
108

Modular Control Plane Verification via Temporal Invariants
TIMOTHY ALBERDINGK THIJM, Princeton University, United States
RYAN BECKETT,Microsoft Research, United States
AARTI GUPTA, Princeton University, United States
DAVID WALKER, Princeton University, United States

Monolithic control plane verification cannot scale to hyperscale network architectures with tens of thousands
of nodes, heterogeneous network policies and thousands of network changes a day. Instead,modular verification
offers improved scalability, reasoning over diverse behaviors, and robustness following policy updates. We
introduce Timepiece, a new modular control plane verification system. While one class of verifiers, starting
with Minesweeper, were based on analysis of stable paths, we show that such models, when deployed naïvely
for modular verification, are unsound. To rectify the situation, we adopt a routing model based around a
logical notion of time and develop a sound, expressive, and scalable verification engine.

Our system requires that a user specifies interfaces between module components. We develop methods for
defining these interfaces using predicates inspired by temporal logic, and show how to use those interfaces to
verify a range of network-wide properties such as reachability or access control. Verifying a prefix-filtering
policy using a non-modular verification engine times out on an 80-node fattree network after 2 hours. However,
Timepiece verifies a 2,000-node fattree in 2.37 minutes on a 96-core virtual machine. Modular verification
of individual routers is embarrassingly parallel and completes in seconds, which allows verification to scale
beyond non-modular engines, while still allowing the full power of SMT-based symbolic reasoning.

CCS Concepts: • Networks→ Protocol testing and verification; Formal specifications; • Theory of
computation→ Verification by model checking; Automated reasoning.

Additional Key Words and Phrases: formal network verification, compositional reasoning, modular verification

ACM Reference Format:
Timothy Alberdingk Thijm, Ryan Beckett, Aarti Gupta, and David Walker. 2023. Modular Control Plane
Verification via Temporal Invariants. Proc. ACM Program. Lang. 7, PLDI, Article 108 (June 2023), 26 pages.
https://doi.org/10.1145/3591222

1 INTRODUCTION
Major cloud providers are seeing sustained financial growth in response to mounting demand for
reliable networking [Miller 2022]. This demand suggests a commensurate network infrastructure
growth will take place to accommodate more and more users. These networks can already have
hundreds of data centers, each with hundreds of thousands of devices running thousands of
heterogeneous policies, and receiving thousands of updates a day [Jayaraman et al. 2019b]. Network
operators program this infrastructure using distributed routing protocols, where each router in
a network may run thousands of lines of configuration code. Despite operators’ care, routine

Authors’ addresses: Timothy Alberdingk Thijm, Princeton University, Princeton, NJ, United States, tthijm@cs.princeton.edu;
Ryan Beckett, Microsoft Research, Redmond, WA, United States, ryan.beckett@microsoft.com; Aarti Gupta, Princeton
University, Princeton, NJ, United States, aartig@cs.princeton.edu; David Walker, Princeton University, Princeton, NJ, United
States, dpw@cs.princeton.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
2475-1421/2023/6-ART108
https://doi.org/10.1145/3591222

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

HTTPS://ORCID.ORG/0000-0003-1758-5917
HTTPS://ORCID.ORG/0000-0001-7844-2026
HTTPS://ORCID.ORG/0000-0001-6676-9400
HTTPS://ORCID.ORG/0000-0003-3681-149X
https://doi.org/10.1145/3591222
https://orcid.org/0000-0003-1758-5917
https://orcid.org/0000-0001-7844-2026
https://orcid.org/0000-0001-6676-9400
https://orcid.org/0000-0003-3681-149X
https://doi.org/10.1145/3591222

108:2 Timothy Alberdingk Thijm, Ryan Beckett, Aarti Gupta, and David Walker

configuration updates have inadvertently rendered routers unreachable [Strickx and Hartman 2022]
or violated isolation requirements that prevent flooding [Vigliarolo 2022].

To prevent costly errors, operators can use control plane verification to analyze their networks [Ab-
hashkumar et al. 2020; Beckett et al. 2017a, 2018, 2019; Fayaz et al. 2016; Gember-Jacobson et al. 2016;
Lopes and Rybalchenko 2019; Prabhu et al. 2020; Weitz et al. 2016; Ye et al. 2020]. Until recently,
research has focused on monolithic verification of the entire network at once, which is infeasible
for large cloud provider networks. Such networks demand modular techniques that divide the
network into components to verify in isolation. This approach has proven successful for software
verification [Alur and Henzinger 1999; Flanagan and Qadeer 2003; Giannakopoulou et al. 2018;
Grumberg and Long 1994; Henzinger et al. 1998] and network data plane verification [Jayaraman
et al. 2019a]. We annotate the interfaces between network components with invariants that describe
each component’s routing behavior. Given the interfaces of a component’s neighbors, we can verify
that the component respects its own interface. When the interfaces imply a useful property, e.g.,
reachability or access control, we can conclude that the monolithic network satisfies that property.
We propose Timepiece, the first modular technique with abstract network interfaces to verify a

wide range of properties (including route reachability). Kirigami [Alberdingk Thijm et al. 2022a]
proposed an architecture for modular control plane verification, but restricted its interfaces to only
exact routes. Lightyear [Tang et al. 2022] presented an alternative verification technique with more
expressive interfaces, but can only check that a network never receives a route (e.g., for access
control properties) — it cannot check reachability, a keen property of interest.

A temporal model. The basis of Timepiece’s approach is a temporal model of network execution,
where we reason over the states of nodes at all times. This model came as a surprise to us: one
branch of prior work, starting with Minesweeper [Beckett et al. 2017a], sought to avoid the burden
of reasoning over all transient states of the network by focusing on the stable states of the routing
protocol once routing converges. Unfortunately, a naïve combination of modular reasoning and
Minesweeper-style analysis of stable states is unsound. We discovered that the best way to recover
soundness, while maintaining the system’s generality, is to move to a temporal model.

0 1,000 2,000
0

2,000
4,000
6,000 timeout

Topology Size (Nodes)

Ve
rifi

ca
tio

n
tim

e
[s
]

Modular
Monolithic

Fig. 1. Verification time comparison between

Timepiece and Minesweeper-style verification.

This temporal model appears to ask the verification
engine to do a lot more work: the system must verify
that all the messages produced at all times are consis-
tent with a user-supplied interface for each network
component. Nevertheless, because reasoning is modu-
lar, ensuring individual problems are small, the system
scales with the size of the largest component rather
than the size of the network. This modular reasoning
is general and any symbolic method (e.g., symbolic
simulation, model checking) could use it to verify in-
dividual components. We use a Satisfiability Modulo
Theories (SMT)-based method in this work [Barrett
and Tinelli 2018]. As a preview of modularity’s ben-
efits, Figure 1 shows the time it takes Timepiece to
verify connectivity for variable-sized fattree topolo-
gies [Al-Fares et al. 2008] with external route announcements using the eBGP routing protocol,
compared with a Minesweeper-style network-wide stable paths encoding.

Timepiece does require more work of users than monolithic, non-modular systems: users must
supply interfaces that characterize the routes each network component may generate at each
time. Still, these interfaces, once constructed, provide the typical benefits of interfaces in any

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

Modular Control Plane Verification via Temporal Invariants 108:3

software engineering context. First, they localize exactly where an error occurs: if a component
is not consistent with its interface, then one must search only that component for the mistake,
and a counterexample from the SMT solver can help pinpoint it. Second, router configurations
change rapidly, and these changes are often the source of network-wide problems [Zhang et al.
2022]. Well-defined interfaces will be stable over time. As users update their configurations, they
may easily recheck them against the stable, local interface for problems.

Inspired by temporal logic [Pnueli 1984], we developed a simple language to help users specify
their interfaces. Through this language, users may state that they expect to see certain sets of
routes always, eventually (by some specified time 𝑡 , to be more precise), or until (some approximate
specified time). Moreover, the interface language allows users to write abstract specifications that
need not characterize irrelevant features of routes, and instead only what is necessary to prove
a desired property. For instance, a user might specify a reachability property simply by stating a
node must “eventually receive some route at time 𝑡 ,” without saying which route it must receive.
Our formal model is based on a synchronous semantics of time, where nodes receive updates in
lockstep. As discussed in prior work [Daggitt et al. 2018], this simplifies reasoning over the routing
behavior of networks which converge to unique solutions. One may extend this model to consider
a bounded number of steps of delay at the cost of increasing the complexity of our invariants.

To summarize, the key contributions of this paper are:

• We demonstrate in depth why a natural, but naïve modular control plane analysis based on
an analysis of stable states is unsound.
• We develop a new theory for modular control plane analysis based on time. We prove it
sound with respect to the semantics of a network simulator, and complete with respect to
the closed network semantics (starting from fixed initial values). This theory is general, and
can verify individual components using any verification method.
• We define an SMT-based verification procedure to reason about all possible routes at all times,
which can analyze networks with symbolic representations of, e.g., external announcements
or destination routers.
• We design and implement a new, modular control plane verification tool, Timepiece, based
directly on this procedure. We evaluate Timepiece and check a variety of policies at individual
nodes in hundreds of milliseconds. Thanks to its embarrassingly parallel modular procedure,
Timepiece scales to networks with thousands of nodes.

2 KEY IDEAS
This section introduces the stable routing model of network control planes, which serves as a
foundation for many past network verification tools [Beckett et al. 2017a, 2018, 2019; Prabhu et al.
2020]. It illustrates in depth why naïvely adopting this model for modular verification is unsound.
It then introduces a new temporal model for control plane verification and provides the intuition
for why the revised model is superior. This section is long but contains a substantial payoff: the
essence of why a sound and general modular control plane analysis should be based off a temporal
model of control plane behavior.

2.1 Background
To determine how to deliver traffic between two endpoints, routers (also called nodes) run distributed
routing protocols such as BGP [Lougheed and Rekhter 1991], OSPF [Moy 1998], RIP [Hedrick 1988],
or ISIS [Oran 1990]. Each node participating in a protocol receives messages (also called routes)
from its neighboring nodes. After receiving routes from its neighbors, a node will select its “best”
route—the route it will use to forward traffic. Different protocols use different metrics to compare

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

108:4 Timothy Alberdingk Thijm, Ryan Beckett, Aarti Gupta, and David Walker

𝑛

𝑤

𝑣 𝑑 𝑒

Neighbor WAN Data Center

filter

tag
allow

Routing policies:

filter : drop all routes
tag : tag routes internal

allow : drop external routes

Fig. 2. Our idealized example cloud provider network.

routes and select the best among those received. For instance, RIP compares hop count; OSPF uses
the shortest weighted-length path; and BGP uses a complex, user-configurable combination of
metrics. Finally, each router sends its chosen route to its neighbors, possibly modifying the route
along the way (for instance, by prepending its identifier to the path represented by the route).

Routing algebras. Routing algebras [Griffin and Sobrinho 2005; Sobrinho 2005] are abstract models
that capture the similarities between different distributed routing protocols. Prior work on control
plane verification [Beckett et al. 2017a; Giannarakis et al. 2020; Griffin et al. 2002] uses similar
abstract models to formalize route computation. We adopt this standard abstract model of routing
protocols, which specifies the following components.
• A directed graph 𝐺 that defines the network topology’s nodes (𝑉) and edges (𝐸). We use
lowercase letters (𝑢, 𝑣 ,𝑤 , etc.) for nodes and pairs (𝑢𝑣) to indicate directed edges.
• A set 𝑆 of routes that communicate routing information between nodes. Routes abstract the
routing announcements and metarouting information used in different routing protocols.
Depending on the problem under consideration, 𝑆 may be the set of Booleans B or natural
numbers N (e.g., checking reachability or path length properties), a set of flags (e.g., checking
access control), or a record with multiple fields (more complex policies and/or properties).
• An initialization function I that provides an initial route I𝑣 ∈ 𝑆 for each node 𝑣 .
• A function F thatmaps edges to transfer functions. Each transfer function F (𝑒) = f𝑒 transforms
routes as they traverse the edge 𝑒 .
• A binary associative and commutative function ⊕ (a.k.a. merge or the selection function)
selects the best route between two options.

An idealized example. Many large cloud providers deploy data center networks to scale up their
compute capacity. They connect those data centers to each other and the rest of the Internet via a
wide-area network (WAN). To illustrate the challenges of modular network verification, we will
explore verification of an idealized cloud provider network with WAN and data center components.
Figure 2 presents a highly abstracted view of our network’s topology. The data center network
contains routers d and e where d connects to the corporate WAN and e connects to data center
servers. The WAN consists of routers w and v. Router v connects to the data center as well as to a
neighboring network n, which is not controlled by our cloud provider.1

The default routing policy uses shortest-paths. However, in addition, the network administrators
want e to be reachable from all cloud-provider-owned devices (i.e., w, v, d), but not to be reachable
from outsiders (i.e., n). They intend to enforce this property by tagging all routes originating from
their network (𝑤) as “internal” (e.g., using BGP community tags [CISCO 2005]) and allowing those
1Any of the edges could be bi-directional, allowing routes to pass in both directions, but for pedagogic reasons we strip
down the example to the barest minimum, retaining edges that flow from left-to-right except for at v and d where routes
may flow back and forth.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

Modular Control Plane Verification via Temporal Invariants 108:5

routes to traverse the de edge. Doing so should allow e to communicate with internal machines
but not external machines. Furthermore, to protect nodes from outside interference, the cloud
provider applies route filters to external peers to drop erroneous advertised routes that may
“hijack” [Feamster and Balakrishnan 2005] internal routing.

Modelling the example. To model our example network, we define the network topology as the
graph𝐺 pictured earlier.We assume all routers participate in an idealized variant of eBGP [Lougheed
and Rekhter 1991], which is commonly used in both wide-area networks and data centers [Ab-
hashkumar et al. 2021]. We abstract away some of the fields of eBGP routing announcements to
define the set of routes 𝑆 as records with 3 fields: (i) an integer “local preference” that lets users
overwrite default preferences, (ii) an integer path length, and (iii) a boolean tag field that is set to
true if a route comes from an internal source and false otherwise. 𝑆 also includes∞, a message that
indicates absence of a route.
Let’s consider what happens when starting with a specific route at WAN node w, ⟨100, 0, false⟩

(local preference 100, path length of 0, not tagged internal). The I function assigns w that route,
and assigns the∞ route to all other nodes.

The transfer function f𝑒 increments the length field of every route by one across every edge 𝑒 . In
addition, edge wv sets the internal tag field to true and edge nv drops all routes (transforms them
into∞). Finally, edge de drops all routes not tagged internal/true.
The merge function ⊕ always prefers some route over the ∞ route, and prefers routes with

higher local preference over lower local preference. If the local preference is the same, it chooses a
route with a shorter path length. ⊕ ignores the tag field. For example, ⊕ operates as follows:

⟨100, 2, false⟩ ⊕ ∞ = ⟨100, 2, false⟩
⟨100, 2, false⟩ ⊕ ⟨200, 5, true⟩ = ⟨200, 5, true⟩
⟨200, 2, false⟩ ⊕ ⟨200, 5, true⟩ = ⟨200, 2, false⟩

Network simulation. A state of a network is a mapping from nodes to the “best routes” they have
computed so far. Onemay simulate a network by starting in its initial state and repeatedly computing
new states (i.e., new “best routes” for particular nodes). Well-behaved networks eventually converge
to stable states where no node can compute a better route, given the routes provided by its neighbors.
To compute a new best route at a particular node, say v, we apply the f function to each best

route computed so far at its neighbors w, n, and d, and then select the best route among the results
and the initial value at v, using the merge (⊕) function. More precisely:

vnew = f𝑤𝑣 (wold) ⊕ f𝑛𝑣 (nold) ⊕ f𝑑𝑣 (dold) ⊕ I𝑣
The table in Figure 3 presents an example simulation. At each time step, all nodes compute their

best route given the routes sent by their neighbors at the previous time step. Our model assumes a
synchronous time semantics for simplicity: this simulation is hence one possible asynchronous
execution.2 After time step 3, no node computes a better route—the system has reached a stable
state. The picture in Figure 3 annotates each node in the diagram with the stable route it computes.

Network verification. Since the edge from d to e only allows routes tagged internal, 𝑤 ’s route
would not reach e if v were to receive a better route from n (e.g., if the route filter from 𝑛 was
implemented incorrectly). In other words, the simulation demonstrates that the network correctly
operates when n sends no route (∞). But what about other routes? Will 𝑓𝑛𝑣 filter all routes from n
correctly? SMT-based tools like Minesweeper [Beckett et al. 2017a] and Bagpipe [Weitz et al. 2016]
can answer such questions by translating the routing problem into constraints for a Satisfiability
Modulo Theory (SMT) solver to solve. An SMT-based encoding of our network could represent
2See §4 for a discussion of how we can extend our model to consider networks with delay.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

108:6 Timothy Alberdingk Thijm, Ryan Beckett, Aarti Gupta, and David Walker

filter

tag
allow

𝑛

𝑤

𝑣 𝑑 𝑒∞

⟨100, 0, false⟩

⟨100, 1, true⟩

⟨100, 2, true⟩

⟨100, 3, true⟩

time n w v d e

0 ∞ ⟨100, 0, false⟩ ∞ ∞ ∞
1 ∞ ⟨100, 0, false⟩ ⟨100, 1, true⟩ ∞ ∞
2 ∞ ⟨100, 0, false⟩ ⟨100, 1, true⟩ ⟨100, 2, true⟩ ∞
3 ∞ ⟨100, 0, false⟩ ⟨100, 1, true⟩ ⟨100, 2, true⟩ ⟨100, 3, true⟩
4 ∞ ⟨100, 0, false⟩ ⟨100, 1, true⟩ ⟨100, 2, true⟩ ⟨100, 3, true⟩

Fig. 3. Simulation of the example network for a fixed set of initial routes. Node e receives a route from d since

its route is tagged as internal, and the network stabilizes at time 3.

any possible external route announcement from n by representing its initial value with a symbolic
variable: the solver can then search for a concrete route captured by this variable that violates our
desired property, i.e., a stable state where e never receives a route from w.

2.2 The Challenge of Modular Verification
A system for modular verification will partition a network into components and verify each
component separately, possibly in parallel. However, since routes computed at a node in one
component depend on the routes sent by nodes in neighboring components, each component must
make some assumptions about the routes produced by its neighbors.

Interfaces. In our case, for simplicity (though this is not necessary), we place every node in its
own component and define for it an interface that attempts to overapproximate (or equal) the set of
routes that the node might produce in a stable state. The interface for the network as a whole is a
function 𝐴 from nodes to sets of routes where 𝐴(𝑥) is the interface for node 𝑥 .
The person attempting to verify the network will supply these interfaces. Of course, interfaces

may be wrong—that is, they might not include some route computed by a simulation (and hence
might not be a proper overapproximation). Indeed, when there are bugs in the network, the
interfaces a user supplies are likely to be wrong! The user expects the network to behave one
way, producing a certain set of routes, but the network behaves differently due to an error in
its configuration. A sound modular verification procedure must detect such errors and indicate
if we must strengthen the interface to prove the property. On the other hand, a useful modular
verification procedure should allow interfaces to overapproximate the routes produced, when
users find it convenient. Overapproximations are sound for verifying properties over all routing
behaviors of a network, and they often simplify reasoning, allowing users to think more abstractly.
Throughout the paper, we use predicates 𝜑 to define interfaces, where 𝜑 stands in for the set

of routes {𝑠 | 𝑠 ∈ 𝑆, 𝜑 (𝑠)}. Returning to our running example, one might define the interface for
w using the predicate 𝑠 .lp = 100 ∧ 𝑠 .len = 0 ∧ ¬𝑠 .tag. Such an interface would include exactly the
one route generated by w in our example: ⟨100, 0, false⟩. However, path length is unimportant in
the current context; to avoid thinking about it, a user could instead provide a weaker interface
representing infinitely many possible routes, such as 𝑠 .lp = 100 ∧ ¬𝑠 .tag. This interface relieves
the user of having to figure out the exact path length (not so hard in this simple example, but
potentially challenging in an arbitrary wide-area network), and instead specifies only the local

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

Modular Control Plane Verification via Temporal Invariants 108:7

preference and the tag. In general, admitting overapproximations make it possible for users to
ignore any features of routing that are not actually relevant for analyzing the properties of interest.

The strawperson verification procedure. For a given node x, the component centered at x is the
subgraph of the network that includes node x and all edges that end at x. Given a network interface
𝐴, our strawperson verification procedure (SV) will consider the component centered at each node
x independently. Suppose a node x has neighbors 𝑛1, . . . , 𝑛𝑘 . For that node x, SV checks that

∀𝑠1 ∈ 𝐴(𝑛1), . . . ,∀𝑠𝑘 ∈ 𝐴(𝑛𝑘), f𝑛1𝑥 (𝑠1) ⊕ · · · ⊕ f𝑛𝑘𝑥 (𝑠𝑘) ⊕ I𝑥 ∈ 𝐴(𝑥) (1)

This check is akin to performing one local step of simulation, checking that all possible inputs from
neighbors produce an output route satisfying the interface. We might hope that by performing such
a check on all components independently, we could guarantee that all nodes converge to stable
states satisfying their interfaces. If that were the case, then we could verify properties by:

(1) Checking that all components guarantee their interfaces, under the assumption their neigh-
bors do as well; and

(2) Checking that the interfaces imply the network property of interest (e.g., reachability, access
control, no transit).

The problem: execution interference. It turns out this simple and natural verification procedure is
unsound: users can supply interfaces that, when analyzed in isolation, satisfy equation (1) above,
but exclude stable states computed by simulation. Hence, the second verification step is pointless: a
destination that appears reachable according to an interface may not be; conversely, a route that
appears blocked may not be.

Let us reconsider the running example, where we assign w an initial route with local preference
100, and assume the external neighbor 𝑛 can send us any route (true). A user could provide the
interfaces shown in Figure 4 to falsely conclude that 𝑒 will not receive a route from𝑤 .

filter

tag
allow

𝑛

𝑤

𝑣 𝑑 𝑒true

𝑠 .lp = 100

𝑠 .lp = 200 ∧ ¬𝑠 .tag

𝑠 .lp = 200 ∧ ¬𝑠 .tag

𝑠 = ∞

Fig. 4. Running example with bad interfaces.

Here, it is easy to check that nodes n and w satisfy equation (1). Node n’s interface is simply any
route. Node w’s route can be any route with a local preference of 100.3
The surprise comes at node v where its interface only includes routes that satisfy ¬𝑠 .tag, i.e.,

routes not tagged as internal. Those routes have 𝑠 .lp = 200 and may have any path length. But the
route from w is tagged true along the edge𝑤𝑣 — why is such a route erroneously excluded from
v’s interface? We show the component centered at v in Figure 5.

3It could be any route (true), as the edge 𝑤𝑣 applies the default preference of 100, but for clarity we label the routes at w
with preference 100.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

108:8 Timothy Alberdingk Thijm, Ryan Beckett, Aarti Gupta, and David Walker

filter

tag
allow

𝑛

𝑤

𝑣 𝑑 𝑒true

𝑠 .lp = 100

𝑠 .lp = 200 ∧ ¬𝑠 .tag

𝑠 .lp = 200 ∧ ¬𝑠 .tag

𝑠 = ∞

Fig. 5. Running example centered on v’s component.

When computing its stable state, v will compare the routes it receives from w and d: because all
routes from w have a local preference set to 100 by f𝑤𝑣 , whereas all routes from d have a better
local preference of 200, v will always wind up selecting the route from d over the route from w.

But how then did d acquire these preferential routes tagged false? Such routes came in turn from
v’s interface. Figure 6 shows the component centered at d.

filter

tag
allow

𝑛

𝑤

𝑣 𝑑 𝑒true

𝑠 .lp = 100

𝑠 .lp = 200 ∧ ¬𝑠 .tag

𝑠 .lp = 200 ∧ ¬𝑠 .tag

𝑠 = ∞

Fig. 6. Running example centered on d ’s component.

What has happened is that v transmits its spurious routes to d, enabling d to justify its own
spurious routes. d transmits these back again to v, where d’s routes interact with the legitimate
routes from w. Since w’s routes have lower local preference, v discards them during computation
of stable states. In a nutshell, our interface proposed routes that do not soundly overapproximate
the legitimate routes from the true simulation, but our verification procedure accepted this bad
interface as it circularly justified itself at v and d. How might we prevent this execution interference?

Other approaches. We can modify this verification procedure to make it sound, but these solutions
will limit the verification procedure’s power or the expressiveness of the properties it can prove.

One approach is to limit every interface to exactly one route. Doing so avoids introducing any
imaginary executions in the first place. Kirigami [Alberdingk Thijm et al. 2022a] takes this approach,
but the cost is that a user analyzing their network must know exactly which routes appear at which
locations. Computing routes exactly can be difficult in practice, and would seem unnecessary if
all one cares about is a high-level property such as reachability. Moreover, it makes the interfaces
brittle in the face of change—any change in network configuration likely necessitates a change in
interface. A superior system would allow operators to define durable and abstract interfaces that
imply key properties, and to check configuration updates against those interfaces.
Another approach is to limit the set of properties that the system can check to only those that

say what does not happen in the network rather than what does happen. This is the approach
Lightyear [Tang et al. 2022] takes. For instance, Lightyear can check that node a will not be able to
reach node b, but not that a and b will have connectivity — a common requirement in networks.

A final approach is to statically order the components, and verify each component according to
this ordering, using no information from the not-yet-verified components. By ordering v before
d, we would need to satisfy v’s invariant without routes from d (treating d’s invariant as false) —
this would fail for the bad invariant 𝑠 .lp = 200 ∧ ¬𝑠 .tag using only routes from n and w. In practice,

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

Modular Control Plane Verification via Temporal Invariants 108:9

this is still unnecessarily conservative. The running example is overly simple as it shows routes
propagated through a network in a single direction from left to right. In realistic networks, multiple
destinations may broadcast routes in multiple directions at once. In such situations, there may be
no way to order the components, and verification may not be possible.

2.3 The Solution: A Temporal Model
Our key insight is to change the model: rather than focus exclusively on the final stable states of a
system, as a Minesweeper-style verifier would, we ensure that the model preserves the entirety
of every step-by-step execution. To make this work, we need to add information to the model: a
notion of logical time. By associating every route with the time at which a node computes it, we can
(i) ensure that all routes at a particular time are properly considered, and their executions extended
a time step, and (ii) ensure that we avoid collisions between routes computed at different times.

To verify such routing systems modularly, we once again must specify interfaces, but this time
the interface for each node will specify the set of routes that may appear at any time. We write this
now as an interface𝐴(𝑥) (𝑡) that takes both a node 𝑥 and a time 𝑡 and returns an overapproximation
of the set of routes that may appear at 𝑥 at that time 𝑡 . To check the interfaces, we use a verification
procedure structured inductively with respect to time, as follows:
• At every node x, check I𝑥 is included in 𝐴(𝑥) (0)
• Consider each node x with neighbors 𝑛1, . . . , 𝑛𝑘 . At time 𝑡 + 1, check that merging any
combination of routes 𝑠1 ∈ 𝐴(𝑛1) (𝑡), . . . , 𝑠𝑘 ∈ 𝐴(𝑛𝑘) (𝑡) from neighbors’ interfaces at time 𝑡
produces a route in 𝐴(𝑥) (𝑡 + 1):

f𝑛1𝑥 (𝑠1) ⊕ · · · ⊕ f𝑛𝑘𝑥 (𝑠𝑘) ⊕ I𝑥 ∈ 𝐴(𝑥) (𝑡 + 1) (2)

Because this procedure is structured inductively, we can prove, by induction on time, that all states
at all times are included in their respective interfaces—the procedure is sound.
For brevity, we specify our interfaces using temporal operators. These operators are functions

that take a time 𝑡 as an argument, compare it to an explicit time variable 𝜏 , and return a predicate.
We write G(𝑃) (“globally 𝑃”) when a node’s interface includes the routes that satisfy predicate 𝑃
for all times 𝑡 . We write 𝑃1 U𝜏 𝑄2 (“𝑃1 until 𝑄2”) when a node may have routes satisfying 𝑃1 until
time 𝜏−1 and operator 𝑄2 (𝜏) holds afterwards. Finally, we write F 𝜏 (𝑄) (“finally 𝑄”) to mean that
eventually at time 𝜏 routes start satisfying 𝑄 (𝜏).

Verifying correct interfaces. Figure 7 below presents an interface we may verify with this model.

filter

tag
allow

𝑛

𝑤

𝑣 𝑑 𝑒G(true)

G(𝑠 .lp = 100)

G(𝑠 = ∞∨ 𝑠 .tag)

G(𝑠 = ∞∨ 𝑠 .tag)

G(𝑠 = ∞∨ 𝑠 .tag)

Fig. 7. Running example with interfaces proving that if e has a route, it is tagged.

We again assume that n sends any route at any time, denoted by the interface: G(true). We
assume w has a route with default local preference: G(𝑠 .lp = 100). The interesting part is at nodes
v and d where the interfaces state that there is always no route (e.g., at time 0), or a tagged route:
G(𝑠 = ∞∨ 𝑠 .tag). We can then prove a weak property about node e: if it receives a route, then the
route will be tagged internal. We can prove node v’s route satisfies its interface since f𝑤𝑣 tags routes

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

108:10 Timothy Alberdingk Thijm, Ryan Beckett, Aarti Gupta, and David Walker

on import from node w, routes from n are correctly dropped, and routes from d must also have a
tag per its interface. In fact, all the nodes satisfy their interface given their neighbors’ interfaces.

Proving reachability. Figure 7’s interfaces were too weak to prove that w can reach e. The problem
is that they reason about all times (i.e., from time 0 onward), yet e will only eventually have a route
from w at some time in the future. Consider now the stronger interfaces shown in Figure 8:

filter

tag
allow

𝑛

𝑤

𝑣 𝑑 𝑒G(true)

G(𝑠 .lp = 100)

𝑠 = ∞ U1 G(𝑠 .tag)

𝑠 = ∞ U2 G(𝑠 .tag)

F 3G(𝑠 ≠ ∞)

Fig. 8. Running example with interfaces proving e can reach w.

As before, we allow n and w to send any route. However, now nodes v and d declare that they
will not have a route until a specified (logical) time, at which point they receive a tagged route. We
give precise witness times for v and d’s interfaces, as otherwise v could give d a non-null route (or
vice-versa) that would violate the interface before its witness time. e’s interface simply requires that
e receives some route at the witness time (allowing arbitrary routes before the witness time). These
interfaces are sufficient to prove that e will eventually receive a route to w, since d will eventually
have a route tagged as internal, and hence e will allow it.

Debugging erroneous interfaces. Let us revisit the example where a user gave unsound interfaces
using spurious routes with local preference 200. Figure 9 presents the equivalent temporal interfaces.

filter

tag
allow

𝑛

𝑤

𝑣 𝑑 𝑒G(true)

G(𝑠 .lp = 100)

G(𝑠 .lp = 200 ∧ ¬𝑠 .tag)

G(𝑠 .lp = 200 ∧ ¬𝑠 .tag)

G(𝑠 = ∞)

Fig. 9. Running example with bad temporal interfaces.

Unlike before, the verification procedure detects an error: the interfaces at nodes v and d do not
include the initial route∞ at time 0. As a result, the user will receive a counterexample for time
𝑡 = 0 when verifying v or d. Suppose our imaginative user tries to circumvent this issue by also
including the initial route in the interfaces for v and d with the interface:

G
(
(𝑠 .lp = 200 ∧ ¬𝑠 .tag) ∨ (𝑠 = ∞)

)
However, doing so merely pushes the problem “one step forward in time”—there is no way to
circumvent our temporal analysis. If d’s route may be ∞, v’s interface must also consider what
routes it selects when that is the case, including tagged routes such as ⟨100, 1, true⟩. The user might
receive a counterexample at time 𝑡 = 1 where v’s route is the following:

f𝑤𝑣 (⟨100, 0, false⟩) ⊕ f𝑛𝑣 (∞) ⊕ f𝑑𝑣 (∞) = ⟨100, 1, true⟩
where 𝐴(𝑣) (1) does not contain the result ⟨100, 1, true⟩. This counterexample reveals the fact that
there is an error in either the specification (as in this case) or the configuration (e.g., if a buggy
configuration tagged routes from w false rather than true as expected).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

Modular Control Plane Verification via Temporal Invariants 108:11

Table 1. Ghost state for selected example properties.

Property Added ghost state

reachability to 𝑑 [Fogel et al. 2015] 1 bit to mark routes from 𝑑

isolation [Beckett et al. 2017a] 1 bit per isolation domain
ordered waypoint [Kazemian et al. 2013]. 𝑙𝑜𝑔2 (𝑘) bits for 𝑘 waypoints
unordered waypoint [Beckett et al. 2017a] 𝑘 bits for 𝑘 waypoints
routing loops [Beckett et al. 2017a] up to |𝑉 | bits to track visited nodes
no-transit [Beckett et al. 2016] mark with {peer, prov, cust}
fault tolerance [Beckett et al. 2017a] up to |𝐸 | bits to track failed edges
bounded path length [Lopes et al. 2015] integer length field

Properties and ghost state. Although our modular properties reference node-local routes, we can
verify many end-to-end control plane properties using ghost state. Users may model routes with
additional “ghost” fields (cf. ghost fields in Dafny [Leino 2010]) that play no role in a protocol’s
routing behavior, yet may capture end-to-end properties. For instance, suppose we added a boolean
“ghost” field “fromw” to indicate if a route originated from node w (see Figure 10). We assume this
field is initially true at w, false at all other nodes, and that transfer functions preserve its value.
With this addition, we can now check that e receives a route from w and no other node.

filter

tag
allow

𝑛

𝑤

𝑣 𝑑 𝑒G(¬𝑠 .fromw)

G(𝑠 .lp = 100 ∧ 𝑠 .fromw)

𝑠 = ∞ U1 G(𝑠 .tag ∧ 𝑠 .fromw)

𝑠 = ∞ U2 G(𝑠 .tag ∧ 𝑠 .fromw)

F 3G(𝑠 .fromw)

Fig. 10. Running example augmented with a “fromw” ghost variable.

Ghost state allows us to specify and check many network properties; Table 1 presents a variety
of other possibilities. For example, to check for routing loops, we can use a multi-set of visited
nodes (up to |𝑉 |) and mark if a node is ever visited more than once. That said, while ghost state is
general and flexible, it can only capture information about the history of a route at a single node
and is thus not a panacea. For instance, properties involving the routes at more than one node,
such as a formulation of local equivalence [Beckett et al. 2017a], where 𝜎 (𝑢) (𝑡) = 𝜎 (𝑣) (𝑡) for some
arbitrary 𝑢, 𝑣 and 𝑡 , is inexpressible using our verifier. We focus on properties of the network’s
control plane, without considering the data plane forwarding behavior. This rules out data plane
properties such as load balancing and multipath consistency.

3 FORMAL MODELWITH TEMPORAL INVARIANTS
Figure 11 presents the key definitions and notation needed to formalize our verification procedure.
The notation follows from the previous section, e.g., a network instance 𝑁 = (𝐺, 𝑆, I, F , ⊕) contains
the key components introduced earlier. To refer to the route computed by a network simulator at
node 𝑣 at time 𝑡 , we use the notation 𝜎 (𝑣) (𝑡) (defined as before—see Figure 11).
Figure 12 presents our interfaces and language of temporal operators. As before, we use 𝐴 to

denote network interfaces. The temporal operators 𝑄 are syntactic sugar for functions from a time
𝑡 to a predicate. 𝜑 U𝜏 𝑄 and F 𝜏 (𝑄) take a concrete natural number 𝜏 as a witness time parameter

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

108:12 Timothy Alberdingk Thijm, Ryan Beckett, Aarti Gupta, and David Walker

Network instances 𝑁 = (𝐺, 𝑆, I, F , ⊕)

𝐺 = (𝑉 , 𝐸) network topology
𝑉 topology nodes
𝐸 ⊆ 𝑉 ×𝑉 topology edges
𝑆 set of network routes
𝑠 ∈ 𝑆 a route
I : 𝑉 → 𝑆 node initialization function
I𝑣 ∈ 𝑆 initial route at node 𝑣
F : 𝐸 → (𝑆 → 𝑆) edge transfer functions
f𝑒 : 𝑆 → 𝑆 transfer function for edge 𝑒
⊕ : 𝑆 × 𝑆 → 𝑆 merge function

Network semantics 𝜎 : 𝑉 → (N→ 𝑆)
𝜎 (𝑣) (𝑡) ∈ 𝑆 state at node 𝑣 at time 𝑡
preds(𝑣) = {𝑢 | 𝑢 ∈ 𝑉 ,𝑢𝑣 ∈ 𝐸} in-neighbors of 𝑣

𝜎 (𝑣) (0) = I𝑣 (3)

𝜎 (𝑣) (𝑡 + 1) = 𝐼𝑣 ⊕
⊕

𝑢∈preds (𝑣)
f𝑢𝑣 (𝜎 (𝑢) (𝑡)) (4)

Fig. 11. Summary of our formal routing model and notation.

to compare against the argument time 𝑡 . These witness times are absolute times, specifying the
time steps since the initial time 0. We can nestU𝜏 and F 𝜏 operators to represent arbitrarily-many
intervals of time, e.g., F 2 (𝜑1 U4 G(𝜑2)) is a function that returns 𝑆 (true) given input time 0 or 1; 𝜑1
given time 2 or 3; and 𝜑2 given a time of 4 or more. We also lift set union, intersection and negation
to succinctly combine temporal operators. In our evaluation (§6), we found this (intentionally small)
language sufficient to express a wide variety of reachability and security properties.
A valid interface is an inductive invariant [Giannakopoulou et al. 2018]. Such interfaces satisfy

the initial and inductive conditions specified in Figure 12. Valid interfaces may be used to prove node
properties, as specified by the safety condition in Figure 12. As the network has a finite number of
nodes, we can enumerate them to check these three conditions on every node in the network.
The most important property of our system is soundness: the simulation states are included in

any interface 𝐴 that satisfies the initial and inductive conditions.

Theorem 3.1 (Soundness). Let 𝐴 satisfy the initial and inductive conditions for all nodes. Then 𝐴
always includes the simulation state 𝜎 , meaning ∀𝑣 ∈ 𝑉 ,∀𝑡 ∈ N, 𝜎 (𝑣) (𝑡) ∈ 𝐴(𝑣) (𝑡).

Proof. By induction on 𝑡 . See [Alberdingk Thijm et al. 2022b] for the full proof. □

Since initial and inductive conditions suffice to prove that simulation states are included within
interfaces, it is safe in turn to use interfaces to check node properties.

Corollary 3.2 (Safety). Let 𝐴 satisfy the initial and inductive conditions for all nodes. Let 𝑃
satisfy the safety condition with respect to 𝐴 for all nodes. Then ∀𝑣 ∈ 𝑉 ,∀𝑡 ∈ N, 𝜎 (𝑣) (𝑡) ∈ 𝑃 (𝑣) (𝑡).

Proof. From definitions. See [Alberdingk Thijm et al. 2022b]. □

A closed network is a network instance where all initial routes are fixed routes, such that all states
of the network 𝜎 are captured by a concrete simulation. Our verification procedure is complete with

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

Modular Control Plane Verification via Temporal Invariants 108:13

Interfaces, Properties and Metavariables

𝐴 : 𝑉 → (N→ 2𝑆) node interfaces/invariants
𝑃 : 𝑉 → (N→ 2𝑆) node properties
𝜑 : 2𝑆 sets of states
𝜏 : N witness times

Temporal operators 𝑄 : N→ 2𝑆

G(𝜑) = 𝜆 𝑡 . 𝜑 globally
𝜑 U𝜏 𝑄 = 𝜆 𝑡 . if 𝑡 < 𝜏 then 𝜑 else 𝑄 (𝑡) until
F 𝜏 (𝑄) = 𝑆 U𝜏 𝑄 finally
𝑄1 ⊓𝑄2 = 𝜆 𝑡 .𝑄1 (𝑡) ∩𝑄2 (𝑡) intersection (lifted)
𝑄1 ⊔𝑄2 = 𝜆 𝑡 .𝑄1 (𝑡) ∪𝑄2 (𝑡) union (lifted)
∼𝑄 = 𝜆 𝑡 . 𝑆 \𝑄 (𝑡) negation (lifted)

Verification Conditions
Initial condition for node 𝑣 :

I𝑣 ∈ 𝐴(𝑣) (0) (5)
Inductive condition for node 𝑣 with in-neighbors 𝑢1, 𝑢2, . . . , 𝑢𝑛 :

∀𝑡 ∈ N,∀𝑠1 ∈ 𝐴(𝑢1) (𝑡),∀𝑠2 ∈ 𝐴(𝑢2) (𝑡), . . . ,∀𝑠𝑛 ∈ 𝐴(𝑢𝑛) (𝑡),©«I𝑣 ⊕
⊕

𝑖∈{1,..,𝑛}
f𝑢𝑖 𝑣 (𝑠𝑖)

ª®¬ ∈ 𝐴(𝑣) (𝑡 + 1)
(6)

Safety condition for node 𝑣 :
∀𝑡 ∈ N, 𝐴(𝑣) (𝑡) ⊆ 𝑃 (𝑣) (𝑡) (7)

Fig. 12. Summary of our interfaces and properties, temporal operators and verification conditions.

respect to a closed network: for any closed network, there exists an interface that characterizes its
simulation states exactly. One of the consequences of completeness is that our modular verification
procedure is powerful enough to prove any property that we could prove via a concrete simulation.4

Theorem 3.3 (Closed Simulation Completeness). Let 𝜎 be the state of the closed network. Then
for all 𝑣 ∈ 𝑉 and 𝑡 ∈ N, 𝐴(𝑣) (𝑡) = {𝜎 (𝑣) (𝑡)} satisfies the initial and inductive conditions for all nodes.

Proof. By construction of the interface. See [Alberdingk Thijm et al. 2022b]. □

4 SMT ALGORITHMS FOR VERIFICATION
We can check our initial, inductive and safety verification conditions (VCs) independently for every
node in the network using off-the-shelf SMT solvers. To check an instance of a VC, the solver will
attempt to prove the condition is valid (i.e., true for all choices of 𝑡 and 𝑠1, 𝑠2, . . . , 𝑠𝑛) by checking
whether the negation of our original VC is satisfiable. If the solver can satisfy the negation, it will
provide us with a counterexample—the state(s) of the node(s) at a particular time such that the VC
does not hold. Counterexamples to initial or inductive conditions indicate that the interface does
not capture the network’s behavior, while a counterexample to the safety condition indicates that
the interface is not strong enough to prove the property. The latter case may occur because the
property is simply not true (indicating a bug), or because we must strengthen the given interface
to prove the property. If the negation is unsatisfiable, then we know the condition is valid.
4In open networks, an external node may take an arbitrary route at any point in time: this case is not captured by 𝜎 .

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

108:14 Timothy Alberdingk Thijm, Ryan Beckett, Aarti Gupta, and David Walker

Algorithm 1 The modular checking algorithm.
proc CheckMod(network (𝐺, 𝑆, I, F, ⊕), interface 𝐴, property 𝑃)
for all 𝑣 ∈ 𝑉 do in parallel
𝜓1 ← EncodeInitCond(𝑣, 𝑆, I, 𝐴) ⊲ (5)
𝜓2 ← EncodeIndCond(𝑣, preds(𝑣), 𝑆, I, F, ⊕, 𝐴) ⊲ (6)
𝜓3 ← EncodeSafeCond(𝑣, 𝑆, 𝐴, 𝑃) ⊲ (7)
for 𝑖 ← 1, 2, 3 do
if ¬IsValid(𝜓𝑖) then return GetCounterExample(𝜓𝑖)

return Success

A network instance’s routes and behavior determines its encoding in SMT. For example, one
could encode the route triples in §2 as integer variables lp and len and a Boolean variable tag, and
use Presburger arithmetic to encode F and ⊕ with + and <. To model networks with external peers
(like n), multiple routing destinations, or other sources of nondeterminism, we may use symbolic
variables. For external peers, rather than treating n as having a specific initial route such as ∞,
we may use a symbolic variable 𝑠 for I𝑛 , and then ask the SMT solver to check the VCs for all
choices of 𝑠 . For multiple destinations, we can use a symbolic node variable to choose from a set
of destination nodes when checking that any node in that set is reachable. We also can assume
arbitrary preconditions for symbolic variables, e.g., enforcing that 𝑠 is not tagged with ¬𝑠 .tag. These
assumptions are not checked when we encode them to SMT.

The modular checking procedure. We present our modular checking procedure in Algorithm 1.
The CheckMod procedure iterates over each node of the network and encodes the underlying
formula (for the current node) of our three verification conditions by calling EncodeInitCond,
EncodeIndCond and EncodeSafeCond as defined in (5), (6) and (7), respectively.5 Note that we
encode 𝑡 as an explicit symbolic variable: our temporal operators expand to a case analysis over this
variable to determine what predicate holds on the particular node’s route. We then ask the solver if
every encoded formula is valid using IsValid. If IsValid returns false for any check, we ask for the
relevant counterexample using GetCounterExample, which returns a variable assignment that
violates the formula. Otherwise, we report success (𝐴 and 𝑃 hold).

Encoding the initial and inductive conditions is roughly proportional in size to the complexity
of the policy at the given node, which in turn is related to the in-degree of the node—denser
networks that include nodes with higher in-degree are more expensive to check. Encoding the
safety condition is proportional to the size of the formulae describing the interface and property
(generally tiny). In addition to reducing the size of each SMT formula, the factoring of the problem
into independent conditions makes it possible to check conditions on nodes simultaneously in
parallel. We will discuss the performance implications of our procedure further in §6.

Handling counterexamples. When GetCounterExample returns a counterexample for a modular
check, it specifies (a) routes of the node(s); (b) a concrete time; and (c) concrete values of any
symbolic variables in the formula. These counterexamples can guide us in strengthening the
invariants or pinpointing bugs. This is akin to other invariant-checking tools like Dafny [Leino
2010] where users must manually refine their invariants. Anecdotally, our practical approach to
designing the interfaces in §6 was to start by choosing 𝐴(𝑣) (𝑡) = 𝑃 (𝑣) (𝑡) (trivially satisfying
our safety condition). A counterexample would then identify a time instance where 𝑣 ’s invariant

5For simplicity, our encoding uses predicates 𝑉 → (N → (𝑆 → B)) to represent 𝐴 and 𝑃—other than this change, the
formulae are identical to the given VCs.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

Modular Control Plane Verification via Temporal Invariants 108:15

violated its initial or inductive condition. To resolve this violation, we often had to add a G(𝜑)
invariant to capture additional behavior (e.g., no node receives a better route than the legitimate
route). This “rule-of-thumb” suggests that counterexample-guided techniques [Clarke et al. 2000]
may be capable of inferring invariants. We leave this as future work.

Incorporating delay. 𝜎 and 𝐴 define a synchronous network semantics. As shown in prior work
on routing algebras [Daggitt et al. 2018; Griffin and Sobrinho 2005], when F and ⊕ are strictly
monotonic — informally, ⊕ prefers a route 𝑟 over any transferred route f𝑒 (𝑟) — there will only be
one converged state of the network, which our synchronous model will certainly capture.6 In other
cases, the synchronous model captures a possible execution of the network.
We may extend our model to consider routes up to a bounded number of units of delay. To

account for one unit of delay, we can extend our inductive condition to check all routes sent in the
last two time steps 𝑡 and 𝑡 + 1 satisfy the invariant at time 𝑡 + 2, becoming (changes in boxes):

∀𝑡 ∈ N, ∀𝑠1 ∈ 𝐴(𝑢1) (𝑡) ∪𝐴(𝑢1) (𝑡 + 1) , . . . ,∀𝑠𝑛 ∈ 𝐴(𝑢𝑛) (𝑡) ∪𝐴(𝑢𝑛) (𝑡 + 1) ,

©«I𝑣 ⊕
⊕

𝑖∈{1,..,𝑛}
f𝑢𝑖 𝑣 (𝑠𝑖)

ª®¬ ∈ 𝐴(𝑣) (𝑡 + 2)

We may extend the condition further to consider more units of delay. Doing so may also increase
the complexity of our invariants.

5 IMPLEMENTATION
We implemented Timepiece’s modular verification procedure as a library written in C#. The library
allows users to construct models of networks and then modularly verify them. Like the network
modelling framework NV [Giannarakis et al. 2020], Timepiece allows users to customize their
models by providing the type of routes (which may involve integers, strings, booleans, bitvectors,
records, optional data, lists, or sets) and the initialization, transfer and merge functions that process
them. This modelling language makes it easy to add ghost state to routes, as described earlier. It is
also possible to declare and use symbolic values in the model. Hence, one may reason about all
possible prefixes or more generally about all possible external routing announcements.

Under the hood, Timepiece uses Microsoft’s Zen verification library [Beckett and Mahajan 2020]
to generate SMT formulas from higher-level C# data structures and pass these formulas to the Z3
SMT solver [De Moura and Bjørner 2008]. Timepiece thus supports any network model that Zen
can encode to Z3. For example, to model a network running eBGP, we would adopt many of the
modelling choices made in Minesweeper [Beckett et al. 2017a]. We can use integers and Presburger
arithmetic to model path length, and bitvectors to model local preference and MED.

Timepiece uses multi-threading to run modular checks in parallel.7 As each check is independent,
the time to set up additional threads is the only overhead for parallelization.

6 EVALUATION
To evaluate Timepiece and illustrate its scaling trends, we generated a series of synthetic fattree [Al-
Fares et al. 2008] data center networks and verified four variations on reachability properties. We
also verified an isolation property on a real wide-area network configuration with over 100,000 lines
of Junos configuration code. These two types of networks demonstrate Timepiece’s performance
6As common protocols (e.g., OSPF) rely on shortest-paths algorithms with strictly monotonic F and ⊕, prior work has
sometimes assumed the network converges to a unique solution [Gember-Jacobson et al. 2016; Lopes and Rybalchenko
2019].
7We use C#’s Parallel LINQ library [Microsoft 2021], which can run up to 512 concurrent threads.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

108:16 Timothy Alberdingk Thijm, Ryan Beckett, Aarti Gupta, and David Walker

Table 2. Lines of C# code to define the network instances, interfaces and properties for each benchmark.

†: BlockToExternal’s network instance is defined partly from Internet2’s configuration files (topology 𝐺 and

F functions); the remaining elements (I, ⊕ and symbolic variables) are defined in C#. The reported lines are

for the C# portion—the configuration files are over 100,000 lines of Junos configuration code.

Benchmark Network LoC Interface LoC Property LoC

Reach 79 3 2
Len 83 7 5
Vf 87 12 2
Hijack 142 21 4
BlockToExternal 83† 5 5

for networks which are highly-connected (data centers) and have complex policies (WANs). Table 2
shows that writing the interfaces for each of our benchmarks is low-effort compared to the rest of
the network in terms of lines of code. We generated interfaces for our experiments parametrically
for any size of network, based on the distinct roles of nodes: for fattree networks, a node’s pod
and tier determined its role (5 roles, discussed later); for our wide-area network benchmark, we
distinguished internal nodes from external neighbors (2 roles). As a node’s role determined its
invariant, it is easy to extend or update these networks (e.g., adding a new pod or external neighbor)
and reuse the appropriate existing invariant for a node of that role.

To compare our implementation against a baseline, we implemented a monolithic, network-wide
Minesweeper-style [Beckett et al. 2017a] procedure Ms and compared its performance against
Timepiece. Ms analyzes stable states, which are independent of time. Given a property 𝑃 over
stable states,Ms checks if 𝑃 always holds (is valid) given the stable states of the network. These
states are encoded as a single formula over all nodes, as described in §2.1. To compare Ms with
Timepiece, we first crafted properties for Timepiece, which employs timed invariants. We then
erased the temporal details from these invariants to generate properties that Ms could manage. For
instance, when Timepiece would verify properties of the form G(𝜑), F 𝑡G(𝜑), or 𝜑2 U𝑡 G(𝜑), Ms

would instead verify that the network’s stable states satisfy 𝜑 .8
We ran our benchmarks on a Microsoft Azure D96s v5 virtual machine with 96 vCPUs and 384GB

of RAM. We used the machine’s multi-core processor to run all modular checks in parallel, while
monolithic checks necessarily ran on a single thread. We timed out any benchmark that did not
complete in 2 hours. We report four times for each benchmark: (i) the total time until all Timepiece
threads finished (Tp); (ii) the median node check time; (iii) the 99th percentile node check time (99%
of checks completed in less than this much time); and (iv) the total time taken byMs.

Fattrees. We parameterize our fattree networks by the number of pods 𝑘 : a 𝑘-fattree has 1.25𝑘2
nodes and 𝑘3 edges: Figure 13 shows an example 4-fattree used in our Vf benchmark. We considered
multiples of 4 for 4 ≤ 𝑘 ≤ 40 to assess Timepiece’s scalability: whereas we expected a monolithic
verifier to time out on larger topologies, we hypothesized that Timepiece would scale to these
networks. We present how verification time grows with respect to the number of nodes in each
fattree in Figure 14. The figure shows verification time on the y-axis on a logarithmic scale.
We considered four different properties (explained below): reachability (Reach), bounded path

length (Len), valley freedom (Vf) and route filtering (Hijack). We considered each property when
routing to a single, fixed destination edge node dest (Sp), and routing to a dest edge node determined
8None of our properties required that we specify more than one witness time, so all F and U operators took a G operator
as their temporal argument.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

Modular Control Plane Verification via Temporal Invariants 108:17

𝑐0 𝑐1 𝑐2 𝑐3

𝑎4 𝑎5 𝑎8 𝑎9 𝑎12 𝑎13 𝑎16 𝑎17

𝑒6 𝑒7 𝑒10 𝑒11 𝑒14 𝑒15 𝑒18 𝑒19

¬𝑠 .down

¬𝑠 .down

¬𝑠 .down

𝑠 .down

𝑠 .down

Fig. 13. An example fattree network, showing how Vf sets 𝑠 .down along the path between the destination

node 𝑒19 and 𝑒6. 𝑒6𝑎4 will drop the route from 𝑒6 to prevent valley routing.

0 1,000 2,000
100
101
102
103
104 timeout

Ve
rifi

ca
tio

n
tim

e
[s
]

(a) SpReach

0 1,000 2,000

timeout

(b) SpLen

0 1,000 2,000

timeout

(c) SpVf

0 1,000 2,000

timeout

(d) SpHijack

Tp

Tp median
Tp 99𝑡ℎ p.

Ms

0 1,000 2,000
100
101
102
103
104 timeout

Nodes

Ve
rifi

ca
tio

n
tim

e
[s
]

(e) ApReach

0 1,000 2,000

timeout

Nodes

(f) ApLen

0 1,000 2,000

timeout

Nodes

(g) ApVf

0 1,000 2,000

timeout

Nodes

(h) ApHijack

Fig. 14. Ms vs. Tp verification times for fattree benchmarks with 8 different policies.

by a symbolic variable (Ap) — modelling all-pairs routing to any edge node. Our routes modelled
the eBGP protocol in these networks. Table 3 summarizes the eBGP fields represented and how we
modelled them in SMT. We model the major common elements of eBGP routing: a route destination
as a 32-bit integer (representing an IPv4 prefix); administrative distance, local preference, multi-exit
discriminators as 32-bit integers (encoded as bitvectors); eBGP origin type as a ternary value; the
AS path length as an (unbounded) integer; and BGP communities as a set of strings.

Witness times. Our temporal operators include witness times to specify the time when a node
𝑣 has a route. To prove that 𝑣 eventually has a route to the destination node dest at time 𝑡 , we
must show that one of 𝑣 ’s neighbors sent it such a route at an earlier time 𝑡 − 1. The exact time 𝑣
obtains a route thus depends on where dest is relative to 𝑣 . This breaks down to five cases (or roles),
following the fattree’s structure, depending on whether 𝑣 is: (i) the 𝑑𝑒𝑠𝑡 node (0 hops, has a route
at 𝑡 = 0); (ii) an aggregation node in dest’s pod (1 hop, has a route at 𝑡 = 1); (iii) a core node, or an
edge node in dest’s pod (2 hops, 𝑡 = 2); (iv) an aggregation node in another pod (𝑡 = 3); or (v) an
edge node in another pod (𝑡 = 4). The largest choice of 𝑡 is hence 4, the diameter of the fattree.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

108:18 Timothy Alberdingk Thijm, Ryan Beckett, Aarti Gupta, and David Walker

Table 3. eBGP route fields modelled by Timepiece in SMT for fattree benchmarks.

Route field Modelled type in SMT

Route destination bitvector [SMT-LIB 2010b]
Administrative distance bitvector [SMT-LIB 2010b]
eBGP local preference bitvector [SMT-LIB 2010b]
eBGP multi-exit discriminator bitvector [SMT-LIB 2010b]
eBGP origin type {egp, igp, unknown} [SMT-LIB 2010b]
eBGP AS path length integer [SMT-LIB 2010c]
eBGP communities set<string> [SMT-LIB 2010a, 2020]

These cases mirror those identified for local data center invariants in [Jayaraman et al. 2019a]. We
use a function dist (𝑣) to encode these cases for each node 𝑣 .

Reach. Reach demonstrates the simplest possible routing behavior and serves as a useful baseline.
The policy simply increments the path length of a route on transfer. We initialized one destination
edge node with a route to itself, and all other nodes with no route (∞). Our goal is to prove every
node eventually has a route to the destination (i.e., its route is not∞). More precisely, because our
network has diameter 4, each node 𝑣 should acquire a route in 4 time steps.

𝑃Reach (𝑣) ≡ F 4G(𝑠 ≠ ∞)
Interfaces for these benchmarks mirror the simplicity of the policy and property. If a node’s

route 𝑠 ≠ ∞ at time 𝑡 , then its neighbors will in turn have a route 𝑠 ≠ ∞ at time 𝑡 + 1.
𝐴Reach (𝑣) ≡ F dist (𝑣)G(𝑠 ≠ ∞)

SpReach’s policy and property are so simple that Tp is actually slightly slower thanMs, as shown
in Figure 14a. We conjecture theMs encoding reduces to a particularly easy SAT instance. That
said, we can already see that individual checks in Timepiece take only a fraction of the time thatMs

takes, with 99% of node checks completing in at most 1.1 seconds, even for our largest benchmarks.
For ApReach, Figure 14e shows that, perhaps from the burden of modelling the symbolic dest, Ms

times out at 𝑘 = 8. Tp verifies our largest benchmark (𝑘 = 40, with 2,000 nodes) in 5.5 minutes, with
99% of individual node checks taking under 9 seconds.

Len. Our next benchmark uses the same policy as Reach, but considers a stronger property:
every node eventually has a route of at most 4 hops to the destination.

𝑃Len (𝑣) ≡ F 4G
(
𝑠 .len ≤ 4

)
To prove this property, our interfaces specify that path lengths in routes should not exceed the

distance to the destination: 𝑠 .len ≤ dist (𝑣). In addition, because local preference influences routing,
we fix the local preference to the default for all routes when present: 𝑠 .lp = 100.

𝐴Len (𝑣) ≡ G
(
𝑠 = ∞∨ 𝑠 .lp = 100

)︸ ︷︷ ︸
no better routes appear

⊓F dist (𝑣)G
(
𝑠 .len ≤ dist (𝑣)

)︸ ︷︷ ︸
eventually the route appears

Reasoning over path lengths requires Z3 to use slower bitvector and integer theories. Figure 14b
shows that monolithic verification times out at 𝑘 = 12 for SpLen. By contrast, modular verification
is able to solve 𝑘 = 40 in just over 20 minutes, with 99% of nodes verified in under 43 seconds.
Figure 14f shows that monolithic verification is not even possible for ApLen at 𝑘 = 4; Tp completes
for ApLen 𝑘 = 40 in around 66 minutes, with 99% of nodes verified in 2.4 minutes.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

Modular Control Plane Verification via Temporal Invariants 108:19

Vf. Vf extends Reach with policy to prevent up-down-up (valley) routing [Beckett et al. 2016,
2017b; Pepelnjak 2018], where routes transit an intermediate pod. To implement this policy, we
add a BGP community 𝐷 along “down” edges in the topology (i.e., from a core node or from an
aggregation node to an edge node), and drop routes with 𝐷 on “up” edges (see Figure 13). For
brevity, we write “𝑠 .down” to mean “𝐷 ∈ 𝑠 .tags”. We test the same reachability property as Reach.
The legitimate routes in the fattree all start as routes travelling up from the destination node’s

pod, e.g., the nodes in green (𝑎16, 𝑎17, 𝑒19) in Figure 13. We refer to these nodes as “adjacent nodes”
with a shorthand adj(𝑣): they transmit routes to the core nodes (and thereby to the rest of the
network) along their up edges. These edges will drop the routes if 𝑠 .down, so we require that
adj(𝑣) → ¬𝑠 .down. To ensure this, we add conjuncts to our interfaces requiring that nodes’ final
routes are no better than the shortest path’s route: 𝑠 .lp = 100 ∧ 𝑠 .len = dist (𝑣). This ensures our
inductive condition holds after every node has a route: otherwise, a core node (for instance) could
offer a spurious route with 𝑠 .len < 1 ∧ 𝑠 .down to an adjacent node.

𝐴Vf (𝑣) ≡ 𝑠 = ∞ Udist (𝑣) G
(
𝑠 .lp=100 ∧ 𝑠 .len=dist (𝑣)︸ ︷︷ ︸

no better routes appear

∧
(
adj(𝑣) → ¬𝑠 .down

)︸ ︷︷ ︸
adjacent nodes will share routes

)
Figure 14c shows thatMs verifies up to 𝑘 = 8 before timing out. As with SpLen, Tp time grows

gradually in proportion to the number of nodes, topping out at 6.6 minutes for 𝑘 = 40, with all node
checks completing in under 20 seconds. Figure 14g shows that for all-pairs routing, monolithic
verification times out again at 𝑘 = 12, whereas Tp hits the 2-hour timeout at 𝑘 = 36. We conjecture
this may be due to the added complexity of encoding adj(𝑣) when the destination is symbolic.

Hijack. Hijack models a fattree with an additional “hijacker” node ℎ connected to the core nodes.
ℎ represents a connection to the Internet from outside the network, which may advertise any
route. We add a boolean ghost state tag to 𝑆 for this policy to mark routes as external (from ℎ) or
internal. The destination node will advertise a route with 𝑠 .prefix = 𝑝 , where 𝑝 is a symbolic value
representing an internal address: the core nodes will then drop any routes from ℎ for prefix 𝑝 , but
allow other routes through. Apart from this filtering, routing functions as in the Reach benchmarks.
For this network, we verified that every internal node eventually has a route for prefix 𝑝 and which
is not via the hijacker (¬𝑠 .tag), assuming nothing about the hijacker’s route (𝐴Hijack (ℎ) ≡ G(true)).

𝑃Hijack (𝑣) ≡ F 4G(𝑠 .prefix=𝑝 ∧ ¬𝑠 .tag)

The Hijack interface is straightforward. We must simply re-affirm that nodes with internal
prefixes never have external routes: 𝑠 .prefix = 𝑝 → ¬𝑠 .tag. Once nodes have received a route from
the destination at time dist (𝑣), they should keep that route forever, and hence their route will have
both 𝑠 .prefix = 𝑝 and ¬𝑠 .tag.

𝐴Hijack (𝑣) ≡ F dist (𝑣)G(𝑠 .prefix=𝑝 ∧ ¬𝑠 .tag)︸ ︷︷ ︸
route will be internally reachable

⊓G(𝑠 .prefix=𝑝 → ¬𝑠 .tag)︸ ︷︷ ︸
no hijack route is ever used

In SpHijack, monolithic verification times out at 𝑘 = 8, whereas modular verification time scales
to 𝑘 = 40. 99% of nodes complete their checks in under 3 seconds, with our longest check taking
10.7 seconds at 𝑘 = 40. As with our other benchmarks, verification time grows linearly with respect
to the in-degree of each node (which determines the size of the SMT encoding of our inductive
condition). Figure 14h shows similar patterns for the all-pairs case, with no monolithic benchmark
completing on time, and modular verification taking at most 36.6 minutes.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

108:20 Timothy Alberdingk Thijm, Ryan Beckett, Aarti Gupta, and David Walker

Wide-area networks. To better investigate Timepiece’s scalability for other types of networks,
we evaluated it on the Internet2 [Internet2 2013] wide-area network.9 Internet2’s configuration
files are one of the few publicly available examples of the complex policies of wide-area and cloud
provider networks, as described in Propane [Beckett et al. 2016]. These files contain 1,552 Junos
routing policies, which filter routes by tag or prefix and tag routes according to customer priorities
(e.g., commercial vs. academic peers). We converted the configuration files to Timepiece’s model
by extracting the policy details using Batfish [Fogel et al. 2015]. The resulting network has over
200 nodes: 10 internal nodes within Internet2’s AS and 253 external peers. We did not model all
components of Internet2’s routing policies: we focused on IPv4 and BGP routing, and treated some
complex behaviors as “havoc” (soundly overapproximating the true behavior).10 We do not know
Internet2’s intended routing behavior: because of this, we cannot be certain that a counterexample
found by Timepiece represents a real violation of the network’s behavior; nonetheless, we may
still use this network to assess how well Timepiece enables modular verification.
It appears that Internet2 uses a BTE community tag to identify routes that must not be shared

with external neighbors. We checked that, if the internal nodes initially have any possible route,
then no external neighbor of Internet2 should ever obtain a route with the BTE tag set, assuming
the external neighbors do not start with such routes.

𝑃BlockToExternal (𝑣) ≡
{
G
(
𝑠 ≠ ∞→ BTE ∉ 𝑠 .tags

)
if 𝑣 is external

G(true) otherwise
Our interface is the property, i.e., ∀𝑣 . 𝐴BlockToExternal (𝑣) ≡ 𝑃BlockToExternal (𝑣). Modular checking

remains fast despite the network’s more complex policies: on a 6-core Macbook Pro with 16GB of
RAM, modular verification completes in 38.3 seconds, with a median check time of 0.6 seconds and
a 99th percentile check time of 4.2 seconds. Monolithic verification does not complete after 2 hours.

7 RELATEDWORK
Our work is most closely related to other efforts in control plane verification [Abhashkumar et al.
2020; Alberdingk Thijm et al. 2022a; Beckett et al. 2017a, 2018, 2019; Fogel et al. 2015; Gember-
Jacobson et al. 2016; Giannarakis et al. 2020; Lopes and Rybalchenko 2019; Prabhu et al. 2020; Tang
et al. 2022; Weitz et al. 2016; Ye et al. 2020]. We separate these tools into classes based on the
specifics of one’s verification problem.

SMT-based verification. For networks which are small (in the tens of nodes), SMT-based tools such
as Minesweeper [Beckett et al. 2017a] or Bagpipe [Weitz et al. 2016] offer ease-of-use, generality,
and symbolic reasoning. Minesweeper supports a broad range of properties including reachability,
waypointing, no blackholes and loops, and device equivalence.

Simulation-based verification. For larger networks that do not necessitate incremental recomputa-
tion after device update nor fully symbolic reasoning, one can use simulation-based tools [Beckett
et al. 2019; Fogel et al. 2015; Giannarakis et al. 2020; Lopes and Rybalchenko 2019; Prabhu et al.
2020; Ye et al. 2020]. Some of these tools also employ symbolic reasoning in limited ways to provide
useful capabilities. For example, inspired by effective work on data plane analysis [Khurshid et al.
2013], Plankton [Prabhu et al. 2020] first analyzes configurations to identify IP prefix equivalence
classes. Identified equivalence classes may be treated symbolically in the rest of the computation.
Plankton might be able to reason symbolically about other attributes, but doing so would require
additional custom engineering to find the appropriate sort of equivalence class ahead of time (e.g.,
9We used the versions of Internet2’s configuration files available here [Weitz 2016].
10These include prefix matching, community regex matching and AS path matching. We also did not model BGP nexthop.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

Modular Control Plane Verification via Temporal Invariants 108:21

for BGP AS paths or communities). Timepiece can represent any or all route fields symbolically
(e.g., for external actors), or determine the behavior of I, F and ⊕ functions using symbolic variables
(e.g., for all-pairs properties). The solver effort is then passed off to the underlying SMT engine.

Scalable SMT-based verification. Fewer tools exist for networks which are large and where
symbolic reasoning is important. Bonsai exploits symmetry to derive smaller abstractions of a
network [Beckett et al. 2018], but does not work if the network has topology or policy asymmetries
or one considers failures (which break topological symmetries). Other tools exploit modularity
in network designs. Kirigami [Alberdingk Thijm et al. 2022a] verifies networks using assume-
guarantee reasoning, but requires interfaces to specify the exact routes passed between any two
components. As such, it is impossible to craft interfaces that are robust to minor changes in network
policies. Lightyear [Tang et al. 2022] allows users to craft more general interfaces, but can only
prove properties that capture the absence of some “bad” route (e.g., our BlockToExternal property).
Lightyear does not model route interaction (e.g., selecting routes by path length), which we do via
our ⊕ function: Lightyear’s verification queries are therefore smaller, as it can check invariants on
every edge independently. We conjecture (but have not proven) that Lightyear verifies properties
that Timepiece expresses as G(𝜑), but not properties requiringU𝑡 or F 𝑡 temporal operators.

Other efforts in network analysis. Daggitt et al. also use a timed model [Daggitt et al. 2018], but
focus on convergence properties of routing protocols. We analyze properties that depend upon a
network’s topology and configuration such as reachability.
Other inspirations for our work are SecGuru and RCDC [Jayaraman et al. 2019a] in data plane

verification. Unlike our work, they use non-temporal invariants, which they extract from the
network topology and assume as ground truth for policies on individual devices. Whereas our
experiments likewise used the topology to define local invariants, our verification procedure checks
that these invariants are in fact guaranteed by the other devices in the network.

Compositional reasoning. Our work is inspired by the success of automated methods for compo-
sitional verification of concurrent systems – a recent handbook chapter [Giannakopoulou et al.
2018] provides many useful pointers to the rich literature on this topic. Automated methods using
compositional reasoning have been successfully applied in many application domains – concurrent
programs (e.g., [Flanagan and Qadeer 2003; Gupta et al. 2011; Owicki and Gries 1976]), hardware
designs (e.g., [Henzinger et al. 2000; Kurshan 1988; McMillan 1997], reactive systems (e.g., [Alur
and Henzinger 1999]) — and for a range of properties including safety and liveness, as well as
for refinement checking. [Lomuscio et al. 2010] applies assume-guarantee reasoning for verifying
stability of network congestion control systems. Many such applications use temporal logic for
specifying properties, as well as assumptions and guarantees at component interfaces [Pnueli 1984].
One main challenge is to come up with suitable assumptions that are strong enough to prove the
properties of interest. Toward this goal, Timepiece uses a language of temporal invariants inspired
by temporal logic to support checking local (i.e., per-router) properties. However, it carefully limits
the expressiveness of this language, e.g., by not allowing arbitrary nesting of temporal operators,
while allowing efficient verification of the proof obligations using SMT solvers.

Another main difference is that unlike most existing methods, Timepiece uses time as an explicit
variable 𝑡 in the language of invariants. This serves two distinct but related purposes. First, 𝑡
provides a well-founded ordering to ensure that our proof rule is sound. Second, using 𝑡 explicitly
in the language of invariants avoids choosing some static ordering over the components, which
could be otherwise used to break a circular chain of dependencies between their assumptions (cf.
the Circ rule in [Giannakopoulou et al. 2018]). Unfortunately, it is not always possible to determine
a static ordering, especially in cases where we consider multiple destinations at once symbolically.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

108:22 Timothy Alberdingk Thijm, Ryan Beckett, Aarti Gupta, and David Walker

Others have used induction over time [Misra and Chandy 1981] or over traces in specific models
such as compositions of Moore/Mealy machines [Henzinger et al. 2002; McMillan 1997] and reactive
modules [Alur and Henzinger 1999; Henzinger et al. 2000] to prove soundness of circular assume-
guarantee proof rules. However, to the best of our knowledge, no prior efforts use time explicitly in
the language of assumptions. Although handling time explicitly could be more costly for decision
procedures, in practice we use abstractions (via temporal operators) that result in fairly compact
formulas. Our evaluations show that these formulas can be handled well by modern SMT solvers.
There have also been many efforts that automatically derive assumptions for compositional

reasoning [Giannakopoulou et al. 2018]. Representative techniques include computing fixed points
over localized assertions called split invariants [Cohen and Namjoshi 2007], learning-based meth-
ods [Cobleigh et al. 2003], and counterexample-guided abstraction refinement [Bobaru et al. 2008;
Elkader et al. 2018]. We can view our interfaces as split invariants, since they refer to only the local
state of a component. However, we depend on the users to provide them as annotations.

Modular verification of distributed systems. There have been many prior efforts [Desai et al. 2018;
Hawblitzel et al. 2015; Jung et al. 2015; Ma et al. 2019; Padon et al. 2016; Sergey et al. 2018; Yao et al.
2021] for modular verification of distributed systems – see a recent work [Sergey et al. 2018] for
other useful pointers. In general, they handle much richer program logics or computational models
than the network routing algebras we target; hence the required assumptions and verification tasks
are more complex, and often require interactive theorem-proving. The synchronous semantics of
network routing algebras [Daggitt et al. 2018] that underlies our work is more closely related to
hardware designs modelled as compositions of finite state machines (FSMs), where a component
FSM’s state at time 𝑡 + 1 depends on its state at time 𝑡 and new inputs at time 𝑡 + 1, some of which
could be outputs from other FSM components, i.e., their state at time 𝑡 . No existing efforts for such
models (e.g., [Henzinger et al. 2002; McMillan 1997]) consider time explicitly in the assumptions.

8 CONCLUSION
Ensuring correct routing is critical to the operation of reliable networks. To verify today’s hyperscale
networks, we need modular control plane verification techniques that are general, expressive and
efficient. We propose Timepiece, a radical new approach for verifying control planes based on a
temporal foundation, which splits the network into small modules to verify efficiently in parallel.
To carry out verification, users provide Timepiece with local interfaces using temporal operators.
We proved that Timepiece is sound with respect to the network semantics and complete for closed
networks, and argue that its temporal foundation is an excellent choice for modular verification.

ACKNOWLEDGMENTS
We thank our anonymous reviewers and our shepherd, Jedidiah McClurg, for their helpful feedback.
This work was supported in part by grants from the Network Programming Initiative and the
National Science Foundation: 1837030 (https://www.nsf.gov/awardsearch/showAward?AWD_ID=
1837030), 2107138 (https://www.nsf.gov/awardsearch/showAward?AWD_ID=2107138).

AVAILABILITY
Timepiece is publicly available via GitHub [Alberdingk Thijm and Beckett 2023a] as well as
Zenodo [Alberdingk Thijm and Beckett 2023b]. These contain the necessary code to run the
benchmarks in our evaluation or write new ones in C#. We include a Docker image and Makefile
to assist in running the benchmarks.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1837030
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1837030
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2107138

Modular Control Plane Verification via Temporal Invariants 108:23

REFERENCES
Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya Akella. 2020. Tiramisu: Fast multilayer network

verification. In NSDI. USENIX Association, Santa Clara, CA, USA, 201–219. https://www.usenix.org/system/files/nsdi20-
paper-abhashkumar.pdf

Anubhavnidhi Abhashkumar, Kausik Subramanian, Alexey Andreyev, Hyojeong Kim, Nanda Kishore Salem, Jingyi Yang,
Petr Lapukhov, Aditya Akella, and Hongyi Zeng. 2021. Running BGP in Data Centers at Scale. In 18th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 21). USENIX Association, USA, 65–81. https://www.usenix.org/
conference/nsdi21/presentation/abhashkumar

Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A Scalable, Commodity Data Center Network Architec-
ture. In SIGCOMM. ACM, Seattle, WA, USA, 63–74. https://doi.org/10.1145/1402946.1402967

Timothy Alberdingk Thijm and Ryan Beckett. 2023a. Timepiece. GitHub. Retrieved April 6, 2023 from https://github.com/
alberdingk-thijm/Timepiece

Timothy Alberdingk Thijm and Ryan Beckett. 2023b. Timepiece. Zenodo. Retrieved April 6, 2023 from https://zenodo.org/
record/7799158

Timothy Alberdingk Thijm, Ryan Beckett, Aarti Gupta, and David Walker. 2022a. Kirigami, the Verifiable Art of Network
Cutting. In 2022 IEEE 30th International Conference on Network Protocols (ICNP). IEEE, Lexington, KY, USA, 1–12.
https://doi.org/10.1109/ICNP55882.2022.9940333

Timothy Alberdingk Thijm, Ryan Beckett, Aarti Gupta, and David Walker. 2022b. Modular Control Plane Verification via
Temporal Invariants. https://doi.org/10.48550/arXiv.2204.10303 arXiv:2204.10303 [cs.LO]

Rajeev Alur and Thomas A Henzinger. 1999. Reactive modules. Formal methods in system design 15, 1 (1999), 7–48.
https://doi.org/10.1023/A:1008739929481

Clark Barrett and Cesare Tinelli. 2018. Satisfiability modulo theories. In Handbook of model checking. Springer, Cham,
Switzerland, 305–343. https://doi.org/10.1007/978-3-319-10575-8_11

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017a. A General Approach to Network Configuration
Verification. In SIGCOMM. ACM, New York, NY, USA, 155–168. https://doi.org/10.1145/3098822.3098834

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2018. Control Plane Compression. In SIGCOMM. ACM,
Budapest, Hungary, 476–489. https://doi.org/10.1145/3230543.3230583

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2019. Abstract Interpretation of Distributed Network Control
Planes. Proc. ACM Program. Lang. 4, POPL, Article 42 (dec 2019), 27 pages. https://doi.org/10.1145/3371110

Ryan Beckett and Ratul Mahajan. 2020. A General Framework for Compositional Network Modeling. In Proceedings of
the 19th ACM Workshop on Hot Topics in Networks. Association for Computing Machinery, New York, NY, USA, 8–15.
https://doi.org/10.1145/3422604.3425930

Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and David Walker. 2016. Don’T Mind the Gap: Bridging
Network-wide Objectives and Device-level Configurations. In SIGCOMM. ACM, New York, NY, USA, 328–341. https:
//doi.org/10.1145/2934872.2934909

Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitu Padhye, and David Walker. 2017b. Network Configuration Synthesis with
Abstract Topologies. In PLDI. ACM, New York, NY, USA, 437–451. https://doi.org/10.1145/3062341.3062367

Mihaela Gheorghiu Bobaru, Corina S. Pasareanu, and Dimitra Giannakopoulou. 2008. Automated Assume-Guarantee
Reasoning by Abstraction Refinement. In CAV (Lecture Notes in Computer Science, Vol. 5123). Springer-Verlag, Berlin,
Heidelberg, 135–148. https://doi.org/10.1007/978-3-540-70545-1_14

CISCO. 2005. Using BGP Community Values to Control Routing Policy in Upstream Provider Network. https://www.cisco.
com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/28784-bgp-community.html

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2000. Counterexample-Guided Abstraction
Refinement. In CAV. Springer, Berlin, Heidelberg, 154–169. https://doi.org/10.1007/10722167_15

Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Pasareanu. 2003. Learning Assumptions for Compositional
Verification. In Tools and Algorithms for the Construction and Analysis of Systems, TACAS, Proceedings (Lecture Notes in
Computer Science, Vol. 2619). Springer, Berlin, Heidelberg, 331–346. https://doi.org/10.1007/3-540-36577-X_24

Ariel Cohen and Kedar S. Namjoshi. 2007. Local Proofs for Global Safety Properties. In Computer Aided Verification (CAV),
Proceedings (Lecture Notes in Computer Science, Vol. 4590). Springer, USA, 55–67. https://doi.org/10.5555/1519231.1519265

Matthew L Daggitt, Alexander JT Gurney, and Timothy G Griffin. 2018. Asynchronous convergence of policy-rich distributed
Bellman-Ford routing protocols. In SIGCOMM. ACM, Budapest, Hungary, 103–116. https://doi.org/10.1145/3230543.
3230561

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In TACAS. Springer, Berlin, Heidelberg, 337–340.
https://doi.org/10.1007/978-3-540-78800-3_24

Ankush Desai, Amar Phanishayee, Shaz Qadeer, and Sanjit A. Seshia. 2018. Compositional programming and testing of
dynamic distributed systems. PACMPL 2, OOPSLA (2018), 159:1–159:30. https://doi.org/10.1145/3276529

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

https://www.usenix.org/system/files/nsdi20-paper-abhashkumar.pdf
https://www.usenix.org/system/files/nsdi20-paper-abhashkumar.pdf
https://www.usenix.org/conference/nsdi21/presentation/abhashkumar
https://www.usenix.org/conference/nsdi21/presentation/abhashkumar
https://doi.org/10.1145/1402946.1402967
https://github.com/alberdingk-thijm/Timepiece
https://github.com/alberdingk-thijm/Timepiece
https://zenodo.org/record/7799158
https://zenodo.org/record/7799158
https://doi.org/10.1109/ICNP55882.2022.9940333
https://doi.org/10.48550/arXiv.2204.10303
https://arxiv.org/abs/2204.10303
https://doi.org/10.1023/A:1008739929481
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1145/3098822.3098834
https://doi.org/10.1145/3230543.3230583
https://doi.org/10.1145/3371110
https://doi.org/10.1145/3422604.3425930
https://doi.org/10.1145/2934872.2934909
https://doi.org/10.1145/2934872.2934909
https://doi.org/10.1145/3062341.3062367
https://doi.org/10.1007/978-3-540-70545-1_14
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/28784-bgp-community.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/28784-bgp-community.html
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.5555/1519231.1519265
https://doi.org/10.1145/3230543.3230561
https://doi.org/10.1145/3230543.3230561
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/3276529

108:24 Timothy Alberdingk Thijm, Ryan Beckett, Aarti Gupta, and David Walker

Karam Abd Elkader, Orna Grumberg, Corina S. Pasareanu, and Sharon Shoham. 2018. Automated circular assume-guarantee
reasoning. Formal Aspects of Computing 30, 5 (2018), 571–595. https://doi.org/10.1007/s00165-017-0436-0

Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas Sekar, and George Varghese. 2016. Efficient
Network Reachability Analysis using a Succinct Control Plane Representation. In OSDI. USENIX Association, Savannah,
GA, USA, 217–232. https://dl.acm.org/doi/10.5555/3026877.3026895

Nick Feamster and Hari Balakrishnan. 2005. Detecting BGP Configuration Faults with Static Analysis. In NSDI. USENIX
Association, USA, 43–56. https://doi.org/10.5555/1251203.1251207

Cormac Flanagan and Shaz Qadeer. 2003. Thread-modular model checking. In International SPIN Workshop on Model
Checking of Software. Springer, Berlin, Heidelberg, 213–224. https://doi.org/10.1007/3-540-44829-2_14

Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan, Ratul Mahajan, and Todd Millstein.
2015. A General Approach to Network Configuration Analysis. In NSDI. USENIX Association, USA, 469–483. https:
//doi.org/10.5555/2789770.2789803

Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and Ratul Mahajan. 2016. Fast Control Plane Analysis Using
an Abstract Representation. In SIGCOMM. ACM, USA, 300–313. https://doi.org/10.1145/2934872.2934876

Dimitra Giannakopoulou, Kedar S Namjoshi, and Corina S Păsăreanu. 2018. Compositional reasoning. In Handbook of
Model Checking. Springer, Cham, Switzerland, 345–383. https://doi.org/10.1007/978-3-319-10575-8_12

Nick Giannarakis, Devon Loehr, Ryan Beckett, and David Walker. 2020. NV: An Intermediate Language for Verification
of Network Control Planes. In PLDI. Association for Computing Machinery, New York, NY, USA, 958–973. https:
//doi.org/10.1145/3385412.3386019

Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong. 2002. The Stable Paths Problem and Interdomain Routing.
IEEE/ACM Trans. Networking 10, 2 (April 2002), 232–243. https://ieeexplore.ieee.org/abstract/document/993304

Timothy G. Griffin and Joäo Luís Sobrinho. 2005. Metarouting. In SIGCOMM. ACM, New York, NY, USA, 1–12. https:
//doi.org/10.1145/1080091.1080094

Orna Grumberg and David E Long. 1994. Model checking and modular verification. ACM Transactions on Programming
Languages and Systems (TOPLAS) 16, 3 (1994), 843–871. https://doi.org/10.1145/177492.177725

Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. 2011. Threader: A Constraint-Based Verifier for Multi-threaded
Programs. In Computer Aided Verification (CAV). Proceedings (Lecture Notes in Computer Science, Vol. 6806). Springer,
Berlin, Heidelberg, 412–417. https://doi.org/10.1007/978-3-642-22110-1_32

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath T. V. Setty, and
Brian Zill. 2015. IronFleet: proving practical distributed systems correct. In SOSP. ACM, New York, NY, USA, 1–17.
https://doi.org/10.1145/2815400.2815428

C. Hedrick. 1988. Routing Information Protocol. Internet Request for Comments. https://datatracker.ietf.org/doc/html/
rfc1058

Thomas A Henzinger, Shaz Qadeer, and Sriram K Rajamani. 1998. You assume, we guarantee: Methodology and case
studies. In International Conference on Computer Aided Verification. Springer, Berlin, Heidelberg, 440–451. https:
//doi.org/10.1007/BFb0028765

Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. 2000. Decomposing Refinement Proofs Using Assume-
Guarantee Reasoning. In Proceedings of the 2000 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
IEEE Computer Society, San Jose, CA, USA, 245–252. https://doi.org/10.5555/602902.602958

Thomas A. Henzinger, Shaz Qadeer, Sriram K. Rajamani, and Serdar Tasiran. 2002. An assume-guarantee rule for checking
simulation. ACM Transactions on Programming Languages and Systems 24, 1 (2002), 51–64. https://doi.org/10.1145/
509705.509707

Internet2. 2013. About Internet2. https://meetings.internet2.edu/media/medialibrary/2013/08/01/AboutInternet2.pdf
Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar Agrawal, Ashish Bhargava, Paul-Andre C Bissonnette, Shane Foster,

Andrew Helwer, Mark Kasten, Ivan Lee, Anup Namdhari, Haseeb Niaz, Aniruddha Parkhi, Hanukumar Pinnamraju,
Adrian Power, Neha Milind Raje, and Parag Sharma. 2019a. Validating Datacenters at Scale. In SIGCOMM. Association
for Computing Machinery, Beijing, China, 200–213. https://doi.org/10.1145/3341302.3342094

Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar Agrawal, Ashish Bhargava, Paul-Andre C Bissonnette, Shane Foster,
Andrew Helwer, Mark Kasten, Ivan Lee, Anup Namdhari, Haseeb Niaz, Aniruddha Parkhi, Hanukumar Pinnamraju,
Adrian Power, Neha Milind Raje, and Parag Sharma. 2019b. Validating Datacenters at Scale (Presentation at SIGCOMM
2019). https://conferences.sigcomm.org/sigcomm/2019/files/slides/paper_5_1.pptx

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:
Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL. ACM, New York, NY, USA, 637–650.
https://doi.org/10.1145/2775051.2676980

Peyman Kazemian, Michael Chang, Hongyi Zeng, George Varghese, Nick McKeown, and Scott Whyte. 2013. Real Time
Network Policy Checking Using Header Space Analysis. In NSDI. USENIX Association, USA, 99–112. https://doi.org/10.
5555/2482626.2482638

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

https://doi.org/10.1007/s00165-017-0436-0
https://dl.acm.org/doi/10.5555/3026877.3026895
https://doi.org/10.5555/1251203.1251207
https://doi.org/10.1007/3-540-44829-2_14
https://doi.org/10.5555/2789770.2789803
https://doi.org/10.5555/2789770.2789803
https://doi.org/10.1145/2934872.2934876
https://doi.org/10.1007/978-3-319-10575-8_12
https://doi.org/10.1145/3385412.3386019
https://doi.org/10.1145/3385412.3386019
https://ieeexplore.ieee.org/abstract/document/993304
https://doi.org/10.1145/1080091.1080094
https://doi.org/10.1145/1080091.1080094
https://doi.org/10.1145/177492.177725
https://doi.org/10.1007/978-3-642-22110-1_32
https://doi.org/10.1145/2815400.2815428
https://datatracker.ietf.org/doc/html/rfc1058
https://datatracker.ietf.org/doc/html/rfc1058
https://doi.org/10.1007/BFb0028765
https://doi.org/10.1007/BFb0028765
https://doi.org/10.5555/602902.602958
https://doi.org/10.1145/509705.509707
https://doi.org/10.1145/509705.509707
https://meetings.internet2.edu/media/medialibrary/2013/08/01/AboutInternet2.pdf
https://doi.org/10.1145/3341302.3342094
https://conferences.sigcomm.org/sigcomm/2019/files/slides/paper_5_1.pptx
https://doi.org/10.1145/2775051.2676980
https://doi.org/10.5555/2482626.2482638
https://doi.org/10.5555/2482626.2482638

Modular Control Plane Verification via Temporal Invariants 108:25

Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten Godfrey. 2013. VeriFlow: Verifying Network-
Wide Invariants in Real Time. In NSDI. USENIX Association, USA, 15–28. https://doi.org/10.5555/2482626.2482630

R. P. Kurshan. 1988. Reducibility in analysis of coordination. In Discrete Event Systems: Models and Applications (LNCIS,
Vol. 103). Springer, Berlin, Heidelberg, 19–39. https://doi.org/10.1007/BFb0042302

K Rustan M Leino. 2010. Dafny: An automatic program verifier for functional correctness. In International Conference on Logic
for Programming Artificial Intelligence and Reasoning. Springer, Berlin, Heidelberg, 348–370. https://doi.org/10.1007/978-
3-642-17511-4_20

Alessio Lomuscio, Ben Strulo, Nigel Walker, and Peng Wu. 2010. Assume-guarantee reasoning with local specifications. In
ICFEM. Springer, Berlin, Heidelberg, 204–219. https://doi.org/10.1007/978-3-642-16901-4_15

Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman, and George Varghese. 2015. Checking Beliefs in
Dynamic Networks. In NSDI. USENIX Association, Oakland, CA, 499–512. https://doi.org/10.5555/2789770.2789805

Nuno P Lopes and Andrey Rybalchenko. 2019. Fast BGP simulation of large datacenters. In VMCAI. Springer, Cham,
Switzerland, 386–408. https://doi.org/10.1007/978-3-030-11245-5_18

K. Lougheed and Y. Rekhter. 1991. A Border Gateway Protocol 3 (BGP-3). Internet Request for Comments. https:
//datatracker.ietf.org/doc/html/rfc1267

Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris Kasikci, and Karem A. Sakallah. 2019. I4: incremental
inference of inductive invariants for verification of distributed protocols. In SOSP. ACM, Huntsville, ON, Canada, 370–384.
https://doi.org/10.1145/3341301.3359651

Kenneth L. McMillan. 1997. A Compositional Rule for Hardware Design Refinement. In Computer Aided Verification (CAV),
Proceedings (Lecture Notes in Computer Science, Vol. 1254). Springer, Berlin, Heidelberg, 24–35. https://doi.org/10.1007/3-
540-63166-6_6

Microsoft. 2021. Introduction to PLINQ. https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/
introduction-to-plinq.

Ron Miller. 2022. As overall cloud infrastructure market growth dips to 24%, AWS reports slowdown. https://techcrunch.
com/2022/10/28/as-overall-cloud-infrastructure-market-growth-dips-to-24-aws-reports-slowdown/

Jayadev Misra and K. Mani Chandy. 1981. Proofs of Networks of Processes. IEEE Transactions on Software Engineering 7, 4
(1981), 417–426. https://doi.org/10.1109/TSE.1981.230844

J. Moy. 1998. Open Shortest Path First Protocol Version 2. Internet Request for Comments. https://datatracker.ietf.org/doc/
html/rfc2328

D. Oran. 1990. OSI IS-IS Intra-domain Routing Protocol. Internet Request for Comments. https://datatracker.ietf.org/doc/
html/rfc1142

Susan S. Owicki and David Gries. 1976. Verifying Properties of Parallel Programs: An Axiomatic Approach. Commun. ACM
19, 5 (1976), 279–285. https://doi.org/10.1145/360051.360224

Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification by
interactive generalization. In PLDI. ACM, New York, NY, USA, 614–630. https://doi.org/10.1145/2908080.2908118

Ivan Pepelnjak. 2018. Valley-Free Routing in Data Center Fabrics. https://blog.ipspace.net/2018/09/valley-free-routing-in-
data-center.html.

Amir Pnueli. 1984. In Transition From Global to Modular Temporal Reasoning about Programs. In Logics and Models of
Concurrent Systems - Conference proceedings (NATO ASI Series, Vol. 13). Springer, Berlin, Heidelberg, 123–144. https:
//doi.org/10.1007/978-3-642-82453-1_5

Santhosh Prabhu, Kuan Yen Chou, Ali Kheradmand, Brighten Godfrey, and Matthew Caesar. 2020. Plankton: Scalable
network configuration verification throughmodel checking. InNSDI. USENIX Association, Santa Clara, CA, USA, 953–967.
https://doi.org/10.5555/3388242.3388310

Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2018. Programming and proving with distributed protocols. Proceedings
of ACM Programming Languages 2, POPL (2018), 28:1–28:30. https://doi.org/10.1145/3158116

SMT-LIB. 2010a. ArraysEx. https://smtlib.cs.uiowa.edu/theories-ArraysEx.shtml.
SMT-LIB. 2010b. FixedSizeBitVectors. https://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml.
SMT-LIB. 2010c. Ints. https://smtlib.cs.uiowa.edu/theories-Ints.shtml.
SMT-LIB. 2020. Unicode Strings. http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml.
João Luís Sobrinho. 2005. An Algebraic Theory of Dynamic Network Routing. IEEE/ACM Trans. Netw. 13, 5 (October 2005),

1160–1173. https://ieeexplore.ieee.org/abstract/document/1528502
Tom Strickx and Jeremy Hartman. 2022. Cloudflare outage on June 21, 2022. https://blog.cloudflare.com/cloudflare-outage-

on-june-21-2022/.
Alan Tang, Ryan Beckett, Karthick Jayaraman, Todd Millstein, and George Varghese. 2022. LIGHTYEAR: Using Modularity

to Scale BGP Control Plane Verification. arXiv:2204.09635 [cs.NI] https://arxiv.org/abs/2204.09635
Brandon Vigliarolo. 2022. After config error takes down Rogers, it promises to spend billions on reliability. https:

//www.theregister.com/2022/07/25/canadian_isp_rogers_outage/.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

https://doi.org/10.5555/2482626.2482630
https://doi.org/10.1007/BFb0042302
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-16901-4_15
https://doi.org/10.5555/2789770.2789805
https://doi.org/10.1007/978-3-030-11245-5_18
https://datatracker.ietf.org/doc/html/rfc1267
https://datatracker.ietf.org/doc/html/rfc1267
https://doi.org/10.1145/3341301.3359651
https://doi.org/10.1007/3-540-63166-6_6
https://doi.org/10.1007/3-540-63166-6_6
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/introduction-to-plinq
https://docs.microsoft.com/en-us/dotnet/standard/parallel-programming/introduction-to-plinq
https://techcrunch.com/2022/10/28/as-overall-cloud-infrastructure-market-growth-dips-to-24-aws-reports-slowdown/
https://techcrunch.com/2022/10/28/as-overall-cloud-infrastructure-market-growth-dips-to-24-aws-reports-slowdown/
https://doi.org/10.1109/TSE.1981.230844
https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/rfc2328
https://datatracker.ietf.org/doc/html/rfc1142
https://datatracker.ietf.org/doc/html/rfc1142
https://doi.org/10.1145/360051.360224
https://doi.org/10.1145/2908080.2908118
https://blog.ipspace.net/2018/09/valley-free-routing-in-data-center.html
https://blog.ipspace.net/2018/09/valley-free-routing-in-data-center.html
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.5555/3388242.3388310
https://doi.org/10.1145/3158116
https://smtlib.cs.uiowa.edu/theories-ArraysEx.shtml
https://smtlib.cs.uiowa.edu/theories-FixedSizeBitVectors.shtml
https://smtlib.cs.uiowa.edu/theories-Ints.shtml
http://smtlib.cs.uiowa.edu/theories-UnicodeStrings.shtml
https://ieeexplore.ieee.org/abstract/document/1528502
https://blog.cloudflare.com/cloudflare-outage-on-june-21-2022/
https://blog.cloudflare.com/cloudflare-outage-on-june-21-2022/
https://arxiv.org/abs/2204.09635
https://arxiv.org/abs/2204.09635
https://www.theregister.com/2022/07/25/canadian_isp_rogers_outage/
https://www.theregister.com/2022/07/25/canadian_isp_rogers_outage/

108:26 Timothy Alberdingk Thijm, Ryan Beckett, Aarti Gupta, and David Walker

Konstantin Weitz. 2016. Getting Started With Bagpipe. http://www.konne.me/bagpipe/started.html
Konstantin Weitz, Doug Woos, Emina Torlak, Michael D. Ernst, Arvind Krishnamurthy, and Zachary Tatlock. 2016. Scalable

Verification of Border Gateway Protocol Configurations with an SMT Solver. In OOPSLA (Amsterdam, Netherlands).
Association for Computing Machinery, New York, NY, USA, 765–780. https://doi.org/10.1145/2983990.2984012

Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and Gabriel Ryan. 2021. DistAI: Data-Driven Automated
Invariant Learning for Distributed Protocols. In OSDI. USENIX Association, USA, 405–421. https://www.usenix.org/
conference/osdi21/presentation/yao

Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu, Bingchuan Tian, Qiaobo Ye, Chunsheng Wang, Xin Wu, Tianchen
Guo, Cheng Jin, Duncheng She, Qing Ma, Biao Cheng, Hui Xu, Ming Zhang, Zhiliang Wang, and Rodrigo Fonseca. 2020.
Accuracy, Scalability, Coverage: A Practical Configuration Verifier on a Global WAN. In SIGCOMM (SIGCOMM ’20).
Association for Computing Machinery, New York, NY, USA, 599–614. https://doi.org/10.1145/3387514.3406217

Peng Zhang, Aaron Gember-Jacobson, Yueshang Zuo, Yuhao Huang, Xu Liu, and Hao Li. 2022. Differential Network Analysis.
In NSDI. USENIX Association, Renton, WA, USA, 601–615. https://www.usenix.org/conference/nsdi22/presentation/
zhang-peng

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 108. Publication date: June 2023.

http://www.konne.me/bagpipe/started.html
https://doi.org/10.1145/2983990.2984012
https://www.usenix.org/conference/osdi21/presentation/yao
https://www.usenix.org/conference/osdi21/presentation/yao
https://doi.org/10.1145/3387514.3406217
https://www.usenix.org/conference/nsdi22/presentation/zhang-peng
https://www.usenix.org/conference/nsdi22/presentation/zhang-peng

	Abstract
	1 Introduction
	2 Key Ideas
	2.1 Background
	2.2 The Challenge of Modular Verification
	2.3 The Solution: A Temporal Model

	3 Formal Model with Temporal Invariants
	4 SMT Algorithms for Verification
	5 Implementation
	6 Evaluation
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

