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Abstract
Data-center network stacks are moving into hardware to

achieve 100 Gbps data rates and beyond at low latency and
low CPU utilization. However, hardwiring the network stack
in the NIC would stifle innovation in transport protocols. In
this paper, we enable programmable transport protocols in
high-speed NICs by designing Tonic, a flexible hardware ar-
chitecture for transport logic. At 100 Gbps, transport pro-
tocols must generate a data segment every few nanoseconds
using only a few kilobits of per-flow state on the NIC. By
identifying common patterns across transport logic of dif-
ferent transport protocols, we design an efficient hardware
“template” for transport logic that satisfies these constraints
while being programmable with a simple API. Experiments
with our FPGA-based prototype show that Tonic can support
the transport logic of a wide range of protocols and meet tim-
ing for 100 Gbps of back-to-back 128-byte packets. That is,
every 10 ns, our prototype generates the address of a data
segment for one of more than a thousand active flows for a
downstream DMA pipeline to fetch and transmit a packet.

1 Introduction

Transport protocols, along with the rest of the network
stack, traditionally run in software. Despite efforts to im-
prove their performance and efficiency [1,6,25,32], software
network stacks tend to consume 30-40% of CPU cycles to
keep up with applications in today’s data centers [25,32,38].

As data centers move to 100 Gbps Ethernet, the CPU
utilization of software network stacks becomes increasingly
prohibitive. As a result, multiple vendors have developed
hardware network stacks that run entirely on the network in-
terface card (NIC) [8,10]. However, there are only two main
transport protocols implemented on these NICs, both hard-
wired and modifiable only by the vendors:

RoCE. RoCE is used for Remote Direct Memory Access
(RDMA) [8], using DCQCN [43] for congestion control and
a simple go-back-N method for reliable data delivery.

TCP. A few vendors offload a TCP variant of their choice

to the NIC to either be used directly through the socket API
(TCP Offload Engine [10]) or to enable RDMA (iWARP [7]).

These protocols, however, only use a small fixed set
out of the myriad of possible algorithms for reliable deliv-
ery [16, 21, 24, 27, 33, 34] and congestion control [12, 17, 19,
35,42,43] proposed over the past few decades. For instance,
recent work suggests that low-latency data-center networks
can significantly benefit from receiver-driven transport pro-
tocols [21,24,36], which is not an option in today’s hardware
stacks. In an attempt to deploy RoCE NICs in Microsoft data
centers, operators needed to modify the data delivery algo-
rithm to avoid livelocks in their network but had to rely on
the NIC vendor to make that change [22]. Other algorithms
have been proposed to improve RoCE’s simple reliable deliv-
ery algorithm [31,34]. The long list of optimizations in TCP
from years of deployment in various networks is a testament
to the need for programmability in transport protocols.

In this paper, we investigate how to make hardware trans-
port protocols programmable. Even if NIC vendors open
up interfaces for programming their hardware, it takes a sig-
nificant amount of expertise, time, and effort to implement
transport protocols in high-speed hardware. To keep up with
100 Gbps, the transport protocol should generate and trans-
mit a packet every few nanoseconds. It should handle more
than a thousand active flows, typical in today’s data-center
servers [15, 37, 38]. To make matters worse, NICs are ex-
tremely constrained in terms of the amount of their on-chip
memory and computing resources [30, 34].

We argue that transport protocols on high-speed NICs can
be made programmable without exposing users to the full
complexity of programming for high-speed hardware. Our
argument is grounded in two main observations:

First, programmable transport logic is the key to en-
abling flexible hardware transport protocols. An imple-
mentation of a transport protocol performs several function-
ality such as connection management, data buffer manage-
ment, and data transfer. However, its central responsibility,
where most of the innovation happens, is to decide which
data segments to transfer (data delivery) and when (conges-



tion control), which we collectively call the transport logic.
Thus, the key to programmable transport protocols on high-
speed NICs is enabling users to modify the transport logic.

Second, we can exploit common patterns in transport
logic to create reusable high-speed hardware modules.
Despite their differences in application-level API (e.g., sock-
ets and byte-stream abstractions for TCP vs. the message-
based Verbs API for RDMA), and in connection and data
buffer management, transport protocols share several com-
mon patterns. For instance, different transport protocols use
different algorithms to detect lost packets. However, once a
packet is declared lost, reliable transport protocols prioritize
its retransmission over sending a new data segment. As an-
other example, in congestion control, given the parameters
determined by the control loop (e.g., congestion window and
rate), there are only a few common ways to calculate how
many bytes a flow can transmit at any time. This enables us
to design an efficient “template” for transport logic in hard-
ware that can be programmed with a simple API.

Using these insights, we design and develop Tonic, a pro-
grammable hardware architecture that can realize the trans-
port logic of a broad range of transport protocols, using a
simple API, while supporting 100 Gbps data-rates. Every
clock cycle, Tonic generates the address of the next segment
for transmission. The data segment is fetched from memory
by a downstream DMA pipeline and turned into a full packet
by the rest of the hardware network stack (Figure 1).

We envision that Tonic would reside on the NIC, re-
placing the hard-coded transport logic in hardware imple-
mentations of transport protocols (e.g., future RDMA NICs
and TCP offload engines). Tonic provides a unified pro-
grammable architecture for transport logic, independent of
how specific implementations of different transport proto-
cols perform connection and data buffer management, and
their application-level APIs. We will, however, describe how
Tonic interfaces with the rest of the transport layer in general
(§2) and how it can be integrated into Linux Kernel to inter-
act with applications using socket API as an example (§5).

We implement a Tonic prototype in ∼8K lines of Ver-
ilog code and demonstrate Tonic’s programmability by im-
plementing the transport logic of a variety of transport pro-
tocols [13, 16, 23, 24, 34, 43] in less than 200 lines of code.
We also show, using an FPGA, that Tonic meets timing for
∼100 Mpps, i.e., supporting 100Gbps of back-to-back 128B
packets. That is, every 10ns, Tonic can generate the transport
metadata required for a downstream DMA pipeline to fetch
and send one packet. From generation to transmission, the
latency of a single segment address through Tonic is∼ 0.1µs,
and Tonic can support up to 2048 concurrent flows.

2 Tonic as the Transport Logic

This section is an overview of how Tonic fits into the trans-
port layer (§2.1), and how it overcomes the challenges of im-

Figure 1: Tonic providing programmable transport logic in a hard-
ware network stack on the NIC (sender-side).

plementing transport logic on high-speed NICs (§2.2).

2.1 How Tonic Fits in the Transport Layer
Sitting between applications and the rest of the stack,

transport-layer protocols perform two main functions:
Connection Management includes creating and configuring
endpoints (e.g., sockets for TCP and queue-pairs for RDMA)
and establishing the connection in the beginning, and closing
the connection and releasing its resources at the end.
Data Transfer involves delivering data from one endpoint
to another, reliably and efficiently, in a stream of segments 1.
Different transport protocols provide different APIs for ap-
plications to request data transfer: TCP offers the abstraction
of a byte-stream to which applications can continuously ap-
pend data, while in RDMA, each “send” call to a queue-pair
creates a separate work request and is treated as a separate
message. Moreover, specifics of managing applications’ data
buffers differ across different implementations of transport
protocols. Regardless, the transport protocol must deliver
the outstanding data to its destination in multiple data seg-
ments that fit into individual packets. Deciding which bytes
comprise the next segment and when it is transmitted is done
by data delivery and congestion control algorithms, which
we collectively call transport logic and implement in Tonic.

Figure 1 shows a high-level overview of how Tonic fits in a
hardware network stack. To decouple Tonic from specifics of
connection management and application-level APIs, connec-
tion setup and tear-down run outside of Tonic. Tonic relies
on the rest of the transport layer to provide it with a unique
identifier (flow id) for each established connection, and to
explicitly add and remove connections using these IDs.

For data transfer on the sender side, Tonic keeps track of
the number of outstanding bytes and transport-specific meta-
data to implement the transport logic, i.e., generate the ad-
dress of the next data segment for each flow at the time desig-
nated by the congestion control algorithm. Thus, Tonic does
not need to store and/or handle actual data bytes; it relies
on the rest of the transport layer to manage data buffers on
the host, DMA the segment whose address is generated in
Tonic from memory, and notify it of new requests for data
transmission on existing connections (see §5 for details).

The receiver-side of transport logic mainly involves gen-
erating control signals such as acknowledgments, per-packet

1We focus on reliable transport as it is more commonly used and more
complicated to implement.



# Observation Examples
1 Only track a limited window of segments TCP, NDP, IRN
2 Only keep a few bits of state per segment TCP, NDP, IRN, RoCEv2
3 Lost segments first, new segments next TCP, NDP, IRN, RoCEv2
4 Loss detection: Acks and timeouts TCP, NDP, IRN

5 The three common credit calculation TCP, RoCEv2, NDPpatterns: window, rate, and grant tokens

Table 1: Common transport logic patterns.

grant tokens [21, 24, 36], or periodic congestion notification
packets (CNPs) [43], while the rest of the transport layer
manages receive data buffers and delivers the received data
to applications. While handling received data can get quite
complicated, generating control signals on the receiver is
typically simpler than the sender. Thus, although we mainly
focus on the sender, we reuse modules from the sender to
implement a receiver solely for generating per-packet cumu-
lative and selective acks and grant tokens at line rate.

2.2 Hardware Design Challenges
Implementing transport logic at line rate in the NIC is

challenging due to two main constraints:
Timing constraints. The median packet size in data cen-

ters is less than 200 bytes [15, 37]. To achieve 100 Gbps
for these small packets, the NIC has to send a packet every
∼10 ns. Thus, every∼10 ns, the transport logic should deter-
mine which active flow should transmit which data segment
next. To make this decision, it uses some state per flow (e.g.,
acknowledged data segments, duplicate acks, rate/window
size, etc.) which is updated when various transport events
happen (e.g., receiving an acknowledgment or a timeout).
These updates could involve operations with non-negligible
hardware overhead, such as searching bitmaps and arrays.

To allow for more time in processing each event while
still determining the next data segment every ∼10 ns, we
could conceivably pipeline the processing of transport events
across multiple stages. However, pipelining is more tractable
when incoming events are from different flows as they up-
date different states. Processing back-to-back events for the
same flow (e.g., generating data segments while receiving ac-
knowledgments) requires updates to the same state, making
it difficult to pipeline event processing while ensuring state
consistency. Thus, we strive to process each transport event
within 10 ns instead to quickly consolidate the state for the
next event in case it affects the same flow.

Memory constraints. A typical data-center server has
more than a thousand concurrent active flows with kilobytes
of in-flight data [15, 37, 38]. Since NICs have just a few
megabytes of high-speed memory [30,34], the transport pro-
tocol can store only a few kilobits of state per flow on NIC.

Tonic’s goal is to satisfy these tight timing and memory
constraints while supporting programmability with a simple
API. To do so, we identify common patterns across trans-
port logic in various protocols that we implement as reusable
fixed-function modules. These patterns allow us to optimize

these modules for timing and memory, while simplifying the
programming API by reducing the functionality users must
specify. These patterns are summarized in Table 1, and are
discussed in detail in next section, where we describe Tonic’s
components and how these patterns affect their design.

3 Tonic Architecture

Transport logic at the sender is what determines, for each
flow, which data segments to transfer (data delivery) and
when (congestion control). Conceptually, congestion con-
trol algorithms perform credit management, i.e., determine
how many bytes a given flow can transmit at a time. Data
delivery algorithms perform segment selection, i.e., decide
which contiguous sequence of bytes a particular flow should
transmit. Although the terms “data delivery” and “con-
gestion control” are commonly associated with TCP-based
transport protocols, Tonic provides a general programmable
architecture for transport logic that can be used for other
kinds of transport protocols as well, such as receiver-driven
[21, 24, 36] and RDMA-based [8] transport protocols.

Tonic exploits the natural functional separation between
data delivery and credit management to partition them into
two components with separate state (Figure 2). The data de-
livery engine processes events related to generating, track-
ing, and delivery of segments, while the credit engine pro-
cesses events related to adjusting each flow’s credit and send-
ing out segment addresses for those with sufficient credit.

At the cost of lightweight coordination between the two
engines, this partitioning helps Tonic meet its timing con-
straints while concurrently processing multiple events (e.g.,
receipt of acknowledgments and segment transmission) ev-
ery cycle. These events must read the current state of their
corresponding flow, update it, and write it back to memory
for events in the next cycle. However, concurrent read and
write to memory in every cycle is costly. Instead of using a
wide memory to serve all the transport events, the partition-
ing allows the data delivery and credit engines to have nar-
rower memories to serve only the events that matter for their
specific functionality, hence meeting timing constraints.

In this section, we present, in §3.1, how the engines co-
ordinate to fairly and efficiently pick one of a few thou-
sand flows every cycle for segment transmission while keep-
ing the outgoing link utilized. Next, §3.2 and §3.3 describe
fixed-function and programmable event processing modules
in each engine, and how their design is inspired by patterns
in Table 1. We present Tonic’s solution for resolving con-
flicts when multiple events for the same flow are received in
a cycle in §3.4, and its programming interface in §3.5.

3.1 Efficient Flow Scheduling
At any time, a flow can only transmit a data segment if

it (1) has enough credit, and (2) has a new or lost segment
to send. To be work conserving, Tonic must track the set



Figure 2: Tonic’s architecture (dark red boxes (also with thick borders) are programmable, others are fixed)

of flows that are eligible for transmission (meet both of the
above criteria) and only pick among those when selecting a
flow for transmission each cycle. This is challenging to do
efficiently. We have more than a thousand flows with their
state partitioned across the two engines: Only the credit en-
gine knows how much credit a flow has, and only the data de-
livery engine knows the status of a flow’s segments and can
generate the address of its next segment. We cannot check
the state of all the flows every cycle across both engines to
find the ones eligible for transmission in that cycle.

Instead, we decouple the generation of segment addresses
from their final transmission to the DMA pipeline. We al-
low the data delivery engine to generate up to N segment ad-
dresses for a flow without necessarily having enough credit
to send them out. In the credit engine, we keep a ring buffer
of size N for each flow to store these outstanding segments
addresses. When the flow has enough credit to send a seg-
ment, the credit engine dequeues and outputs a segment ad-
dress from the buffer and signals the data delivery engine to
decrement the number of outstanding segments for that flow.

This solves the problem of the partitioned state across the
two engines. The data delivery engine does not need to keep
track of the credit changes of flows for segment address gen-
eration. It only needs to be notified when a segment address
is dequeued from the buffer. Moreover, the credit engine
does not need to know the exact status of all flow’s segments.
If the flow’s ring buffer is empty, that flow does not have
segments to send. Otherwise, there are already segment ad-
dresses that can be output when the flow has enough credit.

Still, the data delivery engine cannot simply check the
state of all the flows every cycle to determine those that can
generate segments. Instead, we dynamically maintain the set
of active flows in the data delivery engine, i.e., the flows that
have at least one segment to generate and less than N out-
standing segments (see red numbered circles in Figure 2).
When a flow is created, it is added to the active set. Every
cycle, one flow is selected and removed from the set for seg-
ment generation (Step 1). Once processed (Step 2), only if it
has more segments to send and less than N outstanding seg-
ments, is it inserted back into the set (Step 3). Otherwise, it

will be inserted in the set if, later on, the receipt of an ack or
a signal from the credit engine “activates” the flow (Step 9).
Moreover, the generated segment address is forwarded to the
credit engine (Step 4) for insertion in the ring buffer (Step 5).

Similarly, the credit engine maintains the set of ready-to-
transmit flows, i.e., the flows with one segment address or
more in their ring buffers and enough credit to send at least
one segment out. Every cycle, a flow is selected from the set
(Step 6), one segment address from its ring buffer is trans-
mitted (Step 7), its credit is decreased, and it is inserted back
into the set if it has more segment addresses and credit for
further transmission (Step 8). It also signals the data deliv-
ery engine about the transmission (Step 9) to decrement the
number of outstanding segments for that flow.

To be fair when picking flows from the active (or ready-to-
transmit) set, Tonic uses a FIFO to implement round-robin
scheduling among flows in the set (see active list in [39]).
The choice of round-robin scheduling is not fundamental;
any other scheduler that meets our timing constraints can re-
place the FIFO to support other scheduling disciplines [40].

3.2 Flexible Segment Selection
With B bytes of credit, a flow can send S = max(B,MSS)

bytes, where MSS is the maximum segment size. In transport
protocols, data delivery algorithms use acknowledgments to
keep track of the status of each byte of data (e.g., delivered,
lost, in-flight, and not transmitted), and use that to decide
which contiguous S bytes of data to transmit next.

However, there are two main challenges in implementing
data delivery algorithms in high-speed NICs. First, due to
memory constraints, the NIC cannot store per-byte informa-
tion. Second, with a few exceptions [8,34], these algorithms
are designed for software, where they could store and freely
loop through large arrays of metadata to aggregate informa-
tion. This computational flexibility has created significant
diversity across these algorithms. Unfortunately, NIC hard-
ware is much more constrained than software. Thus, we did
not aim to support all data delivery algorithms. Instead, we
looked for patterns that are common across a variety of algo-
rithms while being amenable to hardware implementation.



3.2.1 Pre-Calculated Fixed Segment Boundaries

Data delivery algorithms could conceivably choose the
next S bytes to send from anywhere in the data stream and
produce segments with variable boundaries. However, since
the NIC cannot maintain per-byte state, Tonic requires data
to be partitioned into fixed-size segments (by a Kernel mod-
ule or the driver, see §5) when the flow requests transmission
of new data. This way, data delivery algorithms can use per-
segment information to select the next segment.

Note that the fixed segment size can be configured for each
flow based on its throughput and latency requirements. With
message-based transport protocols (e.g., RoCEv2), having
fixed segment boundaries fits naturally; the message length
is known and the optimal segment size can be chosen from
the beginning. For protocols with a byte-stream abstraction
(e.g., TCP and NDP), the fixed segment size should be de-
cided on the fly as data is added to the stream. It can be set to
MSS (or larger if using TSO [18]) for high-bandwidth flows.
For flows that generate small data segments and sporadically,
the segment size can be set to a smaller value, depending
on whether it is more desirable to consolidate multiple small
segments into a larger one before notifying Tonic, or to trans-
mit the small segment right away (§5). Regardless, to avoid
storing per-byte state on the NIC, segment size should be de-
cided outside of Tonic and changed infrequently.

3.2.2 Small Per-Segment State for a Limited Window

Independent of a flow’s available credit, data delivery al-
gorithms typically do not transmit a new segment if it is too
far, i.e., more than K segments apart, from the first unac-
knowledged segment, to limit the state that the sender and
receiver need to keep 2. Still, in a 100 Gbps network with a
10µs RTT, K can get as large as∼128 segments. Fortunately,
we observe that storing the following per-segment state is
enough for most data delivery algorithms: (1) Is the segment
acknowledged (in presence of selective acknowledgments)?
(2) If not, is it lost or still in flight? (3) If lost, is it already
retransmitted (to avoid redundant retransmission)?

More specifically, we observe that, in the absence of ex-
plicit negative acknowledgments, data delivery algorithms
accumulate evidence of loss for each segment from posi-
tive acknowledgments, e.g., duplicate cumulative (e.g., TCP
NewReno [23]) or selective acks (e.g., IRN for RDMA and
TCP SACK [16]). Once the accumulated evidence for a seg-
ment passes a threshold, the algorithm can declare it lost with
high confidence. Typically, an evidence of loss for segment
i is also an evidence of loss for every unacknowledged seg-
ment j with j < i. Thus, most of these algorithms can be
rewritten to only keep track of the total evidence of loss for
the first unacknowledged segment and incrementally com-

2In TCP-based protocols, K is the minimum of receive window and con-
gestion window size. However, the limit imposed by K exists when transport
protocols use other ways (e.g., rate) to limit a flow’s transmission pace [8].

pute the evidence for the rest as needed. Based on these
observations (#1 and #2 in Table 1), we use a fixed set of
bitmaps in Tonic’s data delivery engine to track the status of
a flow’s segments and implement optimized fixed-function
bitmap operations for updating them on transport events.

3.2.3 Concurrent Event Processing

For every flow, four main events can affect the generation
of its next segment address. First, the receipt of an acknowl-
edgment can either move the window forward and enable the
flow to generate more segments, or signal segment loss and
trigger retransmissions. Second, the absence of acknowledg-
ments, i.e., a timeout, can also lead to more segments marked
as lost and trigger retransmissions. Third, generation of a
segment address increments the number of a flow’s outstand-
ing segments and can deactivate the flow if it goes above N.
Fourth, segment address transmission (out of the credit en-
gine) decrements the number of outstanding segments and
can enable the flow to generate more segment addresses.

Tonic’s data delivery engine has four modules to handle
these four events (Figure 2). Every cycle, each module reads
the state of the flow for which it received an event from the
memory in the data delivery engine, processes the event, and
updates the flow state accordingly. The flow state in the data
delivery engine consists of a fixed set of variables to track the
status of the current window of segments across events, as
well as the user-defined variables used in the programmable
components (Table 2). As an example of the fixed state vari-
ables, Tonic keeps a fixed set of bitmaps for each flow (ob-
servations in §3.2.2): The acked bitmap keeps track of selec-
tively acknowledged segments, marked-for-rtx keeps track
of lost segments that require retransmission, and rtx-cnt

stores information about their previous retransmissions.
The following paragraphs briefly describe how each event-

processing module affects a flow’s state, and whether there
are common patterns that we can exploit to implement all or
parts of its functionality in a fixed-function manner.

Incoming. This module processes acknowledgments (and
other incoming packets, see §3.3.3). Some updates to state
variables in response to acknowledgments are similar across
all data delivery algorithms and do not need to be pro-
grammable (e.g., updating window boundaries, and mark-
ing selectively acked segments in acked bitmap, see §3.2.2),
whereas loss detection and recovery, which rely on acknowl-
edgments as a signal, vary a lot across different algorithms
and must be programmable by users (#4 in Table 1). Thus,
the Incoming module is designed as a two-stage pipeline: a
fixed-function stage for the common updates followed by a
programmable stage for loss detection and recovery.

The benefit of this two-stage design is that the common
updates mostly involve bitmaps and arrays (§3.2.2), which
are implemented as ring buffers in hardware and costly to
modify across their elements. For instance, in all data de-
livery algorithms, if an incoming packet acknowledges seg-



ment A cumulatively and segment S selectively, wnd-start is
updated to max(wnd-start, A) and acked[S] to one, and the
boundaries of all bitmaps and arrays are updated based on the
new wnd-start. By moving these updates into a fixed func-
tion stage, we can (i) optimize them to meet Tonic’s timing
and memory constraints, and (ii) provide programmers with
a dedicated stage, i.e., a separate cycle, to do loss detection
and recovery. In this dedicated stage, programmers can use
the updated state variables from the previous stage and the
rest of the variables from memory to infer segment loss (and
perform other user-defined computation discussed in §3.3.3).

Periodic Updates. The data delivery engine iterates over
active flows, sending them one at a time to this module to
check for retransmission timer expiration and perform other
user-defined periodic updates (§3.3.3). Thus, with its 10 ns
clock cycle, Tonic can cover each flow within a few mi-
croseconds of the expiry of its retransmission timer. This
module must be programmable as a retransmission timeout
is a signal for detecting loss (#4 in Table 1). Similar to the
programmable stage of the Incoming module, the program-
mers can use per-flow state variables to infer segment loss.

Segment Generation. Given an active flow and its vari-
ables, this module generates the next segment’s address and
forwards it to the credit engine. Tonic can implement seg-
ment address generation as a fixed function module based on
the following observation (#3 in Table 1): Although different
reliable data delivery algorithms have different ways of infer-
ring segment loss, once a lost segment is detected, it is only
logical to retransmit it before sending anything new. Thus,
the procedure for selecting the next segment is the same irre-
spective of the data delivery algorithm, and is implemented
as a fixed-function module in Tonic. Thus, this module pri-
oritizes retransmission of lost segments in marked-for-rtx

over sending the next new segment, i.e., highest sent+1 and
also increments the number of outstanding segments.

Segment Transmitted. This module is fixed function and
is triggered when a segment address is transmitted out of the
credit engine. It decrements the number of outstanding seg-
ments of the corresponding flow. If the flow was deactivated
due to a full ring buffer, it is inserted into the active set again.

3.3 Flexible Credit Management

Transport protocols use congestion-control algorithms to
avoid overloading the network by controlling the pace of a
flow’s transmission. These algorithms consist of a control
loop that estimates the network capacity by monitoring the
stream of incoming control packets (e.g., acknowledgments
and congestion notification packets (CNPs)) and sets param-
eters that limit outgoing data packets. While the control loop
is different in many algorithms, the credit calculation based
on parameters is not. Tonic has efficient fixed-function mod-
ules for credit calculation (§3.3.1 and §3.3.2) and relegates
parameter adjustment to programmable modules (§3.3.3).

State Variable Description
acked selectively acknowledged segments (bitmap)
marked-for-rtx lost segments marked for retransmission (bitmap)
rtx-cnt number of retransmissions of a segment (bitmap)
wnd-start the address of the first segment in the window
wnd-size size of the window (min(W,rcved window))
highest-sent the highest segment transmitted so far
total-sent Total number of segments transmitted so far
is-idle does the flow have segments to send?
outstanding-cnt # of outstanding segments
rtx-timer when will the rtx timer expire?
user-context user-defined variables for programmable modules

Table 2: Per-flow state variables in the data delivery engine

3.3.1 Common Credit-Calculation Patterns

Congestion control algorithms have a broad range of ways
to estimate network capacity. However, they enforce limits
on data transmission in three main ways (#5 in Table 1):
Congestion window. The control loop limits a flow to at
most W bytes in flight from the first unacknowledged byte.
Thus, if byte i is the first unacknowledged byte, the flow
cannot send bytes beyond i+W . Keeping track of in-flight
segments to enforce a congestion window can get compli-
cated, e.g., in the presence of selective acknowledgments,
and is implemented in the fixed-function stage of the incom-
ing module in the data delivery engine.
Rate. The control loop limits the flow’s average rate (R) and
maximum burst size (D). Thus, if a flow had credit c0 at
the time t0 of the last transmission, then the credit at time t
will be min(R ∗ (t− t0)+ c0,D). As we show in §4, imple-
menting precise per-flow rate limiters under our strict timing
and memory constraints is challenging and has an optimized
fixed-function implementation in Tonic.
Grant tokens. Instead of estimating network capacity, the
control loop receives tokens from the receiver and adds them
to the flow’s credit. Thus, the credit of a flow is the total
tokens received minus the number of transmitted bytes, and
the credit calculation logic consists of a simple addition.

Since these are used by most congestion control algo-
rithms3, we optimize their implementation to meet Tonic’s
timing and memory constraints. Congestion window calcu-
lations are mostly affected by acks. Thus, calculation and
enforcement of congestion window happen in the data deliv-
ery engine. For the other two credit calculation schemes, the
credit engine processes credit-related event, and Tonic users
can simply pick which scheme to use in the credit engine.

3.3.2 Event Processing for Credit Calculation

Conceptually, three main events can trigger credit calcu-
lation for a flow, and the credit engine has different modules
to concurrently process them every cycle (Figure 2). First,
when a segment address is received from the data delivery
engine and is the only one in the flow’s ring buffer, the flow
could now qualify for transmission or remain idle based on

3 Tonic’s credit engine has a modular event-based design (§3.3.2), mak-
ing it amenable for extension to future credit calculation schemes.



its credit (the Enqueue module). Second, when a flow trans-
mits a segment address, its credit must be decreased and we
should determine whether it is qualified for further transmis-
sion based on its updated credit and the occupancy of its ring
buffer (the Transmit module). Third are events that can add
credit to the flow (e.g., from grant tokens and leaky bucket
rate limiters), which is where the main difference lies be-
tween rate-based and token-based credit calculation.

When using grant tokens, the credit engine needs two ded-
icated modules to add credit to a flow: one to process incom-
ing grant tokens from the receiver, and one to add credit for
retransmissions on timeouts. When using rate, the credit en-
gine does not need any extra modules for adding credit since
a flow with rate R bytes-per-cycle implicitly gains R bytes of
credit every cycle and, therefore, we can compute in advance
when it will be qualified for transmission.

Suppose in cycle T0, the Transmit module transmits a seg-
ment from flow f , and is determining whether the flow is
qualified for further transmission. Suppose that f has more
segments in the ring buffer but lacks L bytes of credit. The
Transmit module can compute when it will have sufficient
credit as T = L

R and set up a timer for T cycles. When
the timer expires, f definitely has enough credit for at least
one segment, so it can be directly inserted into ready-to-tx.
When f reaches the head of ready-to-tx and is processed
by the Transmit module again in cycle T1, the Transmit mod-
ule can increase f ’s credit by (T1− T0) ∗R− S, where S is
the size of the segment that is transmitted at time T1

4. Note
that when using rate, the credit engine must perform division
and maintain per-flow timers. We will discuss the hardware
implementation of these operations in §4.

3.3.3 Flexible Parameter Adjustment

Congestion control algorithms often have a control loop
that continuously monitors the network and adjusts credit
calculation parameters, i.e., rate or window size, based on
estimated network capacity. Parameter adjustment is either
triggered by incoming packets (e.g., acknowledgments and
their signals such as ECN or delay in TCP variants and
Timely, and congestion notification packets (CNPs) in DC-
QCN) or periodic timers and counters (timeouts in TCP vari-
ants and byte counter and various timers in DCQCN), and in
some cases is inspired by segment losses as well (window
adjustment after duplicate acknowledgments in TCP).

Corresponding to these triggers, for specifying parameter
adjustment logic, Tonic’s users can use the programmable
stage of the “Incoming” module, which sees all incoming
packets, and the “Periodic Updates” module for timers and
counters. Both modules are in the data delivery engine and
have access to segment status information, in case segment
status (e.g., drops) is needed for parameter adjustment. The
updated parameters are forwarded to the credit engine.

4Similarly, the Enqueue module can set up the timer when it receives the
first segment of the queue and the flow lacks credit for its transmission.

As we show in §6.1.1, we have implemented several con-
gestion control algorithms in Tonic and their parameter ad-
justment calculations have finished within our 10 ns clock
cycle. Those with integer arithmetic operations did not need
any modifications. For those with floating-point operations,
such as DCQCN, we approximated the operations to a cer-
tain decimal point using integer operations. If an algorithm
requires high-precision and complicated floating-point oper-
ations for parameter adjustment that cannot be implemented
within one clock cycle [19], the computation can be rele-
gated to a floating-point arithmetic module outside of Tonic.
This module can perform the computation asynchronously
and store the output in a separate memory, which merges
into Tonic through the “Periodic Updates” module.

3.4 Handling Conflicting Events
Tonic strives to process events concurrently in order to be

responsive to events. Thus, if a flow receives more than one
event in the same cycle, it allows the event processing mod-
ules to process the events and update the flow’s state vari-
ables, and reconciles the state before writing it back into
memory (the Merge modules in Figure 2).

Since acknowledgments and retransmission timeouts are,
by definition, mutually exclusive, Tonic discards the timeout
if it is received in the same cycle as an acknowledgment for
the same flow. This significantly simplifies the merge logic
because several variables (window size and retransmission
timer period) are only modified by these two events and,
therefore, are never updated concurrently. We can resolve
concurrent updates for the remaining variables with simple,
predefined merge logic. For example, Segment Generation
increments the number of outstanding segments, whereas
Segment Transmitted decrements it; if both events affect the
same flow at the same time, the number does not change.
User-defined variables are updated in either the Incoming or
the Periodic Updates module, and we rely on the program-
mer to specify which updated variables should be prioritized
if both updates happen in the same cycle.

3.5 Tonic’s Programming Interface
To implement a new transport logic in Tonic, program-

mers only need to specify (i) which of the three credit man-
agement schemes to use, (ii) the loss detection and recovery
logic in response to acknowledgments and timeouts, and (iii)
congestion-control parameter adjustment in response to in-
coming packets or periodic timers and counters. The first one
is used to pick the right modules for the credit engine, and the
last two are inserted into the corresponding programmable
stages of the data delivery engine (Figure 2).

To specify the logic for the programmable stage of the In-
coming module, programmers need to write a function that
receives the incoming packet (ack or other control signals),
the number of newly acknowledged segments, the acked



bitmap updated with the information in the ack, the old and
new value of wnd-start (in case the window moves forward
due to a new cumulative ack), and the rest of the flow’s state
variables (Table 2) as input. In the output, they can mark a
range of segments for retransmission in marked-for-rtx, up-
date congestion-control parameters such as window size and
rate, and reset the retransmission timer. The programming
interface of the Periodic Updates module is similar.

In specifying these functions, programmers can use inte-
ger arithmetic operations, e.g., addition, subtraction, multi-
plication, and division with small-width operands, condition-
als, and a limited set of read-only bitmap operations, e.g., in-
dex lookup, and finding the first set bit in the updated acked

bitmap (see appendix F for an example program). Note that
a dedicated fixed-function stage in the data delivery engine
performs the costly common bitmap updates on receipt of
acks (§3.2.3). We show, in §6.1.1, that a wide range of trans-
port protocols can be implemented using this interface and
give examples of ones that cannot.

4 Hardware Implementation

In this section, we describe the hardware design of the
Tonic components that were the most challenging to imple-
ment under Tonic’s tight timing and memory constraints.
High-Precision Per-Flow Rate Limiting. A flow with rate
R bytes per cycle and L bytes to send will have sufficient
credit for transmission in T = d L

Re cycles. Tonic needs to do
this computation in the credit engine but must represent R as
an integer since it cannot afford to do floating-point division.
This creates a trade-off between the rate-limiting precision
and the range of rates Tonic can support. If R is in bytes per
cycle, we cannot support rates below one byte per cycle or
∼1 Gbps. If we represent R in bytes per thousand cycles,
we can support rates as low as 1 Mbps. However, T = d L

Re
determines how many thousand cycles from now the flow
qualifies for transmission which results in lower rate con-
formance and precision for higher-bandwidth flows. To sup-
port a wide range of rates without sacrificing precision, Tonic
keeps multiple representations of the flow’s rate at different
levels of precision and picks the most precise representation
for computing T at any moment (details in Appendix B).
Efficient Bitmap Operations. Tonic uses bitmaps as large
as 128 bits to track the status of segments for each flow.
Bitmaps are implemented as ring buffers. The head pointer
corresponds to the first unacked segment and moves forward
around the buffer with new acks. To efficiently implement
operations whose output depends on the values of all the bits
in the bitmap, we must divide the buffer into smaller parts in
multiple layers, process them in parallel, and join the results.
One such operation, frequently used in Tonic, is finding the
first set bit after the head. The moving head of the ring buffer
complicates the implementation of this operation since keep-
ing track of the head in each layer requires extra processing,

making it difficult to compute within our 10 ns target. In-
stead, Tonic uses a light-weight pre-processing on the input
ring buffer to avoid head index computation in the layers al-
together (details in Appendix C).
Concurrent Memory Access. Every cycle, five modules in
the data delivery engine, including both stages of the Incom-
ing module, concurrently access its memory (§3.2.3). How-
ever, FPGAs only have dual-ported block RAMs, with each
port capable of either read or write every cycle. Building
memories with more concurrent reads and writes requires
keeping multiple copies of data in separate memory “banks”
and keeping track of the bank with the most recent data
for each address5 [26]. To avoid supporting five concurrent
reads and writes, we manage to partition per-flow state vari-
ables into two groups, each processed by at most four events.
Thus, Tonic can use two memories with four read and write
ports instead of a single one with five, to provide concurrent
access for all processing modules at the same time.

5 Integrating Tonic into the Transport Layer

Tonic’s transport logic is intentionally decoupled from
the specific implementation of other transport functionality
such as connection management, application-level API, and
buffer management. This section provides an example of
how Tonic can interface with the Linux kernel to learn about
new connections, requests for data transmission, and connec-
tion termination 6. After creating the socket, applications use
various system calls for connection management and data
transfer. As Tonic mainly focuses on the sender sider of the
transport logic, we only discuss the system calls and modifi-
cations relevant to the sender side of the transport layer.
Connection Management. connect() on the client initiates
a connection, listen() and accept() on the server listen for
and accept connections, and close() terminate connections.
As connection management happens outside of Tonic, the
kernel implementation of these system calls stays untouched.
However, once the connection is established, the kernel maps
it to a unique flow id in [0,N), where N is the maximum num-
ber of flows supported by Tonic, and notifies Tonic through
the NIC driver about the new connection.

Specifically, from the connection’s Transmission Control
Block (TCB) in the kernel, the IP addresses and ports of
the communication endpoints are sent to Tonic alongside the
flow id and the fixed segment size chosen for the connec-
tion. The kernel only needs to track the TCB fields used for
connection management (e.g., IP addresses, ports, and TCP
FSM), pointers to data buffers, and receiver-related fields.
Fields used for data transfer on the sender, i.e., snd.nxt,
snd.una, and snd.wnd, are stored in and handled by Tonic.
Finally, after a call to close(), the kernel uses the connec-

5 This overhead is specific to FPGAs, and can potentially be eliminated
if the memory is designed as an ASIC.

6 See appendix A for how Tonic can be used with RDMA.



tion’s flow id to notify Tonic of its termination.
Data Transfer. send() adds data to the connection’s socket
buffer, which stores its outstanding data waiting for delivery.
Tonic keeps a few bits of per-segment state for outstanding
data and performs all transport logic computation in terms
of segments. As such, data should be partitioned into equal-
sized segments before Tonic can start its transmission (§3.2).
Thus, modifications to send() mainly involve determining
segment boundaries for the data in the socket buffer based on
the connection’s configured segment size and deciding when
to notify Tonic of the new segments. Specifically, the kernel
keeps an extra pointer for each connection’s socket buffer, in
addition to its head and tail, called tonic-tail. It points
to the last segment of which Tonic has been notified. head

and updates to tonic-tail are sent to Tonic to use when
generating the next segment’s address to fetch from memory.

Starting with an empty socket buffer, when the applica-
tion calls send(), data is copied to the socket buffer, and
tail is updated accordingly. Assuming the connection’s
configured segment size is C, the data is then partitioned
into C-sized segments. Suppose the data is partitioned into
S segments and B < C remaining bytes. The kernel then
updates tonic-tail to point to the end of the last C-sized
segment, i.e., head + C * S, and notifies Tonic of the update
to tonic-tail. The extra B bytes remain unknown to Tonic
for a configurable time T , in case the application calls send

to provide more data. In that case, the data are added to the
socket buffer, data between tonic-tail and tail are sim-
ilarly partitioned, tonic-tail is updated accordingly, and
Tonic is notified of new data segments.

If there is not enough data for a C-sized segment after time
T , the kernel needs to notify Tonic of the “sub-segment” (a
segment smaller than C) and its size, and update tonic-tail

accordingly. Note that Tonic requires all segments, except
for the last one in a burst, to be of equal size, as all com-
putations, including window updates, are in terms of seg-
ments. Thus, after creating a “sub-segment”, if there is more
data from the application, Tonic can only start its trans-
mission when it is done transferring its current segments.
Tonic notifies the kernel once it successfully delivers the fi-
nal “sub-segment”, at which point, head and tonic-tail will
be equal, and the kernel continues partitioning the remaining
data in the socket buffer and updating Tonic as before. Note
that Tonic can periodically, with a configurable frequency,
forward acknowledgments to the kernel to move head for-
ward and free up space for new data in the socket buffer.

C and T can be configured for each flow based on its la-
tency and throughput characteristics. For high-bandwidth
flows, C can be set to MSS (or larger, if using TSO). For
flows that sporadically generate small segments, setting C
and T is not as straightforward since segments cannot be
consolidated within Tonic. We discuss the trade-offs in de-
ciding these parameters in detail in appendix D.
Other Considerations. As we show in §6, Tonic’s current

design supports 2048 concurrent flows, matching the work-
ing sets observed in data centers [15,37] and other hardware
offloads in the literature [20]. If a host has more open con-
nections than Tonic can support, the kernel can offload data
transfer for flows to Tonic on a first-come first-serve basis,
or have users set a flag when creating the socket and fall
back to software once Tonic runs out of resources for new
flows. Alternatively, modern FPGA-based NICs have a large
DRAM directly attached to the FPGA [20]. The DRAM can
potentially be used to store the state of more connections,
and swap them back and forth into Tonic’s memory as they
activate and need to transmit data. Moreover, to provide visi-
bility into the performance of hardware transport logic, Tonic
can provide an interface for kernel to periodically pull trans-
port statistics from the NIC.
Other Transport Layers. The above design is an exam-
ple of how Tonic can be integrated into a commonly-used
transport layer. However, TCP, sockets, and bytestreams
are not suitable for all applications. In fact, several data-
center applications with high-bandwidth low-latency flows
are starting to use RDMA and its message-based API in-
stead [5,9,22,35]. Tonic can be integrated into RDMA-based
transport as well, which we discuss in appendix A.

6 Evaluation

To evaluate Tonic, we implement a prototype in Verilog
(∼8K lines of code) and a cycle-accurate hardware simulator
in C++ (∼2K lines of code) [11]. The simulator is integrated
with NS3 network simulator [4] for end-to-end experiments.

To implement a transport protocol on Tonic’s Verilog pro-
totype, programmers only need to provide three Verilog files:
(i) incoming.v, describing the loss detection and recovery
logic and how to change credit management parameters (i.e.,
rate or window) in response to incoming packets; this code
is inserted into the second stage of the Incoming pipeline in
the data delivery engine, (ii) periodic updates.v, describ-
ing the loss detection and recovery logic in response to time-
outs and how to change credit management parameters (i.e.,
rate or window) in response to periodic timers and counters;
this code is inserted into the Periodic Updates module in the
data delivery engine, and (iii) user configs.vh, specifying
which of the three credit calculation schemes to use and the
initial values of user-defined state variables and other param-
eters, such as initial window size, rate, and credit.

We evaluate the following two aspects of Tonic:
Hardware Design (§6.1). We use Tonic’s Verilog prototype
to evaluate its hardware architecture for programmability and
scalability. Can Tonic support a wide range of transport pro-
tocols? Does it reduce the development effort of implement-
ing transport protocols in the NIC? Can Tonic support com-
plex user-defined logic with several variables? How many
per-flow segments and concurrent flows can it support?
End-to-End Behavior (§6.2). We use Tonic’s cycle-accurate



simulator and NS3 to compare Tonic’s end-to-end behavior
with that of hard-coded implementations of two protocols:
New Reno [23] and RoCEv2 with DCQCN [43], both for a
single flow and for multiple flows sharing a bottleneck link.

6.1 Hardware Design
There are two main metrics for evaluating the efficiency

of a hardware design: (i) Resource Utilization. FPGAs
consist of primitive blocks, which can be configured and
connected to implement a Verilog program: look-up tables
(LUTs) are the main reconfigurable logic blocks, and block
RAMs (BRAMs) are used to implement memory. (ii) Tim-
ing. At the beginning of each cycle, each module’s input is
written to a set of input registers. The module must process
the input and prepare the result for the output registers before
the next cycle begins. Tonic must meet timing at 100 MHz to
transmit a segment address every 10 ns. That is, to achieve
100 Gbps, the processing delay of every path from input to
output registers in every module must stay within 10 ns.

We use these two metrics to evaluate Tonic’s programma-
bility and scalability. These metrics are highly dependent on
the specific target used for synthesis. We use the Kintex Ul-
trascale+ XCKU15P FPGA as our target because this FPGA,
and others with similar capabilities, are included as bump-
in-the-wire entities in today’s commercial programmable
NICs [2, 3]. This is a conservative choice, as these NICs
are designed for 10-40 Gbps Ethernet. A 100 Gbps NIC
could potentially have a more powerful FPGA. Moreover,
we synthesize all of Tonic’s components onto the FPGA
to evaluate it as a standalone prototype. However, given
the well-defined interfaces between the fixed-function and
programmable modules, it is conceivable to implement the
fixed-function components as an ASIC for more efficiency.
Unless stated otherwise, we set the maximum number of
concurrent flows to 1024 and the maximum window size to
128 segments in all of our experiments 7.

6.1.1 Hardware Programmability

We have implemented the sender’s transport logic of six
protocols in Tonic as representatives of various types of seg-
ment selection and credit calculation algorithms in the lit-
erature. Table 3 summarizes their resource utilization for
both fixed-function and user-defined modules, and the lines
of code and bytes of user-defined state used to implement
them. While we use the same set of per-flow state variables
(Table 2) for all protocols, not all of them use all the vari-
ables in processing transport events. For instance, bitmaps
are only used by protocols with selective acks. Thus, it is
possible to reduce the resource utilization even more with
some pre-processing to remove the irrelevant variables and
computation from the Verilog design.

7A 100 Gbps flow with 1500B back-to-back packets over 15-µs RTT,
typical in data centers, has at most 128 in-flight segments.

User-Defined
Logic Credit

Type

Look up Tables (LUTs) BRAMsUser-Defined Fixed
LoC state(B) total(K) % total(K) % total %

Reno 48 8 wnd 2.4 0.5 109.4 20.9 195 20
NewReno 74 13 wnd 2.6 0.5 112.5 21.5 211 21
SACK 193 19 wnd 3.3 0.6 112.1 21.4 219 22
NDP 20 1 token 3.0 0.6 143.6 29.0 300 30
RoCE w/ 63 30 rate 0.9 0.2 185.2 35.2 251 26DCQCN
IRN 54 14 rate 2.9 0.6 177.4 33.9 219 22

Table 3: Resource utilization of transport protocols in Tonic.

Reno [13] and New Reno [23] represent TCP variants that
use only cumulative acks for reliable delivery and congestion
window for credit management. Reno can only recover from
one loss within the window using fast retransmit, whereas
New Reno uses partial acknowledgments to recover more ef-
ficiently from multiple losses in the same window. SACK,
inspired by RFC 6675 [16], represents TCP variants that use
selective acks. Our implementation has one SACK block
per ack but can be extended to more. NDP [24] represents
receiver-driven protocols, recently proposed for low-latency
data-center networks [21, 36]. It uses explicit NACKs and
timeouts for loss detection and grant tokens for congestion
control. RoCEv2 w/ DCQCN [43] is a widely-used transport
for RDMA over Ethernet, and IRN [34] is a recent hardware-
based protocol for improving RoCE’s simple data delivery
algorithm. Both use rate limiters for credit management.

Note that, as described in §3.2, not all data delivery al-
gorithms are feasible for hardware implementation as is. For
instance, due to memory constraints on the NIC, it is not pos-
sible to keep timestamps for every packet, new and retrans-
missions, on the NIC. As a result, transport protocols which
rely heavily on per-packet timestamps, e.g., QUIC [27], need
to be modified to work with fewer timestamps, i.e., for a sub-
set of in-flight segments, to be offloaded to hardware.
Takeways. There are three key takeaways from these results:
• Tonic supports a variety of transport protocols.
• Tonic enables programmers to implement new transport

logic with modest development effort. Using Tonic, each
of the above protocols is implemented in less than 200
lines of Verilog code, with the user-defined logic con-
suming less than 0.6% of the FPGA’s LUTs. In contrast,
Tonic’s fixed-function modules, which are reused across
these protocols, are implemented in∼8K lines of code and
consume ∼60 times more LUTs.

• Different credit management schemes have different over-
heads. For transport protocols that use congestion win-
dow, window calculations overlap with and therefore are
implemented in the data delivery engine (§3.3.1). Thus,
their credit engine utilizes fewer resources than others.
Rate limiting requires more per-flow state and more com-
plicated operations (§4) than enforcing receiver-generated
grant tokens but needs fewer memory ports for concurrent
reads and writes (§3.3.2), overall leading to lower BRAM
and higher LUT utilization for rate limiting.
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Figure 3: NewReno’s Tonic vs hard-coded implementation in NS3 (10G line-rate): a) Congestion window updates (single flow, random
drops), b) Transmitted sequence numbers with retransmission in large dots (single flow, random drops), and c) CDF of average throughput of
multiple flows sharing a bottleneck link over 5 seconds (200 flows from 2 hosts to one receiver)

6.1.2 Hardware Scalability

We evaluate Tonic’s scalability by examining how sources
of variability in its architecture (programmable modules and
various parameters) affect memory utilization and timing.
User-defined logic in programmable modules can have
arbitrarily-long chains of dependent operations, potentially
causing timing violations. We generate 70 random programs
for incoming.v (the programmable stage of Incoming mod-
ule in data delivery engine) with different numbers of arith-
metic, logical, and bitmap operations, and analyze how long
the chain of dependent operations gets without violating tim-
ing at 10ns. These programs use up to 125B of state and
have a maximum dependency of 65 logic levels (respectively
six and two times more than the benchmark protocols in Ta-
ble 3). Each logic level represents one of several primitive
logic blocks (LUT, MUX, DSP, etc.) chained together to im-
plement a path in a Verilog program.

We plug these programs into Tonic, synthesize them, and
analyze the relationship between the number of logic levels
and latency of the max-delay path (Table 4). Programs with
up to 32 logic levels consistently meet timing, while those
with more than 43 logic levels do not. Between 32 and 42
logic levels, the latency of the max-delay path is around 10
ns. Depending on the mix of primitives on the max-delay
path and their latencies, programs in that region can poten-
tially meet timing. Our benchmark protocols have 13 to 29
logic levels on their max-delay path and all meet timing.
Thus, Tonic not only supports our benchmark protocols, but
also has room to support future more sophisticated protocols.
User-defined state variables increase the memory width af-
fecting BRAM utilization. We add extra variables to SACK,
IRN, and NDP to see how wide memories can get without
violating timing and running out of BRAMs, repeating the
experiment for each of the three credit management schemes
as they have different memory footprints (Table 4). Tonic
can support 448B of user-defined state with congestion win-
dow for credit management, 340B with rate, and 256B with
grant tokens (Protocols in Table 3 use less than 30B).
Maximum window size determines the size of per-flow
bitmaps stored in the data delivery engine to keep track of
the status of a flow’s segments, therefore affecting memory

Metric Results

Complexity of
User-Defined Logic

logic
levels

( 0 ,31] meets timing
(31,42] depends on operations
(42,65] violates timing

User-Defined State bytes
256 grant token
340 rate
448 congestion window

Window Size segments 256
Concurrent Flows count 2048

Table 4: Summary of Tonic’s scalability results.

utilization, and the complexity of bitmap operations, hence
timing. Tonic can support bitmaps as large as 256 bits (i.e.,
tracking 256 segments), with which we can support a single
100Gbps flow in a network with up to 30µs RTT (Table 4).

Maximum number of concurrent flows determines
memory depth and the size of FIFOs used for flow schedul-
ing (§3.1). Thus, it affects both memory utilization and the
queue operations, hence timing. Tonic can scale to 2048 con-
current flows in hardware (Table 4) which matches the size
of the active flow set observed in data centers [15, 37] and
other hardware offloads in the literature [20].

Takeways. Tonic has additional room to support future
protocols that are more sophisticated with more user-defined
variables than our benchmark protocols. It can track 256
segments per flow and support 2048 concurrent flows. With
a more powerful FPGA with more BRAMs, Tonic can po-
tentially support even larger windows and more flows.

6.2 End-to-End Behavior
To examine Tonic’s end-to-end behavior and verify the fi-

delity of Tonic-based implementation of the transport logic
in different protocols, we have developed a cycle-accurate
hardware simulator for Tonic in C++. We use this sim-
ulator with NS3 to show that Tonic-based implementation
of NewReno and RoCEv2 w/ DCQCN senders match their
hard-coded NS3 implementation. Note that the goal of these
simulations is to analyze and verify Tonic’s end-to-end be-
havior. Tonic’s ability to support 100Gbps line rate has al-
ready been demonstrated in §6.1 using hardware synthesis.
Thus, in our simulations, we use 10Gbps and 40Gbps as
line rate merely to make hardware simulations with multi-
ple flows over seconds computationally tractable.
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Figure 4: RoCEv2 w/ DCQCN in Tonic vs hard-coded in NS3 (40G
line rate, one of two flows on a bottleneck link).

6.2.1 TCP New Reno

We implement TCP New Reno in Tonic based on
RFC 6582, and use NS3’s native network stack for its hard-
coded implementation. Our Tonic-based implementation
works with the unmodified native TCP receiver in NS3. In
all simulations, hosts are connected via 10Gbps links to one
switch, RTT is 10µs, the buffer is 5.5MB, the minimum re-
transmission timeout is 200ms (Linux default), segments are
1000B large, and delayed acks are enabled on the receiver.
Single Flow. We start a single flow from one host to an-
other, and randomly drop packets on the receiver’s NIC. Fig-
ure 3(a) and 3(b) show the updates to the congestion win-
dow and transmitted sequence numbers (retransmissions are
marked with large dots), respectively. Tonic’s behavior in
both cases closely matches the hard-coded implementation.
The slight differences stem from the fact that in NS3’s net-
work stack, all the computation happens in the same virtual
time step while in Tonic every event (incoming packets , seg-
ment address generation, etc.) is processed over a 100ns cy-
cle (increased from 10ns to match the 10G line rate).
Multiple Flows. Two senders each start 100 flows to a single
receiver, so 200 flows share a single bottleneck link for 5 sec-
onds. The CDF of average throughput across the 200 flows
for the Tonic-based implementation closely matches that of
the hard-coded implementation (Figure 3(c)). We observe
similarly matching distributions for number of retransmis-
sions. When analyzing the flows’ throughput in millisecond-
long epochs, we notice larger variations in the hard-coded
implementation than Tonic since Tonic, as opposed to NS3’s
stack, performs per-packet round robin scheduling across
flows on the same host.

6.2.2 RoCEv2 with DCQCN

We implement RoCE w/ DCQCN [43] in Tonic, and use
the authors’ NS3 implementation from [44] for the hard-
coded implementation. Our Tonic-based implementation
works with the unmodified hard-coded RoCE receiver. In
all simulations, hosts are connected via 40Gbps links to the
same switch, RTT is 4µs, segments are 1000B large, and we
use the default DCQCN parameters from [44].
Single Flow. DCQCN is a rate-based algorithm which uses
CNPs and periodic timers and counters for congestion con-

trol as opposed to packet loss in TCP. Thus, to observe rate
updates for a single flow, we run two flows from two hosts
to the same receiver for one second to create congestion and
track the throughput changes of one as they both converge
to the same rate. Tonic’s behavior closely matches the hard-
coded implementation (Figure 4). We also ran a single DC-
QCN flow at 100Gbps with 128B back-to-back packets and
confirmed that Tonic can saturate the 100Gbps link.
Multiple Flows. Two senders each start 100 flows to a single
receiver, so 200 flows share a single bottleneck link for one
second. Both Tonic and the hard-coded implementation do
per-packet round robin scheduling among the flows on the
same host. As a result, all flows in both cases end up with
an average throughput of 203±0.2Mbps. Moreover, we ob-
serve a matching distribution of CNPs in both cases.

7 Related Work

Tonic is the first programmable architecture for transport
logic in hardware able to support 100 Gbps. In this section,
we review the most closely related prior work.

Commercial hardware network stacks. Some NICs
have hardware network stacks with hard-wired transport pro-
tocols [8, 10]. However, they only implement two proto-
cols, either RoCE [8] or a vendor-selected TCP variant, and
can only be modified by their vendor. Tonic enables pro-
grammers to implement a variety of transport protocols in
hardware with modest effort. In the absence of a publicly-
available detailed description of these NICs’ architecture, we
could not compare our design decisions with theirs.

Non-commercial hardware transport protocols. Recent
work explores hardware transport protocols that run at high
speed with low memory footprint [30, 31, 34]. Tonic facil-
itates innovation in this area by enabling researchers to im-
plement new protocols with modest development effort.

Accelerating network functionality. Several academic
and industrial projects offload end-host virtual switching and
network functions to FPGAs, processing a stream of already-
generated packets [14, 20, 28, 29, 41]. Tonic, on the other
hand, implements the transport logic in the NIC by keeping
track of potentially a few hundred segments at a time to gen-
erate packets at line rate while running user-defined transport
logic to ensure efficient and reliable delivery.

Acknowledgments

We thank Aditya Akella, our shepherd, the anonymous re-
viewers of NSDI’20, Hari Balakrishnan, Gordon Bebner, and
Radhika Mittal for their helpful feedback. We thank Behnaz
Arzani, Xiaoqi Chen, Rob Harrison, Suriya Kodeswaran,
Shir Landau-Feibish, Srinivas Narayana, Praveen Tammana,
and Ross Teixeira for feedback on earlier drafts of this work.
This work is supported by DARPA under Dispersed Com-
puting HR0011-17-C-0047, NSF Grants No. CCF-1822949
and CCF-1453112, and DARPA No. FA8650-18-2-7846.



References
[1] F-Stack. http://www.f-stack.org/. Accessed: August 2019.

[2] Innova Flex 4 Lx EN Adapter Card. http://www.mellanox.com/

related-docs/prod_adapter_cards/PB_Innova_Flex4_Lx_

EN.pdf. Accessed: August 2019.

[3] Mellanox Innova 2 Flex Open Programmable SmartNIC.
http://www.mellanox.com/related-docs/prod_adapter_

cards/PB_Innova-2_Flex.pdf. Accessed: August 2019.

[4] NS3 Network Simulator. https://www.nsnam.org/. Accessed:
August 2019.

[5] NVMe over Fabric. https://nvmexpress.org/wp-content/

uploads/NVMe_Over_Fabrics.pdf. Accessed: August 2019.

[6] OpenOnload. https://www.openonload.org/. Accessed: August
2019.

[7] RDMA - iWARP. https://www.chelsio.com/nic/

rdma-iwarp/. Accessed: August 2019.

[8] RDMA and RoCE for Ethernet Network Efficiency Performance.
http://www.mellanox.com/page/products_dyn?product_

family=79&mtag=roce. Accessed: August 2019.

[9] RoCE Accelerates Data Center Performance, Cost Efficiency, and
Scalability. http://www.roceinitiative.org/wp-content/

uploads/2017/01/RoCE-Accelerates-DC-performance_

Final.pdf. Accessed: August 2019.

[10] TCP Offload Engine (TOE). https://www.chelsio.com/nic/

tcp-offload-engine/. Accessed: August 2019.

[11] Tonic Github Repository. https://github.com/minmit/tonic.

[12] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE, J., PA-
TEL, P., PRABHAKAR, B., SENGUPTA, S., AND SRIDHARAN, M.
Data Center TCP (DCTCP). In SIGCOMM (2010).

[13] ALLMAN, M., PAXSON, V., AND BLANTON, E. TCP Congestion
Control. RFC 5681, 2009.

[14] ARASHLOO, M. T., GHOBADI, M., REXFORD, J., AND WALKER,
D. HotCocoa: Hardware congestion control abstractions. In HotNets
(2017).

[15] BENSON, T., AKELLA, A., AND MALTZ, D. A. Network Traffic
Characteristics of Data Centers in the Wild. In IMC (2010).

[16] BLANTON, E., ALLMAN, M., WANG, L., JARVINEN, I., KOJO, M.,
AND NISHIDA, Y. A Conservative Loss Recovery Algorithm Based
on Selective Acknowledgment (SACK) for TCP. RFC 6675, 2012.

[17] CARDWELL, N., CHENG, Y., GUNN, C. S., YEGANEH, S. H., AND
JACOBSON, V. BBR: Congestion-Based Congestion Control. ACM
Queue (2016).

[18] CONNERY, G. W., SHERER, W. P., JASZEWSKI, G., AND BINDER,
J. S. Offload of TCP Segmentation to a Smart Adapter, 1999. US
Patent 5,937,169.

[19] DONG, M., LI, Q., ZARCHY, D., GODFREY, P. B., AND SCHAPIRA,
M. PCC: Re-architecting Congestion Control for Consistent High Per-
formance. In NSDI (2015).

[20] FIRESTONE, D., ET AL. Azure Accelerated Networking: SmartNICs
in the Public Cloud. In NSDI (2018).

[21] GAO, P. X., NARAYAN, A., KUMAR, G., AGARWAL, R., RAT-
NASAMY, S., AND SHENKER, S. pHost: Distributed Near-Optimal
Datacenter Transport Over Commodity Network Fabric. In CoNEXT
(2015).

[22] GUO, C., WU, H., DENG, Z., SONI, G., YE, J., PADHYE, J., AND
LIPSHTEYN, M. RDMA over Commodity Ethernet at Scale. In SIG-
COMM (2016).

[23] HANDERSON, T., FLOYD, S., GURTOV, A., AND NISHIDA, Y. The
NewReno Modification to TCP’s Fast Recovery Algorithm. RFC
6582, 1999.

[24] HANDLEY, M., RAICIU, C., AGACHE, A., VOINESCU, A., MOORE,
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A Integrating Tonic within RDMA

Remote Direct Memory Access (RDMA) enables applica-
tions to directly access memory on remote endpoints without
involving the CPU. To do so, the endpoints create a queue
pair, analogous to a connection, and post requests, called
Work Queue Elements (WQEs), for sending or receiving data
from each other’s memory. While RDMA originated from
InfiniBand networks, RDMA over Ethernet is getting more
common in data centers [9, 22, 35]. In this section, we use
RDMA to refer to RDMA implementations over Ethernet.

Once a queue pair is created, RDMA NICs can add the
new “connection” to Tonic and use it to on the sender side to
transfer data in response to different WQEs. Each WQE cor-
responds to a separate message transfer and therefore nicely
fits Tonic’s need for determining segment boundaries before
starting data transmission.

For instance, in an RDMA Write, one endpoint posts a
Request WQE to write to the memory on the other endpoint.
Data length, data source address on the sender, and data sink
addresses on the receiver are specified in the Request WQE.
Thus, a shim layer between RDMA applications and Tonic
can decide the segment boundaries and notify Tonic of the
number of segments and the source memory address to read
the data from on the sender. Once Tonic generates the next
segment address, the rest of the RDMA NIC can DMA it
from the sender’s memory and add appropriate headers. An
RDMA Send is similar to RDMA Write, except it requires a
Receive WQE on the receiver to specify the sink address to
which the data from the sender should be written. So, Tonic
can still be used in the same way on the sender side.

As another example, in an RDMA Read, one endpoint re-
quests data from the memory on the other endpoint. So, the
responder endpoint should transmit data to the requester end-
point. Again, the data length, data source address on the re-
sponder, and data sink address on the requester are specified
in the WQE. Thus, the shim layer can decide the segment
boundaries and and transfer the data using Tonic.

Thus, Tonic can be integrated into RDMA NICs to re-
place the hard-coded transport logic on the sender-side of
data transfer. In fact, two of our benchmark protocols, RoCE
w/ DCQCN [43] and IRN [34], are proposed for RDMA
NICs. That said, this is assuming there is a compatible re-
ceiver on the other side to generate the control signals (e.g.,
acknowledgments, congestion notifications, etc.) required

by whichever transport protocol one chooses to implement
on Tonic on the sender side.

While some implementations of RDMA over Ethernet
such as iWarp [7] handle out-of-order (OOO) packets and
implement TCP/IP-like acknowledgments, others, namely
RoCE [8], assume a lossless network and have simpler trans-
port protocols that do not require receivers to handle OOO
packets and generate frequent control signals. However, as
RDMA over Ethernet is getting more common in data cen-
ters, the capability to handle OOO packets on the receiver
and generate various control signals for more efficient trans-
port is being implemented in these NICs as well [34, 43].

Finally, Tonic provides in-order reliable data delivery
within the same flow. Thus, messages sent over the same
flow are delivered to the receiver in the same order. How-
ever, it is sometimes desirable to support out-of-order mes-
sage delivery for a communication endpoint (e.g., a queue
pair), for instance, to increase the performance of applica-
tions when messages are independent from each other, or
when using “unconnected” endpoints (e.g., one sender and
multiple receivers). It is still possible to support out-of-order
message delivery using Tonic by creating multiple flows in
Tonic for the same communication endpoint and using them
concurrently. Extending Tonic to support out-of-order mes-
sage delivery within the same flow is an interesting avenue
for future work.

B High-Precision Per-Flow Rate Limiting

When using rate in the credit engine, if a flow with rate
R bytes per cycle needs L more bytes of credit to transmit
a segment, Tonic calculates T = d L

Re as the time where the
flow will have sufficient credit for transmission. It sets up
a timer that expires in T cycles, and upon its expiry, queues
up the flow in ready-to-tx for transmission (§3.3.2). Since
Tonic cannot afford to do floating-point division within its
timing constraints, R must be represented as an integer.

This creates a trade-off between the rate-limiting precision
and the range of rates Tonic can support. If we represent R
in bytes per cycle, we can compute the exact cycle when the
flow will have enough credit, but cannot support rates lower
than one byte per cycle or ∼1 Gbps. If we instead represent
R in, say, bytes per thousand cycles, we can support lower
rates (e.g., 1 Mbps), but T = d L

Re will determine how many
thousand cycles from now the flow can qualify for transmis-
sion. This results in lower rate conformance and precision
for higher-bandwidth flows. As a concrete example, for a
20 Gbps flow, R would be 25000 bytes per thousand cycles.
Suppose the flow has a 1500-byte segment to transmit. It
will have enough credit to do so in 8 cycles but has to wait
d 1500

25000e= 1 thousand cycles to be queued for transmission.
Instead of committing to one representation for R, Tonic

keeps multiple variables R1, . . . ,Rk for each flow, each rep-
resenting flow’s rate at a different level of precision. As the



congestion control loop adjusts the rate according to network
capacity, Tonic can efficiently switch between R1, . . . ,Rk to
pick the most precise representation for computing T at any
moment. This enables Tonic to support a wide range of rates
without sacrificing the rate-limiting precision.

C Efficient Bitmap Operations

Tonic uses bitmaps as large as 128 bits to track the status
of a window of segments for each flow. Bitmaps are im-
plemented as ring buffers, with the head pointer correspond-
ing to the first unacknowledged segment. As new acknowl-
edgments arrive, the head pointer moves forward around the
ring. To efficiently implement operations whose output de-
pends on the values of all the bits in the bitmap, we must par-
allelize them by dividing the ring buffer into smaller parts,
processing them in parallel, and joining the results. For large
ring buffers, this divide and conquer pattern is repeated in
multiple layers. As each layer depends on the previous one
for its input, we must keep the computation in each layer
minimal to stay within our 10 ns target.

One such operation finds the first set bit after the head.
This operation is used to find the next lost segment for re-
transmission in the marked-for-rtx bitmap. The moving
head of the ring buffer complicates the implementation of
this operation. Suppose we have a 32-bit ring buffer A32,
with bits 5 and 30 set to one, and the head at index 6. Thus,
f ind f irst(A32,6) = 30. We divide the ring into eight four-
bit parts, “or” the bits in each one, and feed the results into
an 8-bit ring buffer A8, where A8[i] = OR(A32[i : i+3]). So,
only A8[1] and A8[7] are set. However, because the set bit
in A32[4 : 7] is before the head in the original ring buffer, we
cannot simply use one as A8’s head index or we will mistak-
enly generate 5 instead of 30 as the final result. So, we need
extra computation to find the correct new head. For a larger
ring buffer with multiple layers of this divide and conquer
pattern, we need to compute the head in each layer.

Instead, we use a lightweight pre-processing on the in-
put ring buffer to avoid head index computation altogether.
More specifically, using A32 as input, we compute A′32 which
is equal to A32 except that all the bits from index zero to
head (6 in our example) are set to zero. Starting from in-
dex zero, the first set bit in A′32 is always closer to the orig-
inal head than the first set bit in A32. So, f ind f irst(A32,6)
equals f ind f irst(A′32,0) if A′32 has any set bits, and other-
wise f ind f irst(A32,0). This way, independent of the input
head index H, we can always solve f ind f irst(A,H) from
two subproblems with the head index fixed at zero.

D Deciding C and T for Flows Using Tonic
through the Socket API

In §5, we provide an example of how Tonic can be inte-
grated into the Linux Kernel so that applications can use it
through the Socket API. We introduce two parameters: (i)

C, which is the flow’s fixed segment size, and (ii) T , which
is the duration that the Kernel waits for more data from the
application before sending a “sub-segment” (a segment that
is smaller than C) to Tonic. C and T can be configured for
each flow based on its latency and throughput characteristics.
For high-bandwidth flows, C can be set to MSS (or larger, if
using TSO). For flows that only sporadically generate data
segments, setting C and T , as we discuss below, is not as
straightforward.

With a fixed C, increasing T results in more small seg-
ments being consolidated into C-sized segments before being
sent to Tonic for transmission, but at the expense of higher
latency. C determines the size of the segments and number of
sub-segments generated by Tonic. Recall from §5 that a sub-
segment is created when there is not enough data to make
a full C-sized segment within T . Tonic needs all segments,
except for the last sub-segment in a burst, to be of equal size.
Thus, even if more data is added to the socket buffer after the
sub-segment is sent to Tonic for transmission, Tonic has to
successfully deliver all the previous segments before it can
start transmitting the new ones. Thus, it is desirable to pro-
duce larger segments but fewer sub-segments. With a fixed
T , increasing C results in larger segments. However, to pro-
duce fewer sub-segments, C should be picked such that in
most cases, the data within a burst is divisible by C. Bursts
are separated in time by T . So the choice of T affects the
choice of C and vice versa.

For instance, if an application periodically generates 128-
byte requests, C can be easily set to 128 and T based on the
periodicity. As another example, for an application that peri-
odically generates segments of widely-varying sizes, setting
T to zero and C to the maximum expected segment size re-
sults in Tonic transmitting data segments as generated by the
application without consolidation, potentially creating many
sub-segments. For the same application, setting T to zero
and C to the minimum expected segment size could result in
Tonic generating many small segments as all segments will
be broken into the minimum expected segment size. Note
that these trade-offs become more pronounced if Tonic is to
be used for flows that only sporadically generate data seg-
ments. For high-bandwidth flows, C can be set to MSS (or
larger, if using TSO), and T depending on the application’s
traffic pattern and burstiness.
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F New Reno in Tonic

The following is the implementation of New Reno’s loss detection and recovery algorithm on receipt of acknowledgments in
Tonic [23]. Extra comments have been added for clarification.

1 module new_reno_incoming(
2 /* ************************ INPUTS ***************************** */
3 // ACK , NACK , SACK , CNP , etc...
4 input [‘PKT_TYPE_W -1:0] pkt_type ,
5 input [‘PKT_DATA_W -1:0] pkt_data_in ,
6

7 // Segment ID in the cumulative acknowledgment
8 input [‘SEGMENT_ID_W -1:0] cumulative_ack ,
9

10 // Segment ID that is selectively acknowledged , if any
11 input [‘SEGMENT_ID_W -1:0] selective_ack ,
12

13 // Number of segments acknowledged with the received acknowledgment
14 input [‘WINDOW_INDEX_W -1:0] newly_acked_cnt ,
15

16 // Segment ID at the beginning of the window , before and after the
17 // acknowledgment
18 input [‘WINDOW_INDEX_W -1:0] old_wnd_start ,
19 input [‘WINDOW_INDEX_W -1:0] new_wnd_start ,
20

21 // Current time in nanoseconds
22 input [‘TIME_W -1:0] now ,
23

24 //// Per -Flow State
25

26 input [‘MAX_WINDOW_SIZE -1:0] acked ,
27 input [‘MAX_TX_CNT_SIZE -1:0] tx_cnt ,
28 input [‘SEGMENT_ID_W -1:0] highest_sent ,
29 input [‘SEGMENT_ID_W -1:0] wnd_start ,
30 input [‘WINDOW_SIZE_W -1:0] wnd_size_in ,
31 input [‘TIEMR_W -1:0] rtx_timer_amount_in ,
32 input [‘SEGMENT_ID_W -1:0] total_tx_cnt ,
33

34 input [‘USER_VARS_W -1:0] user_vars_in ,
35

36 /* ************************ OUTPUTS **************************** */
37 output [‘FLAG_W -1:0] mark_any_for_rtx ,
38 output [‘SEGMENT_ID_W -1:0] mark_for_rtx_from ,
39 output [‘SEGMENT_ID_W -1:0] mark_for_rtx_to ,
40 output [‘WINDOW_SIZE_W -1:0] wnd_size_out ,
41 output [‘TIMER_W -1:0] rtx_timer_amount_out ,
42 output [‘FLAG_W -1:0] reset_rtx_timer ,
43

44 output [‘USER_VARS_W -1:0] user_vars_out
45 );
46

47 /* ************************ Local Variables ********************
48 *
49 * Declarations ommited for brevity
50 *
51 ************************************************************* */
52

53 /// is the ack new or duplicate?
54 assign is_dup_ack = old_wnd_start == cumulative_ack;
55 assign is_new_ack = new_wnd_start > old_wnd_start;
56

57 /// count duplicated acks
58 assign dup_acks = is_new_ack ? 0:
59 is_dup_ack ? dup_acks_in + 1 : dup_acks_in;
60

61 // How many in_flight packets?
62 assign sent_out = highest_sent - wnd_start;
63 assign in_flight = sent_out - dup_acks;
64

65 // update previous highest ack
66 assign prev_highest_ack_out = is_new_ack ? old_wnd_start : prev_highest_ack_in;
67

68 /// Should we do fast rtx?
69 assign do_fast_rtx = dup_acks == ‘DUP_ACKS_THRESH &
70 (( cumulative_ack > recover_in) |
71 (wnd_size_in > 1 & cumulative_ack - prev_highest_ack_in <= 4));
72

73 // if yes , update recovery sequence and updated ssh_thresh
74 assign recovery_seq_out = do_fast_rtx ? highest_sent : recovery_seq_in;
75



76 assign half_wnd = in_flight > 2 ? in_flight >> 1 : 2;
77 assign ss_thresh_out = do_fast_rtx ? half_wnd : ss_thresh_in;
78

79 //// if in recovery and this is a new ack , is it a
80 // full ack or a partial ack? (Definition in RFC)
81 assign full_ack = is_new_ack & cumulative_ack > recover_in;
82 assign partial_ack = is_new_ack & cumulative_ack <= recover_in;
83

84 // mark for retransmission
85 assign mark_any_for_rtx = do_fast_rtx | partial_ack;
86

87 assign rtx_start = wnd_start_in;
88 assign rtx_end = wnd_start_in + 1;
89

90 // reset rtx timer if not in recovery
91 assign in_recovery_out = do_fast_rtx | (in_recovery_in & cumulative_ack <= recover_in );
92 assign reset_rtx_timer = ~in_recovery_out;
93

94

95 assign in_timeout_out = (~ full_ack) & in_timeout_in;
96

97 //// decide new window size
98

99 // keep a counter for additive increase
100 assign additive_inc_cntr_out = in_recovery_out & ~in_timeout_in ? 0 :
101 is_new_ack & wnd_size_in >= ss_thresh_in ?
102 (additive_inc_cntr_in == wnd_size_in ? 0 :
103 additive_inc_cntr_in + 1): additive_inc_cntr_in;
104

105

106 assign wnd_size_out = new_wnd_size >= ‘MAX_WINDOW_SIZE ? ‘MAX_WINDOW_SIZE : new_wnd_size;
107

108 always @(*) begin
109 if (do_fast_rtx) begin
110 // set it equals to new ss_thresh , expanded for performance reasons
111 cwnd_out = sent_out - ‘DUP_ACKS_THRESH > 2 ? sent_out >> 1 : 1;
112 end
113 else if (~ in_recovery_in & is_new_ack) begin
114 if (cwnd_in < ss_thresh_out) begin
115 cwnd_out = cwnd_in + newly_acked_cnt;
116 end
117 else if (wnd_inc_cntr_in >= cwnd_in) begin
118 cwnd_out = cwnd_in + 1;
119 end
120 else begin
121 cwnd_out = cwnd_in;
122 end
123 end
124 else begin
125 cwnd_out = cwnd_in;
126 end
127 end
128 assign there_is_more = in_flight >= cwnd_in;
129

130 always @(*) begin
131 if (do_fast_rtx) begin
132 new_wnd_size = sent_out;
133 end
134 else if (~ in_recovery_in & is_new_ack) begin
135 new_wnd_size = cwnd_out;
136 end
137 else begin
138 new_wnd_size = there_is_more ? sent_out : cwnd_in + dup_acks;
139 end
140 end
141

142 //// break up user context into variables
143 assign {prev_highest_ack_in , in_recovery_in , recover_in ,
144 in_timeout_in , wnd_inc_cntr_in , ss_thresh_in ,
145 dup_acks_in , cwnd_in} = user_cntxt_in;
146

147 assign user_cntxt_out = {prev_highest_ack_out , in_recovery_out , recover_out ,
148 in_timeout_out , wnd_inc_cntr_out , ss_thresh_out ,
149 dup_acks_outm , cwnd_out };
150

151

152 endmodule
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