Modular Protections against Non-control Data Attacks

Cole Schlesingér Karthik Pattabiraman Nikhil Swamy David Walkef Benjamin Zorh
fPrinceton University tUniversity of British Columbia *Microsoft Research
{cschlesi,dpw@cs.princeton.edu karthikp@ece.ubc.ca {nswamy,zorh@microsoft.com

Abstract—This paper introduces YARRA, a conservative been developed against control-based attacks, the preeale
extension to C to protect applications from non-control data of non-control data attacks has increased [29].
attacks. YARRA programmers specify their data integrity re- Non-control data attacks are orthogonal to control-based

quirements by declaring critical data typesand ascribing these -)
critical types to important data structures. YARRA guarantees attacks in the sense that provably secure control-flow lattac

that such critical data is only written through pointers with defenses (such as Abadi's) may be completely vulnerable
the given static type. Any attempt to write to critical data to non-control data attacks. Conversely, provably secere d
through a pointer with an invalid type (perhaps because of a fenses against non-control data attacks may be vulnerable t
buffer overrun) is detected dynamically. We formalize YARRA's control-flow attacks. Defense against both attack classgs m

semantics and prove the soundness of a program logic designed be impl ted th h f f orth | soluti
for use with the language. A key contribution is to show € implemente rough a union of orthogonal solutions.

that YARRA'S semantics are strong enough to support sound Hence, in this paper, we set aside the problem of control-
local reasoning and the use of a frame rule, even across based attacks to focus squarely on non-control data attacks
calls to unknown, unverified code. We evaluate a prototype The following paragraphs summarize our key contributions.
implementation of a compiler and runtime system for YARRA A modular solution to non-control data attacksOur

by using it to harden four common server applications against . . .
known non-control data vulnerabilities. We show that YARRA solution takes the form of a language extension to C, which

defends against these attacks with only a negligible impact on We call YARRA. YARRA programmers introduce special type

their end-to-end performance. declarations and ascribe the special types to thetical
Keywordslanguage-based security; non-control data attack: data structures-those data structures upon which system
data integrity; control-flow integrity; Hoare logic; frame rule; reliability or security most depends. We call the specipkty
data isolation critical data types and YARRA ensures that data with such
types are impervious to non-control data attacks.
. INTRODUCTION Critical data types help programmers specify an intended

Most important applications contain components writtendata integrity policy Programmers further specify their
in unsafe languages such as C and C++. These componentata integrity intentions by choosing, in any given program
are vulnerable to a variety of memory corruption attacks.expressionto usea pointer with a static critical type @t to
To develop comprehensive protections for these unsafe conusea pointer with a static critical type. When accessing data
ponents, it is essential to identify wide, prominent classe through a pointer with a static critical type, a programmer
of attacks, to analyze such classes mathematically, and weclares that she expects the underlying memory to have
implement and evaluate effective solutions against them. that same critical type dynamically. When reading or writing

One broad class of attack on unsafe programs is théhrough a pointer that, statically, does not have a critical
control-based attackin which an attacker uses a memory type, the programmer declares that she does not expect to
corruption error, such as a buffer overflow or use-after-be accessing memory with dynamic critical type.
free, to overwrite control-data such as a return address or This design has a number of advantages. First, it is simple
function pointer and thereby modifies the control-flow of theto understand and easy to use. Every programmer is familiar
program. Through the early to mid 2000s, both industry andwith the concept that the underlying dynamic type of a data
academia developed mitigation techniques against centroktructure should match the static type of the pointar¥A
data attacks. One particularly noteworthy piece of work inmerely puts an enforcement mechanism for this concept
this line of inquiry, due to Abadit al. [1], developed a in place. Violation of this property, and the subsequent
formal model ofcontrol-flow integrityand used this model unintended modification of a critical data type, is at therhea
to prove the correctness of defenses against a formal attack of all non-control data attacks.

In this paper, we analyze a separate class of attacks: Second, our design supports adaptation of legacy code
non-control data attacksThese attacks do not modify the with minimal effort: type declarations may be added to an
control-flow of programs, but instead corrupt user identityexisting code base, literally one at a time, incrementally
data, configuration data, user input data or decision-ngakinhardening a program against non-control data attacks.
data to achieve the attacker’'s ends. In 2005, Géteal. [9] Third, the design is highly modular in the sense that once
demonstrated that such non-control data attacks are aiserioa module is proved secure, it may be linked with arbitrary,
threat against many real applications, including widedgdi unverified library code, and that library will be unable to
server programs. Since then, due to the mitigations that hawvage a non-control data attack against it. In contrastesyst

such as Cyclone [12], CCured [23], Softbound [21] andof YARRA on a collection of important server applications
others that rely upon conventional array-bounds checkingncluding SSH, telnet, HTTP and FTP with security-sensitiv
generally do not provide any guarantees whatsoever whedata that may be vulnerable to non-control data attacks.
there are buffer overruns in unchecked libraries (DespitelThese applications typically contain, amongst thousarids o
this limitation, array-bounds checking, like control-flam+ lines of code, a relatively small, clearly defined module, or
tegrity, remains a very useful technique). set of modules that implement important security consider-

Formal safety and modularity properties fo¥ARRA. We ations and require cgreful auditing—applications with this
provide an operational semantics and a sound program logi{ructure are best suited to the protections thakRNA can

for a core model of XRRA. The program logic defines the provide. For these applications, we observe that our imple-
formal or informal reasoning principles that programmersme”taﬂon has negligible overhead relative to the endatb-e
may use when analyzing theirARKRA programs. A key performance of the application as a whole. In addition, the
element of our logic is a new kind dfpe-based frame rule Programmer integration effort was on the order of a few
This frame rule allows components responsible for imp|e_hundred mod|f|eq lines of code or less in applications tens
menting security infrastructure to be verified indepentjent Of thousands of lines long. o

of the unverified possibly buggy and vulnerable libraries For a more thorough, but artificial, measurement of the
that they are linked with. Despite such bugs and vulneraP€rformance impact of XRRA, we adapt BGET [32], a
bilities, these libraries cannot wage non-control datackss ~ Widely used memory manager, o USBRRA to protect the
against the verified security components. Consequently, thallocator's internal data structures from corruptions beg t
frame rule codifies the modularity properties thakRra a@pplication. When used in such a scenario, where a large
programmers may rely upon. The proof of soundness of ouPumber of data accesses involve critical data types, we find

program logic, including this novel frame rule, is the deepthat the performance overhead can be very substantial.
theoretical result of our work. One conclusion we draw from these experiments is that

A formal definition of non-control data attackslnherent our'current protptype, though co.mpletely unoptimized,ris a
eminently practical defense against non-control datackdta

in our safety proof, and our analysis of the frame rule,. . - "
: Y in typical server applications where the amount of critical
is a formal, language-based definition of non-control data

attacks. To be specific, a non-control data attack is anglatta data that needs to be protected is relatively small.

driven by a sequential, imperative program with fixed, stati Il. YARRA BY EXAMPLE

control-flow and the license to attempt unlimited reads andzackground. A non-control data attack occurs when
writes (including writes outside the normal bounds of datasecurity-critical data allocated on the heap is unexpégted
structures such programs allocate). The attacks are waggfodified. The display below shows code vulnerable to such

against YRRA programs, which are also defined to have gn attack. This example is drawn from Akritidet al. [2]
fixed, static control flow. We limit the control constructs in gnqd was inspired by a trueul | ht t pd attack.
our formal model because that is the simplest, clearest wagz de vulnerable to a non-control data attack
to define the essence of a non-control data attack (as oppos,.,é) : ,
to a control-based attack) and thereby to characterize #hglatic char cgicmd[1024];
. . static char cgibir[1024];
problem and our solution. We leave an analysis of Mulf-yqig processcairequesi(chars msg, int sz) {
threaded programs to future work. 4 int flag, i=0;

. . 5 while (i < sz) {
Implementation of YARRA. The semantics of XRRA may 6 cgicmd[i] = msg[i]; //buffer overrun here could overwrite cgiDir

be implemented in more than one way. Different imple- i++;
mentations have different performance trade-offs in terrfis _ i o
. . . . 9 . flag = CheckRequest(cgiCmd); //input sanitization
of time and space and different requirements in terms;f i .5 '¢
access to source code for transformation. We have imple- wLog("..."); //buggy library could invalidate sanitization
mented a compiler and run-time system foARRA that 12 ExecuteRequest(cgiDir, cgiCmd);

supports two different runtime enforcement modes. The f%r3st |
mode, inspired by previous work on Write Integrity Testing | this example, a requestndg) is copied into a new
(WIT) [2], instruments source code with dynamic checkSpyffer calledugicma. Next, a routine calledheckrequest checks
that cannot be proven unnecessary at compile time. Theat the command does not contaii,"which would allow
second mode, inspired by previous work on Samurai [24]gn attacker to navigate out of the designated directory and
makes copies of critical objects on separate pages. Prior tgxecute any program, anywhere in the system. Finadly,
invoking untrusted library code, the implementation tunffs |55 the request for future audits angcuterequest concate-
hardware write permissions on the designated pages, therelates the command to the designated directory path and
preventing unsafe libraries from corrupting critical data executes it. Unfortunately, the routine is vulnerable when
Experimental evaluationWe demonstrate the effectiveness sz is larger than 1024. In this case, the copying operation

overflows from cgicmd into cgipir, allowing an attacker to programmer camnnblessa reference, undoing the protections
effectively execute any command in any directory on the useon the referenced memory.

system. An additional concern is a potential time-of-chieck Programming with critical data typesThe listing below
time-of-use discrepancy in the code, that can be exploitedshows how our example fromul | ht t pd may be rewritten
if, for example, the call taog has a buffer overflow that using YARRA's critical data types to foil both non-control
allows cgicmd to be overwritten aftecheckrequest has been data attacks. On line 1, we introduce a new critical data,type
executed. Both of these vulnerabilities lead to non-controcchar, using a declaration much like C’s typical declaration
data attacks because they do not change the control flovor structures. The typechar is a new YARRA structure
of the C program. Hence, they will not be detected bycontaining a single character field named The typedchar
mechanisms that check for control flow integrity. (line 2) is another critical type, also with a single chaeact
There are two perspectives on this kind of attack: field dc. At line 3, we declare that every element @fcmd

« The conventional array-bounds perspectifée fault IS @cchar, meaning it can only be written bynar pointers.
lies with the write operations at line 7 and within IflkeW|se, With cgibir an_ddchar, at line 4. Finally, we modify
the implementation ofog, since they misimplement line 8, to access the field of the YARRA structure, thereby
indexing operations. indicating ourclear intentionto write to protected data.

. The data integrity perspectivéThe fault lies in the ~ YARRA'S promise to programmers is that writes via non-
definition and implementation of theioir and cgicma Cfitical pointers to memory locations holding critical ebjs

data structures, since they fail to protect themselvedVill always be detected. Because the typesr anddchar are
from external agents. unknown toLog and any library it may call, the functions

These two different perspectives lead to different sohgio use only no_n.-cr|t|cal pomters, and hencerRA guarantees
that both cgipir and cgicmd are uncorrupted at the call to

with different engineerin nsiderations. Th nvi .) .
th different engineering considerations e convardlo xecuteRequest. Further, at line 8, if there is a buffer overrun

perspective, taken by systems such as SoftBound [21], lead$ _ . -
O - Ifom cgicmd into cgibir, YARRA detects the error because a
one to maintain bounds on all data structures and to rewrite _. . .]
ointer with static typechar+ attempts to write to memory

the code for every data access. Consequently, it cannot e . S .
applied when library source code is unavailabéeg., if with (dynamic) YARRA typedchar. This illustrates the impor

a function like Log were to make library calls. In such a tance of using different XRRA types for logically distinct

situation, all bets are off—a single missed bounds checl%jalta structures. If one were to use the same type (say)

mav corunt anv data structure. anvwhere in the oroaram or both cgicmd and cgibir then YARRA would not prevent a
y P y ! Ire, anywher prog buffer overrun at line 8. In other words, structures thatreha
In contrast, the data integrity perspective leads one t

maintain bounds only for the high integrity (critical) data(%he same type are not protected from each other; they are

structures and indexing operations must be praverwithin onl'y prot.e.cted from struc?ures with other types.
the bounds of these structures. This alternative persmecti Using critical data types in nul | htt pd
leads to a different set of implementation possibilitiesr F1 Iyarra struct {char cc;} cchar;
example, one may use conventional hardware protecti(?én)é?rtr_a Str:UCt {Chgl[rlgz;i] dchar;

. statiC cchar cgiCm ;
t_o prever_n writes t_o_ critical Qata, while .st|II gllowmg saf static dehar cgiDif[1024]:
linking with unmodified, possibly buggy libraries. We adop void ProcessCGIRequest(chars msg, int sz) {
the latter perspective in ARRA and show how it can beg lnHIag(, i=0; Y

. while (i < sz

used to harden code against non-control data attacks. g cgiCmd[i.cc = msg[i]; //Yarra: cgiDir cannot be modified
9 i++;

A. Hardeningnul | ht t pd with YARRA 10
11 flag = CheckRequest(cgiCmd);

The main new abstraction thatA¥RA provides is thel12 if (flag) {

critical data type Critical data types have the rather un Log(". ..); //Yarra: corruption of cgiDir, cgiCmd detected
ExecuteRequest(cgiDir, cgiCmd);

markable property that access to such data may only oggury,
through a pointer with a corresponding (static) type. Work-! !
ing with critical data types demands a certain discipline.Implementing YARRA protections. There are many ways
First, programmers must declare a critical tyfe Having to implement the protections ARRA offers—our current
done so, programmers can designate l{l@sg portions of implementation offers two modes. In igurce protection
memory as containing’ objects and, as a result, they obtain mode (inspired by WIT), our compiler uses the statically
X-typed referencesX-typed memory should only be ac- declared type of pointers to instrument memory accesses
cessed usind-typed references. In return ARRA ensures with suitable checks. For example, writes using non-aitic
that the portions of memory that hols-typed objects will pointers to locations are checked at run time to ensure they
never be corrupted by writes via untyped pointers, or by theactually contain non-critical data. If they contain critic
effects of library code. When finished with ax object, a data, the program will abort. In its targethlorary protection

mode (inspired by Samurai), more suitable for situationsyarra struct {int tag;} metaT;
in which code cannot be instrumented with checks (e_g_ya(ra struct {int junk;} unusedT;
o . . L S . 3 union item {

when linking with third-party binaries), we maintain baei ; = | ccat unused:

stores for critical objects on separate pages. Prior tokimgp 5 int used;

potentially buggy library code, we turn off hardware writ€ }:
..¢ static metaT meta[SIZE];

permissions on these pages to preserve their mtegntyeerg static item data[SIZE];

from untyped pointers to critical objects proceed withowtint salloc() {

failure, but, these writes only modify one copy of the objet® Inti _
. Lo . 11 for (i=0; i<SIZE; i++) {

leaving the version in the backing store unchanged. In CON- it (eta[] .tag == 0) {

trast, writes to critical objects using well-typed refeten 13 meta[i].tag = 1;

update both copies of the object. When a critical objégt unbless(unusedT)(&datali].unused);

. . . . 15 return data+i;

is read using a well-typed pointer, checks inserted by gr

compiler ensure that the versions of the object in the m&in abort(" out of nenory");

heap and the backing store are identical, thus detec’eﬁ@. .
19 Void free(int xdatum) {

potential corruptions. 20 if (datum >= data && datum < data+SIZE) {
Reasoning about YARRA programs. Regardless of thel i]pt i = datum —data;

i ; i ' i 22 If (meta[i].tag == 1) {
implementation Chosen,_wnh b0§b|Cmd andcgipir protected ﬁ% if (vacant(unusedT) (&datali)) {

by YARRA, our semantics provides the programmer w metali].tag = O;

powerful, sound, local reasoning principles. Any invatia® bless(unusedT)(&data[i].unused);

over the objectsgicmd andcgipir is preserved across the ¢ 1) return;

to the Log function, sinceLog is unable to modify criticalog apor(el i ent error”);

memory locations. Additionally, an invariant egoir (e.g., 29 }

that cgipir does not start with “..”) is preserved across line 8, Figure 1. A simplified memory manager
since YARRA ensures that the write t@icmd never modifies
a dchar object. We formalize this principle in Section Il in
terms of a type-basefitame ruleand prove it sound.

Figure 1 shows a simple memory allocator that uses
and unbless to protect its metadata, hence increasing its
reliability, even when linked against buggy clients. While
the allocator shown is extremely simple, we have used the

:)) same principles to protect BGET [32], a standard, publicly
Our first example illustrated a simple use case faRRA , silable allocator for C.
in which a ;et Of. memory locations haye a singlarRkA The allocator relies on a few simple invariants (where
type for their entire lifetime. However, in order to handle | ranges fromo to size- 1): (1) the elements of the meta
dynamically_ allocated data structures, or memory that isarray have critical typen;ataT preventing a buggy client
reused for different purposes, we need a way to cast memorﬁfrogram from modifying allocator meta data; (2) thea
from one critical type to another. '

Iy inted o by is d icall ¢ array contains integers that are eitlesr 1; (3) if meta[i] is 0
0 2 crﬁi:if,tympginﬁzngom: opc;ra?ibolr:l yg?(”;"::}g g:; thendata[i] is not allocated and dynamically has critical type
ess(T)(p)

. . unusedT, preventing a client from using it; and (4) ifetali]
211Cr§0usm?;$§§§;ipz' F:'tE 'fozr;](igg: tto :ttjgrg;;r? iglzss is 1 then data[] is allocated and dynamically does not have
declargjF;ubstructure)cfﬂE Likewise, it isygn 'errorto attempt critical type unusear, allowing a client to use it as needed.
to unbless memory from. typewhe’n that memory location Given these invariants, consider the effects ofdhe and

had not previously been blessedratThese sorts of errors free routines. Inaioc, the code searches for a free cell (one
with meta[il.tag == 0), assigns themetali] tag to 1 (allocated

are detected at runtime by the instrumentation inserted bgt ¢ 4 unbl th I returni inter that th
our compiler. ARRA also provides the operatiasin(t)(p), a €), and unblesses the cell, re urning a pointer that the
client may freely use. Injree the code first checks that

which returns true ifp dynamically has type and false if
b € y yP dits argument is in range. If it is, it checks that the cell

it does not. Ifp points to memory which has been blesse h iouslv b i d by the all q
at typeT but which has been corrupted by a write via an as previously been a ogate y the allocator an not.yet
freed (retafi]l.tag == 1). Next, it checks that the data is not still

untyped pointer, XRRA causes the program to abort—this .
situation can be detected, if, for example, the two Copieierroneously) in use by another module at a protected type
L) y testing if data[]] is vacant (line 23). Finally, if all these

of the T-object in question are not synchronized. Finally, heck d th d . I d and th
YARRA provides the commangacant(T)(p), which returns checks succeed, the metadata Is set to unallocated and the

true if p points to completely unprotected memory of size data is bles.se(.j, protecting it from use by any other module.
sizeofT) and false otherwise. When thinking about the correctness @bc and free,
the first thing to notice is that if the informal invariants
1An illegal cast of this sort might invalidate protections plied by T’ . mentioned above are true at entry to either routine then

B. Critical data and dynamic allocation

they are also true upon completion of the routine. More
interesting still, the invariants (though loosely statedle
phrased entirely in terms of protected statei-e-, in terms

of static global arrays, whose addresses may not be changelﬂ‘:;"“es

in terms of protected memory, such as the contents o
meta, and in terms of a locally quantified variable— as

opposed to in terms of normal, vulnerable, heap-allocatedkssertion

data structures. Because these invariants depend exajusiv

on protected state, no client module may corrupt them and°c® e dec!

hence, according to the traditionlaypothetical frame rule
if initialization (not shown) makes them valid at the outset

it is sound for each routine to depend upon their continuedchecked read

validity throughout the program.

IIl. SEMANTICS OF YARRA

This section defines ¥ORE, a sequential, imperative
language intended to serve as a core model f'eRRA. This
formal development serves two purposes. FirsGORES
semantics makes precise our attacker model: the attacker

represented by calls to unverified library code that may havemap body

arbitrary effects on the heap, but cannot alter the contro

flow of the program. Second, we define robustness in the
presence of non-control data attacks to be the ability togypstitution
reason locally about critical data structures, even in themod. set

presence of arbitrary heap effects caused by library code.
We formulate robustness, or modular local reasoning
in the context of a program logic for YORE programs
and we show that this logic admits a frame rule. Unlike
recent presentations of the frame rule that require the us
of separation logic [26], ours is in the context of a cladsica

integer const. i,7,¢
local variables T, 2
map names XY, Z H,Un

i| (vi,v2)
ilz|eope

v
(&

stmt./hole s skip|if e thens; elsesz|while e s
sequence S1; 82

assertd
local var. decl. local z in s

newtypeX =7 in s

y := blessc[e] epase

y := unbless [e] epase

if eisin X thens; elsess

blesse objs. starting atepase
unblesse objs. starting atepase
dynamic typecase

y = X(e).p
un-checked read liby:=e
checked write X(e1).p:=e2
un-checked write lib e; :=es
dynamic failure abort
hole o,
field path D = -|0p|1lp
types T = int | (r,72) | X
map type 7 = int— T
imap value o = M.é
é = L |v]|dwv]|if acad thené elseé
fogic term @ =cl|v|é|vo|X|ap]|domal|{x| P}
formula QU = QDAY |DPVVU | D |Ve.d | VX:7.D
la=d |a€a |a<d |True| False
o :"O',[aX‘O',[a/l']
A = |AX | Az
staticenv. T = |IX:i7 |0
runtime env. E = E,x—i| E,X — (0:7)
' | Hw— (0:7),Un— (0:7)
eitherenv. & =T|FE
e Figure 2. Syntax of ¥ORE

types. Note, expressions do not include tuples, ensuriag th

Hoare logic and relies on the type structure of the programyel-scoped expressions always evaluate to integers.

for modular reasoning. In addition to its technical novelty

we argue that our type-based approach provides a mor

familiar model for programmers already used to working
with types. Furthermore, unlike in other logicSANRA’S

Basic statementdnclude the usual forms for branching,
I%oping, sequencing, assertions, and scoped, local Variab
declarations, (local in s). Local variables always hold

_integer values, so no type is needed on the declaration of

dynamic protections make our frame rule sound even in, tpa siatement forn also serves as a multi-hole context,

the presence of heap effects caused by unverified Iibrarie‘%\.,here the holes,

As such, this frame rule captures the essence mkRA’S
modular protections against non-control data attacks.

A. Syntax
Broadly speaking, ¥ORE is a simplewhile-language,

.., e, represent points at which control
transfers to an attacker program. We wrife;]; to replace
holei in s with s;. We write s[s1, ..., s,] for the hole-free
statement obtained by replacing each heldn s with s;.

We place specific conditions on the attacker code that can
be used to fill a hole in Section IlI-D.

augmented with critical type declarations, and memory op<ritical type commandsThe statement form (newtyp§ =
erations to manipulate critical memory. Figure 2 shows ther in s) allows us to define a nam& for a new critical

syntax of YCORE, starting with our meta variable conven-
tions. Integer constants aigj, /, where, we generally use
for memory locations. Local variables arey, z, and critical
data types (and their representations as maps)Xang, 7
with H andUn being two distinguished map names.
Expressionse are purely arithmetic terms, built from integer
constants, integer variables and primitive operatgrsVal-
uesv are either integer constanisor are structured tuples

type, where the representation &f is 7, and X can be
used ins. The statements for blessing and unblessing are
slightly more general than what was used in Section II. Here,
the commandy := bless¢[e] e...) Operates on aarray of
locationsstarting at the locatios,... and includinge objects
each to be protected at the type (wheree is expected to
evaluate to a non-negative integer). The returned valise
a reference to the start of the array of newly blessed objects

(v1,v2) corresponding to the values of protected objectAnalogously, the commang (= unbless; [e] e,..) removes

1 yarra struct {int o; int f1} x: newtypeX = (mtz int) in rations of tuple types. We do not include procedures in
2 yarra struct {x go; int g1} v; | NewtypeY = (X, int) in YCORE—the statement can b_e thogg_h_t of as thg body
3 main() { _ local z, y, z in of mai n. We also do not provide primitive operations for
4 voidx z=malloc(sizeofy)); z:=4 dynamic memory allocation in YorRE—so themal | oc call
5 X x = bless<x>(1, 2); x := blesx[1] z; . . .
6 Yy = bless<y>(2); y := bless [1] z; at line 4 has no direct analog inCORE However, we model
7 y.g0.f0 =17, Y (y).00 := 17; the heap as a total map over integer locations and we can
8 void « _=unbless<y>(L,y); | . Zynpless [1] y; programnal | oc in YCORE(This is not an unusual choice
9 void x _ = unbless<X>(x); } — unbl 1 . . .
_:=unblesx [1] = in systems governed by classical logics. See, for example,
Figure 3. Re|ating the syntax of ARRA t0 YCORE Work on Havoc [15]) In th|S eXampIe, Wh|Ch will be reused

later to illustrate the static semantics, we replace thé cal

protections on an array of critical objects. The dynamlcto mal 1 oc with an abstract address Calls to bless and

ife is in X then | ment i ful . .
typecase (fe is then s, elses,) statement is usefu unbless I YARRA map directly to YCORE In cases €.g,

for modeling thevacant command of Section 1I-B, as well as . . .
: . lines 6 and 9) where we omit the first argumentbless or
other constructs—it can be used to check whether a location

¢ holds a critical object of type. unbless, the argument defaults tb.

. . . Writes and field projections via object references in
Reading and writing memoryY CORE includes two forms

o . ked q YARRA also map directly, as shown on line 7.CYRE
each of read and write instructions. A checked regd<t gqoq binary paths to the fields of tuples, instead of field
X(e).p) attempts to read a structured value of type

he |) , field 1 ; names. More importantly, while writes to objects via typed
X at the ocatione and projects a field fromv USING roferences in ¥RRA are evident from the declared types
the pathp, storing the result in the local variablg. In

hecked read i : ib d (for example, the typeY* of y), in YCORE the write
contrast, an un-chec ed rea Instruction @'. = ¢) reads instruction itself is tagged with the type of the object that
the contents of an arbitrary memory locatienfrom the

. : - _ is the destination of the write. Typed read instructions
heap H into a local var|abley._S|m|IarIy, a checked W are similar. For convenience, our example hoists the local
(X_(el).p = es) attempts to write to. a strgctured type Using \ 4 riable declarations.

a field assignment; un-checked writes (#ib:= e2) modify
a single locatione; in the heap, overwriting its contents B. Dynamic semantics
with e;. We use the un-checked forms to model the actions Figure 4 shows selected rules from the dynamic seman-

of arbitrary, untrusted code.g, third party libraries. tics of YCoRE—our technical report [28] includes the full
Failure modes.We model two failure modes in ¥ORE definition. The semantics is a small-step reduction refatio
Certain dynamic failures are permitted by the logicg, of the form (E;s) ~ (E’;s’), where (E,s) is called a
failures caused by the effects of untrusted libraries whichryn-time configurationSuch configurations contaimn-time
are detected by the runtime system. These failures causeeqvironments? and hole-free statements
program to loop indefinitely issuing the abort command—we Runtime environment& contain integer assignments for
expressly choose to allow such “safe” failures to occur at ru |ocal variables(z — i); a typed map valuéo:7) for each
time since they are unavoidably triggered by the behavior otritical type X defined in the prograniX — o:7); a map
unverified library code. Other failure®.g, trying to bless value for the conventional hea — :7); and, finally,
a piece of memory that has already been blessed at anothgrmap value forUn, the collection of unblessed locations
type, or an assertion failure, cause the program to get stuckun — ¢:7). We call each map valué in E a heaplet
Y CORES logic is designed to prevent stuck programs. The heaplet for a critical typ& corresponds roughly to the
Types and the assertion languag&he type language of backing store forX-typed objects. We maodel the critical
Y CORE includesint, pairs, and type name¥. We model heaplets formally as partial maps from memory addresses
both C’s integers as well as pointers using the type. to X-typed objects,i.e, in a well-formed environment
Structures in C, which contain an arbitrary number of namedcontaining X — (9:7), ¢ is a partial map of type, where
fields, are modeled using nested pairs. We omit unions. Thé = int — X. The heapH is a total map from memory
assertion logic of Y ORE makes use of first-order formulas addresses to integersg, it has typeint — int), while Un
& over a term language including arithmetic expressionsijs a partial map of typent — int. The totality of theH-
tuples, maps and sets, together with (extensional) egualitmap is simply a technical convenience—we could, with a
set membership, and integer inequality. Maps are lambdadittle additional book-keeping, allow? to be a partial map.
terms (\(.é), with types described using the map types Auxiliary functions. Figure 5 defines several auxiliary func-
The body €) of a map value is built from values, an tions used throughout the semantics. These functions are
application form, a conditional form, and a distinguishedstraightforward, although a few comments are worthwhile.
value | used to model partial maps. First, note that most of our auxiliary functions carry index
Figure 3 illustrates how the concrete syntax ofRRA (subscripted) that represents environment arguments. For
maps to YCORE Struct declarations correspond to decla-example, [e]r is a standard denotational semantics for

F=int > 7 [ei]e =¢ E'=Ely — Hp(0)]

: E-NewX : : E-LibRd
(E;newtypeX = 1in s) ~ (E, X — (M. L:7);5) (E;lib y :=e1) ~ (E’; skip)
[e]le =¢ ? € dompX
[ei]e =€ [e2]e=v . EH)=07 FE = E[H — (0[£ « v]:7)] LW Xg(0) # readFromg H (£:X) £ RdAbort
(E;lib e := e2) ~ (E';skip) (E;y = X(e).p) ~ (F;abor

p#- [ele=¢ (& domgX Xg(f)=readFromg H (:X) (¢ =(+offset, X p E =E[y— Hg({'))

" E-Rd
(E;y == X(e1).p) ~ (E';skip)

pFE- lei]le =¢ [e2]e = v L€ dompX Xg(0) =readFromg H (£:X)
E(H) =07 (' =(+offsely X p E1=E[Hw— (0[¢' —v]:7)] E =copyy, {¢} fromH to X

(E; X(e1).p := e2) ~ (E'; skip)

E-Wr

Figure 4. (E;s) ~ (F';s’): Dynamic semantics of ¥ORE (Selected rules)

[e]» standard denotation of expressions (see TR) This ensures that only word-lengtint-valued fields in

gzgf))((_ %L@X;(ﬁ) 74 a nested tuple type can be directly addressed. Second,
range ; X = 7 when E(X) = (t:int — 7) readFrony Y (¢:7) is used to read a structured value of type
ranger X = 7 whenI'(X) =int — 7 7 from the location? in the mapY. While this function is
Xe(0) = [0 (] when E(X) = (:7) well-defined for arbitrary mapd”, we use it primarily to
iii[(fL . - i%f (¢ {a) thend’ else (ar, 0) read structured values out of the flat heap niap
|int|e - 1 We turn now to a discussion of the rules in Figure 4.
[Y|e = |rangeg Yle Heaplets for new critical typesThe rule (E-NewX) shows
[(71,72)|e = |7ile + |72l the initialization of an empty heaplet (everywheré for a
offset. int - - 0 new critical typeX. Structured values corresponding to the
offset. (71,72) Op = offset 71 p objects of the critical typeX are added to theX heaplet
offset (71,72) 1p = |mle +offset 7 p whenever the program issues a bless command:; values are
offset ¥ p = offse} (range; Y) p removed from the heaplet when unblessed. As such, the
readFromy Y (£:int) = Ye(l) heapletX serves as a backing store & values. For space
readFroms Y (£:2) = readFromy Y (¢:(ranges Z)) reag0ns, we do not show the dynamic rules for blessing and
readFrony Y (¢:(11,72)) = (v1,v2) . . .
wherev, = readFrom: Y (£:71) unblessing—there are several subtleties related to blgssin

and vy =readFrom Y ((£+ |71]e):m2) and unblessing nested objects. However, we present the
axiomatic semantics of these commands in Section IlI-C.
Un-checked reads and write3he rule (E-LibRd) shows the
expressions, defined relative to the assignments of locakduction of a read operation performed by untrusted code.
variables inE. Some function symbols are indexed either We evaluate the pure expressioto a location/, and update
by runtime environmentd’ or static environment$'. This the local variabley in the environment to hold the value in
allows us to overload function symbols for use in both thethe heapH at location?. (E-LibWr) is also unsurprising—
static and dynamic semantics. For examplen X, used we simply update the heafi at the locatior¢ to the value
in the dynamic semantics, concretely represents the domain The important aspect of these rules is that library reads
of a map X as the set of locations on whick does not and writes only have effect on the hedp and on local
evaluate tal. Statically,domp(X) is simply atermdom X variables in scope, but never update the heaplets for any
in the logic. Many of the functions in Figure 5 are parametriccritical type X. It is possible to implement this semantics
in their environment index—these functions carry the indexfor un-checked writes in multiple ways. For example, in its
&, where& may be eitherE or T'. library protection mode, our compiler uses hardware page
A brief description of each of the auxiliary functions protections to maintain the integrity of critical heaplets
follows: X¢(¢) is the value of the map{ at the location Checked readsAlthough library instructions cannot modify
¢; amla <+ '] updates the map,, at locationa to contain the critical heaplets, errant writes by a library can cotrap
a’; rangeg X is the range type of a mapr|¢ represents the critical object stored in the heap. We use the backing store
size (in machine words) of a valueof type 7; offset 7 p provided by the critical heaplets to detect such corrugion
is the offset of a field accessed via the patin the type and abort the program, if necessary. The rules (E-RdAbort)
7; readFromy X (¢:7) reads a structured value at location and (E-Rd) show this behavior. When reducing= X (¢).p
¢ of type 7 from the mapX. Note thatoffset. 7 p is a we evaluate: to a location/ and check that is a reference
partial function,e.g, offset. ((int, int),int) 0 is undefined. to a blessed object. A failure of this first check causes the

Figure 5. Auxiliary functions

configuration to get stuck, a situation prevented by thecstat to their map typeg and the set of local variablesthat are
semantics. Next, we check that the value in the backingn scope. Well-formedness conditions Brensure that (like
store X at location/ matches the value stored in the heapruntime environment&) it always contains bindings for two
at the same location. If this check fails, the program abortsdistinguished map variablegd?, a total map from integer
Otherwise, we compute the offset of the field being readocations to integer values, which represents the conveati
and update the loca) with the contents of the field. heap; andUn, a partial map whose domain is the set of
Note that as shown here, since the critical heaplet founprotected locations.
X always holds an uncorrupted value, we might recover Figure 6 presents the main semantic rules f@oREe For
from a corruption instead of aborting. However, we aim tospace reasons, this figure omits several rules includirgsrul
provide an abstract semantics foc¥RrEthat is independent for branching, loops, sequencing, skip, local variables] a
of the specific choice of implementing critical heaplets. Inthe rule of consequence—our technical report includes these
particular, rather than storing copies of objects in théaal omissions. The following paragraphs explain the key rules.
heaplets, we may wish to use our compiler's source proteCrne frame rule. The key feature of our logic is that
tion mode, or to resort to other forms of protections that,i; 5qgmits the frame rule, (T-Frame), which states that a
say, only maintain checksums or cryptographic digest®rath ¢,-myia ¢/, whose free variables do not overlap with the
than full shadow copies. Such implementation strategieget of free variables modified by a statemenis preserved
allow memory corruption to be detected, but may not supporhcross execution of. Crucially, because the state of critical
recovery. By allowing (E-RdAbort) to fail when a corruption q5i5 with typeX is represented with a variabl& that is
is detected, we provideARRA with the flexibility to choose gistinct from variable H, the frame rule can soundly be
among various implementation strategies. used to preserve invariants of that critical data, whén
Checked writes(E-Wr) shows the reduction of an instruc- s ynmodified, despite arbitrary modifications &bin s.
tion that writes via anX-typed reference. As for checked
reads, we ensure that the location being written to is i
the domain of theX heaplet (otherwise the configuration
is stuck) and check, using the backing store, that the atitic
object being modified is uncorrupted (and abort otherwise
using (E-WrtAbort) a rule analogous to (E-RdAbort)). We
then updateH at the appropriate location and offset, and,
importantly, in the last pre.mise’ we copy the updated Objecﬁlls a hole—roughly, that it be a closed term without any
fro_m the heap into the critical heapléf. Thus, abstractly, }nstructions that involve critical types.
writes through typed references correspond to a pair o)
writes, both to the heap and to the critical object’s shadovxPeCIarlng new types(T—NewX) shows how new types are
copy. However, the XRRA implementation may or may not !ntroduced. The premises of the rule check that the typg
actually manifest the update to the shadow capg, when is well-formed e.gj does not mention names t_hat are not in
using our source protection mode. scope) and thak is a fresh name. The bodyis checked

Intuitively, one can imagine that YORE programs enjoy a ina context wherex is bound_to the type of a map, a?.d
measure of data integrity, since copies of critical objects IS reporded as one of thg ygnables that may be mocﬁﬁed by
maintained in uncorruptible backing stores. The next eacti *' Since all heaplets are initially empt'y, the pre-conditain
makes this notion of data integrity precise. Specificallg, w * may be proven under the assumption that= Af.L.
show that despite the presence of arbitrary heap modificaBlessing and unblessing.The rules (T-Bless) and (T-
tion by untrusted code, programmers can reason about tHdnBless) are closely related—in fact, they are symmetric.
invariants of critical objects using modular, local reasgn ~ The command, := blessc[e:] e2 blesses a sequence of
principles. The crux of this idea is embodied by the frameObjects beginning at, to the type X, i.e, it castse; to

Checking attacker codg(T-Hole) shows the rule for check-
ning holes in statements. These holes are to be filled by
attacker code that can have arbitrary effects on the heap.
(T-Hole) states that any properfy that does not involve the
heap is preserved across calls to the attacker code. As such,
(T-Hole) is an instance of (T-Frame), which we prove sound
under certain syntactic restrictions on the attacker cbde t

rule in a program logic for YORE, presented next. the base of ar;-numbered array ofX objects and stores
_ _ a reference to the base location in the local variapl@he
C. Static semantics unbless command does the opposite, removing the protection

The static semantics of YORE is given by the relation on an array of objects. We illustrate the behavior of these
I'; A+ {®} s {T}, a classical Floyd-Hoare logic judgment. operations using the ORE program in Figure 3.
The judgment states, informally, that when executed in an This program declares two object typ&sandY’, where
environmentZ modeled by the context’, and whenFE the typeY has the typeX nested within its first component.
satisfies the pre-conditio®, the programs, if it termi- When blessing an objedf, YARRA requires all sub-objects
nates, produces some environméfitthat satisfies the post- of Y to already be blessed—this is important since we want
condition ¥, while modifying at most the variables in the our frame rule to say that writes that modify néhlocations
setA. The contexil” contains a mapping of type namé&s have no effect on the contents &f-typed objects. If the

T A\ FV(®) F {®} s {U} I'Frok X ¢domT

T=nt—T

I X% A X F{®} s {U}

T-Frame

CAR{D AD} s {D' AT}

F|_€1,62,y ok

H¢gFV(®) HeA o1 = copy. L from H to X

A {VX:7.X =

L= U0§i<e1 {62 + ‘X|F * Z}

- T-NewX
M.L = @} newtypeX =7 in s {¥}

ranger X =71 y, X,Un, 7 € A

®, 09 = chkAndRem 7 L o3 =updUn. L 7 L
T-Bless

T-Hole

;AR {D} o {D}

'k eq,es,y 0k

b o1 = copy. L from H to T

T;AF {® A (010020030 [e2/y]) (V)] y := blessc[er] 2 (¥}

L= U0§i<61{62 + [X i}

ranger (X) =7 y,X,Un,7 €A

®, 02 = chkAndRem X L o3 =updUn. L 71
T-UnBless

T;AF {True} abort{¥}

I'keok v, =readFrom H (e:X) vz, = Xr(e)

F; AF {@1} S1 {‘1/}

D;AR{®A(o10020050[e2/y])(¥)} y:= unbless [e1] e2 {¥}

DA F{®2} s2 {U} Tiex

D;AF{((e € domrX AN(X =UnVu, =v)) = P1)A(e & domrX = $3)} if eisin X thens; elsesy {¥}

I'ke,y ok yeA
v, = readFrom H (e:X) v, = Xr(e)

X #Un
= [(Hi(e + offset. X p))/y]

I }—61,62 ok

H1:H[€1<—€2} O’:[Hl/H]
T-Rd T-LWr

%
A F {e € domr X A (vp, = ve = o(V

I'Fep,es Ok X, HeA X #Un
H, = H[(61 +Off$€} Xp) — 62}

)}y = X(e).p {¥}

v, = readFrom H (e1:X)
o1 = copy- e; from Hy to X

IHE{o(V)}liber:=e {¥}

vy = Xr(e1)

U:O’lo[Hl/H] F}—e,yOk U:[(He)/y]

;A F{er € domrX A (vp = v = 0(¥))} X(er).p:=ez {U}

copy-from-to : (Env % Locs * Map * Type) — Subst
copy: L fromY to int = -
copy- L fromY to X = let v = M.readFrom Y (¢:X) in
[(ALif £ € L theno (elseX ¢)/X]
copy L fromY to (11,72) = let Lo ={{+ |mi|r | £ € L} in
let o1 = copy. L fromY to 71 in
let 02 = copy L2 fromY to 72 in

chkAndRem
chkAndRem int L =
chkAndRem X L =

Tyt {o(D)) by —e ()}

. (Env * Type * Locs) — (Prop % Subst)

= (L C dom Un,-)

let ® =Vz.x € L = x € domr(X) in
(@, [(AL.if £ € L then L elseX ¢)/X])

chkAndRem (71, 72) L = let Ly = {¢+ |m|r | £ € L} in

let 1,01 = chkAndRem 71 L in
let @2, 02 = chkAndRem 72 Ly in

01002 ((13‘1/\‘1)2,0'1002)
Membership of types in the modifies sed updUn : (Env * Locs * Type * MapBody) — Subst
mt € A = True updUn. L int é = [ALif ¢ € L thené elseUn £/Un]
XeA = 3A1,A2.A=A1,X,A2 UdeI}‘LXé = -
(t1,m2) €A =T EAANTREA updUn. L (71,72) é = letoy =updUn. L 71 éin

let L, = {£+|T1|r | { e L} in
updUn. Ly 7 é

Figure 6. T; A+ {®} s {T}: A Floyd-Hoare logic for YCORE (Selected rules)

contents of art” object are not first blessed, then a write to check that the fields of the typeare appropriately blessed

a sub-objectX can modify the contents of somé-object, or unblessed—we call this thigeld consistencyondition.

which is inconsistent with the frame rule. To comply with For this purpose, in addition to the maps for each type, our

this restriction, the program above first blesses the memorgemantics also keeps track of a mdp : int — nt for

location{ as containing a singl& object, and then blesses locations that are not blessed at any protected type. Second

the location/ again as & object. we ensure that in addition to the hed&p, every memory
Abstractly, we model this behavior by allocating two mapslocation is in at most one map—we call this tdésjoint

corresponding to the typeX and Y. At the first bless
command, (T-Bless) computes the gebf locations in the

domainscondition.
We use two auxiliary functions to enforce these in-

array to be blessed. In our example, this is just the singletovariants. At the first bless command of our example,

set{/}. Using the functiorcopy. L from H to X, we read
X-typed tuple values from the hedp at each location in
L into the heaplet forX. At the first bless command in our
example, this corresponds to reading= (H ¢, H ({+1))
and adding it to theX map at location/. At the second
bless command, we copy the valug= (v, H ({+2)) (a
Y-typed value) into the map™ at location/.

chkAndRem (int,int) {¢} checks that the locations
{¢,(¢ + 1)} are currently unblessedi.e, they are in

the Un map. At the second bless command, we use
chkAndRem (X, int) {¢} to check that locatiot is in the
domain ofX and location(¢+2) is unblessed. In both cases,
the check manifests itself as a pre-conditibrior verifying

the bless command. For the second bless, to ensure the maps

Additionally, when blessing locations we enforce two for X and Y do not overlap, we additionally compute a
other invariants key to the soundness of our frame rulesubstitutiono, which updates the ma@ by removing the
First, when blessing a locatiofito be a typer, we must location ¢ from its domain. The functiompdUn. L 7 L

computes a substitutions that removes locations that arB. Soundness and robust safety
newly blessed from théJn map—at the first bless these The main formal result of this paper is a soundness

locations are{¢, ¢ + 1} and, at the second/ + 2}. property for YCORE that is robust even when a program
Finally, we requirey, X and Un to be in the set of s is composed with attacker programs. We begin by making

modified locationsA. Additionally, since the maps of nested precise our definition of an attacker that can mount only

types are also modifiece(g, the mapX when blessing a non-control data attacks.

location asY’), we overload notation and requireto also be

in A. The pre-condition in the conclusion is a propagation of . . .

the post-condition under the composition of all the comgute s is a valid attacker program if both of the following

substitutions. We also include the formufa in the pre- conditions are true:]
condition to enforce field consistency. 1) FV(s) =), where F\(s) are the free local variables
and critical type names ig.

2) s does not contain statements of the form
(newtypeX = 7 in s) or (assert®).

Definition 1 (Valid attacker program)A hole-free statement

The rules for unbless are entirely symmetric to those
for bless, swapping the role of a type namé for its
representation, and adding elements to thn map instead
of removing them. In our example, the first unbless removes The next lemma establishes that valid attackers are always
a valuev, = (v,) from theY-map at locatior?; addsuv, verifiable in our logic. A corollary of this property is that
to X at location?, and adds the locatioh+ 2 back to the programs that are verified in our logic remain verifiable even
Un map. The second unbless remowésrom X at location =~ when composed with valid attackers.

¢ and adds{(, ¢ + 1} back to theUn map. Lemma 1 (Valid attackers are trivially verifiable)For any
TypecaseThe typecase construct allows a programmer to,,gjid attacker programs, the tripleT; H + {True} s {True}
test whether a location is either the head of drtyped g derivable, wherd = H:int — int, Un:int — int.

object, or not blessed. at gll._ To test the latter condition,proof; (Sketch) Since has no free type names and creates
a programmer can write (it is in Un then s, elsesa), o new typess is free of instructions likeX (e;).p = es
which causess; to be executed only it is an unblessed that involve manipulation of critical data types. So, foryan
location—this is a primitive form of thewacant function y £ H, X is not in the modifies set. Likewise,has no
used in the memory manager of Section II-B, which cangree |ocal variables, and hence modifies no local variables.
be expanded to a sequence of typecase commands. (T-IS¥jnaly, 5 is also free of assertions. The remaining statements
formalizes the semantics of typecase. The then-branch inyolve arbitrary reads and write to the hea, the usual
can assume that the scrutineds in the backing store of control constructs, and operations on new local variables.

X and, whenX is not Un, can additionally assume that arpjtrary combinations of these remaining constructssfgti
the value of X' in the backing store matches the contentsihe trivial Hoare triple {True} s {True}. O

of the heapH. A mismatch between the backing store and

heap signals a potential corruption of memory by library Corollary 2 (Robustness under composition with valid
code—this situation is detected dynamically by therka attackers) For any I', A, ®, ¥, program s with hole e;
runtime and causes the program to abort. The else-brancRnd valid attacker prograns;; If T; A = {¥} s {®} then

in contrast, can assume thais not in X. LA F{VU} s[s]; {2}

Reads and writesThe static semantics of checked reads (T- Note that YCOREprovides no first-class control constructs
Rd) and writes (T-Wr) closely mirrors the reduction rules (e.g, computed jumps) thereby preventing attackers from
for these constructs in the dynamic semantics. Dynamicallysubverting the control flow of the program. Furthermore,
both instructions require the reference being used to balthough technically feasible in @ORE we also forbid
blessed—this manifests itself as a pre-condition in thécstat valid attackers from modifying local variables used by the
semantics that € domprX. Since the dynamic semantics program since this corresponds conceptually to allowing
includes a check to make sure that the value being read attackers to modify locations on the stack (which in pragtic
written to is uncorrupted (aborting otherwise), (T-Rd) andamounts to allowing attackers to modify return addresses
(T-Wr) allows us to assume that, = v, i.e, protections stored in stack frames). As such, valid attackers IDORE

in YARRA operate at a level of granularity corresponding are capable of mounting only pure, non-control data attacks
to the object, allowing programmers to reason about and Finally, we state our soundness result, a theorem that
preserve internal invariants among the fields of an objectguarantees that verified GORE programs never get stuck
rather than each field in isolation. The rules (T-LRd) and(although they may abort). In the statement betow; A ok
(T-LWr) provide no special semantics for un-checked readsaand I" -+ ¥ ok are simple well-formedness conditions on
and writes in the static semantics—libraries are free to reathe free names of environments and formulas. The relation
from or write to arbitrary portions of the heap, but leave alll E : T' states that the runtime environmeht is well-
critical heaplets unchanged. typed according to the bindings iR, while the judgment

1. Tsflag, H & {[cgiCmd, cgiCmd + |cchar|r % 1024) € cchar} In contrast,Log(*. .. ") represents a sequence of instructions

flag = CheckRequest (cgiCmd) from a library function, whose only effects are via un-
{flag # 0 = validCmd(cchar, cgiCmd)} checked reads and writes.
2. I'yH + {True} Log(". .. ") {True} The first triple states that the call theckrequest modifies
3. I HF {validCmd(cchar, cgicmd) A validDir(dchar, cgiDir) } the heap andag, and decides ifgicmd iS a validcmd when it
ExecuteRequest(cgiDir, cgiCmd) can be shown to be an array of protectedrs. The second
{True triple states thatog can have arbitrary effects on the hedp
Figure 7. Three triples to illustrate the power of the framkeru since it contains library calls. However, it has no effeats o

the heaplets corresponding d@ar anddchar. The third triple

with free variables bound if. Clause (1) of part (A) states says that;xecuteRequest demands_ a pre-condition to ensure
that the configuratior{F; s) is not stuck. Clause (2) states that both its arguments are valid.

that the new statd”’ is well-typed in an extension of the ~ Our semantics (via Lemma 1) ensures that any sequence
environmentl. Clauses (3) and (4) state that the programs Of well-scoped library commands.g, the call toLog)

s’ is verifiable but with the same post-conditior, and a satisfies the trivial Hoare tripl€True} s{True} and modifies
new pre-condition®’, and with a modifies set that includes NO type mapsX aside fromH. In such a case, according to
at most the variables modifiable lsyand possibly any new the frame rule, a formul@ that only references type¥ and
locals or heaplets allocated in the single step of reductionlocal variablesz inaccessible to the library is preserved
Clause (5) ensures that the new pre-conditidiss valid ~ across calls tos. Most importantly, we can come to the
in the new state®’. Finally, part (B) states that when the conclusion thatb is preservedvithout having to analyze or
computation has terminated, the post-condition is valid. ~modify the memory access patternssofTherein lies the
power of YARRA.

To illustrate this power, consider executing our example
in a context wherealidDir (dchar, cgiDir) initially holds true.
We can guard the call texecuterRequest With a test to make
sure thatfiag is non-zero, and verify that the sequence of
commands are valid. In particular, using the frame rule,
we preserve the predicatealidDir(dchar, cgiDir) across the
first triple, since it only modifiesag and the heap, whereas
the free variables of the predicate include only the map
for dchar (cgiDir IS @ constant). Likewise, we preserve both
validDir(dchar, cgibir) and the post-condition of the first
triple above across the call tag, without examining the
code ofLog, even though it has arbitrary effects on the heap.

E E @ is a first-order entailment relation for a formuda

Theorem 3 (Soundness)For all environments”, A (such
that - I'; A ok); formulas®, ¥ (such thatl" - ¥ ok); well-
formed storest (such that- FE : T') that satisfy the pre-
condition (¢ | ®); and hole-free programs such that
D;ARA{D} s {U}:
(A) If s # skip, then there exists’, s’, IV, ®’, A’ such that

all of the following are true:

(1) (E;s) ~ (E';8");

2+ E :T,T;

(3) A’ C AUdom T;

@D, I A'H{D'} ¢ {T}; and

(5) £ E 9,
(B) If s =skip, thenE |= W.

E. The power of the frame rule

This section revisits thewul | htt pd example of Sec-
tion 1I-A and shows how, using our logic, we can rea-
son about the safety of the program. Recall that the ex- The YARRA compiler is implemented as a plug-in to the
ample defines two typesnar and dchar, where the static CIL compiler infrastructure [22]. It implements ARRA’S
variables cgicmd and cgioir hold arrays of these types re- protection mechanisms using two sets of techniqueRRA
spectively. The program contains a call to the functionsource protectiongewrite C source code under compiler
ExecuteRequest(cgiDir, cgicmd), and our goal is to ensure that both control to ensure that the program does not incorrectly
arguments to this function are not corrupted, either bydyuff access critical data types.AXRA library protections use
overruns withinnul | ht t pd, or by the effects of libraries a backing store to ensure that libraries, whose source we
it uses. We can capture this specification by assuming thatannot rewrite, will be unable to corrupt critical data. She
the three triples in Figure 7 hold for some binary predicategdwo techniques allow us to run ARRA in two modes. In
validCmd andvalidDir. whole program protectiomode, we use source protections

These triples are given in a conteXt that includes on the entire application. ltargeted protectiormode, we
bindings for the local variableag and the type nameshar use source protections on the core routines and treat the
and dchar. The static variablesgicmd and cgibir are arbitrary rest of the application as a library, incurring a boundary
address constants. Additionally, in order to fit IT®¥RE we crossing cost to protect the backing store, but leaving the
model checkrequest and ExecuteRequest @s inlined sequences of library untouched. The remainder of this section describes
instructions that are free to use arbitrarg ¥REinstructions. source and library protections in detail.

IV. IMPLEMENTATION

Program| YARRA Protections Orig. LOC / | Bless /

A. YARRA source protections Mod. LOC | Unbless

YARRA source protections are applied to modules com-| sshd Password structure and
piled with the YARRA compiler. At runtime, each memory validation bit. 60148 / 497 23
location is assigned aARRA type identifier(a yiype) corre- ftpd Path/command buifers] 17993 / 262| 3
. . . ghttpd Pointer to command
sponding to the type of data it holds. Tiiess andunbless in- buffer. 514 / 69 3

structions change thgype associated with a set of locations. [telnetd | Login command string] 3962 / 63 3
Read and write instructions are instrumented with checks to
ensure that the static types of the pointers involved match Figure 8. YARRA-protected Applications
the ytype associated with the memory locations accessed. . Bless. bless is augmented to copy values of newly
The runtime system maintains the type information and blesséd addresses to the backing store

implements the checks. The key data structure is a map that ')
associates each memory address with a critical object, if i?‘s mentioned garher,_crltlcally-typed writes are alsotms_
belongs to one. The runtime system exposes the foIIowinénented at ru_ntlme with 2 caII_ o a new runtime fu_nctlon,
functions that manipulate the map. yShadowWrite(void xp, size_t size), Which copies the values in the

- . . heap starting at into the backing store.
Bless:void bless<ytype t>(void #p). Thebless function updates Protecting the Backing StordWe use hardware page protec-
the map to reflect that addressesy + sizeoft)) are part of Ing Ing u ware page p

a critical object of type. tions to protect the integrity of the backing store. The back

T int i id T is imol ted ing store uses a special critical memory manager (CMM),
ypecaseint isin<ywpe t>(void xp). Typecase IS Implemented ., o manted using the BGET memory manager [32], for
as a boolean function, which returns a non-zero integer if

. memory allocations. The memory pool given to the CMM is
has been blessed with type . tracked, and the ARRA runtime system expos@8niock(void)
Unbless:void unbless<ytype t>(void =p). The unbless function and yLock(void) functions for setting and unsetting write
undoes the effects afess. First, it callsisin(, p) to ensure that permissions on those pages respectively. Boundary cgsssin
p has been previously blessed. Second, it clears the addressg, protected to unprotected functions are instrumented

oo+ sizgott)) in the map Of association with _ with calls toyLock(), and each function in the runtime API
Vacant: int vacant<ytype t>(void +p). The vacant function re- callsyuniock if the backing store has been locked, effectively
turns a non-zero integer b, p + sizeoft)) hasytype un. unlocking on demand.

The YARRA compiler does the following:

o Builds run-time type representations for each critical
type. Each representation includes e, its size, and In this section, we evaluate our prototype implementation
offsets of fields. of YARRA. The important take-away is that despite our naive

« Prefaces each critical read and write of pointevith a implementation, XRRA’s performance is already entirely
call to isin(typeof(p), p). Execution aborts if the call fails. adequate to protect small sets of high-value data strugture

« Prefaces each untyped write with a callwaant and ~ and that in doing so, ARRA can defend against important

V. EVALUATION

aborts if it returns0. vulnerabilities with negligible impact on end-to-end appl
cation performance. Alternative approaches based on-array
B. YARRA library protections bounds checking cannot (soundly) implement such targeted,

YARRA library protections rely on (1) maintaining a negligible-overhead performance protections.

backing storethat stores copies of critical data, and (2) A. Hardening server applications witHARRA

protecting that backing store from library access. Chenet. alidentify non-control data attacks on real-world

Maintaining the Backing Store.The backing store is real- g jications, including FTP, SSH, Telnet and HTTP servers.
ized by adding a field to the map described in Section IV-A.Thege applications share a common characteristic: they eac

Critical writes update this field as well as the value at their,sve a well-defined module that handles a small amount
target address. The runtime functions are similar to those i ¢ security-sensitive data i.e., critical data structurghe

Section IV-A, with the following changes. applications are well-suited toARRA protections precisely
« TypecaseThe implementation ofsin is augmented to because they share this characteristic.
compare the value ofhadow with the value ataddress We show how these applications can be hardened with

in the heap. If the address has been blessed and thminimal effort, often with only a new critical type, a few
comparison detects a difference, indicating a potentiatalls to bless and unbless, and minor changes to statements
corruption, isin aborts the program. Notice that since using critical variables. We chose the data-structures to
the implementation of critical reads and writes use protect in each application based on the attacks described
they only succeed when the shadow copy is in synctin Chenet al’s paper. Figure 8 shows the server appli-
with the ordinary copy. cations we harden, the nature of critical data protected,

Figure 9. Runtime overhead for hardening data vulnerabdliitusing — protection is much more efficient with these applications,

YARRA's targeted protection mode, measured from the client (“End toindicating that the cost of boundary crossinas from pratect
End”) and server perspectives. There was no measurable eagrfiom 9 Y 9 P

the client's perspective. A value dix indicates no measurable overhead. COde to library code is less than instrumenting every read

Figure 10. CPU overhead for securing allocator metadatagugirra's ~ @Nd write in the application. Even with targeted protection
targeted and whole program protection modes. A valuéxohdicates no however, we incur a 2x overhead on the SPEC benchmarks.

measurable overhead. There are two bottlenecks in our current implementation,
and the amount of code changed. As the table indicatesiamely read/write instrumentations and boundary crossing
it was not difficult to introduce XRRA protections in these Because our implementation is not as highly optimized as
applications. Few locations required blessing and unblesther, similar bounds-checking implementations (e.g],[21
ing, and the vast majority of modified lines were changed[27]), we anticipate that this overhead can be lowered
by automated search and replace of variable names. Eadignificantly. Further, we can use cheaper alternativesitiep
application required less than a day'’s effort to protect. protection for protecting the address map data-structeoe.

We measure end-to-end performance to gauge the impaexample, heap randomization techniques can be used to hide
of applying YARRA protections. For each server, we de- data structure copies as opposed to paying the cost of turnin
fine a client/server interaction wherein the client congect on hard protections at boundary crossings [4]. Alternéfjve
performs a small task, and disconnects. By design, eacthe address map structure may be hidden in a separate
interaction exercises vulnerable code in the server. Werocess, using a technique similar to the one proposed by
compare the run times of a client connecting to vulnerableBerger et al. [3]. These techniques would make boundary
(unmodified) and hardened servers, normalizing the resultsrossings take constant time (instead of being linear with
against the run time connecting to the vulnerable servetthe size of the map), albeit at the cost of look-up speed.
Figure 9 shows our results (“End to End”). Finally, this experiment marksARRA as a viable modular

We found no measurable overhead between connectingrotection. The changes to BGET were minimal, requiring
to hardened and vulnerable servers, irrespective of tta tot only 16 calls tobless/unbless and modifying 43 out of 241
lines of code in the program or number of memory accessebnes in total. The SPEC applications did not change at all.
throughout the code. ARRA was extremely efficient in
protecting the security-critical modules identified by @Ghe VI|. RELATED WORK
et al. as vulnerable to non-control data attacks.

In order to investigate further, we instrumented eachPreventing non-control data attackskong et al. [14]
server to isolate and collect run-time data from within thePropose ensuring data integrity as a special case of taint
protected module, allowing us to measure function slow-checking. They separate data and instructions into tainted
down for hardened server functions. Our findings are showr@nd taintless, and ensure that each instruction operates on
in Figure 9 (“Server”), reflecting a modest performancethe appropriately type of data. They implement their soluti

impact (below 1.6x) on the hardened module. with hardware support. Data-flow integrity (DFI) [7] com-
. putes data dependencies between instructions using static
B. Stress-testing the performanceY6fRRA analysis and ensures that the flow of data at runtime obeys

We employ a second, atypical use case to evaluate thidese dependencies. Data Space Randomization (DSR) [5]
performance of the XRRA run time under heavy load, XORs the contents of memory with a random key, making
wherein we use XRRA to protect module data structures so it difficult for an attacker to correctly subvert the content
that clients may not corrupt it. For this study, we experimen Both DFI and DSR differ from Yarra in that they apply
with the BGET memory allocator [32], usingARRA to protections to all data (and not just critical data), do not
protect BGET's metadata from clients that use the allocatoprovide language support for partial protection, and do not
in a way reminiscent of the idealized allocator exampleformalize the semantics of their solutions. SIDAN [10]
presented in Section II-B. The BGET clients we measurgletects non-control data attacks using techniques from the
are three SPECINT2000 programs also used in the WITntrusion detection literature. However, it does not pdevi
paper [2]. Unlike the server applications of the previouseca any formal guarantees about the protection.
study, these clients frequently call routines (allocataord Array bounds checkingEarly array bounds-checking tech-
deallocation) which contain bless and unbless operationsiiques (e.g., Jones and Lin [13]) had substantial perfoo@an
exercising our implementation vigorously. overheads, and more recent work (e.g., [21] as a recent

Figure 10 illustrates our resultscomparing both protec- example) attempts to reduce that overhead. Approaches
tion modes discussed in Section V. We found that targetedo memory safety through array bounds checking fail to

2 e med , R — provide cqmple’ge safety unless every memory reference is
9'10V§r:aa91‘*2"i3g’§z“lr:teel géfecuz“%”uso_o’;zzmgu&mfc iné running checked, including references from modules that have not

3Average of five timed executions (’)n a machine running CentO915.4 been compiled with checking enabledarRA differs from
four dual-core 2.8 GHz AMD Opteron 8220s; 8Gb RAM. this prior work in its emphasis on protecting the contents of

arrays from all references made dther objectsincluding and tear down physical protections.
references made in arbitrary external libraries.

As mentioned, XRRA's explicit declaration of types has VIl. DISCUSSION
similarities to ideas in WIT [2]. Unlike WIT, XRRA allows
the user to specify object equivalence classes explicitly This paper presentsARRA, a lightweight extension to C
and precisely, and guarantees that all program referencef)at allows programmers to protect the integrity of critica
including those performed in external components, do noflata structures in their programs, even in the presence-of un
violate the integrity of such objects. trusted third-party libraries. We formalize the key senmant

Dhurjati et al. [11] show that using a pool-allocation properties of XRRA by developing a sound program logic
transformation, they are able to eliminate bounds checks afor it. The logic includes a novel type-based frame rule that
together and ensure semantic correctness of array refssencgives programmers access to powerful modular reasoning
even in the presence of incorrect frees. However, like othetechniques. We show ARRA is effective in practice by
array bounds checking research, they assume that all cod®otecting important server applications, tens of thodsan
in an application has been transformed to ensure safety. of lines long, from known vulnerabilities—in each case, we
Separating and isolating memorySoftware fault isola- Mmodify at most a few hundred lines of code. Moreover,
tion [31] attempts to isolate the potential negative effexft the end-to-end performance overhead is negligible in the
external components by preventing memory operations angecurity-centric examples we studied.
other unwanted interactions, such as system calls, thattmig We conclude this paper by discussing howRRA can
be harmful. Castro et al. describe BGI (Byte-Granularitycomplement existing protection mechanisms for C programs.
Isolation) [8], which provides software enforced protenti One effective protection against control-based attacks is
domains between kernel extensions. LikeR®A, they pro- ensure control-flow integrity (CFI) [1]. Combining CFI with
vide an API that allows users to explicitly identify what YARRA would give stronger guarantees against both control-
extensions can access what memory. Unliker¥A, BGI based and non-control data attacks than CFI alone. Further,
assumes that all untrusted extensions are compiled with BGt would require less overhead than combining CFI with
and will fail in the presence of untrusted extensions. Incomplete array bounds checking. While many approaches
addition, unlike Y\RRA, BGI has no formal semantics. to array bounds checking have been proposed, none are

Samurai [24] also takes the approach of explicitly protect-in widespread use. We believe that this is because of the
ing part of the entire memory state. Like SamurahRRA performance overheads imposed and issues related to whole-
also focuses on protecting critical data from memory cor-program compilation and third-party code — issues where
ruption errors. Unlike Samurai, ARRA provides a precise YARRA's alternative design allows it to excel.
definition of what critical memory means, incorporates thos We also consider the value of usingARRA in cases
semantics in language features, and demonstrates that suethere other techniques such as CFl and array bounds
features are useful to ensure correctness and security. checking are impractical. Specifically, modern systemshsu
Formal reasoning.The most closely related theories em- as Microsoft Windows, rely on a collection of techniques to
anate from a line of research started in the 70s with thedefend against attacks, implemented in the compiler [19],
Euclid programming language [17]. Euclid was built in heap [20], and the hardware [18]. While these mechanisms
order to facilitate verification and one of the techniquesprevent a number of common attack vectors, they do not
for doing so involved logically, as opposed to physically, prevent arbitrary buffer overruns from corrupting either
splitting the heap into a set of different heaplets calledcontrol data (such as vtable pointers) or non-control data
collections. These collections resemble the typed hemplefsuch as passwords). As a result, many publicly available
in this paper except that there was no means for movinglocuments demonstrate how to corrupt structures such as the
an object from one heap to another as we do with bles§Vindows heap metadata to mount a successful attack [25].
and unbless operations. In the mid-nineties, Utting [3@] re In this context, YRRA provides a novel and systematic
examined Euclid’s model and added a transfer coercion thatyay to harden applications from attacks. Consider the fol-
logically speaking, moved objects between heaplets, thouglowing scenario: an attacker exploits a buffer overrun in a
physically, no action was taken. Recently, similar ideagha heap object to overwrite a function pointer in another objec
been rediscovered by Lahit al.[16]. They modernized and or in the heap metadata. WithoubK¥RA, the standard miti-
extended Euclid’s Hoare Logic and illustrated the intdoact gation of this exploit would be to patch the buffer overflow.
between collections, now calldmhear maps and the frame However, this leaves the program vulnerable to other astack
rule. The key difference betweena¥RA and this previous that overwrite the data, through a different buffer overflow
work is that YARRA's separate heaplets are designed to befor example. With MRRA, the mitigation would be to make
used in the context of an unsafe language with unverifiedhe function pointer critical, thus protecting the systeot n
libraries. Consequently, the bless and unbless operatiorjgst from the one exploit, but froraveryexploit that would
(i.e., transfers) have operational significance: they put upattempt to overwrite that function pointer. Note that oneslo

not need to know what vulnerabilities are present or wherg18] Microsoft.

they are present, in order to deployANRA protection.

YARRA would also be effective when used in conjunction [19]

with hardware protection such as Data Execution Prevention

(DEP), which prevents attackers from injecting code in® th [20]

heap and jumping to it. Attackers can bypass DEP using
return-to-libc attacks and return-oriented programmifyy [

However, to do so they still need to overwrite a vulnerable
function pointer somewhere in the heap. In such cases,
YARRA can be deployed to selectively protect vulnerable

function pointers. In future work, we will explore the scal- [22]

ability of employing YARRA in such scenarios.

Acknowledgements We thank Emery Berger and the anonymous review- [23]

ers for useful feedback that helped improve this work. Podiof this
material are based upon work supported under NSF grant 101688
an NSERC Discovery grant. Any opinions, findings, and cosiolus or
recommendations expressed in this material are those of tim®rauand
do not necessarily reflect the views of the NSF or NSERC.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control- [26]

flow integrity: Principles, implementations, and applications.
In CCS ACM, 2005.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro.
Preventing memory error exploits with WIT. 18&P, 2008.

[3] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe
multithreaded programming for C/C++. ROPSLA 2009.

[4] E. D. Berger and B. G. Zorn. Diehard: Probabilistic memory [29]

safety for unsafe languages. RLDI, 2006.
[5] S. Bhatkar and R. Sekar. Data space randomization. In
DIMVA, volume 5137, pages 1-22. Springer, 2008.
[6] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When

good instructions go bad: generalizing return-oriented pro-[31]

gramming to RISC. INCCS 2008 ACM, 2008.

[7] M. Castro, M. Costa, and T. L. Harris. Securing software by [32]

enforcing data-flow integrity. MOSDL USENIX, 2006.

[8] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis,
A. Donnelly, P. Barham, and R. Black. Fast byte-granularity
software fault isolation. IIBOSP 2009.

[9] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. lyer. Non-
control-data attacks are realistic threats. Ugenix Security
2005.

[10] J.-C. Demay, E. Totel, and F. Tronel. SIDAN: A tool
dedicated to software instrumentation for detecting attacks
on non-control-data. IICRISIS pages 51-58. IEEE, 2009.

[11] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory
safety without runtime checks or garbage collectioBIG-
PLAN Not, 38(7):69-80, 2003.

[12] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and
Y. Wang. Cyclone: A safe dialect of C. IISENIX 2002.

[13] R. W. M. Jones and P. H. J. Kelly. Backwards-compatible
bounds checking for arrays and pointers in C programs. In
AADEBUG 1997.

[14] J.Kong, C. C. Zou, and H. Zhou. Improving software security
via runtime instruction-level taint checking. WSID, 2006.

[15] S. Lahiri and S. Qadeer. Back to the future: revisiting precise
program verification using SMT solvers. POPL, 2008.

[16] S. Lahiri, S. Qadeer, and D. Walker. Linear maps.PItPV,
2011.

[17] B. W. Lampson, J. J. Horning, R. L. London, J. G. Mitchell,
and G. J. Popek. Report on the programming language Euclid.
SIGPLAN Not.12(2), 1977.

(24]

(25]

(28]

(30]

DEP: Data execution prevention.
http://support.microsoft.com/kb/875352.
Microsoft. Gs flag (buffer security check). http://msdn.

microsoft.com/en-us/library/8dbf701c%28VS.80%29.aspx,
2005.

Microsoft. Preventing the exploitation of user mode
heap corruption vulnerabilities. http://blogs.technet.com/b/
srd/archive/2009/08/04/preventing-the-exploitation-of-user-
mode-heap-corruption vulnerabilities.aspx, 2009.

S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic.
SoftBound: Highly compatible and complete spatial memory
safety for C. InPLDI, 2009.

G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. Cil:
Intermediate language and tools for analysis and transforma-
tion of ¢ programs. InCC, 2002.

G. C. Necula, S. McPeak, and W. Weimer. Ccured: type-safe
retrofitting of legacy code. If?OPL, 2002.

K. Pattabiraman, V. Grover, and B. G. Zorn. Samurai:
protecting critical data in unsafe languageSIGOPS Oper.
Syst. Rey.2008.

P. Phantasmagoria. The malloc maleficarum: Glibc malloc
exploitation techniques. http://packetstormsecurity.org/files/
view/40638/MallocMaleficarum.txt, 2005.

J. Reynolds. Separation logic: A logic for shared mutable
data structures. IhICS IEEE, 2002.

O. Ruwase and M. Lam. A practical dynamic buffer overflow
detector. INNDSS 2004.

C. Schlesinger, K. Pattabiraman, N. Swamy, D. Walker, and
B. Zorn. Modular protections against non-control data attacks.
Technical Report Microsoft Research, TR-2010-158, 2011.
A. Sotirov. Modern exploitation and memory protection
bypasses. http://www.usenix.org/events/sec09/tech/slides/
sotirov.pdf, 2009.

M. Utting. Reasoning about aliasing. Fourth Australasian
Refinement Workshppages 195-211, 1995.

R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient software-based fault isolation. BOSP 1993.

J. Walker. The BGET memory allocator. http://www.
fourmilab.ch/bget/, 1996.

