

µ | let x=e1 in e2 −→ µ′ | let x=e1
′ in e2

s-let

isval(e1)
µ | let x=e1 in e2 −→ µ | [x 7→ e1]e2

e-let

eval : store -> exp
-> store -> exp -> type.

%mode eval +S +E -S’ -E’.

s1-add : eval S (E1 + E2) S’ (E1’ + E2)
<- eval S E1 S’ E1’.

s2-add : eval S (E1 + E2) S’ (E1 + E2’)
<- isval E1
<- eval S E2 S’ E2’.

e-add : eval S (n N1 + n N2) S (n N3)
<- sum N1 N2 N3.

s-ref : eval S (ref E) S’ (ref E’)
<- eval S E S’ E’.

e-ref : eval S (ref E) S’ (loc L)
<- isval E
<- append-exp S E S’ L.

s-bang : eval S (! E) S’ (! E’)
<- eval S E S’ E’.

e-bang : eval S (! (loc L)) S E
<- proj-exp S L E.

s-let : eval S (let E EF) S’ (let E’ EF)
<- eval S E S’ E’.

e-let : eval S (let E EF) S (EF E)
<- isval E.

Encoding 6: Dynamic semantics

prog = let (ref (n (s z))) [x] (n (s z)) + (! x).

We can determine the result of using the logic program typed on the empty store typing and
prog by loading this statement:

%solve type-test : typed nil-tp prog T.

Twelf responds by replacing the metavariable T with the result of running the logic program, the
type of prog, i.e. int-tp. This is Twelf’s full response:

type-test : typed nil-tp prog int-tp
= t-let

([x:exp] [x1:var-typed x (ref-tp int-tp)]
t-add (t-bang (t-var x1)) t-int) (t-ref t-int).

%% OK %%

However, something else is happening when Twelf succeeds in executing the logic program.
It has defined type-test, which is itself an object with type (typed nil-tp prog int-tp) and
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Γ | Σ ` nil : nil
tl-z

Γ | Σ ` e : τ Γ | Σ ` elist : τlist

Γ | Σ ` (e :: elist) : (τ :: τlist)
tl-s

Γ | Σ ` n(n) : int
t-int

Γ | Σ ` e1 : int Γ | Σ ` e2 : int

Γ | Σ ` e1 + e2 : int
t-sum

Γ | Σ ` e : τ

Γ | Σ ` ref(e) : τ ref
t-ref

Γ | Σ ` e : τ ref

Γ | Σ ` !e : τ
t-bang

(Σ).l ⇓ τ

Γ | Σ ` loc(l) : τ ref
t-loc

Γ | Σ ` e1 : τ ′ Γ, x : τ ′ | Σ ` e2 : τ

Γ | Σ ` let x=e1 in e2 : τ
t-let

Γ(x) = τ

Γ | Σ ` x : τ
t-var

var-typed : exp -> tp -> type.
%mode var-typed +E -T.
typed : storetp -> exp -> tp -> type.
%mode typed +ST +E -T.

typed-list : storetp -> explist
-> tplist -> type.

%mode typed-list +ST +E -T.
tl-z : typed-list ST nil-exp nil-tp.
tl-s : typed-list ST (E $exp EL)

(T $tp TL)
<- typed ST E T
<- typed-list ST EL TL.

t-int : typed ST (n N) int-tp.
t-add : typed ST (E1 + E2) int-tp

<- typed ST E1 int-tp
<- typed ST E2 int-tp.

t-ref : typed ST (ref E) (ref-tp T)
<- typed ST E T.

t-bang : typed ST (! E) T
<- typed ST E (ref-tp T).

t-loc : typed ST (loc L) (ref-tp T)
<- proj-tp ST L T.

t-let : typed ST (let E EF) T
<- typed ST E T’
<- ({x} var-typed x T’

-> typed ST (EF x) T).
t-var : typed ST E T

<- var-typed E T.

Encoding 7: Static semantics

which is derivable as (t-let ([x:exp][x1:var-typed x (ref-tp int-tp)]...)). This touches
on many of the complicated features of LF, such as its dependent type system and judgments-as-types
representation technique, which will not be considered here as they have been thoroughly discussed
elsewhere [11, Section 30.5][9]. The relevant point is that it makes sense to think of sum and typed
as logic programs, but in some contexts it is useful to think of them in terms of derivation trees,
which are proof objects that may themselves be manipulated by logic programs in the same way that
(s(s(z))) is an object which may be manipulated by sum.

2.1.9 Muti-step evaluation

The definition of the Kleene closure of the step relation (Encoding 8) shows the importance of the
difference between the logic programming metaphor and proof object metaphor. All the previously
described logic programs, such as typed and eval, are (probably) deterministic1, meaning that there
is only one rule that actually needs to be considered for any set of inputs. This makes typed and

1We say “probably” simply because this is never formalized
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µ | e −→ µ′ | e′ µ′ | e′ −→∗ µ′′ | e′′

µ | e −→∗ µ′′ | e′′
run-step

µ | e −→∗ µ | e run-end

run : store -> exp
-> store -> exp -> type.

%mode run +S +E -S’ -E’.

run-step : run S E S’’ E’’
<- eval S E S’ E’
<- run S’ E’ S’’ E’’.

run-end : run S E S E.

Encoding 8: −→∗

eval (probably) behave much as if they were performing case evaluation using pattern matching
in a language like ML. However, when executing logic programs, Twelf will always attempt to use
the first-defined option first, so that if run is executed as a logic program it will always attempt
to derive an evaluation step using run-step until the derivation of an additional evaluation step
cannot be found, and then run-end will be attempted and will always succeed. In other words, run
will run the program until it cannot run anymore.

However, as a specification of a derivation tree, run/−→∗ represents any amount of evaluation,
as shown by the very simple expression prog2 below, with two different derivations of run that show
evaluation running for 0 and 1 steps, respectively.

prog2 = (n z) + (n (s z)).

run1 : run nil-exp prog2 nil-exp prog2 = run-end.
run2 : run nil-exp prog2 nil-exp (n (s z)) = run-step run-end (e-add sum-z).

Running the logic program run would first determine the second derivation, but both are valid
proof objects establishing two different judgements. In fact, with backtracking run is able to generate
both derivations, but this is not a capability that this project utilizes.

2.2 Proving language safety

The end of the last section discussed logic programming and the ability of a logic program to return
a proof object representing the derivation of the result. In this section we begin to write relations
that manipulate those objects, and consider some of the consequences in the context of developing
the safety proof of the minimalist Fun language that was just presented.

The theory behind this section is noncontroversial and is covered thoroughly by Pierce [11,
Chapter 13], and this presentation follows Pierce’s as closely as possible. Because this traditional
presentation of an extremely similar safety proof is available, and also because inductive proofs are
not typically represented in a rigorous symbolic format in the way that inductive definitions are,
this section will abandon the side by side mathematical specification used in the previous section
and begin to let the Twelf code speak for itself.

This approach was considered by Syme, who considered readability by outsiders to be an ex-
tremely important element of a formalization system [16], and also by Crary, who presented many of
the lemmas leading to the safety proof for TALT in their Twelf form [4], but this section will attempt
to use code as an explanatory tool even more extensively. This section is long, and some parts of
the proof are tedious, because inductive proofs are, in fact, generally long and tedious. Trivial and
uninteresting lemmas will therefore generally be declared, but their proofs will be omitted from this
paper; furthermore, the commentary on most lemmas will also serve to discuss a new issue related
to proving metalemmas in Twelf.
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2.2.1 Introduction to metatheorems & effectiveness of primitive opera-
tions

We will start with a noncontroversial example, belonging to a class of lemmas that, following the
TALT project, will be called effectiveness lemmas. Because %total A (sum A B C) passed, we
know that for any grounded inputs sum will produce a grounded output in a finite number of steps.
The first metalemma we will discuss proves a very similar fact which Twelf nevertheless sees as
different - that for any two natural numbers A and B, it is possible to derive a proof object sum A B
C (for some C).

We do this by first defining a partial function, can-sum, from a pair of natural numbers A and B
to a derivation of sum A B C, which looks like this:

can-sum : {A: nat}{B: nat} sum A B C -> type.
%mode can-sum +A +B -SUM.

This definition of can-sum looks significantly different that the definition of sum and the other
previously defined logic programs, but the only difference is that two inputs are given names here.
As a clarifying example, these two definitions of sum are seen by Twelf as exactly equivalent:

sum : nat -> nat -> nat -> type.
sum : {A: nat}{B: nat}{C: nat} type.

Similarly, we could have defined can-sum this way:

can-sum : {A: nat}{B: nat}{SUM: sum A B C} type.

The point is that, in practice, it is more clear not to assign names to inputs when it is unnecessary,
but in the case of can-sum, identifiers need to be attached to the two natural numbers so that they
can be referred to later in the declaration.

Consider for a moment how one would prove, by a standard long-form proof of induction, that
n1 + n2 ⇓ n3 is derivable for any two natural numbers n1 and n2. The proof, in its most verbose
form, might look something like this:

The proof of the effectiveness of sum is carried out by induction on the structure of
the first natural number. If the first natural is z, then the entire derivation of the sum is
simply sum-z, and we are done. If the first natural is s(n), then the second input is some
n2 and the inductive step gives us n + n2 ⇓ n3. Applying sum-s gives us the derivation
we desire, s(n) + n2 ⇓ s(n3). There are no other cases, so we are done.

Now consider again the logic program can-sum. Right now it is a partial function with no
solutions. However, if we could define the program in such a way that we could prove that can-sum,
like sum, is a total function, it would mean that we have specified a recursive logic program that
will always succeed in constructing the derivation of sum from any two inputs.2 This is the essence
of a metatheorem, the idea that it is possible to prove a theorem of the form “for all A there exists
a B” by creating a recursive logic program from objects representing A to objects representing B,
and then using the coverage checker to prove that the function is total, so that for any inputs A to
the function we can construct in a finite number of steps (and therefore “there exists”) a B.

The %total declaration completes the statement of this metatheorem. The totality check re-
quires that there be an ordering which confirms that the proof will always terminate (the T in
can-sum T _ _). If Twelf can confirm termination, it checks coverage, making sure that all pos-
sible input cases are covered. Finally, it checks to make sure that no constraints are put on any
outputs. Taken together, totality, input coverage, and output coverage complete the verification of
the metatheorem.

2The totality of sum that we already established in Section 2.1.1 is actually verifies a stronger property, that this
derivation exists for all inputs and will always be found by a prolog search in a finite number of steps given grounded
inputs. However, that is why this proof isn’t particularly controversial.
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can-sum : {A: nat}{B: nat} sum A B C -> type.
%mode can-sum +A +B -SUM.
& : can-sum z N sum-z.
& : can-sum (s N1) N2 (sum-s SUM)

<- can-sum N1 N2 SUM.
%worlds () (can-sum _ _ _).
%total T (can-sum T _ _).

Note that because we do not want to prove what Crary calls meta-meta-theorems, the labels
for the cases of individual inductive proofs are superfluous and can all replaced with the & symbol
[4, Section 2.3]. Put another way, we’re not interested in the proof objects of these programs - in
fact, there is really no need to ever run them, as the important fact is only that they can always
successfully be run.

In the safety proof for our example language there is another effectiveness lemma, which estab-
lishes that for any list of expressions that we might have, a new expression can always be appended
to the end of the list. The proof proceeds by induction on the structure of EL, the list of expressions,
but the proof will be omitted here.

can-append-exp : {EL}{E} append-exp EL E EL’ N -> type.
%mode can-append-exp +EL +E -APPEND.

A more interesting example, and the last lemma we need before proving the progress theorem,
is typed-projection. The metatheorem proves that if an expression elist has type τlist, then given
a derivation of (τlist).n ⇓ τ , a derivation of (elist).n ⇓ e can always be constructed for some e that
will have type τ .

typed-projection : typed-list ST EL TL
-> proj-tp TL N T
-> proj-exp EL N E
-> typed ST E T -> type.

%mode typed-projection +TL +PT -PE -T.
& : typed-projection (tl-s TL T) proj-tp-z proj-exp-z T.
& : typed-projection (tl-s TL T’) (proj-tp-s PT) (proj-exp-s PE) T

<- typed-projection TL PT PE T.
%worlds () (typed-projection _ _ _ _). %total PT (typed-projection _ PT _ _).

The first thing that makes this interesting is that is the first proof that has proceeded by induction
on what we consider a derivation ((τlist).n ⇓ τ) rather than on what we consider an object (again,
from LF’s perspective both are just objects). This example also illustrates a quirk of the notation
used for logic programming. When tl-s was defined, the subgoal concerning the typed branch was
considered first and the typed-list subgoal was listed second - here, TL represents the derivation
tree for the second subgoal and comes first - the ordering is reversed, an occasionally confusing side
effect of the backward arrows used in the inductive definitions.

What makes typed-projection uniquely interesting, however, is that it will be used for the
progress theorem in this form, but for the preservation lemma it will be used as a different metalemma
which proves that if an expression elist has type τlist, and if we can derive (τlist).n ⇓ τ and (elist).n ⇓ e,
then e will have type τ . After the proof of progress is completed, we simply declare a new mode for
the logic program (i.e. metalemma) which we have already shown to be total:

%mode typed-projection +TL +PT +PE -T.
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2.2.2 Progress

The declaration of the proof of progress looks like this:

progress : typed ST E T
-> typed-store ST S
-> notstuck S E -> type.

%mode progress +T +TS -NS.

However, this is not yet a useful declaration, as there is no definition of typed-store or notstuck.
notstuck simply expresses that there are two different ways for this language to be not stuck - either
the program state can step to a new program state, or the expression is a value.

notstuck : store -> exp -> type.
ns-steps : notstuck S E

<- eval S E S’ E’.
ns-isval : notstuck S E

<- isval E.

typed-store is even simpler than notstuck - it can only be satisfied in one way, with &typed-store,
which requires that all the expressions in the list be values with a type predicted by the store typing.
Its primary purpose is to abstract away, in most cases, the details of the store, i.e. the fact that it is
just a list of expressions. Recall, considering the code below, that storetp is just an abbreviation
for tplist and store is just an abbreviation for explist.

typed-store : storetp -> store -> type.
&typed-store : typed-store TL EL

<- isval-list EL
<- typed-list TL EL TL.

The proof of progress proceeds by induction and case analysis on the last step in the typing
derivation, and the different typing derivations will be considered in the order that they were pre-
sented (with the exception that t-ref will be considered before t-add). The first case is simple -
progress is immediate in case t-int because integers are values. The in the input position just
means that the second input, i.e. the store typing derivation, is irrelevant to the output.

prog-int : progress t-int _ (ns-isval v-int).

Skipping over t-add momentarily, consider t-ref. This is how a written description of this
case might look: “From the inductive step, we know that the subexpression is not stuck. If the
subexpression can take a step, then progress follows from s-ref. If the subexpression is a value,
then progress follows from e-ref and the expressiveness of the append-exp operation guarantees
that we can append a new expression to the end of the expression list. There are no other ways for
the subexpression to be not stuck, so we are done.” One of the logical ways to express this in Twelf
is like this:

prog-ref1 : progress (t-ref T) TS (ns-steps (s-ref E))
<- progress T TS (ns-steps E).

prog-ref2 : progress (t-ref T) TS (ns-steps (e-ref APPEND V))
<- progress T TS (ns-isval V)
<- can-append-exp EL E APPEND.
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However, this would be rejected by Twelf with an “output coverage error.” The problem is that
Twelf demands that the outputs of the inductive step be completely unconstrained - while it will
allow case evaluation on the input to separate the different derivations of an input argument (t-ref,
t-int, etc...), it does not currently do case evaluation on outputs. Both prog-ref1 and prog-ref2
put a constraint on the output of the inductive step, requiring it to be formed by ns-steps in the
first case and ns-isval in the other, and Twelf cannot determine that all cases are covered between
the two.

The solution is referred to as factoring. The output of the inductive step (the notstuckness of
the subexpression) is passed to another temporary metalemma, which is here always simply called
lemma, and that metalemma performs the case evaluation, which is now checking coverage on the
input, as Twelf’s current implementation demands.

lemma : notstuck S E -> notstuck S (ref E) -> type.
%mode lemma +NS1 -NS.
& : lemma (ns-steps E) (ns-steps (s-ref E)).
& : lemma (ns-isval V) (ns-steps (e-ref APPEND V))

<- can-append-exp EL E APPEND.
%worlds () (lemma _ _). %total NS (lemma NS _).
prog-ref : progress (t-ref T) TS NS

<- progress T TS NS1
<- lemma NS1 NS.

Having introduced the idea of factoring, we can proceed to the case t-add. Notice the difference
between this lemma and the one associated with case t-ref.

lemma : typed ST E1 int-tp -> notstuck S E1
-> typed ST E2 int-tp -> notstuck S E2
-> notstuck S (E1 + E2) -> type.

%mode lemma +T1 +NS1 +T2 +NS2 -NS.
& : lemma _ (ns-steps E) _ _ (ns-steps (s1-add E)).
& : lemma _ (ns-isval V) _ (ns-steps E) (ns-steps (s2-add E V)).
& : lemma t-int (ns-isval v-int) t-int (ns-isval v-int) (ns-steps (e-add SUM))

<- can-sum N1 N2 SUM.
%worlds () (lemma _ _ _ _ _). %total [NS1 NS2] (lemma T1 NS1 T2 NS2 NS).

This lemma includes the fact that the two subexpressions have type int-tp, but then ignores
this in the first two cases (which handle the first and second subexpressions taking a step). The
third case is the case where both the subexpressions are values. The canonical forms lemma is what
generally asserts that if something is a value with type int-tp then it is a natural number, but
in most cases we can leave the canonical forms lemma implicit - Twelf itself checks our implicit
assertion of canonical forms and in this case agrees that values with type int-tp must have the
form n N, and therefore be valid inputs to sum.

However, the ability of Twelf to assert canonical forms in all cases would be akin to it being able
to solve the general coverage checking problem, which is undecidable. In the few cases where Twelf
did not believe a simple assertion of canonical forms, our experience was similar to the experience of
other projects: “in cases of failure with spurious counterexamples it is in general possible to make
the proof more explicit in such a way that it then passes the coverage checker” [13] by writing an
explicit canonical forms lemma.

All other cases are similar. The lemma associated with case t-bang uses canonical forms and the
typed-projection lemma discussed above, and in the case for t-loc, progress follows immediately
from v-loc.

lemma : typed-store ST S

20



-> typed ST E (ref-tp T)
-> notstuck S E
-> notstuck S (! E) -> type.

%mode lemma +ST +T +NS1 -NS.
& : lemma _ _ (ns-steps E) (ns-steps (s-bang E)).
& : lemma (&typed-store TL VL) (t-loc PROJ-T)

(ns-isval v-loc) (ns-steps (e-bang PROJ-E))
<- typed-projection TL PROJ-T PROJ-E _.

%worlds () (lemma _ _ _ _). %total NS1 (lemma ST T NS1 NS).
prog-bang : progress (t-bang T) TS NS

<- progress T TS NS1
<- lemma TS T NS1 NS.

prog-loc : progress (t-loc PROJ-T) TS (ns-isval v-loc).

lemma : {EF: exp -> exp} notstuck S E -> notstuck S (let E EF) -> type.
%mode lemma +EF +NS1 -NS.
& : lemma _ (ns-steps E) (ns-steps (s-let E)).
& : lemma _ (ns-isval V) (ns-steps (e-let V)).
%worlds () (lemma _ _ _). %total NS1 (lemma T NS1 NS).
prog-let : progress (t-let _ T) TS NS

<- progress T TS NS1
<- lemma EF NS1 NS.

%worlds () (progress _ _ _). %total T (progress T TS NS).

Note that there is no case for t-var. This is because we are only dealing with evaluating the
different possible cases for the outermost step of the typing relation. The only way to create the
var-typed x T judgement that is a requirement of t-var is as a dynamic clause introduced by
t-let, and therefore t-var is not derivable at the top level. Twelf is capable of figuring this out
without assistance, and so the case is omitted and the proof of progress is complete.

2.2.3 Weakening the store typing

Two lemmas which require induction over all the typing derivations are required for the progress
theorem. The first is an assertion that adding to the storetype doesn’t change the type of any
expressions, formulated by Pierce as “If Γ |Σ ` e : τ and Σ ⊆ Σ′, then Γ |Σ′ ` e : τ” and formulated
in Twelf like this:

weakening : typed ST E T
-> subset-tp ST ST’
-> typed ST’ E T -> type.

%mode weakening +T +SUB -T’.

Most of the cases are extremely straightforward induction, and will be omitted because they are
so similar to this one:

weak-sum : weakening (t-add T2 T1) S (t-add T2’ T1’)
<- weakening T1 S T1’
<- weakening T2 S T2’.

The one case that requires any kind of sophisticated reasoning is the case for t-loc, which needs
a supporting lemma, subset-projectable, which asserts that proj-tp doesn’t return a different
result if the store typing is larger:
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subset-projectable : proj-tp ST N T
-> subset-tp ST ST’
-> proj-tp ST’ N T -> type.

%mode subset-projectable +P +S -P’.
& : subset-projectable proj-tp-z (subset-tp-s SUB) proj-tp-z.
& : subset-projectable (proj-tp-s P) (subset-tp-s SUB) (proj-tp-s P’)

<- subset-projectable P SUB P’.
%worlds () (subset-projectable _ _ _). %total P (subset-projectable P S P’).

weak-loc : weakening (t-loc PROJ) S (t-loc PROJ’)
<- subset-projectable PROJ S PROJ’.

There is only one other interesting case, t-let, and that will be discussed in the next section.
Once we have proven the weakening lemma, the same lemma for typed-list, which we also need,
is simple to establish.

weakening-list : typed-list ST EL TL
-> subset-tp ST ST’
-> typed-list ST’ EL TL -> type.

%mode weakening-list +T +SUB -T’.
weak-z : weakening-list tl-z S tl-z.
weak-s : weakening-list (tl-s TL T) S (tl-s TL’ T’)

<- weakening T S T’
<- weakening-list TL S TL’.

%worlds () (weakening-list _ _ _). %total T (weakening-list T S T’).

2.2.4 Closed, open, and regular worlds

However, something very important happens at t-let:

weak-let : weakening (t-let F T) S (t-let F’ T’)
<- weakening T S T’
<- {x}{v: var-typed x Tp} weakening (F x v) S (F’ x v).

Recall Section 2.1.7: If t-let is a recursive logic program, at t-let recursion passes over a
λ-binding. When the recursive logic program weakening encounters t-let, it also has to pass
over a λ-binding. It does this, as before, by introducing a new expression x and a new judgement
var-typed x Tp into the context.

This was not an issue for the typing relation, as there was no attempt to establish the totality
of the typing relation. Thus far, however, the coverage checker has been using the closed worlds
assumption: the only derivations and cases that are possible are the ones that have already been
declared. This is how Twelf knows that it won’t suddenly run across a new natural number r that
is neither z nor the successor of an existing natural, and that the rule Γ | Σ ` loc(l) : int will not
unexpectedly be introduced and break the progress theorem. Allowing for this sort of thing would be
using the open worlds assumption, and it would clearly be disastrous for proving any metalemma; the
assumption is “too general: it is impossible to guarantee that an induction principle, or the related
recursive function covers all cases because the world is always subject to change” [12, Chapter 4].
However, the closed worlds assumption does not allow totality to be proven if the context is changed
in the course of running a logic program, which is exactly what has to happen in order for weak-let
to cross a λ-binding.

One of the contributions of Carsten Schürmann’s Ph.D. thesis was to describe a way out of this
problem, allowing the totality of the weakening metalemma to be established in a sound way. The
induction described by the weakening metalemma will not allow the introduction of new natural
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numbers, or typing rules, or ways of deriving sum. It can, however, introduce two new things together
as a block : a new expression x and the judgement var-typed x T for some (already derivable) type
T. This utilizes the regular worlds assumption, and the regular world that was just described is
encoded in this way:

%block var-tp : some {T:tp}
block {x:exp}{v:var-typed x T}.

Using this regular world description, the totality of the weakening metalemma can finally be
established. Notice that the first set of parenthesis after the %worlds declaration now contains the
block that was just defined.

%worlds (var-tp) (weakening _ _ _). %total T (weakening T S T’).

2.2.5 Substitution

The other lemma requiring induction over the typing derivation that is required for the preservation
lemma uses the same regular world defined for the weakening lemma. It is the substitution lemma,
and is presented by Pierce as “If Γ, x : τ ′ |Σ ` e : τ and Γ |Σ ` e′ : τ ′, then Γ |Σ ` [x 7→ e′]e : τ .” The
syntax of the encoding in Twelf is awkward because of the need to introduce variables multiple times,
but the induction is relatively simple: the only important case is sub-var, which is responsible for
replacing every instance where the type of the introduced variable was determined by the t-var
derivation step with the derivation for Γ | Σ ` e′ : τ ′. t-int and t-loc are combined into a single
case, sub-refl, which also takes care of the typing of any expression where the introduced variable
does not appear.

substitute : ({x} var-typed x Tp -> typed ST (EF x) T)
-> typed ST E Tp -> typed ST (EF E) T -> type.

%mode substitute +F +T -T’.

sub-refl : substitute ([x][v: var-typed x Tp] T) T* T.
sub-sum : substitute ([x][v: var-typed x Tp] t-add (T2 x v) (T1 x v))

T* (t-add T2’ T1’)
<- substitute ([x][v: var-typed x Tp] T2 x v) T* T2’
<- substitute ([x][v: var-typed x Tp] T1 x v) T* T1’.

sub-ref : substitute ([x][v: var-typed x Tp] t-ref (T x v)) T* (t-ref T’)
<- substitute ([x][v: var-typed x Tp] T x v) T* T’.

sub-bang : substitute ([x][v: var-typed x Tp] t-bang (T x v)) T* (t-bang T’)
<- substitute ([x][v: var-typed x Tp] T x v) T* T’.

sub-let : substitute ([x][v: var-typed x Tp] t-let (F x v) (T x v))
T* (t-let F’ T’)
<- substitute ([x][v: var-typed x Tp] T x v) T* T’
<- {x’}{v’: var-typed x’ Tp2}

substitute ([x][v: var-typed x Tp] F x v x’ v’) T* (F’ x’ v’).
sub-var : substitute ([x][v: var-typed x Tp] t-var v) T* T*.

%worlds (var-tp) (substitute _ _ _). %total F (substitute F T T’).

2.2.6 Preservation

The final step is proving the preservation theorem. Preservation is complicated in the presence of a
storetype: it establishes that if e has type τ under the store typing Σ that also types the store µ,
and if µ | e −→ µ′ | e′, then under some store typing Σ′ that is a superset of Σ and which also types
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µ′, e′ has the same type τ . This translates into Twelf surprisingly cleanly, and actually appears
quite similar to Pierce’s declaration [11, Theorem 13.5.3].

preservation : typed ST E T
-> typed-store ST S
-> eval S E S’ E’
-> subset-tp ST ST’
-> typed ST’ E’ T
-> typed-store ST’ S’ -> type.

%mode preservation +T +TS +E -S -T’ -TS’.

Two supporting lemmas are required. First, a trivial lemma that any store typing is a subset of
itself:

subset-refl : {ST} subset-tp ST ST -> type.
%mode subset-refl +ST -S.

Second, a lemma which has an equally simple inductive proof, but which establishes an enormous
number of things related to creating a new reference, and requires a little explanation. It involves
one expression, e, which is a value and has type τ under the storetype Σ, and also a list of values
elist, which have the type τlist under the same storetype. Given this introduction, if we derive
elist @ e ⇓ (e′list , n), then it is always true that e′list is still a list of values, and there exists a τ ′list with
three properties. First, it is a superset of τlist. Second, it types e′list under the storetype Σ. Third,
projecting the nth element of τ ′list will return τ . The proof has only two simple cases, but they will
still be described here due to the importance of the lemma. The proof proceeds by induction on the
three derivations relating to elist.

append-lemma : isval E
-> typed ST E T
-> isval-list EL
-> typed-list ST EL TL
-> append-exp EL E EL’ N
-> subset-tp TL TL’
-> isval-list EL’
-> typed-list ST EL’ TL’
-> proj-tp TL’ N T -> type.

%mode append-lemma +V +T +VL +TL +AE -S -VL’ -TL’ -P.
& : append-lemma V T vl-z tl-z append-exp-z

subset-tp-z (vl-s vl-z V) (tl-s tl-z T) proj-tp-z.
& : append-lemma V T (vl-s VL V*) (tl-s TL T*) (append-exp-s AE)

(subset-tp-s S) (vl-s VL’ V*) (tl-s TL’ T*) (proj-tp-s P)
<- append-lemma V T VL TL AE S VL’ TL’ P.

%worlds () (append-lemma _ _ _ _ _ _ _ _ _).
%total [VL TL AE] (append-lemma V T VL TL AE AT VL’ TL’ P).

The first cases we will consider are simple, the ones relating to the evaluation rules prefixed with
an s-. Each case calls the inductive step on subexpressions that are evaluated, and calls weakening
to make sure that typing derivations not related to the evaluation are updated with the new store
typing.

pres-s1-add : preservation (t-add T2 T1) ST (s1-add E) S (t-add T2’ T1’) ST’
<- preservation T1 ST E S T1’ ST’
<- weakening T2 S T2’.
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pres-s2-add : preservation (t-add T2 T1) ST (s2-add E V) S (t-add T2’ T1’) ST’
<- preservation T2 ST E S T2’ ST’
<- weakening T1 S T1’.

pres-s-ref : preservation (t-ref T) ST (s-ref E) S (t-ref T’) ST’
<- preservation T ST E S T’ ST’.

pres-s-bang : preservation (t-bang T) ST (s-bang E) S (t-bang T’) ST’
<- preservation T ST E S T’ ST’.

pres-s-let : preservation (t-let F T) ST (s-let E) S (t-let F’ T’) ST’
<- preservation T ST E S T’ ST’
<- {x}{v} weakening (F x v) S (F’ x v).

The proof of preservation is completed by considering the evaluation steps prefixed by e-. For
the case e-add, preservation is immediate. For e-ref we call append-lemma to get the new store
typing and the correct typing for the new location. However, append-lemma gives us Γ |Σ ` µ′ : Σ′,
and so we need to call weakening-list on this judgement to get the correct store typing, which has
to be with respect to Σ′ rather than Σ. The case for e-bang is established by using the re-moded
typed-projection lemma, the case for e-let from the substitution lemma, and as that covers all
possible evaluation steps, the proof is complete.

pres-e-add : preservation (t-add t-int t-int) ST (e-add SUM) S t-int ST
<- subset-refl _ S.

pres-e-ref : preservation (t-ref T)
(&typed-store TL VL)
(e-ref AE V) S (t-loc P)
(&typed-store TL’ VL’)
<- append-lemma V T VL TL AE S VL’ TL’’ P
<- weakening-list TL’’ S TL’.

pres-e-bang : preservation (t-bang (t-loc PROJ-T))
(&typed-store TL VL) (e-bang PROJ-E)
S T (&typed-store TL VL)
<- typed-projection TL PROJ-T PROJ-E T
<- subset-refl _ S.

pres-e-let : preservation (t-let F T’) ST (e-let V) S T ST
<- substitute F T’ T
<- subset-refl _ S.

%worlds () (preservation _ _ _ _ _ _). %total T (preservation T ST E S T’ ST’).

2.2.7 Safety

After having established progress and preservation, the proof of safety is straightforward. A program
is safe if, being well typed under a store typing which also types the store, the program is not stuck
after having run any number of steps. Preservation is used if the program steps, and progress is
used if it does not.

safety : typed ST E T
-> typed-store ST S
-> run S E S’ E’
-> notstuck S’ E’ -> type.

%mode safety +T +TS +R -NS.
safe-end : safety T ST run-end NS

<- progress T ST NS.
safe-step : safety T ST (run-step R E) NS
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<- preservation T ST E S T’ ST’
<- safety T’ ST’ R NS.

%worlds () (safety _ _ _ _). %total R (safety T TS R NS).

2.3 Error reporting in the type checker

Ignoring the safety metalemmas, which are not really intended to be run as logic programs, the
language formalization has created two interesting logic programs: run, which simulates the dynamic
semantics of the language, and typed, which is a type checker for the language.

However, as a type checker typed is not especially useful; it is not capable of reporting any
information about why or where type checking failed, if it fails. Take the encoded example below,
which is not well typed because the last line tries to add two expressions of type int and type int ref.

prog-bad =
let (ref (n (s (s z)))) [x]
(n z) + x.

%solve ty : typed nil-tp prog-bad T.

Obviously, %solve will be unable to determine a derivation for typed nil-tp prog-bad T, but
it does not give the programmer any hints as to why that might have happened, merely reporting:

No solution to %solve found
%% ABORT %%

In order to consider how to deal with this problem, we will consider three ways in which the
logic program typed could fail to come up with a type for a given expression: the lack of any typing
rule which is able to cover an input expression (roughly equivalent to a match failure in ML), the
inability for a non-recursive step of the logic program to establish a type, and the inability of a
recursive step of typed to establish a type. After concluding that the last category is the only one
we need to be concerned about, techniques for using Twelf’s tracing abilities to report information
in these cases will be considered.

2.3.1 Input coverage failure

The most obvious way for typed to fail is if it is asked to provide a type for an expression it cannot
recognize. If a new kind of expression was introduced without any rules that could consider it,
then the typing program would obviously be unable to establish a type for that expression. But
recalling the discussion of regular worlds, only the defined expressions and expressions defined by let
expressions can be introduced, and by examination it is clear that there will be a typing expression
able to at least consider any possible expression that is encountered.

The discussion in this section will be informal, but it is worth noting that Twelf can formally
establish that a logic program can accept any possible input, thereby avoiding this class of error, by
defining the regular world for the logic program and then having Twelf check a %covers assertion,
which is done for the Mini-ML type checker in the Twelf User’s Guide [10, Section 9.2]. Doing this
for the language presented here, however, would tell us very little, as in its current form t-var alone
covers all possible input cases.

Free variables, of course, are one of the potential sources of type failure. Twelf’s reaction in this
case will be to simply fail upon any attempt to define a program with free variables. Attempting,
for instance, to define this expression with a free variable y will cause Twelf to report an error
“Undeclared identifier y”

prog-bad = let (n z) [x] x + y.
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2.3.2 Typing failure in non-recursive cases

There are three “leaf” cases for the typing derivation, i.e. cases that do not rely on recursive calls
to typed. The first of these, t-int, will always succeed if it is attempted, giving the expression
type int. While t-loc does not always succeed, this is not an important consideration for error
reporting; loc(l) is not a construct that should be available to the programmer, and all programs
are initially checked with respect to the empty store typing [11, Section 13.3]. Finally we have
t-var, and our (informal) understanding of the regular worlds condition for typed is that wherever
a new variable x is introduced, the requirement for t-var, var-typed x T for some T, is introduced
along with it, which means it, too, will always succeed. Therefore, the only non-recursive case that
might potentially fail is t-loc, which the type checker does not need to consider, as it represents a
construct unavailable to the programmer.

2.3.3 Typing failure in recursive cases

Of the recursive cases for typed, two of them cannot be the origin of any typing failures. There is
no way that a typing error can originate at the level of t-ref or t-let. Assume the recursive calls
(one in the case of t-ref, two in the case of t-let) succeed. The two predicates do not place any
constraints on what happens to the output type, and therefore will in all cases succeed in returning
a type if both their subgoals succeed.

There are only two cases left as a possible source of error, t-bang and t-add. These cases can
be the origin of a type failure if the recursive calls do succeed in deriving a type but the single
subexpression does not have the type τ ref for some τ in the first case, or if the two subexpressions
do not have the type int in the second case.

Thus, the only two important sources of unreported error (as Twelf already reports all inap-
propriate free variables without any assistance) are where the subexpressions of !e or e1 + e2 are
typeable in general, but are not typeable given the constraints that t-bang and t-add place on their
types.

2.3.4 Tracing failure

We can use this knowledge, along with the ability of Twelf to trace certain predicates during the
execution of a logic program (described in the Twelf User’s Guide [10, Section 11.5]), to build an
error reporting mechanism into the type checker. We add a new logic program fail that can never
succeed, and create new cases for typing addition and dereferencing that do not place any constraints
on the types of the subexpression, but which require a derivation of the underivable fail in order
to succeed.

fail-msg : type.
impossible : tp.

<Not_A_Ref> : fail-msg.
<Not_Both_Ints> : fail-msg.

fail : fail-msg -> type.
%mode fail +MSG.

f-add : typed ST (E1 + E2) impossible
<- typed ST E1 T1
<- typed ST E2 T2
<- fail <Not_Both_Ints>.

f-bang : typed ST (! E) impossible
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<- typed ST E T
<- fail <Not_A_Ref>.

As an example of how this would work, imagine that a typing derivation cannot be found for
t-add. The logic program will search for other typing rules that are applicable to the same state-
ment, and will encounter f-add. If it succeeds in finding typing derivations for f-add without any
constraints placed on the outputs, it will then attempt to derive fail <Not Both Ints>, which will
fail, causing f-add and the rest of the type checking to fail as well. However, by placing a trace on
fail, the type checker outputs the message fail <Not Both Ints> from the type checker before
failing.

The useful property of this method is that it is compatible with the safety proof - because Twelf
realizes without assistance that fail cannot be satisfied, these error-correction cases can be added
without changing any part of the safety proof.

2.3.5 Requiring determinism in the type checker

Unfortunately, the description in the last section does not actually describe what happens. Consider
again our motivating example of trying to add an integer to a location:

prog-bad =
let (ref (n (s (s z)))) [x]
(n z) + x.

%solve ty : typed nil-tp prog-bad T.

The expectation is that this program will give the error <Not Both Ints>, but instead it gives
two fail messages:

fail <Not_Both_Ints>
fail <Not_A_Ref>

The second fail message is the result of Twelf backtracking : after it fails to determine the correct
type for the second argument to + (i.e. y), evaluation looks to see if there are any other derivations
of the type of the first argument to + (i.e. x) - in fact, there is one, f-bang, and attempting to use
it causes a trace message.

The solution is to tell Twelf to not backtrack when running typed, which can be done with the
command %deterministic typed. This shouldn’t make any difference in which expressions typed
will construct a type for, and even if it does it does not threaten our safety property, a deterministc
search will not produce any more typing derivations than a nondeterministc search, and an overly
conservative type checker, while inconvienent, is not a threat to type safety.

This error reporting information, while more useful than no feedback at all, is still not extremely
useful without also providing position information - the Fun compiler described in the next chapter
will also deal with error reporting, and it will use positions in error messages.

2.3.6 The catch: output coverage

There is one last problem to which both this specification and the Fun specification are susceptible
to some degree. It is a misconception of the way in which output constraints are handled. We have
been making the implicit assumption when dealing with this rule:

t-add : typed ST (E1 + E2) int-tp
<- typed ST E1 int-tp
<- typed ST E2 int-tp.
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that the two proof requirements operate by first typing E1 and E2 and then making sure that their
type is int-tp. However, this is not exactly what is happening. In reality, the logic program is trying
to see how it can force the integer type on the two expressions. The distinction is unimportant with
respect to determining a type for E1, but it makes a difference in the context of the error reporting
mechanism. In order to make type checking work correctly, it appears that the proof would need to
be restructured to allow initial checks to be unconstrained, like this:

t-add : typed ST (E1 + E2) int-tp
<- typed ST E1 T1
<- typed ST E2 T2
<- equals-tp T1 int-tp
<- equals-tp T2 int-tp.

In the full Fun type checker, this appears to be a problem in two instances. The first instance is
when the body of the program does not have the required type int. The second instance is a function
body which does not have the type it is declared to have. In both of these situations the type checker
may either report a spurious error in addition to the correct error or may alternatively present the
wrong error altogether. In most cases, however, the type checker does present informative error
messages, and more attention paid to this aspect of type checkers would surely have fruitful results.
Real error reporting in the Twelf type checker, while not perfectly implemented in this project, at
least appears extremely plausible.
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Chapter 3

The verified Fun compiler

The previous chapter took a very close look at the techniques involved with writing a language
formalization. This chapter takes a significant step back, looking at issues dealing with extending a
small language like one presented in the last chapter into a somewhat larger language, in this case
the language Fun, defined in Appendix A.

The first half of the chapter deals with scalability issues related to the formalization of larger
languages. The second half of the chapter considers an interesting application of a language formal-
ization - an integrated complier and simulator for the Fun specification which is built on top of the
Twelf specification.

3.1 Goals of the Fun formalization

The goal of the Fun formalization was not merely to create a formalization of the Fun language, but
to create within the logic system of LF a working model that would function as both a realistic type
checker for the language and a full simulation of the language. The primary reason for this follows
the spirit of Syme’s research on Java type systems, where he worries that the process of checking
that a formalization actually implements the language it claims to is both nontrivial and “a topic
that has often been ignored by the theorem proving community” [16].

Syme’s solution to this problem was to automatically generate a ML type checker and interpreter
from his logical specifications in order to test the accuracy of his formalizations. That step is
unnecessary here, as the specifications created in Twelf are already executable as logic programs.
Syme notes that while his test programs are expressed as abstract syntax, “better would be the
ability to parse, compile and run Java programs directly from the source code” [16]. As far as we
know, this is the first project to either independently formulate or implement Syme’s suggestion.

3.2 Developing the Fun formalization

Little has been said about the methodology of machine-checked theorem proving; Syme is an ex-
ception, presenting his methodology as a variant of the “waterfall” methodology used by software
development [16]. His methodology has six steps:

1. Understand the Problem

2. Develop a Machine Acceptable Model

3. Validate the Model by Generating an Interpreter

4. Formulate All Key Properties
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5. Sketch an Outline of the Proof

6. Convince the Machine

This project followed a very similar procedure, with two essential differences. One is that we generally
attempted to prove things in Twelf and then discuss them in mathematical notation. This was a
weakness of the project, and was only possible because most of the models were simple and relatively
well-formalized elsewhere.

A good on-paper specification, along with a solid understanding of the reasons why the desired
proofs are true, is absolutely crucial to a formalization project. One of the reasons why we switched
from Tiger to Fun as a target language can be traced back to the initial decision to not create a
rigorous specification of the entire Tiger language before beginning. Starting with a more rigorously
defined on-paper understanding of Tiger might have been quite helpful; alternatively, if the initial
approach had involved a better-defined language like Fun, the project might have been able to
investigate more complex and interesting features, such as subtyping for Fun.

The other difference of emphasis between this project and Syme’s is the centrality of an modular
process to this project. The essence of this approach is captured by a design philosophy which we
refer to as feature-oriented formalization.

3.2.1 Feature-oriented formalization

Robert Harper said in the context of a hand-checked formalization of Standard ML that “As a
design tool, type theory gives substance to informal ideas such as ‘orthogonality’ and ‘safety’ and
provides a framework for evaluating and comparing languages” [5]. This section will present these
two informal ideas of orthogonality and safety not as purposes of type system formalization, but as
a way of understanding two different organizing principles for language formalization.

Chapter 2 presented the language in the same way most small languages, and many larger ones,
have been presented, for instance the well-studied Mini-ML example that is distributed along with
Twelf as an example case study [10]. To review, the minimalist Fun formalization of Chapter 2 was
presented in nine steps, four concerned with the encoding and five concerned with the safety proof:

• Syntax

• Dynamic semantics

• Static semantics

• Multi-step evaluation

• Progress

• Store type weakening

• Substitution

• Preservation

• Language safety

This is a very natural way to explain and present a language. It is focused around presenting
steps towards the ultimate goals of the formalization, and as these goals usually involve type safety
proofs, this can be considered a safety-oriented approach. The result of this design strategy is
that while it is easy to prove new theorems about the language, it more difficult to add or remove
capabilities from the language, as a new proof is one modular entity, but a new capability for the
language requires modifying almost every module.
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In practice this is not the most helpful way of building up a language formalization, though
it may or may not be the best way to present a large formalization. The alternative presented
here relies heavily on the logic programming metaphor of Twelf. In a safety-oriented presentation,
each element can be considered to be “frozen” after its presentation - no more syntax is presented
after the presentation of the dynamic semantics begins, for example. In fact, Twelf has a %freeze
declaration that formalizes this informal concept, but is not used in this project.

This alternative formalization begins by specifying the types which make up the syntax (exp,
for example), and then defines the structure of the partial functions which represent the semantics,
and presents the form of the various metatheorems. Each capability or feature of the language
is then presented along with the new syntax, static semantics, and dynamic semantics needed to
encode that capability, and bundles this with the cases of each of the metalemmas pertaining to the
capability. This approach can be thought of as orthogonality-oriented formalization after Harper’s
two categories, though feature-oriented is used here as a less tongue-twisting alternative. The full
code for the feature-oriented Fun formalization is organized as follows:

• Setup for syntax, dynamic semantics, static semantics

• Define metatheorems

• Functions

• Tuples

• Integers

• Mutable store

• Let statements

• Control flow (if and while)

• Assert that all metatheorems are now total

• Language safety

This approach allows language features to be effectively inserted into or removed from the lan-
guage while maintaining a proof that the smaller and larger language is type safe - removing control
flow from this formalization, for instance, requires commenting out two lines in a configuration file,
one containing the syntax and semantics, and the other containing the cases for the various lemmas
requiring induction over the semantic relations. Because the relevant cases for the inductive proofs
are bundled with the syntax and semantics, loading this new configuration still allows the safety
proof to pass for the modified language!

This ability is useful in at least two capacities. First, it forces the formalizer to think about the
dependencies existing between aspects of the language, as the alternative name, orthogonality-based
formalization, suggests. Within the version of Fun used by this project, integers, mutable store, and
control flow all depend on tuples, but only on one aspect, the unit value or empty tuple which is
the return value of printint statements, assignments, and while loops. Furthermore, control flow is
dependent on integers, as branching is conditional on the value of an integer. Allowing for these
dependencies, all other language features are orthogonal and can be added and removed at will from
the specification simply by editing configuration files.

A second advantage of feature-oriented formalization was observed in practice. When changes
need to be made to certain aspects of the semantic relations or the safety proofs, the same incremental
method used for formalization design proved itself useful as a method for formalization maintenance.
It was easier, upon changing the definition of one of the safety proofs or one of the semantic relations,
to “fix” the language with the new framework by steps, for instance, by first establishing safety for
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a language with tuples and nothing else. This method also allows for easy definition of features
that did not appear in the full language formalization, for instance a debug feature that introduced
only the unit value and unit type instead of requiring the full definition of tuples in order to have
a unit type. A related benefit was that if there was a significant problem with a support lemma
like substitution or storetype weakening, then the language features whose proofs relied on those
lemmas could just be removed, and rather than removing the broken lemma in its entirety, the
one-line assertion that the metalemma had been proven could be commented out until the proof was
fixed.

For these reasons, compared to the common safety-oriented style, feature-oriented formalization
allows for cleaner, more maintainable, and more extensible formalizations which make the orthog-
onality of different language features more explicit. There is a comparison to be drawn between
the two organizational principles for formalization discussed here and aspect- and object-oriented
programming; however, the terminology of safety- and feature-oriented formalization is less ambigu-
ous, because either formalization approach could be thought of as “object-oriented” depending on
whether one considers proofs or language features to be the “things” in a formalization.

3.3 Notes on the full Fun formalization

While most of the theoretically interesting aspects of the Fun formalization were covered in Chap-
ter 2, a few properties of the formalization deserve mention here, especially the representation of
primitive numbers, mutual recursion, input and output, and a few other issues related to efficient
representation.

3.3.1 32-bit binary number representation

As mentioned in Chapter 2, the native Twelf versions of numbers are incompatible with the metathe-
orem capabilities of the language. The previous chapter implemented addition with successor natu-
rals, but because the goal of the formalization was to allow for a faithful simulation of the language’s
dynamic semantics, the simple solution of successor naturals is unsatisfactory for two reasons. First,
it does not allow for a faithful representation of the actual language because there is no concept of
a negative number or of integer overflow error. Second, this approach can become extraordinarily
inefficient when dealing with large numbers; Norrish noted that his use of HOL’s successor naturals
in a C formalization “slowed down many aspects of theorem-proving” [8, Section 6.3].

It probably would have been beyond the scope of this project to design and formalize a system
of 32-bit integers and signed integer arithmetic, but luckily much of the work had already been done
by the TALT project at Carnegie Mellon, which had a useful binary number representation as well
as most of the operations that were needed to formalize Fun, though a few, such as multiplication,
had to be added. The implementation is extraordinarily inefficient, and is far worse than successor
naturals for small numbers, but it results in a far more faithful representation of the language with
negative numbers and integer overflow, and unlike successor naturals it has performance that does
not degrade substantially when dealing with very large numbers.

It is an important caveat that there are none but the most informal claims that this implemen-
tation of binary arithmetic, especially in the case of binary multiplication, is “correct” in any sense.
Doing so formally would require attaching some sort of semantic meaning to the binary numbers
and operations. The TALT project appeared to show correctness through a comparison to natural
numbers; in the presence of overflow error and signed arithmetic this would be quite difficult.

3.3.2 Mutual recursion

Fun also includes a capacity for mutual recursion, and treats functions as values. However, it is
generally quite problematic in higher order logic to have mutual recursion. A general approach to
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dealing with this problem was one of the persistent issues with the Tiger formalization; Fun allows
for a specialized solution because all functions are defined at compile-time.

The reason that this solution is possible is that Fun does not allow nested functions in order
to avoid the need for passing around closures (a strategy also used by C-like languages), and so a
function value is essentially just a code pointer. The formalization reflects this idea of code pointers,
representing a function value as a natural number which acts as an index into a list of functions,
just as locations are indexes into a list of expressions. Making this work elegantly requires a little
magic with the parser, which will be discussed below in Section 3.4.3.

The typing relation is also extended with a function typing that works in exactly the same way
the store typing works. The list of functions is added to the program state, though unlike other
elements of the program state, the function table never changes throughout execution of the program.

3.3.3 Input and output

The Fun language also includes a capability for input and output. Input is done by way of a list
of binary numbers that is added to the program state. If the list is empty, then readint will always
return the binary representation of 0 in order to keep the program state from being stuck. Two
other options for out-of-input behavior are throwing an exception and going into an infinite loop,
but exceptions require lots of additional evaluation cases, and going into an infinite loop, while type
safe, is not a practical option for a real language.

Output is simulated by the trace mechanism discussed in Section 2.3.4. The trace is put on a
print predicate which always succeeds (as the progress theorem requires), as opposed to fail which
always fails (as the progress theorem also requires).

3.3.4 A few hacks: list reuse and operator typing

It is also worth noting that tuples and tuple types are represented with the same terminology
used to represent the storetype - a list of expressions and a list of types. This representation
strategy requires the addition of a logic program eval-list to complement the typed-list already
presented; furthermore, it effectively means that all of the inductive definitions must include an
annoying and simple extra case dealing with lists, and the inductions dealing with the expression
typing relation and with the list typing relation must be performed simultaneously, which luckily
can be represented quite simply in Twelf.

The reuse of lists serves to eliminate a lot of repetition of uninteresting parts of the formalization
proof, and a second strategy removes a lot of uninteresting repetition in the proof of progress.
Recall from Chapter 2 that almost every case of the proof of progress requires a factoring lemma,
which makes it less clear where the interesting parts of the proof of progress actually happens. The
larger specification utilizes an operator-based strategy to simplify the proof of progress. There are
two types of operators, binary and unary, each of which can have polymorphic type, meaning that
everything from addition to assignment can be represented as an operator. Note that this does not
mean that the language is polymorphic, simply that some of its built-in operators are polymorphic
- the unary ref operator, for instance, which has type τ ref where τ is the type of its subexpression.
Due to this representation strategy, !x is encoded as (op1 bang x) rather than as (! x) as it was
in Chapter 2, a + b is encoded as (op2 addop a b).

One factoring lemma is then defined for all unary operators, another for all binary operators,
and the final case where all arguments are values is handled by a support lemma, can-op1 for unary
operations and can-op2 for binary operations, which includes as inputs the fact that both inputs
are values of the expected type. This is all specified in the initial setup of the language framework,
so all that is required of the progress proofs for the individual features of the language is that they
establish a single case of the relevant can-op lemma, essentially showing that if two values have the
correct type, the operator can always be applied to those values.
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3.4 Compiling into LF

Once the LF specification was somewhat stable, we developed a compiler that took Fun input and
compiled it into the LF representation of the program’s abstract syntax. The LF abstract syntax is
created from the abstract syntax tree produced by a standard compiler frontend, though it could be
created directly within the parser. This section describes a couple of issues with that compilation
process.

3.4.1 Defined constants

In order to use the TALT-style binary number representation, there must be some way of trans-
lating the ML integer 9 into the Twelf object (one $ zero $ zero $ one ... nil$). Rather than
performing this within ML, two logic programs were written that translated back and forth between
binary number representations and internal Twelf 32-bit numbers.

Just as there is no formal argument for the correctness of the binary operators discussed above
in Section 3.3.1, there is no particular reason to expect the translation process to work correctly. It
could fail by producing the wrong result, or by not terminating at all, but because this translation
happens outside of the realm of language safety, this does not threaten the safety proof - these
“untrusted” elements are most accurately considered part of the parser which just happen to be
written in Twelf, and in this project the parser must be trusted (or rather, it does not concern itself
with the question of trusting the parser).

Thus, the first element of the file containing the compiled abstract syntax is a series of declarations
which use the Twelf %define command to bind the results of running logic programs as constants.

%define #14 = N
%solve _ : word->binary n32 positive 14 N.

Because the parser ensures that every constant will be defined in this header section, it can
represent the integer n in the abstract syntax as just #n.

The choice between doing the translation in ML or in Twelf is relatively unimportant; however,
the strategy of using defined constants has a certain advantage over doing the translation “in place.”
First, it makes the code produced much more compact and readable, as the objects representing
32-bit binary numbers are large and obviously are not as easily readable by humans as decimal
numbers are. Second, Twelf only “looks inside” definitions when it has to, and so if a number that
has not been modified by any of the arithmatic operators gets printed out with printint, it will be
printed as, say, #3 instead of as the object (one $ one $ zero ... nil$).

3.4.2 Identifiers

Another issue is making sure that identifiers are placed in a different name space. The compiled
version of 3+5 in the LF abstract syntax for Fun is (op2 addop #3 #5). However, consider a naive
encoding of the perfectly valid Fun program (let addop=3 in addop + 5):

let #3 [addop]
op2 addop addop #5

This would be rejected by Twelf as poorly typed, because the first addop, which is supposed to
have the type oper in Twelf, has been shadowed by the addop which has type exp.

The solution is to make sure all identifiers are prefixed by a prefix such as id-, making the above
example perfectly acceptable to Twelf. A similar strategy could allow for multiple name spaces by
using different prefixes.
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3.4.3 Making mutual recursion work

Consider what happens when the parser encounters a variable. The parser only knows enough to
prefix it with id-, but it might be bound by a let statement, or it might be bound because is one of
the functions. If it is the latter case, then we must make sure that that variable will not be a free
variable, keeping in mind that we may be working with an expression that is in one of the functions
or an expression that is in the body of the program.

The LF Fun compiler deals with this by doing a conversion on the entire program. Functions
are all bound as a block at the beginning of the file, and so as the parser encounters them it creates
two lists. One is a list of functions (the “function table”), and the other is a list of binders which
associates each function identifier with a “function pointer,” the natural number representing the
function’s index in the function table.

3.4.4 Example conversion

The following example is a valid Fun program, which is useful for demonstrating most of the issues
discussed in the previous sections.

fun f(x: int) : int = let f = 4 in x + f
fun g(x: int) : int = f x
in

let x = 7 in
5 + f (g x)

Figure 3.1 approximately represents the complied version of this program, with the one difference
being that this representation has none of the position information that will be considered in Section
3.5.2. The figure demonstrates the defined constants and the division of the single program into a
set of function binders, a function table, and the body of the program.

3.4.5 Shadowing

One final issue deals with the connection between scope and mutual recursion. Twelf cannot look
inside of lambda bindings, and this is in some ways one of the major weaknesses of Twelf - Twelf has
no way whatsoever of distinguishing between (let #1 [x] let #2 [x] x + x) and (let #1 [y]
let #2 [x] x + x), for instance, even though a shadowing is happening in the first instance that
is not happening in the second instance. The ability to do this is the only way that Twelf would
be able to enforce a requirement that two mutually recursive functions do not have the same name.
Therefore, if enforcement of such a requirement is desired, it can only be enforced in the parser.
This is not terribly problematic; because the parser is creating a list of function labels anyway, the
list module could simply make a check for duplication upon insertion, abstracting that check away
from the parser.

Typechecking and simulation aren’t even done on the program until the function identifiers are
substituted, and so this process cannot lead to a type safety violation - if it is done wrong, it may
result in programs meaning something different than what the programmer intended, however. If the
parser does not enforce the no-duplication rule - and ours does not - then if multiple functions are
declared with the same name, the last one to be declared is the only one that is in scope anywhere
- including in the bodies of all the other functions with the same name.

3.5 Type checking and simulation

If the compiled LF representation of the program loads successfully in Twelf, then it is certain that
there are no free variables, and the type checker can be run.
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% -----Defined constants----- %
%define #4 = P
%solve _ : word->binary n32 positive 4 P.

%define #5 = P
%solve _ : word->binary n32 positive 5 P.

%define #7 = P
%solve _ : word->binary n32 positive 7 P.

program_all : prog =
% -----Function labels----- %
lam_prog z [id_f]
lam_prog s(z) [id_g]
end_prog (
% -----Function table----- %
fun inttp inttp ([id_x]
(let (int #4)

[id_f]
(op2 addop id_x id_f)))

$fundecl
fun inttp inttp ([id_x]
(op2 app id_f id_x))

$fundecl
nil_fundecl)
% -----Program body----- %
(let (int #7)

[id_x]
(op2 addop (int #5) (op2 app id_f (op2 app id_g id_x)))).

Figure 3.1: Twelf representation of the Fun program from Section 3.4.4
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The compiler controls Twelf by loading the configurations in different files - for instance, after
loading the abstract syntax tree, it loads a logic program that replaces all of the variables representing
functions with the correct pointer into the function table, which then allows the type checker to be
run.

3.5.1 The type checker

Type checking is done by a file which performs two checks. First, it checks that the function table
has the type it claims to have by calling the logic program funs-typed, which in turn calls typed
on the body of each function. Second, it runs the typed logic program on the body of the program
to make sure that it is well typed and has type int.

The same operator abstraction that was discussed in 3.3.4 reduces the number of failure condi-
tions that must be addressed significantly, as there can essentially be only one failure check covering
all binary operators and one covering all unary operations. The operator typing also results in
leaving the output of a recursive call initially unconstrained, a good thing from an error reporting
perspective as discussed in Section 2.3.6

3.5.2 Position reporting

A significant extension to the error reporting discussed in Section 2.3 is that the Fun specification
allows reporting of the position at which an error occurred.

Normally this would require a lemma that if an expression has a type at one position, it has that
type at any position, which would require an annoying induction over the entire typing derivation.
The way around this is to have only one position, which is then simply redefined with the name of
each individual position that is needed (positions have to be collected by the parser in the same way
that defined constants are). Because Twelf never looks inside of definitions if it doesn’t have to, the
failure tracing reports the correct renaming of the single position whenever it has to output error
information, and because there is only one position, only a few entirely trivial lemmas need to be
added.

3.5.3 Simulation

A process similar to the one for typechecking allows simulation of program execution. The input
integer list is encoded in the same way that the defined constants are. Because the type checker
requires that the body of the program have type int, the final result of running the program, if the
program terminates, will be a 32-bit binary number object. There is another logic program, which
simply must be trusted in the same way that the program that turns integers into 32-bit binary
number objects must be trusted, that runs the encoding in the other direction and returns the final
value of the program: a sign (positive or negative) and an integer.

3.6 The promise of formal type checkers

This chapter has gone a significant distance past Chapter 2, which was primarily concerned with the
details of how to use Twelf do things like encode a language, prove properties of the language, and
provide rudimentary typechecking with error reporting. This chapter dealt with two topics relating
to writing a compiler that type checked and evaluated the Fun language from Appendix A using
Twelf.

The first consideration was related to scaling the small project into a larger one. Primitive
operations, efficiency and code reuse considerations, and the organizational strategy of feature-
oriented formalization were all discussed as part of this framework. The second part of the chapter
showed how a frontend compiler could create the abstract syntax tree of a language in Twelf, and
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could then interface with Twelf to do the work of type checking and/or simulating execution of the
language.

The important aspect of the compiler was not the interface between ML and Twelf, however, and
the chapter’s organization in some ways served to deemphasize in many ways the most important
thing that was happening. The second half of the chapter was the design of a compiler that could
represent its abstract syntax trees as LF terms and could represent its static and dynamic semantics
as functions in the recursive function space M+

2 .
Having considered the second half of the chapter, the first discussed a safety proof which reasons

about the code of the compiler. By writing terms in a certain way, and by writing the type checker
and simulator of the compiler in a certain way, something incredible has been gained - powerful tools
allowing the language designer to reason about the compiler. The type checker for this compiler
is verified, because it is the executable specification of the language’s dynamic semantics. Read
backward, this chapter begins with two parts of the compiler being designed in a specialized way
which allows the syntax and semantics to be reasoned about, a point which we will return to in
Section 4.2.6.
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Chapter 4

Conclusion

We have shown that Twelf is a adequate tool for formalizing programming languages, and that it
is accessible for developers outside of the Twelf development community. Chapter 2 discussed fine-
grained details of the language formalization process. Chapter 3 stepped back to discuss aspects of
full-language formalizations, also considering how a Twelf-like system might be able to serve as the
basis for a type checker which could be reasoned about with formal methods. This chapter takes
yet another step back. Twelf is currently the only language that supports this kind of project; the
majority of this chapter discusses Twelf’s strengths and weaknesses for the task we have used it for.
We conclude by examining future topics of study suggested by this project.

4.1 Notes on proving metatheorems in Twelf

One of the series of computer checked formalizations of subsets of Java which were developed in
the second half of the last decade utilized a custom-made theorem prover DECLARE. The report
on the Java formalization developed by Syme, who was also DECLARE’s author, included a set of
eight factors for evaluating the suitability mechanized provers [16]. Twelf satisfies or comes close to
satisfying all of these criteria, though after discussing the eight criteria individually we will include
a few more important criteria.

4.1.1 Syme’s eight criteria

What underlying logic is used, and what is its expressiveness?

The elegance of higher-order abstract syntax in the Twelf framework was enormously important
to the success of this project. The metatheorem prover is complicated and, at least in its current
form, its proofs should probably not be taken without a grain of salt, especially in light of significant
soundness violations in Twelf 1.4 and remaining issues in Twelf 1.5 relating to the constraint domains
[15, Constraint Domains]. As for the expressiveness of Twelf’s proving abilities, there are very
important language properties that have not yet shown themselves to be easily formulated or provable
in Twelf, but the metatheory of M+

2 is definitely a sufficiently expressive framework for formulating
and proving the kinds of type safety properties considered by this project, even if it is not sufficient
for other tasks, such as understanding closure conversion.

How much automated reasoning support is provided to avoid tedious reasoning?

We have already discussed our reasons for not utilizing Twelf’s theorem prover; however, the coverage
checker is also an automated reasoning process with a great deal of power, as show by its frequent
ability to establish canonical forms lemmas on its own. It had a few annoying quirks, such as the
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lack of support for output factoring, but in almost all cases it was sufficient; the error messages
produced by the coverage checker, which fall in this category as well, were extremely helpful.

What language is used for specifications, and can specifications be written in a natural
style?

As Chapter 2 showed, the syntax and semantics of the language can be defined almost as succinctly
as a rigorous mathematical treatment of the same syntax and semantics. More complicated syntax
than the types of syntax presented in Chapter 2 did present expressive problems, however. Lists
were annoying as they needed to be redefined for each new thing we needed a list of, but the “fake
polymorphism” offered by our system of text search/replace/save was not incredibly difficult to
manage.

Several features of the Tiger system that were also experimented with as part of this project, such
as mutual recursion without a function table and mutually recursive record types, required either a
great deal of extra notation or a group of complex “extraction” functions to deal with appropriately.
The answer to the question of what is the “best” approach or set of approaches to mutual recursion
in higher-order abstract syntax is one of the primary unfulfilled goals of this project.

How are proofs expressed, and can arguments be formulated succinctly and naturally?

This point should be considered with the last one; the beauty of the LF’s dependent type system
is that a single notation is used for the encoding of the language’s syntax, the specification of its
semantics, and the expression of proofs about the language. The Twelf notation is an extremely
concise way of representing derivation trees; consider as an alternative Pierce’s discussion of algo-
rithmic subtyping [11, Section 16.2], which requires a much more expansive notation to describe its
manipulations of derivation trees.

What assistance is given the construction of proofs?

It is significant that Syme presents this point as distinct from the second point about automating
away tedious language features. The Twelf theorem prover is designed to provide proof realiza-
tions, i.e. total logic functions equivalent to the metatheorems which this paper used; however, as
mentioned in Section 1.2.3, this feature is disabled at present.

We believe there is probably an enormous potential in a mixed strategy of automatic proofs being
incorporated into proofs of the style of this project, and once the theorem prover is fixed so that the
two approaches can be incorporated, it would be interesting to see an annotated proof of the style
of this report’s Chapter 2 describing a proof using a hybrid strategy.

How does the tool support the maintenance of specifications and proofs under incre-
mental changes?

This was the great advantage of the feature-oriented proving approach - as long as a set of features
were grouped together in the same file, as most similar groups of features were, they could be added
and removed from the language along with the cases relating to them in the various inductive proofs
simply by commenting out two lines in a configuration file. The development of this technique was
a major reason for the success of the Fun formalization.

The project also experimented with a more significant incremental change, successfully modifying
the framework created for the Fun formalization to create a formalization of a language using l-values
in the style of Tiger. The relative ease of this was a significant testament to the ability of feature-
oriented designs in Twelf to be adapted to support very different languages.
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Are the documents produced readable? Can they be validated by researches unfamiliar
with the tool?

The second part of Chapter 2 is a case study in using the Twelf code itself as an explanation of an
inductive proof; this is an approach which we believe is successful here and which certainly holds
great promise. The meaning of Twelf code is not “self evident,” but with sufficient annotation, like
the annotation provided in Chapter 2, it appears capable of standing on its own as a representation
of an inductive proof.

Does the tool support exploratory modes of work?

The ability to test loading individual declarations and to rapidly reload entire logic systems through
the Emacs interface gives Twelf excellent exploratory capacities. One feature which would make
it significantly easier to use the metatheorem prover in an exploratory way is an equivalent of the
“hole lemma” - the ability to unsafely make assertions which can later be returned to and proven to
make the proof safe again.

Twelf does have an “unsafe mode” which allows unproven assertions to be made within the
theorem prover, but the ability to assert unproven metatheorems for proofs using the totality checker,
not the theorem prover, is not a capability which is currently implemented. Sarkar describes a way
to cause Twelf to believe the totality of metalemmas which have not been proven total [15, Holes in
Metalemmas], but this trick halts the loading of configuration files and would be entirely impractical
to use in proofs with many holes. A more elegant extension of the technique already available to the
Twelf theorem prover would be an extremely useful in helping to prevent the annoying problem of
realizing that one has gone through a great deal of trouble constructing a tedious supporting lemma
for what turns out to be an incorrectly formulated metatheorem. The %trustme declaration slated
for future inclusion in Twelf is hopefully designed to address this problem.

4.1.2 Three additional criteria

Twelf clearly performs satisfactorily with respect to all of Syme’s criteria; however, we would like to
suggest that Syme’s criteria are incomplete. If computer-verified formalization methods are to be
more widely adopted, it is crucial that each formalization not be expected to develop its own theorem
proving environment. Syme’s criteria, while they deal adequately with the internal capabilities of a
theorem-proving system, do not adequately touch on questions of accessibility of the development
environment to outsiders; this is understandable, as Syme followed the observed trend of being a
developer of his own system.

As mentioned in the introduction, we believe that one of the main contributions of this project
is that it was probably the first of its scale to utilize the metatheorem capabilities of Twelf without
both a significant background in LF and access to the developers of the Twelf system. Our three
additional criteria all deal with aspects of a question that has been central in many ways to this
project, “How accessible is the theorem proving environment to outsiders?”

How thorough and useful is the documentation available?

The Twelf User’s guide is a useful document, but it is limited in several ways; the most important is
that is more focused on describing features than with teaching users strategies and approaches for
solving common problems, a problem especially apparent with the documentation of the coverage
checker. In short, The Twelf User’s Guide is not intended to be a teaching document. It is our hope
that The Twelf Wiki [15] will be able to fill the need for a community teaching resource, becoming a
collection of what contributor Todd Wilson referred to as “tutorial articles,” which is a shortcoming
of the previously available documentation.
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How easy is it to decipher errors having to do with limitations of the theorem proving
environment?

The coverage checker is necessarily an incomplete solution to a problem (as the general problem is
undecidable), and therefore it will refuse to confirm certain facts which may seem obvious to the
user. One of the most annoying aspects of dealing with a theorem proving system is understanding
the kinds of errors that are generated when the user attempts something that is impossible, but for
reasons that are completely non-obvious to the user; in terms of AUTOMATH-style uses of Twelf,
this frustration is primary in terms of certain “strictness” requirements, about which Appel declares,
“For most users (including me!) this is the most mysterious part of Twelf” [2, Part 6].

In the context of Twelf metatheory, there are at least three mysterious aspects. First is output
factoring, which is confusing the first couple of times it is encountered, but which gets easier when the
idea that outputs must be totally unconstrained is drilled into the user’s head. The second issue is
when coverage checking fails on a “spurious” case, such as when Twelf refuses to automatically assert
a canonical forms lemma that is, in fact, true. This, like the strictness requirements, is a problem that
improves with time and experience with the system and the types of error messages that appear.
There were other more mysterious errors encountered when using the coverage checker, such as
instances where adding cases to the substitution metalemma would cause the coverage checking for
seemingly unrelated parts of the proof to stop working; we are still unsure whether some of these are
bugs in Twelf or are like strictness requirements, i.e. problems that are reasonable because of the
necessary incompleteness of the coverage checker, but which we simply don’t understand. In all of
these cases, the continued development of the Twelf system, along with more user documentation,
will make these sorts of problems easier to deal with.

How long does it take to become an effective user of the system?

This is the million-dollar question. Familiarity with Twelf’s syntax and operations in a different
context certainly helped this project; we were able to formalize interesting facts in a matter of a few
weeks, though there was obviously much that we still had to learn at that point.

In any case, the learning curve doesn’t appear to be harsher than the “couple of months” estimate
for comparable systems such as HOL or ACL2 [6]; moreover, because of the extraordinary similarity
between the representations of standard inductive proofs and Twelf representations of those proofs,
we believe that the the learning curve may possibly be be much lower for Twelf metatheory than
for comparable systems. This project, in our view, represents a good indication what is currently
achievable in a year by a single theorist outside of the Twelf developer community starting with
minimal knowledge of the Twelf metatheory. However, we hope that this experience can make the
smallest of contributions towards “paving the road” for future projects, allowing the next project to
go a little farther at a slightly faster speed.

4.2 Further work

This project suggests an enormous number of other projects, and this final section considers a small
number of these projects.

4.2.1 Modifying Fun’s function table

It would be quite interesting to see what would happen if the Fun formalization could be extended
in type safe way to allow the function table to be modified during program execution. Even more
interesting might be investigating whether the function table could use this ability to implement
recursion with backpatching.
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4.2.2 Approaches to mutual recursion

Function backpatching is only one way to implement recursion. The various formalizations of frag-
ments of Tiger relied heavily on determining more general forms of mutual recursion, and this was
achieved with only limited success. There is a lot of work still to be done on finding the most
effective solutions to the problem of recursion in higher-order abstract syntax.

4.2.3 Extending l-values

We completed a specification of a language that used l-values, that is to say a language where
locations weren’t values and where a new reference was generated at every let statement, as opposed
to Fun where references have to be explicitly declared and dereferenced. However, there were some
tricky problems resulting from the way l-values were set up which made it quite difficult to have
more than one kind of l-value (arrays, for example, introduce another kind of l-value). It would be
interesting to investigate what would have to be changed to allow different kinds of l-values to be
introduced in this safe language.

Another topic also deals with the l-value specification. Java and other languages have the
property that the value of a variable representing an l-value does not have to be provided at the
time of the l-value’s definition, but the type checker will complain if the program might attempt to
use it before it is initialized. It would be quite interesting to try and translate the reasoning of such
a system into Twelf.

4.2.4 Investigating error reporting

Section 2.3.6 presented some issues with error reporting in the type checker as it currently stands.
It would be interesting to further develop this error reporting mechanism to solve the problems with
it as they currently stand. Even more significant, however, might be the consideration of other ways
in which Twelf itself could be modified to allow for more error reporting in a more elegant way than
the way we implemented it, which is after all a bit of a hack.

4.2.5 Subtyping for Fun

Of the features of the original Fun language, the only one left out of our Fun formalization is
subtyping; it would be a fairly large project, but it would be an interesting and significant feat to
add subtyping to the formalized Fun. Formalizing Fun with subtyping would probably be done best
by proving language safety with respect to a declarative typing relation with subsumption, and then
providing an algorithmic typing relation and proving its adequacy as a metatheorem.

4.2.6 ML-Lex, ML-YACC... ML-Type?

A much larger project might involve a recurring suggestion in this project, using a Twelf-like notation
to create a general language for type checkers. M+

2 is very much a general language that can specify
the abilities that most type checkers need; is it possible to create another way of representing M+

2

specifications that can be more easily integrated into a compiler without sacrificing the ability to
use metalogic to reason about them?
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Appendix A

The Definition of Fun

Fun is a small language designed for teaching compilers. It belongs to the Algol family of C-like
languages because it avoids the need for closures by disallowing nesting of functions but still allowing
functions to be values, as opposed to languages like Tiger which are in the Pascal family of languages
which achieve this by not allowing functions to be values. This definition of Fun is adapted from the
definition of David Walkers’s Fun language which was created as a teaching language for a compliers
course [17] - the language itself is fundamentally just Walker’s Fun without subtyping and with
integer inputs.

A.1 Syntax

This describes the concrete syntax of Fun, though the abstract syntax is extremely similar with a
few caveats.

Integers: i ∈ {0, 1, 2, 3, ...1073741823}
Identifiers: x ∈ {a− z,A− Z}{a− z,A− Z, 0− 9, }∗, except reserved words

Unary Operators: un ::= ∼ | printint | ! | #i | not

Binary Operators: bn ::= + | − | × | = | < | := | & | || | ;

Types: τ ::= (τ) | int | {τ, ..., τ} | τ → τ | τ ref

Expressions: e ::= (e) | i | x | un e | e bn e | {e, ..., e} | e e | readint
| ref(e : τ) | if e then e else e | while e do e | let x = e in e

Function declarations: f ::= fun x (x:τ) : τ = e

Program: p ::= f...f in e

A.1.1 Notes on the concrete syntax

• Comments may appear between any two tokens. Comments start with /*, end with */, and
may be nested.

• White space (the newline character, carriage returns, tabs, and spaces) may appear between
any two tokens.

• Fun reserves the following keywords:

fun, in, let, while, do, if, then, else, printint, readint, ref, not, int
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• For types, ref has higher precedence than→, which is right associative. For expressions, binary
operators are left associative with the exception of the ; operator which is right associative.
Precedence is as follows (highest precedence first):

1 - Unary operators (except for not)

2 - Function application

3 - ×
4 - +, −
5 - =, <

6 - not

7 - &, ||

8 - ;

A.1.2 Notes on the abstract syntax

• The abstract syntax has an additional piece of syntax, locations (l), which are introduced with
two additional expressions, loc l and fn l, which are not available to the programmer.

• The current implementation of the verified Fun compiler does not allow projection of more
than 36 elements from a tuple.

• In the abstract syntax, integers are 32-bit signed binary numbers.

• The concrete syntax does not treat ref as a unary operator or function application ad a binary
operator, but the abstract syntax does.

• Several operators are only abbreviations for other expressions. The underscore in the last
shorthand simply designates that the identifier used must be outside of the name space of
other variables.

a & b =⇒ if a then b else 0

a || b =⇒ if a then 1 else b

not a =⇒ if a then 0 else 1

∼ e =⇒ 0− e

a ; b =⇒ let = a in b

A.2 Tables

There are several different kinds of tables - the function table ν and its typing Υ, and the store µ
and its typing Σ. Tables are accessed using locations.

The formalization treats locations as natural numbers and tables as lists, but here locations will
simply be presented as uninterpreted indexes to tables. Tables allow three operations, though only
the first will be used on ν and Υ.

• µ(l) ⇓ e - lookup the item at the given location, assuming it exists

• µ←↩ e ⇓ (µ′ , l) - add an element at a fresh location (returns the modified table and the new
location)

• µ[l] := e ⇓ µ′ - update an element at a known location, assuming it exists (returns the modified
table)

48



A.3 The program transformation

A single program must be reinterpreted as a function table and an expression to be understood by
the static and dynamic semantics. This can be done by initially considering all of the variables not
bound by a let or by the fact that they are the argument to a function to be free variables. In order
for the program to be well-formed, every free variable must match a function identifier.

The function table is built by placing all the functions in the function table and replacing every
free variable x with fn l where l is the location of the function named x. This replacement must be
done in the bodies of all the functions in the function table and in the body of the program; if the
same identifier is used for two functions, the one declared last is the one used for this substitution.

A.4 Static semantics

A.4.1 Program typing

First, for each element fun xf (x:τ1) : τ2 = e in ν at location l, Υ is populated with τ1 → τ2 at
location l.

The function table is then well-formed if for each fun xf (x:τ1) : τ2 = e in ν, it is true that for
the empty context Γ and the empty store typing Σ, (Γ[x 7→ τ1] | Σ |Υ ` e : τ2) can be derived.

The body of the program is required to have type int.

A.4.2 The typing relation

The type of all programs is initially checked under the empty context and the empty store.

Γ | Σ |Υ ` i : int
t-int

Γ[x 7→ τ ] | Σ |Υ ` x : τ
t-var

Γ | Σ |Υ ` readint : int
t-readint

Γ | Σ |Υ ` e1 : τ1 Γ[x 7→ τ1] | Σ |Υ ` e2 : τ

Γ | Σ |Υ ` let x = e1 in e2 : τ
t-let

Γ | Σ |Υ ` e : int Γ | Σ |Υ ` e1 : τ Γ | Σ |Υ ` e2 : τ

Γ | Σ |Υ ` if e then e1 else e2 : τ
t-if

Γ | Σ |Υ ` e1 : int Γ | Σ |Υ ` e2 : {}
Γ | Σ |Υ ` while e1 do e2 : {} t-while

Γ | Σ |Υ ` e1 : τ1 optype(un) = τ1 → τ

Γ | Σ |Υ ` un e2 : τ
t-op1

Γ | Σ |Υ ` e1 : τ1 Γ | Σ |Υ ` e2 : τ2 optype(bn) = τ1, τ2 → τ

Γ | Σ |Υ ` e1 bn e2 : τ
t-op2

Γ | Σ |Υ ` e1 : τ1 ... Γ | Σ |Υ ` en : τn

Γ | Σ |Υ ` {e1, ..., en} : {τ1, ..., τn}
t-tuple

Υ(l) ⇓ τ

Γ | Σ |Υ ` fn l : τ
t-fn

Σ(l) ⇓ τ

Γ | Σ |Υ ` loc l : τ
t-loc

49



A.4.3 Operator typing

The optype function is defined by the following table:

+ int, int⇒ int
− int, int⇒ int
× int, int⇒ int
= int, int⇒ int
< int, int⇒ int
:= τ ref, τ ⇒ {}
Function application τ1 → τ2, τ1 ⇒ τ2

∼ int⇒ int
printint int⇒ {}
! τ ref⇒ τ
#i {τ1, ...τi, ...τn} ⇒ τi

ref with type annotation τ τ ⇒ τ ref

A.5 Dynamic semantics

The dynamic semantics have a concept of a value, represented by identifiers labeled v1, v2, v3...

Values: v ::= i | {v, ..., v} | loc l | fn

The program state is a 4-tuple consisting of a function table ν, which does not change during
execution of the program, the store µ, a list of integers representing the input il, and an expression
e.

Operators

ν | µ | il | e −→ ν | µ′ | il | e′

ν | µ | il | un e −→ ν | µ′ | il | un e′
s-op1

ν | µ | il | e1 −→ ν | µ′ | il | e′1
ν | µ | il | e1 bn e2 −→ ν | µ′ | il | e′1 bn e2

s1-op2
ν | µ | il | e −→ ν | µ′ | il | e′

ν | µ | il | v bn e −→ ν | µ′ | il | v bn e
s1-op2

Functions

ν(l) ⇓ fun f (x:τ) : τ = e

ν | µ | il | (fn l)v −→ ν | µ | il | [x 7→ v]e
e-fn

Tuples

ν | µ | il | ei −→ ν | µ′ | il | e′i
ν | µ | il | {v1, ..., vi−1, ei, ..., en} −→ ν | µ′ | il | {v1, ..., vi−1, e

′
i, ..., en}

e-tuple

ν | µ | il | {v1, ..., vi, ..., vn} −→ ν | µ′ | il | vi

e-proj
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Integers

We are not specifying the operation of the arithmatic operators (which implement 32-bit binary
arithmetic with overflow), and the function most of these operators is to throw evaluation to one
of the primitive operations which we are not discussing. Three exception are the rules dealing with
I/O. The rule for printint steps to an empty tuple without considering I/O side effect of printing out
the integer, and the rules for readint either pull the first element out of the input list or return 0 if
no more elements exist.

ν | µ | il | printint i −→ ν | µ | il | {}
e-printint

i1 + i2 ⇓ i3
ν | µ | il | i1 + i2 −→ ν | µ | il | i3

e-add

i1 × i2 ⇓ i3
ν | µ | il | i1 × i2 −→ ν | µ | il | i3

e-mul
i1 − i2 ⇓ i3

ν | µ | il | i1 − i2 −→ ν | µ | il | i3
e-sub

i1 = i2 ⇓ i3
ν | µ | il | i1 = i2 −→ ν | µ | il | i3

e-eq
i1 < i2 ⇓ i3

ν | µ | il | i1 < i2 −→ ν | µ | il | i3
e-lt

ν | µ | i :: il | readint −→ ν | µ | il | i
e-readint-s

ν | µ | nil | readint −→ ν | µ | nil | 0 e-readint-z

Mutable state

µ @ v ⇓ (l , µ′)
ν | µ | il | ref(v : τ) −→ ν | µ′ | il | loc l

e-ref

µ(l) ⇓ e

ν | µ | il | ! loc l −→ ν | µ | il | e
e-bang

µ[l] := v ⇓ µ′

ν | µ | il | loc l := v −→ ν | µ′ | il | {}
s-bang

Variable binding and control flow

ν | µ | il | e1 −→ ν | µ′ | il | e′1
ν | µ | il | let x = e1 in e2 −→ ν | µ′ | il | let x = e′1 in e2

s-let

ν | µ | il | let x = v in e −→ ν | µ′ | il | [x 7→ v]e
e-let

ν | µ | il | e −→ ν | µ′ | il | e′

ν | µ | il | if e then e1 else e2 −→ ν | µ′ | il | if e′ then e1 else e2
s-if

e = e1 if i = 0, e = e2 otherwise
ν | µ | il | if i then e1 else e2 −→ ν | µ′ | il | e

e-if
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A.6 A few sample programs

A.6.1 tuple.fun - Definition of tuples

Prints the first and second input, returns 4.

fun fst (x:{int,int}):int = #0 x
fun snd (x:{int,int}):int = #1 x
fun print (x:int):{} = printint x

in

let x = {readint,readint} in
print (fst x); print (snd x); 4

A.6.2 fact.fun - Factorial

Prints the first input, then computes the factorial of the input.

fun fact(x : int) : int =
if (x < 0 || x = 0) then 1 else x * fact (x - 1)

in

let x = readint in
printint x;
fact x

A.6.3 funv.fun - Functions as values, left-associative function application

Stores the first two inputs in a and b, respectively. If a is 0, returns 2× (b+ 10), otherwise returns
2× (b− 10).

fun f (x:int):int->int = if (x = 0) then g else h
fun g (x:int):int = x + 10
fun h (x:int):int = x - 10

in

let a = readint in
let b = readint in
let afun = f a in
afun b + f a b
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A.6.4 evenodd.fun - Mutual recursion

Returns 2 if the first input is even, 1 if it is odd. Loops forever if the first input is negative.

fun iseven (x:int):int =
if x = 0 then 1 else isodd (x - 1)

fun isodd (x:int):int =
if x = 0 then 0 else iseven (x - 1)

in

let a = readint in
if iseven a then 2 else 1
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