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Abstract

Network administrators must configure network devices to simultaneously provide several inter-

related services such as routing, load balancing, traffic monitoring, and access control. Unfor-

tunately, most interfaces for programming networks are defined at the low level of abstraction

supported by the underlying hardware, leading to complicated programs with subtle bugs. We

present Frenetic, a high-level language for OpenFlow networks that enables writing programs in

a declarative and compositional style, with a simple “program like you see every packet” abstrac-

tion. Building on ideas from functional programming, Frenetic offers a rich pattern algebra for

classifying packets into traffic streams and a suite of operators for transforming streams. The run-

time system efficiently manages the low-level details of (un)installing packet-processing rules in

the switches. We describe the design of Frenetic, an implementation on top of OpenFlow, and

experiments and example programs that validate our design choices.
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1 Introduction

Most modern networks consist of hardware and software components that are closed and propri-

etary. The difficulty of changing the underlying network has had a chilling effect on innovation,

and forces network administrators to express complex policies through a frustratingly brittle in-

terface. To address this problem, a number of researchers have proposed a new platform called

OpenFlow to open up the software that controls the network [22]. OpenFlow defines a standard

interface for installing flexible packet-handling rules in network switches. These rules are in-

stalled by a programmable controller that runs separately, on a stock machine [13]. OpenFlow is

supported by a number of commercial Ethernet switch vendors, and several campus and back-

bone networks have deployed OpenFlow switches. Building on this platform, researchers have

created a variety of controller applications that introduce new network functionality, like flexi-

ble access control [7, 24], Web server load balancing [14], energy-efficient networking [15], and

seamless virtual-machine migration [11].

Unfortunately, while OpenFlow nowmakes it possible to implement exciting new network ser-

vices, it does not make it easy. Programmers constantly grapple with several challenges:

Interactions between concurrent modules: Networks often performmultiple tasks, like rout-

ing, access control, and traffic monitoring. However, decoupling these tasks and implementing

them independently in separate modules is effectively impossible, since packet-handling rules

(un)installed by one module may interfere with overlapping rules installed by other modules.

Low-level interface to switch hardware: The OpenFlow rule algebra directly reflects the ca-

pabilities of the switch hardware (e.g., bit patterns and integer priorities). Simple concepts such

as set difference require multiple rules and priorities to implement correctly. Moreover, the more

powerful “wildcard” rules are a limited hardware resource the programmer must manage by

hand.

Two-tiered programming model: The controller only sees packets the switches do not know

how to handle—in essence, application execution is split between the controller and the switches.

As such, programmers must carefully avoid installing rules that hide important information from

the controller.

To address these challenges, we present Frenetic, a new programming model for OpenFlow
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networks. Frenetic is organized around two levels of abstraction: (1) a set of source-level operators

for manipulating streams of network traffic, and (2) a run-time system that handles all of the

details of installing and uninstalling low-level rules on switches. The source-level operators draw

on previous work on declarative database query languages and functional reactive programming

(FRP). These operators are carefully constructed to support the following key design principles:

Purely functional: The source-level abstractions are purely functional and shield program-

mers from the imperative nature of the underlying switches. Consequently, program modules

may be written independently of one another and composed without unpredicatable effects or

race conditions.

High-level, programmer-centric: Wherever possible, we first consider what the programmer

might want to say, rather than how the hardware implements it. We provide intuitive, high-level

primitives, even though they are not directly supported by the hardware.

See-every-packet abstraction: Programmers donot have toworry that installing packet-handling

rules may prevent the controller from analyzing certain traffic. Frenetic supports the abstraction

that every packet is available for analysis, side-stepping the many complexities of today’s two-

tiered programming model.

These principles are designed tomake Frenetic programs robust, compact, and easy-to-understand,

and, consequently, the Frenetic programmerswriting themmore productive. However, taking our

“see every packet” abstraction too literally would lead to programs that process far more traffic

on the controller than necessary. Instead, we give programmers a set of declarative query opera-

tors that ensure packet processing remains on the switches. The Frenetic run-time system keeps

traffic in the “fast path” whenever possible, while ensuring the correct operation of all modules.

In summary, this paper makes the following contributions:

Analysis of OpenFlow programming model (Section 3): We identify weaknesses of today’s

OpenFlow environment that modern programming-language principles can overcome.

Frenetic language (Section 4) and “subscribe” queries (Section 5): Applying ideas from the

disparate fields of database query languages and functional reactive programming, we present a

design for Frenetic, a language for programming OpenFlow networks.

Frenetic implementation (Section 6): Wedesign and implement a library of high-level packet-

processing operators and an efficient run-time system in Python. The run-time system handles
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Integers n

Rules r ::= 〈pat , pri , t, [a1, . . . , an]〉
Patterns pat ::= {h1 :n1, . . . , hk :nk}
Priorities pri ::= n

Timeouts t ::= n | None

Actions a ::= output(op) | modify(h, n)

Header Fields h ::= in_port | vlan dl_src | dl_dst | dl_type |
nw_src | nw_dst | nw_proto | tp_src | tp_dst

Output Port op ::= n | flood | controller

Packet Counts ps ::= n

Byte Counts bs ::= n

Figure 1: OpenFlow Syntax. Prefixes dl , nw, and tp denote data link (MAC), network (IP), and
transport (TCP/UDP) respectively.

the translation from the high-level Frenetic constructs to the low-level OpenFlow rules without

interaction from the programmer.

Evaluation (Section 7) and case studies (Section 8): We compare several Frenetic programs

with conventional OpenFlow applications by measuring both the lines of code and the traffic

handled by the controller. We also describe our experiences building four larger applications.

2 Background on OpenFlow and NOX

This section presents the key features of the OpenFlow platform. To keep the presentation simple,

we have elided a few details that are not important for understanding Frenetic. Readers interested

in a complete description may consult the OpenFlow specification [3].

Overview In an OpenFlow network, a centralized controller manages a distributed collection of

switches. While packets flowing through the network may be processed by the centralized con-

troller, doing so is orders of magnitude slower than processing those packets on the switches.

Hence, one of the primary functions of the controller is to configure the switches so that they

process the vast majority of packets and only a few packets from new or unexpected flows need

to be handled on the controller.

Configuring a switch primarily involves installing entries in its flow table: a set of rules that

specify howpackets should be processed. A rule consists of a pattern that identifies a set of packets,
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an integer priority that disambiguates rules with overlapping patterns, an optional integer timeout

that indicates the number of seconds until the rule expires, and a list of actions that specifies how

packets should be processed. For each rule in its flow table, the switch maintains a set of counters

that keep track of basic statistics concerning the number and total size of packets processed.

Formally, rules are defined by the grammar in Figure 1. A pattern is a list of pairs of header

fields and integer values, which are interpreted as equality constraints. For instance, the pattern

{nw_src : 192.168.0.100, tp_dst : 80}matches packets from source IP address 192.168.1.100 go-

ing to destination port 80. We use standard notation for the values associatedwith header fields—

e.g., writing “192.168.1.100” instead of “3232235876.” Any header fields not appearing in a

pattern are unconstrained. We call rules with unconstrained header fields wildcard rules.

OpenFlow switches When a packet arrives at a switch, the switch processes the packet in three

steps. First, it selects a rule from its flow table whose pattern matches the packet. If there are no

matching rules, the switch sends the packet to the controller for further processing. Otherwise, if

there aremultiplematching rules, it picks the exact-match rule (i.e., the rulewhose patternmatches

all of the header fields in the packet) if one exists, or a wildcard rule with highest priority if not.

Second, it updates the byte and packet counters associated with the rule. Third, it applies each

of the actions listed in the rule to the packet (or drops the packet if the list is empty). The action

output(op) instructs the switch to forward the packet out on port op, which can either be a physi-

cal switch port n or one of the virtual ports flood or controller, where flood forwards the packet out

on all physical ports (except the ingress port) and controller sends the packet to the controller. The

actionmodify(h, n) instructs the switch to rewrite the header field h ton. The list of actions in a rule

can contain both output andmodify actions—e.g., [output(2), output(controller),modify(nw_src, 10.0.0.1)]

forwards packets out on switch port 2 and to the controller, and also rewrites their source IP ad-

dress to 10.0.0.1.

NOX Controller The controller manages the set of rules installed on the switches in the net-

work by reacting to network events. Most controllers are currently based on NOX, which is a

simple operating system for networks that provides some primitives for managing events as well

as functions for communicating with switches [13]. NOX defines a number of events including,
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• packet_in(s, n, p), triggered when switch s forwards a packet p received on physical port n

to the controller,

• stats_in(s, xid , pat , ps, bs), triggered when switch s responds to a request for statistics about

rules contained in pat , where xid is an identifier for the request,

• flow_removed(s, pat , ps, bs), triggered when a rule with pattern pat exceeds its timeout and

is removed from s’s flow table,

• switch_join(s), triggered when switch s joins the network,

• switch_leave(s), triggered when switch s leaves the network,

• port_change(s, n, u), triggered when the link attached to physical port n on switch s goes up

or down, with u a boolean value representing the new status of the link,

and provides functions for sending messages to switches:

• install(s, pat , pri , t, [a1, . . . , ak]), which installs a rule with pattern pat , priority pri , timeout

t, and actions [a1, . . . , an] in the flow table of switch s,

• uninstall(s, pat), which removes all rules contained in pattern pat from the flow table of the

switch,

• send(s, p, a), which sends packet p to switch s and applies action a to it there, and

• query_stats(s, pat), which issues a request for statistics from all rules contained in pattern

pat on switch s and returns a request identifier xid , which can be used to match up the

asynchronous response from the switch.

The controller program defines a handler for each event, but is otherwise an arbitrary program.

Example To illustrate a simple use ofOpenFlow, consider a controller programwritten in Python

that implements a repeater. Suppose that the network has a single switch connected to a pool of

internal hosts on port 1 and a wide-area network on port 2, as shown in Figure 2. The repeater

function below installs rules on switch s that instruct the switch to forward packets from port 1

to port 2 and vice versa. The switch_join handler calls repeater when the switch joins the

network.
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1 2

Controller

Switch

Figure 2: Simple network topology for the remaining examples

def repeater(s):
pat1 = {IN_PORT:1}
pat2 = {IN_PORT:2}
install(s,pat1,DEFAULT,None,[output(2)])
install(s,pat2,DEFAULT,None,[output(1)])

def switch_join(s):
repeater(s)

Note that both calls to install use the DEFAULT priority level and None as the timeout,

indicating that the rules are permanent.

3 Analysis of OpenFlow/NOX Difficulties

OpenFlow provides a standard interface for manipulating the rules installed on switches, which

goes a long way toward making networks programmable. However, the programming model

currently provided by NOX has several deficiencies that make it difficult to use in practice. While

our analysis focuses solely on the NOX controller, other OpenFlow controllers such as Onix [17]

and Beacon [1] suffer from similar issues. In this section, we describe three of the most substantial

difficulties that arise when writing programs in NOX.
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3.1 Interactions Between Concurrent Modules

The first issue is that NOX program pieces do not compose. Suppose that we want to extend

the repeater to monitor the total number of bytes of incoming web traffic. Rather than counting

the web traffic at the controller, a monitoring application could install rules for web traffic, and

periodically poll the byte and packet counters associated with those rules to collect the necessary

statistics:

def monitor(s):
pat = {IN_PORT:2,TP_SRC:80}
install(s, pat, DEFAULT, None, [])
query_stats(s, pat)

def stats_in(s, xid, pat, ps, bs):
print bs
sleep(30)
query_stats(s, pat)

The monitor function installs a rule that matches all incoming packets with TCP source port 80

and issues a query for the counters associated with that rule. The stats_in handler receives the

response from the switch, prints the byte count to the console, sleeps for 30 seconds, and then

issues the next query.

Ideally, we would be able to compose this program with the repeater program to obtain a

program that forwards packets and monitors traffic:

def repeater_monitor_wrong(s):
repeater(s)
monitor(s)

Unfortunately, naively composing the two programs does not work due to interactions between

the rules installed by each program. In particular, because the programs install overlapping rules

on the switch, when a packet arrives from port 80 on the source host, the switch is free to process

the packet using either rule. But using the repeater rule does not update the counters needed

for monitoring, while using the monitor rule breaks the repeater program because the list of

actions is empty (so the packet will be dropped).

To obtain the desired behavior, we have to manually combine the forwarding logic from the

first program with the monitoring policy from the second:
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def repeater_monitor(s):
pat1 = {IN_PORT:1}
pat2 = {IN_PORT:2}
pat2web = {IN_PORT:2, TP_SRC:80}
install(s, pat1, [output(2)], DEFAULT)
install(s, pat2, [output(1)], DEFAULT)
install(s, pat2web, [output(1)], HIGH)
query_stats(s, pat2web)

Performing this combination is non-trivial: thepat2web rule needs to include theoutput(1)

action from the repeater program, andmust be installed with HIGH priority to resolve the over-

lapwith thepat2 rule. In general, composingOpenFlowprograms requires careful, manual effort

on the part of the programmer to preserve the semantics of the original programs. This makes

it nearly impossible to factor out common pieces of functionality into reusable libraries and also

prevents compositional reasoning about programs.

3.2 Low-Level Programming Interface

Another difficulty of writing NOX programs stems from the low-level nature of the programming

interface, which is derived from the features of the switch hardware rather than being designed

for ease of use. This makes programs unnecessarily complicated, as they must describe low-level

details that do not affect the overall behavior of the program. For example, suppose that we want

to extend the repeater and monitoring program to monitor all incoming web traffic except traffic

destined for an internal server (connected to port 1) at address 10.0.0.9. To do this, we need

to “subtract” patterns, but the patterns in OpenFlow rules can only directly express positive con-

straints. To simulate the difference between two patterns, we have to install two overlapping rules

on the switch, using priorities to disambiguate between them.

def repeater_monitor_noserver(s):
pat1 = {IN_PORT:1}
pat2 = {IN_PORT:2}
pat2web = {IN_PORT:2, TP_SRC:80}
pat2srv = {IN_PORT:2, NW_DST:10.0.0.9, TP_SRC:80}
install(s, pat1, DEFAULT, None, [output(2)])
install(s, pat2, DEFAULT, None, [output(1)])
install(s, pat2web, MEDIUM, None, [output(1)])
install(s, pat2srv, HIGH, None, [output(1)])
query_stats(s, pat2web)

8



This programuses a separate rule to processweb traffic going to the internal server—pat2srv

matches incoming web packets going to the internal server, while pat2web matches all other

incoming web packets. It also installs pat2srv at HIGH priority to ensure that the pat2web rule

only processes (and counts!) packets going to hosts other than the internal server.

More generally, describing packets using the low-level patterns that OpenFlow switches sup-

port is cumbersome and error-prone. It forces programmers to use multiple rules and priorities

to encode patterns that could be easily expressed using natural logical operations such as nega-

tion, difference, and union. It adds unnecessary clutter to programs that is distracting and further

complicates reasoning about their behavior.

3.3 Two-Tiered System Architecture

A third challenge stems from the two-tiered architecture where a controller program manages

the network by (un)installing switch-level rules. This indirection forces the programmer to spec-

ify the communication patterns between the controller and switch and deal with tricky concur-

rency issues such as coordinating asynchronous events. Consider extending the original repeater

program to monitor the total amount of incoming traffic by destination host.

def repeater_monitor_hosts(s):
pat = {IN_PORT:1}
install(s, pat, DEFAULT, None, [output(2)])

def packet_in(s, inport, p):
if inport == 2:

m = dstmac(p)
pat = {IN_PORT:2, DL_DST:m}
install(s, pat, DEFAULT, None, [output(1)])
query_stats(s, pat)

Unlike the previous examples, we cannot install all of the rules we need in advance because,

in general, we will not know the address of each host a priori. Instead, the controller must dynam-

ically install rules for the packets seen at run time.

The repeater_monitor_hosts function installs a single rule that handles all outgoing traf-

fic. Initially, the flow table on the switch does not contain any entries for incoming traffic, so

the switch sends all packets that arrive at ingress port 2 up to the controller. This causes the
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packet_in handler to be invoked; it processes each packet by installing a rule that handles all

future packets to the same host (identified by its MAC address). Note that the controller only

sees one incoming packet per host—the rule processes all future traffic to that host directly on the

switch.

As this example shows, NOX programs are actually implemented using two programs—one

on the controller and another on the switch. While this design is essential for efficiency, the two-

tiered architecture makes applications difficult to read and reason about, because the behavior

of each program depends on the other—e.g., installing/uninstalling rules on the switch changes

which packets are sent up to the controller. In addition, the controller program must specify the

communication patterns between the two programs and deal with subtle concurrency issues—

e.g., if wewere to extend the example tomonitor both incoming and outgoing traffic, the controller

would have to issue multiple queries for the statistics for each host and synchronize the resulting

callbacks.

Although OpenFlow makes it possible to manage networks using arbitrary general-purpose

programs, its two-tiered architecture forces programmers to specify the asynchronous and event-

driven interaction between the programs running on the controller and the switches in the net-

work. In our experience, these details are a significant distraction and a frequent source of bugs.

4 Frenetic

Frenetic is a domain-specific language for programmingOpenFlownetworks, embedded in Python.

The language is designed to solve the major OpenFlow/NOX programming problems outlined in

the previous section. In particular, Frenetic introduces a set of purely functional abstractions that

enable modular program development; defines high-level, programmer-centric packet-processing

operators; and eliminatesmany of the difficulties of the two-tier programmingmodel by introduc-

ing a see-every-packet programming paradigm. In this section, we explain the basics of the Frenetic

language, and use a series of examples to illustrate how our design principles simplify NOX pro-

gramming. However, these examples take the see-every-packet abstraction far too literally—they

process every packet on the controller. In the next section, we will introduce additional features

of Frenetic that preserve the key high-level abstractions, while also making it possible to reduce
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the traffic handled by the controller to the levels seen by vanilla NOX programs.

4.1 Basic Concepts

Inspired by past work on functional reactive programming, Frenetic introduces three important

datatypes for representing, transforming, and consuming streams of values.

Events represent discrete, time-varying streams of values. The type of all events carrying val-

ues of type α is written α E. To a first approximation, values of type α E can be thought of as

possibly infinite lists of pairs (t, v) where t is a timestamp and v is a value of type α. Examples

of primitive events available in Frenetic include Packets, which contains all of the packets flow-

ing through the network; Seconds, which contains the number of seconds since the epoch; and

SwitchJoin and SwitchLeave, which contain the identifiers of switches joining and leaving

the network respectively.

Event functions transform events of one type into events of a possibly different type. The type of

all event functions from α E to β E is written α β EF. Many of Frenetic’s event functions are based

on standard operators that have beenproposed in previouswork onFRP. For example, the simplest

event function, Lift(f), which is parameterized on an ordinary function f of type α→ β, is an

event function of type α β EF that works by applying f to each value in its input event. Frenetic

also includes some novel event functions that are specifically designed for processing network

traffic. For example, if g has type packet → bool then Group(g) splits the stream of packets into

two streams, one for packets on which g returns true and one for packets on which g returns false.

More generally, and precisely, if g has type packet→ α, the result has type packet (α×packet E) EF.

The elements of the resulting event are pairs of the form (v, e) where v is a value of type α and e

is a nested event containing all the packets that g maps to v. We use Group, and its variants, to

organize network traffic into streams of related packets that are processed in the same way.

A listener consumes an event stream and produces a side effect on the controller. The type

of all listeners of events α E is written α L. Examples of listeners include Print, which has a

polymorphic type α L and prints each value in its input to the console, and Send, which has type

(switch× packet× action) L and sends a packet to a switch and applies an action to it there.

The rest of this section presents a series of examples that illustrate how these types fit to-

gether and demonstrate the main advantages of Frenetic’s programming model over the Open-
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Flow/NOXmodel. As in the previous section, we will assume the same network topology shown

in Figure 2 For simplicity, we elide the details related to the switch joining and leaving the network

and assume that a global variable switch is bound to its identifier.

4.2 The See-Every-Packet Abstraction

To get a taste of Frenetic, consider the web-monitoring program from the last section. Note that

this program only does monitoring; we extend it with forwarding later in this section.

def web_monitor_ef():
stats = ( Filter(inport_p(2) & srcport_p(80)) >>

Lift(size) >>
GroupByTime(30) >>
Lift(sum) )

return stats

def web_monitor():
( Packets() >>

web_monitor_ef() >>
Print() )

The top-level web_monitor function takes the event Packets, which contains all packets flow-

ing through the network (!) and processes it using the web_monitor_ef event function. This yields

an event stats containing the number of bytes of incomingweb traffic in each 30-secondwindow,

which the program prints to the console by attaching to a Print listener.

Theweb_monitor_ef event function is structured as the composition of several smaller event

functions—the infix operator >> composes event functions. Filter discards packets that do not

match the predicate supplied as a parameter. Lift applies size to each packet in the result,

yielding an event carrying packet sizes. GroupByTime, which has type α (α list) EF (and is

derived from other Frenetic operators) divides the event of packet sizes into an event of lists con-

taining the packet sizes in each 30-second window. The final event function, Lift, uses Python’s

built-in sum function to addup the packet sizes in each list, yielding an event of integers as the final

result. Note that unlike the NOX program, which specified the layout of switch-level rules as well

as the communication between the switch and controller (to retrieve counters from the switch),

Frenetic’s unified architecture makes it possible to express this program as a simple, declarative

query.
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4.3 High-Level Patterns

Frenetic includes a rich pattern algebra for describing sets of packets. Suppose that we want to

change themonitoring program to exclude traffic to the internal server. In Frenetic, we can simply

take the difference between the pattern describing incoming web traffic and the one describing

traffic to the internal web server.

def monitor_noserver_ef():
return( Filter((inport_p(2) & srcport_p(80)) - dstip_p("10.0.0.9")) >>

Lift(size) >>
GroupByTime(30) >>
Lift(sum) )

The only change in this programcompared to the previous one is the pattern passed toFilter.

The “-” operator computes the difference between patterns and the run-time system takes care of

the details related to implementing this pattern. Recall that crafting rules to implement the same

behavior in NOX required simulating the difference using two rules at different priorities.

4.4 Compositional Semantics

Frenetic makes it easy to compose programs. Suppose that we want to extend the monitoring

program from above to also behave like a repeater. In Frenetic, we just specify the forwarding

rules and register them with the run-time system.

rules = [(switch, inport_p(1), [output(2)]),
(switch, inport_p(2), [output(1)])]

def repeater():
register_static_rules(rules)

def repeater_web_monitor():
repeater()
web_monitor()

The register_static_rules function takes a list of high-level rules (different than the

low-level rules used in NOX) each containing a switch, a high-level pattern, and a list of actions,

and installs them as the current forwarding policy in the Frenetic run-time. Note that the moni-

toring portion of the program does not need to change at all—the run-time ensures that there are

no harmful interactions between the forwarding and monitoring components.
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To illustrate the benefits of composition, let us carry the example a step further and extend it

to monitor incoming traffic by host. Implementing this program in NOX would be difficult—we

cannot run the two smaller programs side-by-side because the rules for monitoring web traffic

overlap with the rules for monitoring traffic by host. We would have to rewrite both programs to

ensure that the rules installed on the switch by the programs do not interfere with each other—

e.g., installing two rules for each host, one for web traffic and another for all other traffic. This

could be made to work, but it would require a major effort from the programmer, who would

need to understand the low-level implementations of both programs in full detail.

In contrast, extending the Frenetic program is simple. The following event function monitors

incoming traffic by host.

def host_monitor_ef():
return ( Filter(inport_p(2)) >>

Group(dstmac_g()) >>
RegroupByTime(60) >>
Second(Lift(lambda l:sum(map(size,l)))) )

It uses Filter to obtain an event carrying all packets incoming on port 2, Group to aggregate

these filtered packets into an event of pairs of destinationMACs and nested events that contain all

packets destined for that host, RegroupByTime to divide the nested event streams into an event of

pairs ofMACs and lists that contain all packets to that host in each 60-secondwindow, andSecond

and Lift to add up the size of the packets in each window. The RegroupByTime event function

(which like GroupByTime is a derived operator in Frenetic) has type (β × α E) (β × α list) EF.

It works by splitting the nested event stream into lists containing the values in each window.

The Second event function takes an event function as an argument and applies it to the second

component of each value in an event of pairs. In this example, the event function being applied

is a lifted anonymous function, denoted by the Python keyword lambda, that returns the sum of

sizes of packets in a list. Putting all of these together, we obtain an event function that transforms

an event of packets into an event of pairs containing MACs and byte counts.

The top-level program repeater_monitor_hosts applies both stream functions toPackets

and registers the forwarding policy with the run-time. Despite the slightly different functionality

and polling intervals of the two programs, Frenetic allows these programs to be easily composed

without any concerns about undesirable interactions or timing issues between them.
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def repeater_monitor_hosts():
repeater()
stats1 = Packets() >> web_monitor_ef()
stats2 = Packets() >> host_monitor_ef()
Merge(stats1,stats2) >> Print()

Raising the level of abstraction frees programmers from worrying about low-level details and

enables writing programs in a modular style. This represents a major advance over NOX, where

programs must be written monolithically to avoid harmful interactions between the switch-level

rules installed by different program pieces.

4.5 Learning Switch

So far, we havemostly focused on small examples that illustrate the main features of Frenetic. The

last example in this section describes a more realistic application—an Ethernet learning switch.

Learning switches provide easy plug-and-play functionality in local-area networks. When the

switch receives a packet, it remembers the source host and ingress port that the packet came in

on. Then, if the switch has previously received a packet from the destination host, it forwards the

packet out on the port that it remembered for that host. Otherwise, it floods the packet out on all

ports (other than the packet’s ingress). In this way, over time, the switch learns the information

needed to forward packets to each active host in the network and avoids unnecessary flooding.

Figure 3 gives the definition of a learning switch in Frenetic. Just like the other Frenetic pro-

grams we have seen, it is structured as the composition of several smaller event functions. It uses

Group to aggregate the input event of packets by source MAC and Regroup to split the nested

events whenever a packet from a given host appears on a different ingress port (i.e., because the

host has moved). This leaves an event of pairs (m, e) where m is a source MAC and e is a nested

event containing packets that share the same source MAC address and ingress switch port. The

Ungroup event function extracts the first packet from each nested event, yielding an event of pairs

of MACs and packets. The LoopPre event function takes an initial value of type γ and an event

function of type (α×γ) (β×γ) EF as an argument and produces an event function of type α β EF

that works by looping the second component of each pair into the next iteration of the top-level

event function. In this instance, it builds up a dictionary structure that associates a MAC address

to a rule that forwards packets to that host (the helper add_rule inserts the rule into the dic-
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# helper functions
def add_rule(((m,p),t)):

a = forward(inport(header(p)))
pat = dstmac_p(m)
t[m] = (switch,pat,[a])
return (t,t)

def complete_rules(t):
l = t.values()
ps = map(lambda r: r.pattern, l)
r = (switch,reduce(diff_p, ps, true_p()),[flood()])
l.append(r)
return l

# main definition
def learning():

( Packets() >>
Group(srcmac_g()) >>
Regroup(lambda p1,p2: inport_r()) >>
Ungroup(1, lambda n,p:p, None) >>
LoopPre({}, Lift(add_rule)) >>
Lift(complete_rules) >>
Register() )

Figure 3: Simple Learning Switch

tionary). The Lift event function uses complete_rules to extract the list of rules from the

dictionary and add a catch-all rule that floods packets to unknown hosts. Finally, the program

registers the resulting rule list event in the Frenetic run-time. Note that unlike the previous ex-

amples, the rules generated for the learning switch are not static. The Register listener takes a

rule list event and registers each new list as the forwarding policy in the run-time.

Frenetic includes a number of additional operators for manipulating event streams; Figure 4

lists a few of the most important operators and their types. Note that the composition operator

>> is overloaded to work with events, event functions, and listeners.

5 Subscribe Queries

Each of the Frenetic programs in the previous section applies a user-defined event function to

Packets, the built-in event containing every packet flowing through the network. These pro-

grams are easy to write and understand—much easier than their NOX counterparts—but im-

plementing their semantics directly would require sending every packet to the controller, which
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Events
Seconds ∈ int E
Packets ∈ packet E

SwitchJoin ∈ switch E
SwitchLeave ∈ switch E
PortChange ∈ (switch× int× bool) E

Event Functions
>> ∈ α E→ α β EF→ β E
Lift ∈ (a→ β)→ α β EF
>> ∈ α β EF→ β γ EF→ α γ EF

First ∈ α β EF→ (α× γ) (β × γ) EF
Second ∈ α β EF→ (γ × α) (γ × β) EF
Merge ∈ (α E× β E)→ (α option× β option) E

LoopPre ∈ (γ × ((α× γ) (β × γ) EF))→ α β EF
Calm ∈ α α EF
Filter ∈ (α→ bool)→ α α EF

Group ∈ (α→ β)→ α (β × α E) EF
Regroup ∈ ((α× α)→ bool)→ (β × α E) (β × α E) EF
Ungroup ∈ (int option× (γ × α→ γ)× γ)→ (β × α E) (β × γ) EF

Listeners
>> ∈ α E→ α L→ unit

Print ∈ α L
Register ∈ (packet× action list) list L

Send ∈ (switch× packet× action) L

Figure 4: Core Frenetic Operators

would lead to unacceptable performance.

Frenetic sidesteps this issue by providing programmers with a simple query language that

allows them to succinctly express the packets and statistics needed in their programs. The run-

time takes these queries and generates events that contain the appropriate data, using rules on

the switch to move packet processing into the network and off of the controller.

Frenetic queries are expressed using orthogonal constructs for filtering using high-level pat-

terns, grouping by one or more header fields, splitting by time or whenever a header field changes

value, aggregating by number or size of packets, and limiting the number of values returned, for a

given interval or window of time. The syntax of Frenetic queries is given in Figure 5. Each of the

top-level constructs are optional, except for the Select, which identifies the type of values returned

by the query—actual packets, byte counts, or packet counts. The infix operator * combines query

operators. As an example, the following query generates an event thatmay be used in the learning

switch:
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Select(packets) *
GroupBy([srcmac]) *
SplitWhen([inport]) *
Limit(1)

It groups packets (using Select) by source MAC (using GroupBy), splits each group when

the ingress port changes (using SplitWhen), and limits the number of packets in each group to

one (using Limit). The event generated by this query contains pairs (m, e), where m is a MAC

address and e is an event carrying the first packet sent from that host. We can use this event to

rewrite the learning switch as follows:

def learning():
( Select(packets) *

GroupBy([srcmac]) *
SplitWhen([inport]) *
Limit(1) >>
Ungroup(1,lambda n,p:p,None) >>
LoopPre({}, Lift(add_rule)) >>
Lift(complete_rules) >>
Register() )

In this program, the grouping and regrouping of packets is done using a query instead of an

event function.

This revised program makes it easier for the run-time to determine which packets need to be

sent up to the controller and which ones can be processed using rules on the switch. It also helps

the programmer predict how their programwill perform—in general, by using a subscribe query,

Queries q ::= Select(a) *
Where(qp) *
GroupBy([qh1, . . . , qhk]) *
SplitWhen([qh1, . . . , qhk]) *
Every(n) *
Limit(n)

Aggregates a ::= packets | bytes | counts

Headers qh ::= inport | srcmac | dstmac | ethtype | vlan | srcip | dstip |
protocol | srcport | dstport

Patterns qp ::= true_p() | qh_p(n) | qp & qp | qp | qp | qp � qp | ~qp

Figure 5: Frenetic query syntax
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the run-time will move as much processing from the controller to the switches as possible. In this

case, since the learning switch only needs a single packet from each host (as long as that host does

not move to a different port on the switch), the run-time will indeed install switch-level rules that

forward all subsequent traffic at the switch without having to send it to the contoller.

Queries can also subscribe to streams of traffic statistics. For example, the following query

looks only at web traffic, groups by destination MAC, and aggregates the number of bytes every

60 seconds:

Select(bytes) *
Where(srcport_p(80)) *
GroupBy([dstmac]) *
Every(60)

Queries such as this can be used to implement many monitoring applications. The run-time can

implement them efficiently by polling the counters associated with rules on the switch.

Subscribing to queries is fully compositional—a program can subscribe to multiple, overlap-

ping events without worrying about harmful low-level interactions between the switch-level rules

used to implement them. In addition, the policy for forwarding packets registered in the run-time

does not affect the values sent to the subscribers. In contrast, in OpenFlow/NOX installing a rule

can prevent future packets from being sent to the controller.

6 Frenetic Implementation

Frenetic provides high-level programming abstractions that free programmers from reasoning

about many low-level details involving the underlying switch hardware. However, the need to

deal with these details does not disappear just because the language raises the level of abstraction.

The rubber meets the road in the implementation, which is described in this section.

We have implemented a complete working prototype of Frenetic as an embedded combinator

library in Python. Figure 6 depicts its architecture, which consists of three main pieces: an imple-

mentation of the language itself, a run-time system, and NOX. The use of NOX is convenient but

not essential—we borrow its OpenFlow API but could also use a different back-end.
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Figure 6: Frenetic architecture

6.1 The Run-time System

The core piece of the implementation is the run-time system, which sits between the high-level

Frenetic program and NOX. The run-time system manages all of the bookkeeping related to in-

stalling and uninstalling rules on switches. It also generates the necessary communication pat-

terns between switches and the controller.

6.1.1 Enforcing Language Abstractions

The Frenetic run-time is responsible for actually enforcing the high-level language features using

the primitive OpenFlow rules and NOX API. Specifically, the run-time system must enforce the

see-every-packet abstraction and compositionality between Frenetic programs. While the Sub-

scribe queries defined in Section 5 ensure that a particular Frenetic program can be implemented

on an OpenFlow enabled switch, these queries do not prescribe a particular implementation strat-

egy for enforcing the above features. The primitive match and forward operations provided by

the OpenFlow API will be insufficient, in general, to ensure that the high-level language features

are enforced. Therefore, some degree of involvement by the controller will be required to enforce

these features, but an implementation that requires every packet to be processed at the controller

is unacceptable.

Using the information provided to the run-time by the Frenetic programs, we can define a
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clear compositional semantics for programs and ensure that every program can still make use of

the see-every-packet abstraction. For each program, a set of packet subscribers and statistics sub-

scribers are defined by the subscribe queries. The subscribers articulate to the run-time the set of

all packets and statistics required for a particular program. By taking the union of all suscribers

over all programs, the run-time knows all packets that must be delivered to the controller and all

statistics that must be collected. The run-time system can now enforce the language guarantees

by ensuring that no rule is installed in a switch that would prevent any packet subscriber from

receiving its matching packets at the controller. For statistics subscribers, the run-time system

can begin to push work away from the controller by leveraging the built-in counters at OpenFlow

switches. Therefore the run-time should install rules in the switches to collect statistics for the

desired traffic provided that the rules do not interfere with any other packet subscriber. Traffic

that is not a member of either of these two sets can safely be forwarded at the switches without

any involvement by the controller and without violating our language guarantees. Unlike Fre-

netic programmers who can focus solely on what their programs do, we must now consider how

we install rules in the network switches based on these guidelines.

6.1.2 Implementation Strategy

Typically, network programs are written in either a proactive or reactivemanner. In the former case,

a switch is populatedwith a given set of rules in advance and in the latter case, a switch starts with

an empty flow table, consults the controller on any packet for which it has no matching flow table

entry, and populates its flow table based on the controller’s response. When populating these

flow tables, network programmers can install either wildcard or microflow rules. Microflow rules

specify an exact match of all OpenFlow supported header fields while wildcard rules leave some

subset of header fields unconstrained to match any value. Since enumerating a set of switch-

level rules in advance for all possible microflow combinations is difficult and space-inefficent,

proactive approaches typically make use of wildcard rules. Reactive network programs often em-

ploy microflow style rules in order to make forwarding decisions at the finest level of granularity

supported by OpenFlow. While these conventions pervade many OpenFlow applications in the

literature, there is no restriction to adhere to them. For example, one could imagine a reactive

program that installs wildcard rules.
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While using proactive rules would allow us to keep more traffic in the high-speed dataplane

and, consequently, provide better network throughput, we focus on a reactive, microflow based

run-time for the initial prototype. This approach follows the implementation of Ethane [7] and

many other OpenFlow-based applications [11, 14], and is well-suited for dynamic settings. More-

over, microflow rules can use the plentiful conventional memory (e.g., SRAM) many switches

provide for exact-match rules, as opposed to the small, expensive, power-hungry Ternary Content

Addressable Memories (TCAMs) needed to support wildcard matches. Still, wildcard rules are

more concise and well-suited for static settings. We plan to develop a more proactive, priority-

based wildcard approach as part of Frenetic’s run-time in the future. Longer term, we plan to

extend the run-time to choose adaptively between exact-match and wildcard rules, depending on

the capabilities of the individual switches in the network.

6.1.3 Reactive, Microflow Run-time Architecture

Currently, our implementation translates the high-level forwarding policy installed in the run-

time into microflow rules at the switch. To accomplish this translation without violating the lan-

guage guarantees as described above, the run-time maintains several global data structures:

• rules, a set of high-level rules that describe the current packet-forwarding policy,

• flows, a set of low-level rules that are currently installed on the switches in the network, and

• subscribers, a set of tuples of the form (q, e, cs, rs) where q is the query that defines the sub-

scriber, e is the event for that subscriber, cs tracks byte and packet counts, and rs is a set of

identifiers for outstanding requests for statistics,

The run-time can be partitioned roughly into three parts: the data structures described above,

a packet-processing pipeline and a statistics monitoring facility. Figure 7 shows the architecture

of the run-time systemwhichwe nowdescribe in detail. At the start of the execution of a program,

the flow table of each switch in the network is empty, so all packets are sent up to the controller and

passed to the packet_in handler. Upon receiving a packet, the run-time system iterates through

the set of packet subscribers and propagates the packet to each subscriber whose defining query

depends on being provided with this packet. Next, the run-time consults the forwarding policy
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Figure 7: Frenetic Run-time System Architecture.

and collects the list of actions specified from all rules that the packet matches. Finally, it pro-

cesses the packet in one of two ways: if the packet matched no registered packet subscribers, then

the run-time installs a microflow rule that processes future packets with the same header fields

on the switch. Alternatively, if the packet did match any registered packet subscriber, then the

run-time sends the packet back to the switch and applies the actions there, but does not install a

rule, as doing so would prevent future packets from being sent to the controller. In the case of a

packet subscriber containing a Limit(n) clause in the defining query, once the n packets have been

received, this query is no longer considered an active packet subscriber. In effect, this strategy dy-

namically unfolds the forwarding policy expressed in the high-level rules into switch-level rules,

moving processing off the controller and onto switches in a way that does not interfere with any

subscriber.

The run-time uses a different strategy to implement statistics subscribers, using the byte and

packet counters maintained by the switches to calculate the values. The run-time system executes

a loop that waits until the interval for a statistics subscriber has elapsed. At that point, it traverses
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function packet_in(packet, inport)
isSubscribed := false
actions := []
for (query, event, counters, requests) ∈ subs do

if query.matches(packet.header) then
event.push(packet)
isSubscribed := true

for rule ∈ rules do
if (rule.pattern).matches(packet.header) then

actions.append(rule.actions)
if isSubscribed then

send_packet(packet, actions)
else

install(packet.header,DEFAULT,None, actions)
flows.add(packet.header)

function stats_in(xid, ps, bs)
for (query, event, counters, requests) ∈ subs do

if requests.contains(xid) then
counters.add(ps, bs)
requests.remove(xid)
if requests.is_empty() then

event.push(counters)

function stats_loop()
while true do

for (query, event, counters, requests) ∈ subs
do

if query.ready() then
counters.reset()
for pattern ∈ flows do

if query.matches(pattern) then
xid := stats_request(pattern)
requests.add(xid)

sleep(1)

Figure 8: Frenetic run-time system handlers

the flows set and issues a request for the byte and packet counters from each switch-level rule

whose pattern matches the query, adding the request identifier to the set of outstanding requests

maintained for this subscriber in subscribers. The stats_in handler receives the asynchronous

replies to these requests, adds the byte and packet counters to the counters maintained for the

subscriber in subscribers, and removes the request identifier from the set of outstanding requests.

When the set of outstanding requests becomes empty, the run-time pushes the counters, which

now contain the correct statistics, onto the appropriate subscriber’s event stream.

Figure 8 gives pseudocode for the NOX handlers used in the Frenetic run-time system. These

algorithms describe the basic behavior of the run-time, but elide some additional complications

and details that the actual implementation has to deal with such as maintaining accurate counters

across rule-set changes and spurious packets sent to the controller due to race conditions between

the receipt of a message to install a rule and the arrival of the packet at the switch.

6.2 Combinator Library

The other major piece of the Frenetic implementation is the library of FRP operators themselves.

This library defines representations for events, event functions, and listeners, as well as each of the

primitives in Frenetic including Lift, Filter, LoopPre, etc. Unlike classic FRP implementa-
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tions, which support both continuous streams called behaviors and discrete streams called events,

Frenetic focuses almost exclusively on discrete streams. This means that the pull-based strategy

used in most previous FRP implementations, which is optimized for behaviors, is not a good fit

for Frenetic. Instead, our FRP library uses a push-based strategy to propagate values from input

to output streams.

7 Experiments

In Section 5 we described Frenetic programs that made use of subscribe queries to communicate

to the run-time what data the programs required from the network. In Section 6 we described the

current implementation of the run-time system that can enforce the language guarantees while

keeping traffic in the high-speed dataplane whenever possible. Now we seek to evaluate our

design and current protype by comparing Frenetic programs with programs written with the

pure NOXAPI only. We implemented several simple applications in Frenetic and compared them

against equivalent NOX programs on three metrics: lines of code, traffic to controller, and aggre-

gate traffic. The lines of code metric gives a measure of the complexity of each program, as well as

the savings from code reuse when modules are composed. The controller trafficmeasures the total

amount of communication between the switch and controller, which quantifies the overhead of

managing switch-level rules using a run-time system. Finally, the aggregate trafficmetric measures

the total amount of traffic on every link in the network.

Setup We ran the experiments using theMininet virtualization environment [18] on a Linux host

with a 2.4GHz Intel Core2 Duo processor and 2GB of RAM. Although Mininet cannot provide

performance fidelity, it does give accurate measurements of the volume of traffic flowing through

the network. In each microbenchmark, we use a very simple virtual network topology consisting

of a single network switch, four network hosts, and in the web statistics benchmark, a single web

server.

Microbenchmarks. We compared the performance of Frenetic against NOX using microbench-

marks consisting of some monitoring component and some forwarding component:

25



• All-Pairs Connectivity: each host sends and receives ICMP (ping) packets to/from all other

hosts. This benchmark tests whether the forwarding policy establishes basic connectivity. In

this base case, there actually is no monitoring component and the microbenchmark merely

executes the underlying forwarding policy.

• Web Statistics: each host generates a single request to a web server and the controller mon-

itors the aggregate HTTP traffic every five seconds. This tests the performance of simple

monitoring—a common network administration task.

• Heavy Hitters: each host sends and receives ICMP packets to/from a variety of other hosts

in the network. The controller collects per-host statistics and reports the top-k traffic sources.

This illustrates a more sophisticated monitoring application.

Note that none of these microbenchmarks specify the underlying policy used to forward pack-

ets in the network. We ran each microbenchmark using several different policies:

• Hub: The hub (HUB) policy floods packets received on one port out on all other ports, except

the port the packet arrived on.

• Learning Switch: The learning switch (LSW) policy dynamically learns the association be-

tween hosts and ports as it sees traffic. It floods packets to unknowndestinations but outputs

packets to known hosts on the port the host is connected to.

• Loop-Free Learning Switch: The loop-free learning switch (LFL) learns the host-port map-

ping and alsomonitors the network topology and calculates aminimum spanning tree. This

avoids forwarding loops when flooding packets.

We measured lines of code (up to 80 characters of properly-indented Python, excluding non-

essential whitespace) as well as the total amount of controller traffic—control messages, switch

responses, and whole packets sent to the controller on flow-table misses.

Results The results of our experiments are given in Table 1. They demonstrate a few key points.

First, on these benchmarks, Frenetic performs comparably with hand-written NOX programs de-

spite being implemented using a run-time system. Second, Frenetic provides substantial code
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Connectivity Heavy Hitters Web Stats
HUB LSW LFL HUB LSW LFL HUB LSW LFL

NOX Lines of Code 20 55 75 110 198 104 135
Controller (kB) 8.8 9.7 22.2 8.4 10.7 ? 7.5 7.1 ?
Aggregate (kB) 65.3 38.5 56.9 145.1 78.4 31.8 17.0

Frenetic Lines of Code 6 30 58 29 53 81 13 37 65
Controller (kB) 8.8 11.8 12.4 10.8 11.8 12.3 5.8 6.8 7.4
Aggregate (kB) 65.3 40.6 41.2 149.3 80.4 86.3 32.4 18.3 18.8

Table 1: Experimental results.

savings to the network programmer. In particular, Frenetic’s compositional semantics allowed

us to easily compose the monitoring modules with each of the forwarding policies—the size of

each composition is exactly the sum of the sizes of the inputs (the monitoring queries for Web

Stats and Heavy Hitters are 23 and 7 lines, respectively)—unlike the NOX programs, which had

to be manually refactored to correctly implement each version of the microbenchmark.1 Finally,

the aggregate traffic statistics for LFL demonstrate that by using Frenetic, programmers can write

sophisticated network programs that actually consume less network capacity than hand-written

NOX programs. The reason for this difference is that the Frenetic LFL dynamically reacts to net-

work events while the NOX version uses periodic polling to discover the network topology, which

produces more total traffic on the network.

These microbenchmarks demonstrate that Frenetic’s run-time system achieves adequate per-

formance in some common scenarios. Of course, they are far from comprehensive. There are

certainly many situations where Frenetic’s run-time system does not perform as well as hand-

written NOX programs—e.g., when the optimal implementation of the forwarding policy uses

wildcard rules. We plan to investigate other strategies for implementing the run-time system in

the future.

Scalability Experiments. For eachmicrobenchmark, we also conducted a scalability experiment

to evaluatewhether Frenetic programswould continue performing comparably toNOXprograms

as the number of hosts in the network grows. In each experiment, we used a single switch running
1In fact, refactoring the benchmarks to use the loop-free learning switch was sufficiently difficult that we did not com-

plete it, despite the fact that NOX provides a topology module and we had already implemented hub and learning switch
versions of the benchmarks.
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Figure 9: Scalability results.

the learning switch forwarding policy, but scaled the number of hosts up from 4 to 50. The results

in Figure 9 confirm that Frenetic performance scales comparably—and inmany cases better than—

NOX. We hypothesize a simple reason for this difference: a common NOX idiom, which we used

in our implementations of theNOXbenchmarks, is to install ruleswith timeouts. This ensures that

rules “self-destruct” without the programmer having to perform extra bookkeeping to remember

all of the installed rules. However, such timeouts result in additional packets being sent to the

controller, both in flow_removed messages and for subsequent flow setups. In contrast, Frenetic’s

run-time system reacts to changes in the forwarding policy and manages the set of installed rules

automatically, obviating the need for such timeouts.

Additionally, we explored how increasing the number of hosts affects the aggregate traffic on

the network. Figure 10 shows that while some microbenchmarks saw signficant savings over the

pure NOX versions, others saw little to no change. However, we again see that as the network

grows in number of hosts, Frenetic programs do not scale worse than NOX versions.

Controller Throughput. We also ran an experiment tomeasure the performance of the run-time

system itself. Because the run-time processes the first packet in every flow, the overall throughput

of the network is roughly proportional to the maximum throughput of the controller. We mea-
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Figure 10: Aggregate Traffic scalability results.

sured the throughput of the controller in terms ofmaximum flowmodifications per second (fmods/sec)

using the Cbench tool [5] from the OFlops suite. CBench measures the maximum number of in-

structions the controller can issue to switches in response to packets received. We compared NOX

to the current, unoptimized Frenetic prototype both running a repeater hub. Frenetic performs at

85% of the peak throughput obtained using NOX. In the future, we expect we will be able to close

this gap by optimizing the run-time. However, this result suggests that our current, unoptimized

prototype already provides the benefits of a high-level language at a reasonable cost.

8 Case Studies

This section describes four more substantial network applications we have developed using Fre-

netic: the first two are applications that implement conventional network functionality while the

latter two are more novel applications that make use of Frenetic’s high level language features.

8.1 Centralized ARP Server

TheAddress Resolution Protocol (ARP) determines the network adapter address (MAC) of a given

IP address in a broadcast local-area network (LAN). This protocol is integral to the proper oper-

ation of modern local-area networks. However, the broadcast nature of the protcol limits the size

to which local-area networks can grow as the amount of broadcast traffic overwhelms the net-

work [12]. A centralized ARP server can help mitigate the scalability problems by storing these

bindings for clients and responding to requests itself thereby suppressing some broadcast traffic.
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Figure 11: ARPd Functional Description. The confluence and divergence of arrows on a module
in the diagram imply Merge and Split operations, respectively.

ARP Operation Clients resolve IP addresses by sending broadcast requests on the LAN and lis-

tening for responses indicating which physical address on the network possesses the given IP ad-

dress. Once resolved, clients maintain a cache that maps IP addresses to MAC addresses and

refresh this data after a given timeout expires by simply reissuing the query.

Module Description Figure 11 shows the functional description of the arpd module. In general,

Frenetic modules consist of relatively few primary event streams or sub-modules which expose

some functionality that might be desirable for other modules to have access. This application is

relatively simple and consists of a single public event stream bindings and amain function to run the

application in stand-alone mode using this event stream. Running an application in stand-alone

mode means that the application’s public event streams will not be used in some other module

and the application’s main module should describe (or call anothermodule to describe) all desired

network functionality.

The bindings module registers a query for all ARP traffic in the network, the results of which

are subsequently sent to the processPacket lifted function. This function parses the ARP packet

and determines whether it is a response or a request. This function also maintains a mapping of
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the current IP to MAC bindings in the network by looping its output value back on its input using

LoopPre. This function broadcasts requests out all switch ports when it does not know the MAC

of the requested address, but returns the stored mapping otherwise. This application reduces the

broadcast ARP traffic on the network and allows other Frenetic applications to make use of the

current bindings as a publicly available event stream.

Themainmodule simply consumes the output of bindings anddisplays all known IP,MACpairs

on the console. The main module also calls (not depicted above) the learning_switch.main submod-

ule to serve as a forwarding policy when the application is run in stand-alone mode. Thus, a

programmer could use the output of bindings as an input to another distinct module (as demon-

strated later in the memcached application), or run the arpd module as a standalone application.

Limitations Currently, thismodule does not handle network dynamics and assumes static hosts.

However, this more complicated program would be a straightforward extension of this program

and easily implemented using the Frenetic language.

8.2 Dynamic Host Configuration

End-host configuration through the Dynamic Host Configuration Protocol (DHCP) has become a

staple of modern network management because users demand the simplicity of “plug-and-play”

connectivity. However, the policies that network managers use to determine how hosts are con-

figured have become increasingly complex in recent years. While several commercial and free

software solutions solve this problem, creating a Frenetic program that provides this function-

ality allows network managers to compose any other arbitrary network logic with the module

to create custom dynamic configurations not possible with existing software solutions. Addition-

ally, network operators can use the output (the set of current leases) of the DHCPmodule to create

entirely new functionality unrelated to end-host configuration.

TheDHCPProtocol Clients sendDHCP requests to awell-known service on a broadcast address

asking for configuration data. If available, a DHCP server answers this request with an offer of

host configuration data and the client then confirms receipt and acceptance of the configuration.

A DHCP server offers clients an IP address, subnet mask, default gateway, and other optional
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Figure 12: DHCPd Functional Description.

configuration instructions. The DHCP server draws this configuration from an operator-defined

client pool and must maintain state about which addresses in the pool have already been leased to

clients to avoid duplicating assignments.

Module Description Figure 12 shows the functional description of the dhcpd module which

consists of two public sub-modules: leases and main. The leases event stream yields a Dict E con-

taining the set of current leases indexed by client MAC address. The main sub-module simply

takes as input the output from the leases module and prints that stream to the console.

Within the leases module, we start by subscribing to a query for DHCP requests which pro-

duces a stream of type packet E. We then parse packets of the event stream through two lifted

functions to extract the DHCP packet from the raw frame and check for validity of the request.

Valid DHCP requests are then passed to the processPacket function which maintains state about

leases in the network and outputs the current leases indexed by client MAC address as well as an

optional packet object for sending the response to the client. This stream is then split and the lease

dictionary is returned as the output of this sub-module and the packet object is consumed by the

NOXSend L which outputs the packet out of a switch to the client.
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Limitations Currently, the DHCP module only responds to a subset of the entire DHCP proto-

col, and does not support many DHCP/BOOTP options but this is not a limitation inherent to the

design of the module, but only in the implementation of the additional functionality.

8.3 Parameterized Load Balancer

Load balancing is a common network administration task wherein all client requests for a single

service are balanced across some set of replicas (typically a web server) according to a given statis-

tic — e.g., outgoing load, incoming load, server utilization, etc. The statistic and function (such

as simple round-robin or minimal load) on which this balancing occurs can change over time and

a generalized load balancer that can perform a variety of balancing strategies would reduce the

time required to change strategies from hours to minutes.

Module Description Figure 13 shows the functional description of the module. The load bal-

ancer first registers two queries with the run-time: one query that listens for new client requests

received, and one that queries the load on some configurable set of replica ports on a switch. The

module combines the load querywith the input from portstatus in theUpdate event functionwhich
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outputs an updated set of available replica ports and the current load on them. The Balance event

function takes a single parameter f which is a configurable balancing function that returns the

next output port for the appropriate replica that should be used. This function is then applied to

each of the packets yielded from the query for client requests and the replica port loads provided

by Update. The MakeRule event function then transforms the packet and output port generated

by Balance into an updated network forwarding policy which is subsequently registered with the

run-time system.

Limitations This module is currently written only for a single switch and only accounts for fail-

stop network dynamics, which assumes that the only type of failure for a replica is a hard shut-

down.

8.4 Routing Requests to Memcached Servers

Memcached [2] is a distributed key-value store used bymany online services to cache data objects

in memory. In a typical usage scenario, a collection of memcached servers handles get and set re-

quests from clients, with the keyspace partitioned evenly across the servers. The current version

of theMemcached application configures a static set of servers at each client, a restriction that pre-

vents services from automatically adapting to new servers becoming available or existing servers

failing. Ideally, a memcached cluster would automatically adjust the partitioning of the keyspace

to account for server load and failure.

TraditionalMemcachedOperation Figure 14 shows an example topology inwhichmemcached

might be deployed. A back-end set of servers runs the memcached service on a particular port. In

order to initialize, the memcached client must specify the list of servers to which it is connecting

by IP address. Once initialized, the client routes get and set requests for a key to the appropri-

ate server in this list according to some partitioning strategy. However, each time the server set

changes, each client must reinitialize with the new set of servers. Memcached is a well-known ap-

plication heavily used by online-service providers and a network solution that integrated off-the-

shelf memcached clients and servers but could handle server churn would be a welcome addition

to any online service provider.
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Dynamically Adjusting the Server Set We developed a novel solution to this problem in Fre-

netic that adapts dynamically to server churn by introducing a layer of indirection between the

clients and servers. When configuring the memcached client, we specify a list of virtual addresses

(vid) as opposed to the actual physical addresses (pid) of the servers. A centralized network con-

troller dynamically assigns the set of vids to the currently available subset of backend servers

(pids). The controller then subsequently installs OpenFlow rules in a switch that rewrite mem-

cached requests to a particular vid with the actual pid of the server. When the set of available

servers changes, the controller dynamically remaps the set of vids onto the new set of pids and

changes the OpenFlow rules accordingly. Since this solution works entirely in the network and

the list of vids to which the client connects never changes, completely unmodified clients and

servers can be used.

Module Description Figure 15 depicts the high-level structure of the Frenetic Memcached ap-

plication. The dhcpd module at the top left of the figure was described in the previous section and

provides the stream of type Dict E containing the current leases as input to memcache.main. This

dictionary contains tuples of the form form (m, p, a), where m is a MAC address, p is a physical

switch port, and a is the IP address leased tom.

The module portstatus at the top center monitors PortChange E events and produces an event

streamwith sets of active physical ports. This event stream ismergedwith theDHCP event stream

and the result is supplied to the MakeState function. This function reconciles the set of known
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servers (from dhcp_server) with the set of active ports (from portstatus) and generates a single data

structure that contains the current network state and set of available servers.

The current network state is then provided to the MakePartitions function which creates and

adjusts the mapping between virtual and physical addresses. This module must avoid unneces-

sary disruption to the keyspace when the mapping of vids to pids changes. Therefore, this module

must maintain state about the current partitioning to avoid remapping vids unaffected by a par-

ticular network event.

The module MakeRules then converts the event with the current partitioning into a set of rules

that will rewrite vids to pids and vice versa. Rewriting vids to pids is straightforward since there is

a many-to-one mapping. However since each pid could (and will) have multiple vids mapped to

it, there is no way to install a set of OpenFlow level rules that matches only on the source pid and

correctly rewrites packets for each different vid mapped to that pid. Consequently, SaveLastVid

remembers the last vid requested for each pid and only installs that return-path rule.

The CombineRules then merges the stream of modification rules with the stream of forwarding

rules provided from the learning_switch.rules module and registers this resultant rule set with the
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run-time through the Register listener.

Limitations This module currently assumes a fail-stop failure model, however, our design per-

mits a straightforward extension by adding a heartbeat mechanism to cope with soft failures. For

instance, amodule such asCheckServers could be interposed betweenMakeState andMakePartitions

that sends heartbeat messages and subscribes to heartbeat responses. Because Frenetic supports

a compositional style of programming, we believe this extension should be easy to integrate into

our existing application.

9 Related Work

Frenetic’s event functions are modeled after functional reactive languages such as Yampa and

others [25, 10, 26, 23]. Its push-based implementation is based on FrTime [8] and is similar to self-

adjusting computation [6]. The key differences between Frenetic and these previous languages are

in the application domain and in the design of our query language and run-time system, which

uses the capabilities of switches to avoid sending packets to the controller. The Flask [21] language

applies FRP in a staged language to assemble efficient programs for sensor networks.

Themost similar language to Frenetic is Nettle [28]. Nettle is also based on FRP, but it operates

at a different level of abstraction than Frenetic: Nettle is an effective substitute for NOX; Frenetic,

in contrast, sits on top of NOX, and, in the future, could potentially sit on top of Nettle. In other

words, Nettle is designed to issue streams of (low-level) OpenFlow commands directly; it does

not have any analogue of Frenetic’s run-time system or its support for composition of possibly

overlapping modules.

Another related language is NDLog, which has been used to specify and implement routing

protocols, overlay networks, and services such as distributed hash tables [20, 19]. NDLog differs

from Frenetic in that it is designed for distributed systems (rather than a centralized controller)

and is based on logic programming. Also based on logic programming, FML focuses on spec-

ifying policies such as access control in OpenFlow networks [16]. Finally, the SNAC OpenFlow

controller [4] provides a GUI for specifying access control policies using high-level patterns sim-

ilar to the ones we have developed for Frenetic. However, SNAC provides a much less general
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Figure 16: Comparison of run-time switch ruleset reconciliation strategies.

programming environment than Frenetic.

One of the main challenges in the implementation of Frenetic involves splitting work between

the (powerful but slow) controller and the (fast but limited) switches. A similar challenge appears

in the implementation of Gigascope [9], a stream database for monitoring networks. However,

Gigascope is less expressive than than Freneticas it only supports querying traffic and cannot be

used to control the network itself.

10 Conclusions and Future Work

This paper describes the design and implementation of Frenetic, a new language for program-

ming OpenFlow networks. Frenetic addresses some serious problems with the OpenFlow/NOX

platform by providing a high-level, compositional, and unified programming model. It includes

a collection of operators for transforming streams of network traffic, and a run-time system that

manages the switch-level rules.

The experiments from Section 7 demonstrate that a highly unoptimized run-time system can

compete comparably with programs written without the benefits of a run-time system. How-

ever, these results expose only one set of myriad design choices that we have made in the current

prototype implementation. For instance, one such design decision we call the rule reconciliation

strategy. Whenever the high-level forwarding policy changes, the switch-level rules installed may

now contain stale actions. The run-time must then decide how to update the switches in the net-

work. In the evaluated implemenation, we employ a “nuclear” option that simply empties all

switch flow tables and allows normal network operation to rebuild them from scratch. Such an
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option would certainly interrupt traffic on active network flows and would result in some retrans-

mission of data. Another optionmight be to reconcile the rules and repopulate the entire flow table

with (potentially) updated actions.

Figure 16 shows a subset of the microbenchmarks executed using the nuclear and reconcile

strategies. We see that that the reconcile strategy causes additional communication between the

controller and the network switches. However, our microbenchmarks do not contain long-lasting

flows which would fully expose the problematic retransmission described above. We do see from

this small example that the current design of the run-time system is hardly cemented and a more

exhaustive analysis of the design and implementation of a network run-time system is warranted.

Specifically, investigating the tradeoffs between network load, controller throughput, and update

consistency across the network will require a much more thorough analysis on a physical testbed

where experiments can be run with true performance fidelity.

In addition to maturing the run-time system, we are working to extend Frenetic in several

directions. We are developing additional applications for a variety of common network tasks in-

cluding fault-tolerant path computation, authentication and access control, and a framework in-

spired by FlowVisor [27] for ensuring isolation between programs. We are developing a front-end

and an optimizer that will transform programs into a form that can be efficiently implemented on

the run-time system. We are exploring a proactive strategy that eagerly generates rules based on

the subscribers and forwarding policy and plan to compare the tradeoffs between rule generation

strategies empirically. Finally, we aim to extend Frenetic’s programmatic control of network ele-

ments beyondOpenFlow switches all theway to the end-hosts and, ultimately, to network services

operated by groups of end-hosts.
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A Frenetic Program Source Code

Licence Although this header is not repeated in each source listing, each of the following source

files contain code licensed under the following terms:
################################################################################
# The Frenetic Project #
# frenetic@frenetic-lang.org #
################################################################################
# Licensed to the Frenetic Project by one or more contributors. See the #
# NOTICE file distributed with this work for additional information #
# regarding copyright and ownership. The Frenetic Project licenses this #
# file to you under the following license. #
# #
# Redistribution and use in source and binary forms, with or without #
# modification, are permitted provided the following conditions are met: #
# - Redistributions of source code must retain the above copyright #
# notice, this list of conditions and the following disclaimer. #
# - Redistributions in binary form must reproduce the above copyright #
# notice, this list of conditions and the following disclaimer in #
# the documentation or other materials provided with the distribution. #
# - The names of the copyright holds and contributors may not be used to #
# endorse or promote products derived from this work without specific #
# prior written permission. #
# #
# Unless required by applicable law or agreed to in writing, software #
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT #
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the #
# LICENSE file distributed with this work for specific language governing #
# permissions and limitations under the License. #
################################################################################
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A.1 Centralized ARP Server - arpd.py
1 import nox.coreapps.examples.frenetic_util as util
2 import time as time
3 import nox.lib.openflow as openflow
4 from nox.coreapps.examples.frenetic_lib import *
5 from nox.coreapps.examples.frenetic_net import *
6 from nox.lib.packet.ethernet import ethernet
7 from nox.lib.packet.ipv4 import ipv4
8 from nox.lib.packet.arp import arp
9 from nox.lib.packet.packet_utils import *

10 from logging import getLogger
11

12 import learning_switch
13

14 log = getLogger(’arpd’)
15

16 # build_arp_reply : NOXPacket * MAC -> NOXPacket
17 # Construct an ARP reply based on on a request and a MAC in the NOX
18 # Packet format.
19 def build_arp_reply(req,srcmac):
20 reply = arp()
21 (reply.hwdst, reply.protodst, reply.hwsrc, reply.protosrc
22 ) = (req.hwsrc, req.protosrc, octstr_to_array(srcmac), req.protodst)
23 (reply.hwtype, reply.hwlen, reply.prototype, reply.protolen, reply.opcode
24 ) = (reply.HW_TYPE_ETHERNET, 6, reply.PROTO_TYPE_IP, 4, reply.REPLY)
25 frame = ethernet()
26 (frame.dst,frame.src,frame.type) = (req.hwsrc,
27 octstr_to_array(srcmac), ethernet.ARP_TYPE)
28 frame.set_payload(reply)
29 return frame
30

31 # arp_reply : Packet * NOXARPRequest * MAC -> Packet
32 # Construct an ARP reply based on a request and a MAC in the
33 # Frenetic Packet object format
34 def arp_reply(packet,request,srcmac):
35 f = build_arp_reply(request,srcmac)
36 return packet_of_raw_packet(switch(header(packet)),
37 inport(header(packet)), f, len(f.tostring()))
38

39 # extractARP : Packet -> Packet * NOXARPPacket
40 # Extracts an ARP packet in NOX format from a Frenetic Packet object
41 def extractARP(packet):
42 pkt = packet.payload
43 d = None
44 if pkt.parsed:
45 d = pkt.find(’arp’)
46 return d
47

48 # extractARPType : (ARPType * NOXPacket) -> NOXARPPacket option
49 # Extracts ARP packets of a given type
50 def extractARPType(typ,pkt):
51 arpkt = extractARP(pkt)
52 if arpkt is None:
53 return None
54 else:
55 if ((arpkt.prototype == arpkt.PROTO_TYPE_IP) and
56 (arpkt.opcode == typ)):
57 return arpkt
58 else:
59 return None
60

61 # extractRequest : (NOXPacket) -> NOXARPPacket option
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62 # Extracts ARP requests only from NOX Packets
63 def extractRequest(pkt):
64 return extractARPType(arp.REQUEST,pkt)
65

66 # extractResponse : (NOXPacket) -> NOXARPPacket option
67 # Extracts ARP replies only from NOX packets
68 def extractReply(pkt):
69 return extractARPType(arp.REPLY,pkt)
70

71 # fwd_arp_request : switch * port * Packet -> Packet
72 # Generate a Frenetic packet object for output
73 def fwd_arp_request(sw,p,pkt):
74 return packet_of_raw_packet(sw,p,pkt.payload, len(pkt.payload.tostring()))
75

76 # iptomac : ip * Dict -> mac
77 # Returns the MAC address bound to the requested IP
78 def iptomac(ip,table):
79 mac = None
80 for (m,(s,i,p)) in table.items():
81 if ip == i:
82 mac = m
83 return mac
84

85 # process : ARPPacket (ARPPacket * AddressBindings Dict) EF
86 # Process a given ARP request and generate a response
87 def processPkt((pkt,(d,last))):
88

89 pktOut = None
90 hdr = net.header(pkt)
91 req = extractRequest(pkt)
92 rep = extractReply(pkt)
93

94 # Received a request
95 # Check table and make a reply
96 if not(req is None):
97 reqip = ip_to_str(req.protodst)
98 srcip = ip_to_str(req.protosrc)
99 mac = iptomac(reqip,d)
100 ##Update ARP Data from Source
101 ##Should probably check fist, but just update for now
102 d[net.srcmac(hdr)] = (net.switch(hdr),srcip,net.inport(hdr))
103 if mac == None:
104 # No record of this host, forward a flood
105 log.info("IP %s NOT FOUND" % reqip)
106 pktOut = fwd_arp_request(net.switch(hdr),openflow.OFPP_FLOOD,pkt)
107 else:
108 log.info("SHORT CIRCUT REPLY to IP %s for IP %s with MAC %s" %
109 (srcip,reqip,mac))
110 pktOut = arp_reply(pkt,req,mac)
111 # Received a reply
112 # Update table and forward
113 elif not(rep is None):
114 srcip = ip_to_str(rep.protosrc)
115 dstip = ip_to_str(rep.protodst)
116 ##Update ARP Data from Source and destination
117 ##Should probably check fist, but just update for now
118 d[net.srcmac(hdr)] = (net.switch(hdr),srcip,net.inport(hdr))
119 ##Lookup output port
120 dstmac = mac_to_str(rep.hwdst)
121 (sw,ip,p) = d[dstmac]
122 pktOut = pkt
123 ## Remember when sending a packet inport is really output
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124 hdr.inport = p
125 pktOut.header = hdr
126 log.info("STORING MAC %s for IP %s" % (net.srcmac(hdr),srcip))
127 return ((d,pktOut),(d,pktOut))
128

129 # bindings : (AddressBindings Dict) E
130 # Returns the current mapping of MAC addresses to switch, and IP address
131 def bindings():
132 # arps : E ARPPacket
133 arps = (Select(’packets’) *
134 Where(ethtype_fp(ethernet.ARP_TYPE)))
135 (d,pkt) = Split(arps >> (LoopPre(({},None), Lift(processPkt))))
136 (pkt >> Filter(lambda x: not(x is None)) >> NOXSendPkt())
137 return d
138

139 # main : unit
140 # Publically accessible function to run as stand-alone application with a
141 # learning forwarding policy
142 def main():
143 learning_switch.main()
144 (bindings() >> Print(">> ")
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A.2 DHCP Server - dhcpd.py
1 import nox.coreapps.examples.frenetic_util as util
2 import time as time
3

4 from nox.coreapps.examples.frenetic_lib import *
5 from nox.coreapps.examples.frenetic_net import *
6 from nox.lib.packet.ethernet import ethernet
7 from nox.lib.packet.ipv4 import ipv4
8 from nox.lib.packet.dhcp import dhcp
9 import nox.lib.packet.packet_utils as putil

10 from array import *
11 from logging import getLogger
12 import random as random
13

14 log = getLogger(’dhcpd’)
15

16 def mip_from_mbits(mb):
17 mip = 0
18 for i in range(31,(32-mb-1),-1):
19 mip = mip | (1 << i)
20 return mip
21

22 def mipstr_from_mbits(mb):
23 return putil.ip_to_str(mip_from_mbits(mb))
24

25 ## CONSTANTS
26 [PENDING_STATE, ACTIVE_STATE] = range(0,2)
27

28 ## TUNABLE PARAMETERS
29 ## Configure the DHCP Pool and Default Gateway
30 POOL = ’172.16.0.0/16’
31 [POOL_NET,POOL_MASKBITS] = POOL.split("/")
32 POOL_GW = ’172.16.0.1’
33 POOL_START = ’172.16.0.2’
34 POOL_END = ’172.16.0.254’
35 POOL_GW_MAC = "00:ff:00:ff:00:ff"
36 # In Seconds
37 LEASE_TIME = 86399
38

39 ## DERIVED PARAMETERS
40 POOL_GW_OFFSET = putil.ipstr_to_int(POOL_GW) - putil.ipstr_to_int(POOL_NET)
41 POOL_MASKBITS = int(POOL_MASKBITS)
42 POOL_MASK = mipstr_from_mbits(POOL_MASKBITS)
43 POOL_START_OFFSET = putil.ipstr_to_int(POOL_START) - putil.ipstr_to_int(POOL_NET)
44 POOL_END_OFFSET = putil.ipstr_to_int(POOL_END) - putil.ipstr_to_int(POOL_NET)
45 POOL_SEED = POOL_END_OFFSET - POOL_START_OFFSET
46

47 ## Helper functions
48 # mip_from_mbits : MaskBits:int -> MaskAddress:ipint
49 def mip_from_mbits(mb):
50 mip = 0
51 for i in range(31,(32-mb-1),-1):
52 mip = mip | (1 << i)
53 return mip
54 # mipstr_from_mbits : MaskBits:int -> MaskAddress:ipstr
55 def mipstr_from_mbits(mb):
56 return putil.ip_to_str(mip_from_mbits(mb))
57

58 # build_dhcp_pkt : Create a DHCP packet with the given parameters
59 def build_dhcp_pkt(m, a, sm, gwip, gwm, xid, msg):
60 # Convert ipstr subnet mask, and gw ip into list of ints
61 sm = map(int,sm.split(’.’))
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62 gwiplist = map(int, gwip.split(’.’))
63 # Create DHCP message
64 dr = dhcp()
65 (dr.op, dr.hlen, dr.magic, dr.xid) = (2,6, dhcp.MAGIC, xid)
66 dr.yiaddr = putil.ipstr_to_int(a)
67 dr.siaddr = putil.ipstr_to_int(gwip)
68 dr.chaddr = putil.octstr_to_array(m)
69 # DHCP Option 53, DHCP Message Type
70 dr.addUnparsedOption(dhcp.MSG_TYPE_OPT, 1, [msg])
71 # DHCP Option 1, Subnet Mask
72 dr.addUnparsedOption(dhcp.SUBNET_MASK_OPT, 4, sm)
73 # DHCP Option 3, router
74 dr.addUnparsedOption(dhcp.GATEWAY_OPT, 4, gwiplist)
75 # DHCP Option 51, lease time
76 dr.addUnparsedOption(dhcp.REQUEST_LEASE_OPT, 4, [0,1,81,128])
77 dr.addUnparsedOption(dhcp.END_OPT,0,[])
78 # Fill the dhcp object arr field
79 dr.arr = dr.tostring()
80 # Create UDP datagram
81 ur = udp()
82 (ur.srcport,ur.dstport, ur.len) = (67,68, (udp.MIN_LEN + len(dr.tostring())))
83 ur.set_payload(dr)
84 # Fill the udp object arr field
85 ur.arr = ur.tostring()
86 # Create IPv4 packet
87 ipr = ipv4()
88 ipr.srcip = putil.ipstr_to_int(gwip)
89 ipr.dstip = putil.ipstr_to_int(’255.255.255.255’)
90 ipr.protocol = ipv4.UDP_PROTOCOL
91 ipr.iplen = ipv4.MIN_LEN + len(ur.tostring())
92 ipr.set_payload(ur)
93 ipr.arr = ipr.tostring()
94 # Calculate checksums now that packets have been filled
95 ipr.csum = ipr.checksum()
96 ur.csum = ur.checksum()
97 # Create ethernet frame
98 er = ethernet()
99 er.dst = putil.octstr_to_array(m)
100 er.src = putil.octstr_to_array(gwm)
101 er.type = ethernet.IP_TYPE
102 er.set_payload(ipr)
103 return er
104

105 # dhcp_offer: (Params) -> Packet
106 # Create a DHCP offer packet based on the given parameters
107 def dhcp_offer(dpid, port, m, a, sm, gwip, gwm, xid):
108 pkt = build_dhcp_pkt(m, a, sm, gwip, gwm, xid, dhcp.OFFER_MSG)
109 return packet_of_raw_packet(dpid, port, pkt, len(pkt.tostring()))
110

111 # dhcp_ack: (Params) -> Packet
112 # Create a DHCP ACK packet based on the given parameters
113 def dhcp_ack(dpid, port, m, a, sm, gwip, gwm, xid):
114 pkt = build_dhcp_pkt(m, a, sm, gwip, gwm, xid, dhcp.ACK_MSG)
115 return packet_of_raw_packet(dpid, port, pkt, len(pkt.tostring()))
116

117 # is_assigned: Leases * IP -> bool
118 # Determine if a given address is bound in the current leases
119 def is_assigned(l,i):
120 for (m,(sw,p,a,s)) in l.items():
121 if a == i:
122 return True
123 return False
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124

125 # set_lease Leases * Switch * MAC * Port * IP -> Leases
126 # Add a binding to the current leases
127 def set_lease(l,sw,m,p,a):
128 l[m] = (sw,p,a, ACTIVE_STATE)
129 return l
130

131 # find_lease: Leases * MAC -> IP option
132 # Lookup the address bound the given MAC
133 def find_lease(l,m):
134 if l.has_key(m):
135 (sw,p,a,s) = l[m]
136 return a
137 else:
138 return None
139

140 # get_pending_lease : Leases * Switch * MAC * Port -> IP
141 # Add a tentative binding to the current leases awaiting confirmation
142 def get_pending_lease(l,sw,m,p):
143 if m in l.keys():
144 (switch, port, addr, status) = l[m]
145 if (sw == switch) and (p == port):
146 return addr
147 else:
148 l[m] = (sw, p, addr, status)
149 return addr
150 else:
151 addr = putil.ip_to_str(putil.ipstr_to_int(POOL_NET) +
152 POOL_START_OFFSET + random.randint(0,POOL_SEED))
153 excluded = map(lambda(xsw,xm,xa,xss):xa, l.values())
154 while addr in excluded:
155 addr = putil.ip_to_str(putil.ipstr_to_int(POOL_NET) +
156 POOL_START_OFFSET + random.randint(0,POOL_SEED))
157 l[m] = (sw,p,addr, PENDING_STATE)
158 return (l,addr)
159

160 # confirm_lease : Leases * MAC -> Leases
161 # Confirm a pending binding in the current leases
162 def confirm_lease(l,m):
163 if m in l.keys():
164 (sw,p,a,s) = l[m]
165 l[m] = (sw,p,a,ACTIVE_STATE)
166 return l
167

168 # extractDHCP : Packet -> (Packet, NOXDHCPPacket option)
169 # Extracts a NOX DHCP packet from a Frenetic packet object
170 def extractDHCP(packet):
171 pkt = packet.payload
172 d = None
173 if pkt.parsed:
174 d = pkt.find(’dhcp’)
175 if not(d.parsedOptions.has_key(dhcp.MSG_TYPE_OPT)):
176 d = None
177 return (packet,d)
178

179 # Predicates on DHCP packet type
180 # d: PARSED and VALID DHCP packet
181 def isDiscover(d):
182 return (d.parsedOptions[dhcp.MSG_TYPE_OPT] == array(’B’,[dhcp.DISCOVER_MSG]))
183

184 def isRequest(d):
185 return (d.parsedOptions[dhcp.MSG_TYPE_OPT] == array(’B’,[dhcp.REQUEST_MSG]))
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186

187 # processRequest : (Packet * Leases) (Leases, Packet) EF
188 # Process the request through the DHCP state machine
189 def processRequest(((packet,d),(leases,z))):
190 pktOut = None
191 dpid = switch(header(packet))
192 (m,p,txid) = (srcmac(header(packet)), inport(header(packet)), d.xid)
193

194 if isDiscover(d):
195 (leases,a) = get_pending_lease(leases,dpid, m, p)
196 log.info("INITIALOFFER %s:%s:%s" % (m,p,a))
197 pktOut = dhcp_offer(dpid,p,m,a,POOL_MASK, POOL_GW, POOL_GW_MAC, txid)
198

199 elif isRequest(d):
200 if d.parsedOptions.has_key(dhcp.REQUEST_IP_OPT):
201 req = putil.array_to_ipstr(d.parsedOptions[dhcp.REQUEST_IP_OPT])
202 a = find_lease(leases,m)
203 if a == None:
204 # No active lease found for this client, but client wants req
205 log.info("NO ACTIVE LEASE FOR CLIENT: %s" % m)
206 if not(is_assigned(leases,req)) and in_network(req, POOL_GW, POOL_MASK):
207 a = req
208 log.info("*REQUESTED IP %s IS AVAILABLE" % req)
209 # req is not assigned to any active lease, so ack
210 leases = set_lease(leases,dpid,m,p,req)
211 pktOut = dhcp_ack(dpid,p,m,req,POOL_MASK, POOL_GW, POOL_GW_MAC,txid)
212 else:
213 # req is already assigned so make new offer
214 (leases,a) = get_pending_lease(leases,dpid,m,p)
215 log.info("*REQUESTED IP %s IS UNAVAILABLE, COUNTEROFFER %s" %
216 (req,a))
217 pktOut = dhcp_offer(dpid,p,m,a,POOL_MASK, POOL_GW, POOL_GW_MAC, txid)
218 elif a == req:
219 log.info("REQUEST FOR %s MATCHES LEASE FOR %s" % (a,m))
220 # Active lease for mac m was found and that lease matches req
221 # Send Ack
222 confirm_lease(leases,m)
223 pktOut = dhcp_ack(dpid,p,m,req,POOL_MASK, POOL_GW, POOL_GW_MAC,txid)
224

225 elif a != req:
226 log.info("REQUEST FOR %s DOES NOT MATCH ACTIVE LEASE FOR %s" % (req,m))
227 log.info("COUNTEROFFER %s WITH CURRENT ENTRY %s" % (m, a))
228 # Active lease for mac m was found, but m requested a different value
229 # Make counteroffer with current lease
230 pktOut = leases,dhcp_offer(dpid,p,m,a,POOL_MASK, POOL_GW,
231 POOL_GW_MAC,txid)
232 else:
233 # Received a request without an IP, make new offer
234 (leases,a) = get_pending_lease(leases,dpid,m,p)
235 pktOut = leases,dhcp_offer(dpid,p,m,a,POOL_MASK, POOL_GW, POOL_GW_MAC,txid)
236 t = (leases,pktOut)
237 return (t,t)
238

239 def validDHCP((p,d)):
240 return not(d is None)
241

242 ## leases : (DHCP Lease Dictionary) E
243 ## Publically accessible event stream carrying the current leases confirmed
244 ## By the DHCP server
245 def leases():
246 dhcp_fp = (ethtype_fp(ethernet.IP_TYPE) & protocol_fp(ipv4.UDP_PROTOCOL) &
247 dstip_fp(’255.255.255.255’, "255.255.255.255") &
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248 srcip_fp(’0.0.0.0’, "255.255.255.255") &
249 dstport_fp(67))
250

251 # dhcp_query : E Packet
252 dhcp_query = (Select(’packets’) * Where (dhcp_fp))
253

254 # Parse and push the query result through the DHCP state machine
255 # outputting the resulting packet
256 (l,p) = Split(dhcp_query >>
257 Lift(extractDHCP) >>
258 Filter(validDHCP) >>
259 LoopPre(({},None),Lift(processRequest)))
260 p >> Filter(lambda x: not(x is None)) >> NOXSendPkt()
261 return l
262

263 ## main : unit
264 ## Publically accessible function to run module as a stand-alone application
265 def main():
266 # Invoke the leases event stream and display the results
267 leases() >> Print(">> ")
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A.3 Parameterized Load Balancer - lb.py
1 import time as time
2 from logging import getLogger
3

4 import nox.coreapps.examples.frenetic_util as util
5 from nox.coreapps.examples.frenetic_lib import *
6 from nox.coreapps.examples.frenetic_net import *
7 import learning_switch
8

9 log = getLogger(’loadbalanced’)
10

11 ## CONFIGURABLE PARAMETERS
12 # Define the switches and ports that contain replicas to be load balanced
13 REPLICA_PORTS = {102:[3,4,5]}
14 SWITCHES = REPLICA_PORTS.keys()
15

16 # Tabulate : (int * int * bool) (Dict) EF
17 # Takes an Event of key,value (switch, port) pairs to an Event of Dictionaries
18 # containing for each key (switch) a port-indexed list of single values
19 def Tabulate():
20 def f(((sw,p,st),d)):
21 if st:
22 if d.has_key(sw):
23 if not(d[sw].has_key(p)):
24 d[sw][p] = 0
25 else:
26 d[sw] = {p:0}
27 else:
28 if d.has_key(sw):
29 if d[sw].has_key(p):
30 del d[sw][p]
31

32 return (d,d)
33 return LoopPre({},Lift(f))
34

35 # FilterRules: int list -> (Rule Dict) (Rule Dict) EF
36 # Takes an Event of Rule Sets and Filters out rules for switches
37 # contained in the list sw.
38 def FilterRules(sw):
39 def f(rs):
40 nrs = {}
41 for k in rs.keys():
42 if k not in sw:
43 nrs[k] = rs[k]
44 return nrs
45 return Lift(f)
46

47 # rr: (Dict * int * Dict) -> int * Dict
48 # For a list of switches, returns the next port to be used in that
49 # switch’s list in a round-robin fashion as well as a dictionary of
50 # state used locally
51

52 def rr(pd,switch,state):
53 if state.has_key(switch):
54 il = REPLICA_PORTS[switch].index(state[switch])
55 length = len(REPLICA_PORTS[switch])
56 op = REPLICA_PORTS[switch][(il+1)%length]
57 else:
58 op = REPLICA_PORTS[switch][0]
59 state[switch] = op
60 return (op,state)
61
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62 # lmin: (Dict * int * Dict) -> int * Dict
63 # For a list of switches, returns the next port to be used in that
64 # switch’s list based on load.
65

66 def lmin(pd,switch,state):
67 op = None
68 for sw in pd.keys():
69 if sw == switch:
70 l = pd[sw].items()
71 l.sort(cmp=lambda (k1,i1),(k2,i2): cmp(i1,i2))
72 ## There are some size/boundary conditions worth thinking about
73 op = l[0][0]
74 if state.has_key(switch):
75 if state[switch] == op:
76 op = l[1][0]
77 state[switch] = op
78 else:
79 state[switch] = op
80 return (op,state)
81

82 # Balance: ((Dict * int * Dict) -> int * Dict) -> (Dict * Packet) (int * Packet) EF
83 # Returns an event function that takes an Event of network state and packets
84 # and returns an Event of output ports and packets
85 def Balance(f):
86 def g(((d,pkt),(state,(pl,pkl)))):
87 sw = switch(net.header(pkt))
88 (outport,state) = f(d,sw,state)
89 return ((state,(outport,pkt)),(state,(outport,pkt)))
90 return (LoopPre(({},(None,None)),Lift(g)) >> Snd())
91

92 # PortStatus : (int list * int list) -> (Dict) E
93 # Takes a list of switches and replica ports and returns a dictionary
94 # of the current network state that is a subset of those switches and ports
95 def PortStatus(sl,pl):
96 s = (PortEvents() >> Filter(lambda pe: portswitch(pe) in sl) >>
97 Filter(lambda pe: portnum(pe) != 65534 and portnum(pe) in pl[portswitch(pe)])
98 >> Lift(lambda pe: (portswitch(pe), portnum(pe), portenabled(pe)))
99 >> Tabulate())

100 return s
101

102 # MakeRule : (int * Packet) E -> (Rule list) E
103 # Takes an event of output ports and packets to an Event of Rules
104 # specifying the forwarding of the flow described by packet
105 def MakeRule():
106 def f((op,pkt)):
107 hdr = net.header(pkt)
108 (client,inp,sw) = (srcip(hdr),inport(hdr),switch(hdr))
109 rules = [Rule(srcip_fp(client) & inport_fp(inp), [forward(op)]),
110 Rule(dstip_fp(client) & inport_fp(op), [forward(inp)])]
111 return (sw,rules)
112 return Lift(f)
113

114 # addRule : (int * Rule list) -> Rule Dict
115 # Accumlator function from switches and rule lists to rule sets
116 def addRule((sw,rl),d):
117 if d.has_key(sw):
118 d[sw] += rl
119 else:
120 d[sw] = rl
121 return d
122

123 # Update : (port Dict * status Dict) (port Dict) EF
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124 # Update the current status of ports in the network with the lastest results
125 # from the stats query
126 def Update():
127 def f((pd,sd)):
128 for (sw,p) in sd.keys():
129 if p in REPLICA_PORTS[sw]:
130 pd[sw][p] = sd[(sw,p)]
131 return pd
132 return Lift(f)
133

134 # CombineRules : (Rule Dict * Rule Dict) (Rule Dict) EF
135 # Combine forwarding rules and modification rules as a simple union
136 def CombineRules():
137 def f((rsa,rsb)):
138 rsc = {}
139 if not(rsa is None):
140 for k in rsa.keys():
141 if rsc.has_key(k):
142 rsc[k] += rsa[k][:]
143 else:
144 rsc[k] = rsa[k][:]
145 if not(rsb is None):
146 for k in rsb.keys():
147 if rsc.has_key(k):
148 rsc[k] += rsb[k][:]
149 else:
150 rsc[k] = rsb[k][:]
151 return rsc
152 return Lift(f)
153

154 # rules : (Rule Dict) E
155 # Public interface to the rules generated by the load balancer
156 def rules():
157 # fp: filter_pattern describing all replica ports on all participating
158 # switches
159 fp = or_fp(map(lambda (k,v):and_fp([switch_fp(k),
160 not_fp(or_fp(map(inport_fp,v)))]), REPLICA_PORTS.items()))
161

162 # q: (Packet) E
163 # All first packets destined for replica ports
164 q = (Select(’packets’) *
165 Where(fp) *
166 GroupBy([’switch’]) *
167 SplitWhen([’srcip’]) *
168 Limit(1) >>
169 Snd())
170

171 # stq: (Dict) E
172 # Status query that generates Dict with keys of (switch * inport) and
173 # values of sizes
174 stq = (Select(’sizes’) *
175 Where(or_fp(map(net.switch_fp,SWITCHES))) *
176 GroupBy([’switch’,’inport’]) *
177 Every(5) >> Identity())
178

179 # s: (Dict) E
180 # Current updated network status based on stats query and network events
181 s = (Snapshot(Hold({},PortStatus(SWITCHES,REPLICA_PORTS)),stq) >> Update())
182

183 # rs: (RuleSet) E
184 # Apply the Balance function to the current network status and most recent
185 # query to a replica port to generate the appropriate rules
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186 rs = (Snapshot(Hold({},s),q) >>
187 Balance(lmin) >> Filter(lambda (op,pkt):not(op is None)) >>
188 MakeRule() >> Accum({},addRule))
189

190 return rs
191

192 # main : unit
193 # Publicly accessible function to run module stand-alone with a default
194 # forwarding policy using the learning switch.
195 def main():
196 l = (learning_switch.rules() >> FilterRules(SWITCHES))
197 (StickyMerge(rules(),l) >> CombineRules() >> Probe(">>") >> Register())
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A.4 Memcached Query Router - memcached.py
1 import nox.coreapps.examples.frenetic_util as util
2 import time as time
3 from nox.coreapps.examples.frenetic_lib import *
4 from nox.coreapps.examples.frenetic_net import *
5 from nox.lib.packet.ethernet import ethernet
6 from nox.lib.packet.ipv4 import ipv4
7 from nox.lib.packet.arp import arp
8 from nox.lib.packet.packet_utils import *
9 from logging import getLogger

10

11 import dhcpd
12 import learning_switch
13

14 log = getLogger(’memcached’)
15

16 ## CONFIGURABLE PARAMETERS
17 CLIENT_PORTS = [1]
18 SERVER_PORTS = range(2,5)
19

20 ## Set of virtual ID’s for the memcache partition
21 ## This is computed offline.
22 vidset = [’172.16.208.31’, ’172.16.124.217’, ’172.16.122.78’, ’172.16.243.69’,
23 ’172.16.58.152’, ’172.16.42.15’, ’172.16.217.100’, ’172.16.160.188’,
24 ’172.16.252.91’, ’172.16.151.40’]
25

26 ## HELPER FUNCTIONS
27

28 # Status : (k,v) Dict EF
29 # Maintains a single get/set value for single key
30 def Status():
31 def f(((k,v),d)):
32 if not d.has_key(k):
33 d[k] = v
34 d[k]=v
35 return (d,d)
36 return LoopPre({},Lift(f))
37

38 # LeftStickyMerge : a E * b E -> (a * b) E
39 # Merges two events such that the last value of a accompanies
40 # any value of b
41 def LeftStickyMerge(e1,e2):
42 def f(((x,y),(xl,yl))):
43 retx = xl if (x is None) else x
44 return ((retx,y),(retx,y))
45 return (Apply(Merge(e1,e2),LoopPre((None,None),Lift(f))))
46

47 # build_arp_reply : NOXPacket * MAC -> NOXPacket
48 # Construct an ARP reply based on on a request and a MAC in the NOX
49 # Packet format.
50 def build_arp_reply(req,srcmac):
51 reply = arp()
52 (reply.hwdst, reply.protodst, reply.hwsrc, reply.protosrc
53 ) = (req.hwsrc, req.protosrc, octstr_to_array(srcmac), req.protodst)
54 (reply.hwtype, reply.hwlen, reply.prototype, reply.protolen, reply.opcode
55 ) = (reply.HW_TYPE_ETHERNET, 6, reply.PROTO_TYPE_IP, 4, reply.REPLY)
56 frame = ethernet()
57 (frame.dst,frame.src,frame.type) = (req.hwsrc,
58 octstr_to_array(srcmac), ethernet.ARP_TYPE)
59 frame.set_payload(reply)
60 return frame
61
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62 # arp_reply : Packet * NOXARPRequest * MAC -> Packet
63 # Construct an ARP reply based on a request and a MAC in the
64 # Frenetic Packet object format
65 def arp_reply(packet,request,srcmac):
66 f = build_arp_reply(request,srcmac)
67 return packet_of_raw_packet(switch(header(packet)),
68 inport(header(packet)), f, len(f.tostring()))
69

70 # extractARP : Packet -> Packet * NOXARPPacket
71 # Extracts an ARP packet in NOX format from a Frenetic Packet object
72 def extractARP(packet):
73 pkt = packet.payload
74 d = None
75 if pkt.parsed:
76 d = pkt.find(’arp’)
77 if d.opcode != arp.REQUEST:
78 d = None
79 return (packet,d)
80

81 # which_pid VirtualIP * PartitionDictionary -> PhysicalIP
82 # Looks up the Physical IP address corresponding to a given virtual IP address
83 # in the current partitioning
84 def which_pid(v,pd):
85 for p in pd.keys():
86 (m,a,vids) = pd[p]
87 if v in vids:
88 return p
89

90 ## PRIMARY SUBMODULES
91

92 # MakeState : (LeasesDict * PortDict) (StateDict) EF
93 # Correlates lease data about physical IPs and MACs with status information
94 # about ports.
95 def MakeState():
96 def f(((dl,dp),state)):
97 # dl : DHCP lease dict, dp: Port status dict
98 # state : is network status table
99 if dp != None:

100 for p in dp.keys():
101 (m,a,s) = (None,None,False)
102 if state.has_key(p):
103 (m,a,s) = state[p]
104 state[p] = (m,a,dp[p])
105

106 if dl != None:
107 for m in dl.keys():
108 (switch,port,addr,dstatus) = dl[m]
109 if state.has_key(port):
110 (mac,a,s) = state[port]
111 if dstatus == dhcpd.ACTIVE_STATE:
112 state[port] = (m,addr,s)
113 return (state,state)
114 return LoopPre({},Lift(f))
115

116 # MakePartitions : (StateDict) (PartitionDict) EF
117 # Creates the partitioning of the vidset onto the
118 # available servers from the network state while
119 # ensuring that only V/k servers are displaced
120 # in any repartitioning event.
121

122 def MakePartitions():
123 def f((state,last)):
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124 (added,lost,next) = ({},{},{})
125 for p in state:
126 (m,a,s) = state[p]
127 if s and (a != None):
128 if not(a in last.keys()):
129 added[a] = (m,p,[])
130 else:
131 next[a] = last[a]
132 elif (a != None):
133 if (a in last.keys()):
134 lost[a] = last[a]
135 ## Assuming that only one node is
136 ## lost or added at any one event
137 knext = len(next) + len(added)
138 klast = len(last)
139 if len(added) > 0:
140 if klast > 0:
141 n = (len(vidset)//knext)
142 for a in added.keys():
143 (m,p,v) = added[a]
144 while len(v) < n:
145 for k in next.keys():
146 (mk,pk,vk) = next[k]
147 v.extend(vk[len(vk)-1:])
148 next[k] = (mk,pk,vk[:-1])
149 next[a] = (m,p,v[:])
150 else:
151 for a in added.keys():
152 (m,p,v) = added[a]
153 next[a] = (m,p,vidset[:])
154 elif len(lost) > 0:
155 if knext > 0:
156 for a in lost.keys():
157 (m,p,v) = lost[a]
158 while len(v) > 0:
159 for k in next.keys():
160 (mk,pk,vk) = next[k]
161 vk.extend(v[:1])
162 next[k] = (mk,pk,vk[:])
163 v = v[1:]
164 return (next,next)
165 return LoopPre({},Lift(f))
166

167 ## MakeRules : (int list * int list) -> (Partition Dict * VID list) (Rules Dict) EF
168 ## Generates the set of rewriting rules that correspond to the current mapping
169 ## of vids to pids. This EF must output only one return rule per physical ID.
170

171 def MakeRules(cp,sp):
172 def f((pd,vl)):
173 DPID = 101
174 rs = {DPID:[]}
175 d = {}
176 for a in pd.keys():
177 d[a] = None
178 (m,p,vids) = pd[a]
179 for v in vids:
180 ## Rewrite vid -> pid in client requests
181 fpin = (ethtype_fp(ethernet.IP_TYPE) &
182 dstip_fp(v, ’255.255.255.255’))
183 ain = [modify(dstip_mod(a))]
184 rs[DPID].append(Rule(fpin,ain))
185 ## Rewrite pid -> vid in server responses
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186 if vl.has_key(a):
187 fpout = (ethtype_fp(ethernet.IP_TYPE) &
188 srcip_fp(a, ’255.255.255.255’) & srcport_fp(11211))
189 aout = [modify(srcip_mod(vl[a]))]
190 rs[DPID].append(Rule(fpout,aout))
191 else:
192 fpout = (ethtype_fp(ethernet.IP_TYPE) &
193 srcip_fp(a, ’255.255.255.255’) & srcport_fp(11211))
194 aout = [modify(srcip_mod(pd[a][0]))]
195 rs[DPID].append(Rule(fpout,aout))
196

197 return rs
198 return Lift(f)
199

200 ## PortStatus : int list -> (ports Dict) E
201 ## Processes the stream of port events for input to the network state
202 def PortStatus(y):
203 return (PortEvents() >>
204 (Filter(lambda x: True if portnum(x) in y else False) >>
205 Lift(lambda pe: (portnum(pe), portenabled(pe))) >>
206 status()))
207

208 ## ARPServer : int list * int list -> (Dict * Dict) Packet EF
209 ## Handle ARP Reponses based on the partitioning and DHCP leases
210 def ARPServer(cp,sp):
211 def g(((dl,pd),(packet,req))):
212 in_port = inport(header(packet))
213 rip = ip_to_str(req.protodst)
214 pktOut = None
215 log.info("arpserver: REQUEST FROM PORT %s, FOR IP %s" % (in_port,rip))
216 if (in_port in cp) and (rip in vidset):
217 pid = which_pid(rip,pd)
218 (mac,a,vids) = pd[pid]
219 pktOut = arp_reply(packet,req,mac)
220 log.info("arpserver: SENDING MAC %s FOR PID %s IN RESPONSE" % (mac,pid))
221 elif (in_port in sp):
222 for m in dl.keys():
223 (switch,port,addr,dstatus) = dl[m]
224 if addr == rip:
225 log.info("arpserver: SENDING MAC %s FOR CLIENT %s IN RESPONSE" % (m,addr))
226 pktOut = arp_reply(packet,req,m)
227 return pktOut
228 return Lift(g)
229

230 # CombineRules : (Rule Dict * Rule Dict) (Rule Dict) EF
231 # Combine forwarding rules and modification rules as a simple union
232 def CombineRules():
233 def f((rsa,rsb)):
234 rsc = {}
235 if not(rsa is None):
236 for k in rsa.keys():
237 if rsc.has_key(k):
238 rsc[k] += rsa[k][:]
239 else:
240 rsc[k] = rsa[k][:]
241 if not(rsb is None):
242 for k in rsb.keys():
243 if rsc.has_key(k):
244 rsc[k] += rsb[k][:]
245 else:
246 rsc[k] = rsb[k][:]
247 return rsc
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248 return Lift(f)
249

250 # SaveLastVid : (Dict * IP) (Dict * Dict) EF
251 # Based on the partition dictionary and the most recent request
252 # Maintain a mapping of only one vid per pid to actually install
253 # return rules for.
254 def SaveLastVid():
255 def f(((pd,dstip),(pl,vl))):
256 (added,lost, next) = ({},{},{})
257 for k in pd.keys():
258 if not(pl.has_key(k)):
259 added[k] = pd[k]
260 for k in pl.keys():
261 if not(pd.has_key(k)):
262 lost[k] = pl[k]
263 if (added == {}) and (lost == {}):
264 next = vl.copy()
265 # The partition set has not changed
266 if not(dstip is None):
267 pid = which_pid(dstip,pd)
268 next[pid] = dstip
269 else:
270 log.debug("THIS SHOULD NEVER OCCUR")
271 else:
272 # The partition set has changed!
273 for k in vl.keys():
274 vid = vl[k]
275 lastpid = k
276 newpid = which_pid(vid,pd)
277 if (lastpid != newpid):
278 #Try to reassign
279 if not(vl.has_key(newpid) and next.has_key(newpid)):
280 # No recent request for new pid, reassign
281 next[newpid] = vid
282 else:
283 next[k] = vl[k]
284 if not(dstip is None):
285 # Update if there is a new vid
286 pid = which_pid(dstip,pd)
287 next[pid] = dstip
288 return ((pd,next),(pd,next))
289 return LoopPre(({},{}),Lift(f))
290

291 def main():
292 ## Define Memcached request pattern
293 mcreq_fp = (ethtype_fp(ethernet.IP_TYPE) &
294 protocol_fp(ipv4.UDP_PROTOCOL) & dstport_fp(11211))
295

296 ## mc_reqs : Dstip E
297 ## Query that returns an event of memcache request destination IPs
298 mc_reqs = (Select(’packets’) *
299 Where(mcreq_fp) *
300 GroupBy([’srcip’]) *
301 SplitWhen([’dstip’]) *
302 Limit(1) >>
303 Ungroup(1,lambda n,p:dstip(header(p)), None) >>
304 Lift(lambda (x,y):y)
305 )
306

307 ## Create the partitioning of the virtual ID’s
308 la,lb = Split(dhcpd.leases() >> Dup())
309 pma,pmb = Split(Merge(la, PortStatus(SERVER_PORTS)) >>
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310 MakeState() >> MakePartitions() >> Dup())
311

312 # Generate the rewriting rules based on the current vid partitioning and
313 # combine them with the forwarding rules from the learning switch.
314 last = (LeftStickyMerge(pma,mc_reqs) >> SaveLastVid())
315 modrules = (last >> MakeRules(CLIENT_PORTS,SERVER_PORTS))
316 fwdrules = learning_switch.rules()
317 (StickyMerge(modrules,fwdrules) >> CombineRules() >> Register())
318

319 # Print the current partitioning to the console for debuging and monitoring
320 (pma >>
321 Lift(lambda d: map(lambda (a,(m,p,v)):(a,v),d.items())) >> Print(">>"))
322

323 # Based on the current partitioning, and the DHCP server data, generate
324 # ARP responses for the ARP requests for vids
325 arp_requests = (Select(’packets’) *
326 Where(ethtype_fp(ethernet.ARP_TYPE)) >>
327 Lift(extractARP) >> Filter(lambda (p,d): not(d is None)))
328 (Snapshot(Hold({},StickyMerge(lb,pmb)),arp_requests) >>
329 ARPServer(CLIENT_PORTS, SERVER_PORTS) >>
330 Filter(lambda x:not(x is None)) >>
331 NOXSendPkt())
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