TYPED MEMORY MANAGEMENT

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
David Patrick Walker

January 2001

© David Patrick Walker 2001
ALL RIGHTS RESERVED

TYPED MEMORY MANAGEMENT

David Patrick Walker, Ph.D.
Cornell University 2001

Programming languages with sound static type systems have significant software engineering
advantages over unsafe programming languages. Types can enforce a wide variety of program
invariants at compile time, making it possible to catch programmer errors early in the software
development cycle. Types can also improve programming language implementations by helping
to guide program transformations and optimizations. In typed intermediate languages, such as
the Java Virtual Machine Language, types certify crucial safety properties needed to implement
secure and reliable software systems.

One area where traditional type systems provide little help to programmers is in the speci-
fication and enforcement of memory management invariants. In this thesis, I address this prob-
lem by developing new type systems with sophisticated mechanisms for checking programs that
perform their own memory management. The central goal is to make it possible for programs
to control memory resources, as in unsafe languages, and yet retain the software engineering
benefits of strong type systems.

The central technical novelty of these type systems is the presence of a static capability
that can control access to memory resources. Capabilities are instantiated in two ways in this
thesis. First, they are instantiated with specifications of individual memory blocks. These
capabilities make it possible to allocate, initialize, use and recycle data structures. They also
provide a mechanism for controlling and reasoning about pointer aliasing. Second, capabilities
are instantiated with vast memory regions (address spaces). This second alternative provides
coarser-grained memory management as regions may contain many objects and all such objects
are deallocated simultaneously when a region is freed.

For each of the resulting capability-based type systems I prove two theorems to quantify
their memory management properties. First, I show that the type systems are sound: Well-
typed programs never dereference dangling pointers or commit other memory faults at run time.
Second, I prove a garbage collection theorem that specifies how effectively well-typed programs
recycle memory.

Biographical Sketch

If occasionally somewhat overdressed, I make up for it by always being exceptionally
overeducated.

— Oscar Wilde. The Importance of Being Earnest.

David Patrick Walker arrived on the scene on August 15th, 1972, just 43 days before Paul
Henderson scored the goal. Paul Henderson’s goal was ranked the eighth most significant
event in Canadian history over the last 100 years; David’s birth is surely only marginally less
important. Please read any suitably well-respected book on Canadian history for a summary
of David’s accomplishments.

iii

Acknowledgements

On reflection of my time at Cornell, I realize that my path to graduation has been remarkably
trouble-free when compared with that of many other students. No doubt, my life has been
made immeasurbly easier by the kindness and encouragement of the people that surround me.
Whatever small amount of success I have had or might achieve is due mostly to them.

First of all, T would like to thank my parents for their love, support and teaching. My father
started preparing me for grad school at an early age by explaining the role of “systems” in
every-day life. Both Mum and Dad showed me the enjoyment of reading and exploring new
ideas. When two people decide that the most important criterion for buying a house is the
number of bookshelves it can contain, their son is destined for grad school. My brother is also
very important to me. He does his best to make me a broader person and to school me in the
fine arts of fun, relaxation, and, most importantly, sweet confabulation. Thanks Mark.

Greg Morrisett has been my mentor at Cornell and I simply cannot imagine where I would be
without his encouragement, kindness and all-around smarts. He has a special kind of contagious
enthusiasm that makes research exciting whenever he is in the room and his influence is evident
in every line of this thesis. Outside the office, he is great friend who is always looking out for
what is best for me.

I am also deeply endebted to many other faculty and staff here at Cornell. Dexter Kozen
has always been able to give me wise advice whenever I ran into an academic problem. I am
also grateful for all those evenings that he gave me a lift home after late-night hockey. Karla
Consroe has made my days brighter with her smile and genuine good nature. Jan Baxter, Bob
Constable, Andrew Meyers, Becky Personias, Fred Schneider, and Jim Wallis have all been a
great help during my stay in graduate school.

I am sure I have learned more from my fellow students than from any classes or lectures
I have ever attended. I have spent countless hours sipping coffee while Neal Glew patiently
explained the technical intracacies of this or that. Dan Grossman picked up where Neal left
off, both in terms of coffee supply and technical advice. Of equal importance, I can always
count on Neal or Dan to share a beer at CTB or the Chapter House. Karl Crary has also been
a wealth of ideas and has had a tremendous impact on my work. My officemates Stephanie
Weirich and Nick Howe kindly kept me alive with continual input to, and (particularly in
Nick’s case) output from, the 5139 office cookie fund. They were also wonderful resources on
everything from recursive kinds to how to turn off those damn Microsoft PowerPoint options
to free food opportunities in the atrium. Steve Zdancewic has helped me with my writing on
many occasions and he is always a dependendable bridge partner. It was always a pleasure
to work and travel with Fred Smith. Riccardo Pucella read a draft of my thesis and made
numerous helpful suggestions. I am remarkably lucky to have worked with so many talented,
friendly people.

Finally, life in graduate school would have been unbearable without a core group of friends.
I am happy that Gary Adams had the energy to drag me out to Cass Park hockey all those

iv

frozen January nights and had the patience to suffer through so many Toronto Maple Leafs
hockey games at other times. Mark Pearlman, a wizard in the kitchen, introduced me to the
swiss-army bowl and the refridgerator’s reversable door. Needless to say, my life will never
be the same. Marcos Aguilera, Mark Hayden, Takako Hickey, Jason Hickey, Suzannah Hobbs,
Amanda Holland-Minkley, Vera Kettnake, Tanya Morrisett, Ryan Budney’s ultimate frisbee
team and the Friday-night hockey group all helped make my time in grad school that much
cheerier.

vi

Table of Contents

Introduction

1.1 Motivation L e e e e e e e e
1.1.1 Type Systems o . it e e e e e
1.1.2 Types in Compilation o000
1.1.3 Tracing Garbage Collection

1.2 Typed Memory Management

1.3 Thesis Outline and Contributions,

Foundations: Linear Types

2.1 A Linear Type System
2.1.1 Operational Semantics Lo e
2.1.2 Static Semantics oL L e
2.1.3 Store and Program Typing
2.1.4 Properties of the Type System
2.1.5 Intuitionistic Types

2.2 Controlling Space Reuse
2.2.1 Explicit Allocation, Initialization and Reuse
2.2.2 Continuation-Passing Style

23 Discussion e e e
2.3.1 Related Work L
2.3.2 Limitations L

Aliasing

3.1 Informal Development oo
3.1.1 Abstraction Mechanisms oL

3.2 Formal Syntax and Semanticso
3.2.1 Type Constructors o e
3.2.2 Small Values and Expressions
3.2.3 Stores and Programs oL o oo
3.2.4 Operational Semantics 0 o000

3.3 Properties of the Aliasing Language
3.3.1 Type Soundness e
3.3.2 Complete Collection

3.4 Applications L e e e
3.4.1 Destination-Passing Style
3.4.2 Stack Typing e e e e e
3.4.3 Deutsch-Schorr-Waite Algorithms.

vii

12
15
15
17
19
20
22
28
29
30

3.0 DIscussion i e e e e e e e e e e e e e e e 58

351 ATTAYS . . . oo o e e e e e e e e 60

3.5.2 Related Work e 61

3.5.3 Limitations e e e e 62

4 Regions 65
4.1 Introduction to Region-based Memory Management 66
4.2 The Capability Calculus 68
4.2.1 Operational Semantics oo 68

4.22 Typeso e e e 70

423 Store Types o o o e e e e e 72

4.24 Expression Typingo 76

4.2.5 Non-linear Capabilities. o o Lo o 79

4.2.6 Run-time Values and Store Typing 83

4.3 Properties of the Capability Calculus 87
4.3.1 Type Soundness« . . .ot e e e e e 87

4.3.2 Complete Collection e 88

4.4 Examples e 88
4.5 DISCuSSION e e e e e e e e e e e e e 90
4.5.1 Aggregate Data Structures L. 92

4.5.2 Related Work e 93

5 Summary and Directions for Future Research 96
5.1 Other Memory Management Strategies 97
5.2 Towards More Expressive Safety Policies, 98
5.3 Conclusions e e e e e e e e 99

A Alias Type Soundness & Garbage Collection Properties 100
B Capability Calculus Type Soundness & Garbage Collection Properties 113
Bibliography 129

viii

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

A Linear Language: Syntax o i e e 9
A Linear Language: Operational Semantics 11
A Linear Language: Static Semantics 13
A Linear Language: Copy & Free 18
A Linear CPS Language: Syntax oo, 24
A Linear CPS Language: Operational Semantics 25
A Linear CPS Language: Static Semantics, Expressions 26
A Linear CPS Language: Static Semantics, expressions Cont. 27
A Linear CPS Language: Static Semantics, Values 27
Alias Types: Syntax, Kinds & Constructors 38
Alias Types: Well-formedness, Locations & Store Types 39
Alias Types: Well-formedness, Types oo .. 40
Alias Types: Syntax, Expressions 41
Alias Types: Static Semantics, Values 42
Alias Types: Static Semantics, Instructions 43
Alias Types: Static Semantics, Coercions 47
Alias Types: Syntax, Stores & Programs 48
Alias Types: Static Semantics, Storable Values 49
Alias Types: Operational Semantics, Programs 51
Alias Types: Operational Semantics, Coercions 52
Alias Types: Optimized Append 54
Deutsch-Schorr-Waite Tree Traversal 59
Deutsch-Schorr-Waite Tree Traversal, Cont. 60
Capabilities: Syntax oL e 69
Capabilities: Operational Semantics 71
Capabilities: Static Semantics, Context Formation 72
Capabilities: Static Semantics, Type Formation 73
Capabilities: Static Semantics, Memory Types 74
Capabilities: Static Semantics, Linear Capability Equality 75
Capabilities: Static Semantics, Non-linear Capability Equality 79
Capabilities: Static Semantics, Subcapability Relation 82
Capabilities: Static Semantics, Heap and Word Values 84
Capabilities: Static Semantics, Declarations 85
Capabilities: Static Semantics, Expressions 86
Capabilities: Static Semantics, Memory 86
Capabilities: Static Semantics, Run-time Values. 87

ix

4.14 The Function count

4.15 Count with Efficient Memory Usage

Chapter 1

Introduction

Come, my friends,
"Tis not too late to seek a newer world.
Push off, and sitting well in order smite
The sounding furrows; for my purpose holds
To sail beyond the sunset, and the baths
Of all the western stars, until I die.
It may be that the gulfs will wash us down;
It may be we shall touch the Happy Isles,
And see the great Achilles, whom we knew.
Though much is taken, much abides; and though
We are not now that strength which in old days
Movwed earth and heaven, that which we are, we are -
One equal temper of heroic hearts,
Made weak by time and fate, but strong in will
To strive, to seek, to find, and not to yield.

— Alfred Lord Tennyson. Ulysses.

This thesis sets out to discover new principles for constructing sound and flexible type
systems for controlling computer resources. In particular, it explains how to manage memory
resources safely. I will demonstrate that it is possible to grant programs explicit control over
the allocation, use, reuse and deallocation of data structures, but automatically verify that
these operations do not cause errors. This technology makes it possible for programmers to
write space-efficient code while retaining the ability to reason and prove properties about the
behaviour of their programs. In other words, I provide a foundation for the construction of
secure and reliable software systems in an environment with limited resources.

1.1 Motivation

They were careless people [...] they smashed up things and creatures and then re-
treated back into their money or their vast carelessness, or whatever it was that kept
them together, and let other people clean up the mess that they had made.

— F. Scott Fitzgerald. The Great Gatsby.

On September 23, 1999, NASA’s Mars Climate Orbiter [NAS99a] fired its main engine before
passing behind the red planet. NASA has received no further signals from the spacecraft; a
three hundred and twenty-seven million dollar project was lost and has never been recovered.
An independent board investigated this scientific disaster to determine the cause of the loss.
One of the principal findings was that “the process to verify and validate certain engineering
requirements and technical interfaces between some project groups, and between the project
and its prime mission contractor, was inadequate.” [NAS99b] When question about the incident,
Dr. Edward Weiler, NASA’s Associate Administrator for Space Science, explained.

People sometimes make errors. The problem here was not the error, it was the
failure of NASA’s systems engineering, and the checks and balances in our processes
to detect the error. That’s why we lost the spacecraft.

People cannot develop complex systems, such as the Mars Orbiter, without making mistakes.
However, as Dr. Weiler suggests, errors can be detected, contained, and repaired if a sufficiently
rich system of checks and balances are applied pervasively. Large-scale software systems are
amongst the most complex human-conceived systems, and therefore, perhaps more than other
sort of system, they can benefit from consistent use of redundant checking.

The root technical problem that befell the Mars Orbiter was a confusion between English
units and metric units in ground-based navigation software. In essence, a failure to properly
identify and process these two different types of data, the type of English unit calculations
and the type of metric unit calculations, lead to a serious misunderstanding of the spacecraft’s
trajectory and the subsequent loss of communication and control.

Types arise naturally in every environment, not just multi-million dollar space programs.
In the supermarket, food may be classified as fruit, bread, frozen, or canned. In mathematics,
sets may be classified as sets of real numbers, sets of continuous functions, or sets of other sets.
In computer programs, data may be classified as integers, characters, functions, or arrays. In
many cases, failing to manipulate objects properly according to their type leads to irreparable
system damage. For example, putting frozen items in the bread aisle causes food to thaw and
spoil. Adding metric units to English units causes space ships to crash.

1.1.1 Type Systems

A type system is a collection of syntactic rules that specifies and constrains program behaviours.
A type checker verifies that a program obeys the rules of the type system. In other words, it
ensures that types have been correctly and consistently assigned to all parts of a program.
This consistency checking makes type checkers extremely effective software engineering tools.
Unlike full formal program verification, type checkers do not guarantee that programs com-
pute correctly on all inputs. However, type checkers have the enormous practical advantage
over verification tools because they can quickly and automatically check large programs for
inconsistencies. In practice, by running a type checker over new software, a programmer can
automatically detect a wide class of errors that commonly cause software systems to fail. For
instance, a type checker can easily detect and reject a program that attempts to combine one
object of type EnglishUnits with another object of type MetricUnits without first using a
conversion function of type EnglishUnits — MetricUnits to mitigate the mismatch.

Type systems not only provide mechanical consistency checking, but also reasoning prin-
ciples that programmers can use to understand their programs. For example, a type system
can guarantee that program behaviour is independent of the representation of an abstract

type [Rey83]. This representation independence principle makes it possible to program modu-
larly: A programmer can exchange one implementation of an abstraction for a more efficient
one, assured that client modules cannot discern the difference and need not be changed. Types
also provide structure that can simplify the process of proving properties of computations. In
fact, simply by inspecting the type of a function, it is often possible to deduce many of its
computational properties [Wad89]. Types also make it easy to construct logical relations that
can be used to show deep properties of typed lambda calculi including termination [Sta85],
information-flow [HR98] and countless others. Given the myriad of possibilities for program-
ming with types, it is no wonder that the theory, design and implementation of type systems
has been one of the most active fields of study in programming language research over the last
forty years.

1.1.2 Types in Compilation

Relatively recently, a number of research groups recognized that it was both feasible and ben-
eficial to propagate types present in source language programs into compiler intermediate lan-
guages [PJHHT93, TMC*96, MTC*96, LY96, SA95, DMTW97]. This idea gave rise to the
notion of type-directed and type-preserving compilers. At each stage in the compilation pro-
cess, a type-directed compiler has the option of using typing information to guide program
transformations or optimizations. Of course, in order to make these transformations possible,
a compiler must also be type-preserving; it must maintain typing information correctly for the
stages that follow.

The same principles that allow programmers to reason soundly about well-typed source pro-
grams allow compiler-writers to reason about intermediate language programs: Types express
invariants about program structure and a sound type system cuts down the number of con-
texts in which a program component can be executed. Compiler writers use these principles to
guide program transformations and optimizations. For example, the Glasgow Haskell Compiler
(GHC) uses typing information in its intermediate languages to direct optimizations including
inlining and thunk-update avoidance among many others [TWM95, WP99]. The TIL com-
piler for Standard ML uses a typed intermediate language that makes it possible to construct
and analyze typing information at run time as well as compile time [HM95, TMC*96]. This
technology makes it possible to implement tag-free garbage collection, even in the presence of
polymorphism, when accurate type information is not available at compile time. The FLINT
compiler [SA95] has used types to direct sophisticated boxing and unboxing tranformations and
the CHURCH project [DMTW97] has investigated how to use types to choose between closure
representations.

Types also increase the reliability of compiled code. Many type-preserving compilers use an
internal type checker to verify the consistency of intermediate language representations. Just
as type checking source code can help detect programmer errors, type checking intermediate
code can help detect bugs in a compiler. If a program type checks before but not after being
run through a new optimization phase, then there must be an error in the compiler, provided
the type checker is implemented correctly. In any event, this sort of redundant checking can
certainly help to make compilers more robust.

An intermediate language type checker can also be used as a building block in a platform for
secure mobile code—an idea that has been wildly successful for the Java virtual machine [LY96].
In this setting, Java programs are compiled into Java virtual machine language (JVML) applets
in such a way that typing information is preserved. Before executing an untrusted JVML applet,
a type checker ensures that the code is well-typed. Assuming the JVML type system is sound

and the JVML compiler and run-time system have been implemented correctly, any well-typed
program will be safe to execute.

Typed assembly language (TAL) [MWCG98, MWCG99] and several other systems of proof-
carrying code (PCC) [Nec97, NL98, Koz98] take this paradigm one step further by propagating
typing information all the way through the compiler, beyond the level of traditional typed in-
termediate languages, and into executable binaries. More specifically, Cornell’s typed assembly
language project uses typing annotations to verify the safety of programs written for the Intel
TA32 architecture. Necula and Lee have also built a compiler that targets the Intel IA32. They
embed typing rules in a first-order logic and type-checking is implemented by checking a first-
order logic proof. The principal advantage of this research is that it is now possible to exploit
the benefits of types in all aspects of the implementation of modern programming languages.

1.1.3 Tracing Garbage Collection

Type-safe modern programming languages do not normally allow programmers to manage their
own memory resources. Instead, they provide a run-time system that automatically reclaims
memory using tracing garbage collection [Wil92]. In most circumstances, programming is diffi-
cult enough; there is no need to complicate the job by requiring the programmer to take care of
the details of when, where and how to reuse memory resources. A correct tracing garbage col-
lector can guarantee that all memory is eventually reclaimed (provided the program terminates)
and it will never make the mistake of collecting memory too early.

Unfortunately, garbage collection incurs a significant computational cost. For example,
in a study of Standard ML programs, Tarditi and Diwan found that storage management
occupied anywhere from 19% to 46% of total execution time [TD96]. Some programs can afford
to pay this cost, but for others, memory management can be a performance bottleneck. In
the latter case, programmers need access to alternative memory management techniques. For
example, the Ensemble distributed group communication system [Hay00] is written mostly in
ML and therefore the primary memory management mechanism is a garbage collector. However,
the implementers found that garbage collection was not the right technique for processing
the large buffers used to store messages. After trying several custom memory management
techniques, they finally found that a reference-counting scheme worked best. In the end, the
cost of processing messages improved by a factor of 10 or more in some cases. Of course, in
order to code this part of the system, they had to step outside the safety provided by ML and
work in C.

Even when resources are not quite so scarce, the cost of garbage collection is significant
enough to inspire many compiler writers to implement a vast array of optimizations to reduce
allocation, reuse space, and consequently improve locality and speed up processing time. Un-
fortunately, the vast majority of these optimizations are studied in the context of an untyped
compiler intermediate language. Consequently, in general, language implementations that pro-
duce fast code have not been able to take advantage of the reasoning principles, consistency
checking, or security guarantees afforded by compiling with types.

Semantically, standard tracing garbage collection is also undesirable because it is a meta-
linguistic operation. Garbage collection normally occurs “under the covers,” outside standard
semantic models of programming languages. Although some language definitions require certain
space properties of their implementation, including efficient tail-call implementation [KCR98],
in general, they make no requirements of the garbage collector [KCR98, MTHM97, LY96).
Consequently, it is often difficult to reason either formally or informally about the time and
space behaviour of programs that rely on garbage collectors to recycle memory resources. A

particularly acute example of this problem occurred when Eva Tardos, teaching a group of
Cornell undergraduates introductory complexity analysis, asked them to program quicksort in
Java. Instead of seeing the predicted n * log(n) curve for the algorithm, the students saw
an n? curve due to excessive time spent in garbage collection.! Although, in this case, the
difficulties could be attributed to a particularly poor garbage collection implementation, the
problem remains that the cost of storage management is often ill-specified, and in practice, the
space and time requirements of garbage-collected programs are difficult to estimate.

There are some theoretical and practical solutions to these problems. On the theoretical
side, there has been recent research in space-profiling semantics [BG96, Min99], which can be
used to prove memory consumption properties of ideal implementations. On the practical side,
real-time garbage collectors [Bak78, BC99] (collectors with provable time and space properties)
reduce pauses in execution time and can make space usage more predictable. However, both the
theoretical models and the practical implementations normally assume that reachability defines
garbage. In other words, an object is garbage if and only if there is no reference to it remaining in
the program. Reachability is one approzimation of garbage, but, as demonstrated by Morrisett,
Felleisen and Harper [MH97], it is not the only one, nor is it necessarily always the best one.
Morrisett et al. define garbage semantically as any heap-allocated object that influences the
current computation. In the light of this definition, it is clear that many reachable objects may
be garbage. Hence we should consider alternatives to standard trace-based collection.

Ideally, programmers should be able to select from a variety of memory management strate-
gies. In the normal case, they will use standard garbage collection because it is hassle-free.
However, when resources become scarce or it is necessary to reason carefully about program per-
formance, programmers should have the option to use their choice of custom-tuned, application-
specific memory management techniques. Moreover, in the best of all worlds, programmers (and
compiler writers) should retain all the benefits of programming and compiling with types.

1.2 Typed Memory Management
Why don’t type-safe languages allow explicit memory management?

Most type systems rely on the Type Preservation property to establish type safety [WF94].
In order to prove this property, we first define an abstract machine that runs programs in
the language. We also define typing rules for the abstract machine states, derived from the
typing rules for the programming language itself. Given this collection of typing rules, Type
Preservation states that if a program or abstract machine state is well-typed then after one step
in the computation the machine state will again be well-typed. A second property, Progress,
guarantees that no well-typed program or abstract machine state will violate the safety policy
on its next step. Together these two properties are sufficient to show that no well-typed program
will violate the safety policy on any step of its computation. There are other techniques for
establishing the type soundness of programs, but experience has shown that in many cases, this
Preservation and Progress approach is the simplest.

Since Preservation insists that well-typed programs step to well-typed programs, the sim-
plest way to achieve type safety is to insist that type structure change as little as possible
from one step to the next. If we apply this idea to a language with heap allocation, we should

!The garbage collector was performing collections at fixed intervals. Therefore, an algorithm with expected
n * log(n) running time would perform on the order of n * log(n) collections. Each collection involved scanning
the live data, which included an array of size n. Therefore, the estimated running time was actually n*log(n)*n,
and, in practice, it turned out to be n?. Personal communication, Greg Morrisett. March 2000.

attempt to ensure that the type of the heap, and consequently the types of all objects within
the heap, change as little as possible from one step to the next.

Principle 1 (Type Invariance) To ensure type safety, every heap-allocated object should
have one and only one type for the duration of program execution.

Violating the type-invariance principle can easily give rise to an uns and afe language. For
example, simple-minded attempts to mix polymorphism and references in ML-like languages
quickly leads to unsoundness (c.f. Tofte [Tof90]).

The type-invariance principle provides the reason that most type-safe languages do not
allow memory management operations such as explicit memory deallocation and recycling or
user-level initialization of data structures. If a heap-allocated object has only one type during
program execution then:

1. The object must have that type when it is allocated.

2. The object must continue to have that type after each evaluation step.

The first invariant implies that a user cannot allocate an object on the heap and later
initialize the fields of the object. Allocation and initialization must occur together when the
object is created. The second invariant implies that a user cannot explicitly recycle a heap-
allocated object, using it to store values with a variety of types. It also implies that explicit
deallocation is impossible, as deallocation implicitly allows memory to be later reused by a
different part of the program and possibly at different types.

1.3 Thesis Outline and Contributions

In this thesis, I will challenge the type-invariance principle. By replacing this invariant with
other memory managment invariants, I will show that it is possible to define a collection of sound
type systems that allow explicit memory management operations including separate allocation
and initialization, explicit memory reuse at different types, and memory deallocation. My
goal is to allow programmers to express a variety of memory management invariants but to
retain the software engineering, security, and reasoning principles provided by strongly typed
programming languages.

In chapter two, I will lay the foundations for my work by introducing a simple linear type
system. There is nothing particularly new in this system, but it introduces important concepts,
particularly notions of store typing and the garbage collection properties of linear types. It
serves as a point for comparison with more sophisticated type systems that I will develop later
in this thesis.

Later in chapter two, I observe that while standard linear type systems specify the program
points where data structures are deallocated, they actually give programmers little control over
memory management. I devise a second language that uses similar type structure to standard
linear languages, but gives programmers significantly more control over memory management.
In particular, programmers have explicit control over allocation and deallocation routines and
have the flexibility to reuse memory locations multiple times, so long as data structures remain
unshared.

Chapter three demonstrates how to take a significant step beyond standard linear type
systems. More precisely, I show how to allow a degree of aliasing within the context of a

sound type system and yet retain the ability to explicitly deallocate or recycle storage. The key
technical contribution of this chapter is the introduction of static capabilities that control access
to memory resources. In essence, these static capabilities add a level of indirection to the type
system that models the level of indirection present in the run-time store. The initial definition
of capabilities makes them relatively inflexible, but I resolve this problem by combining them
with other type constructors including universal and existential polymorphic types, unions
and recursive types. These type constructors interact elegantly together and provide a safe but
flexible programming model. In order to demonstrate the flexibility of the new language, I show
how to represent a number of data structures requiring aliasing in a type-safe way including
cyclic and doubly-linked lists and trees. I also sketch how certain compiler data structures
such as Pascal’s displays can be encoded in the type system. Finally, I present a couple of
space-efficient algorithms including destination-passing style algorithms [Wad85, Lar89, CO96]
and Deutsch-Schorr-Waite or “link-reversal” traversal algorithms [SW67].

In chapter four, I introduce the notion of region-based memory management. A region
is an area of memory capable of holding multiple objects. When a region is deallocated all
objects in the region are also deallocated. Type theory for region-based memory management
was originally developed by Tofte and Talpin [TT94, TT97]. On the surface, this memory
management technique appears to bear no relation to the linear typing discipline developed in
the previous chapters of this thesis. However, it turns out that it is possible to use capabilities
to describe the regions that are accessible at any given program point. Moreover, the key to
safe region deallocation is the possession of a linear capability. Still, linear capabilities are not
sufficiently powerful to encode many region-based programs. Therefore, we introduce non-linear
capabilities and a subtyping discipline that relates them to linear capabilities.

The observations made in this chapter not only illuminate an interesting theoretical connec-
tion between linear type systems and region-based memory management, but they also provide
a provably sound principle for optimization. Unlike the original Tofte-Talpin system, region
lifetimes in my language are not defined or restricted by the lexical structure of the program.
Therefore, regions can be allocated in one lexical scope and then safely deallocated in another.
This flexibility is very important in a practical region-based implementation.

One final contribution made in chapter four is a straightforward syntactic proof of soundness
using the standard Type Preservation and Progress lemmas. Previous work on region-based
type systems involved defining a monotonic operator on sets and using a greatest fixed-point
construction [TT97].

In chapter five, I present directions for continuing research. The type systems that I have
presented in this thesis are tuned to the problem of ensuring safe memory deallocation and
reuse. However, similar techniques may be used to enforce other safety policies. I discuss some
of these possibilities as well as further opportunities in the area of memory management.

Chapter 2

Foundations: Linear Types

I’'M ALWAYS GOING TO BE PUBLISHED IN CAPITALS [...] BECAUSE IT
WILL IMMEDIATELY GRAB THE READER’S ATTENTION.

— John Irving. A Prayer for Owen Meany.

DON’T PANIC!

- Douglas Adams. A Hitch-Hiker’s Guide to the Galazy.

In 1987, Girard developed linear logic [Gir87] in order to reason about computational re-
sources. In this logic, every proposition is a valuable resource. Like an original Renoir or a
carefully polished line of a Ph.D. thesis, a proposition cannot be duplicated nor can a proposi-
tion be thrown away — each one must be used exactly once. Girard’s cleverness lies in the way
he constructed the logical rules for this system. They act as a shrewd accountant, preventing
both duplication and waste.

Computer scientists were quick to recognize that Girard’s ideas had many applications in
programming languages [Laf88, Abr93, Wad90, LM92, CGR96, TWM95, WP99, TW99]. Of
particular relevance to this thesis is the fact that linear logic provides an elegant foundation for
controlling the memory resources used by programs. Object construction incurs a cost in the
form of memory resources and if these resources are not managed carefully, programs will make
inefficient use of memory. Linear type systems attempt to curb these inefficiencies by ensuring
each object is used exactly once and making it possible to recover an object’s memory after
this single use.

This chapter explores the capacity of linear types to encode memory management invari-
ants. The bulk of the chapter is review so those familiar with linear and intuitionistic type
systems, operational and particularly allocation-style semantics, and continuation-passing style
could certainly afford to skip this chapter and move on to the next. On the other hand, the
development here may be helpful even to experts as it introduces some of the notation that is
used later. It should also help to clarify the relationship between standard linear type systems
and the more advanced type systems of future chapters.

In section 2.1, I briefly review the semantics of a standard linear type system, drawing on
the exposition by Turner and Wadler [TW99] for the main technical ideas. The main goal of
the review is to introduce the reader to the notion of linear typing, which is fundamental for
understanding later results, and to provide a concrete starting point to begin our exploration
of typed memory management.

types T = bool | 1 ®Te| T — T

expressions e = x|b|if e; (e2|e3) | (e1,e2)|letz,y=e1iney
Az:T.e | erey

Figure 2.1: A Linear Language: Syntax

In section 2.2, I analyze the linear type system I have just explained and observe that
programmers still have little control over how or when memory is reused. These observations
lead me to develop a modified calculus that gives programmers significantly greater control
over memory management decisions. The modifications are not particularly deep and I do not
consider this language one of my main contributions, but it helps to bridge the gap between
linear type systems and the more advanced results in later chapters. To help facilitate the
transition to the new work, the modified language is presented in continuation-passing style.
This decision is not essential here or in the later chapters but it simplifies certain technical
difficulties.

The last section of this chapter provides further information on related work on linear type
systems.

2.1 A Linear Type System

Figure 2.1 defines the syntax of a call-by-value, linear lambda calculus with booleans (b is either
true or false), linear pairs ({e1, e2)) with type 71 ® 7» and functions (Az:7.e) with type 7 —o 7.
Throughout this thesis, I will use letters at the upper end of the alphabet (z, y, z, w, ...) to
denote term-level variables, which are drawn from a countably infinite set Var. Expressions
(and later types) that differ only in the names of bound variables are considered equivalent.
The free variables of an expression (FV(e)) are defined in the ordinary way.

The elimination forms include the if statement (if e; (e2 | e3)), an operation for extracting
both components of a pair (letz,y = e; iney) and standard function application (eje2).

2.1.1 Operational Semantics

Following Turner and Wadler’s development [TW99], T will use an allocation semantics [Lau93,
MFH95, MH97] to make the meaning of the linear lambda calculus terms precise. The defining
characteristic of an allocation semantics is the presence of a store that maps locations (memory
addresses) to values. Programs refer to stored values indirectly through locations rather than
referring to stored values directly in the program text, as in a standard substitution-based
semantics. When the same address appears twice in a program (or in a data structure) the
two occurrences are called aliases of one another and the associated stored value is said to be
shared between the two program parts.

The primary advantage of an allocation semantics is that it makes sharing explicit. The
standard operational models of the lambda calculus are too high-level to capture sharing, and
therefore it is extremely difficult to use these models to reason about memory management
properties. For example, consider a pair of pairs. In the standard, substitution-based model of
the lambda calculus, this data structure might have the following form:

10

((2,3),(2,3))

In this semantics, it is impossible to distinguish between the data structure in which the un-
derlying pairs are shared and the data structure in which the underlying pair are unshared.
In other words, does the first component of the pair occupy the same memory location as the
second component? Both pairs have the shape (2,3), so they might share, but we do not know
for sure.

In contrast, in an allocation semantics, we can easily distinguish between shared and un-
shared data structures. As stated above, the store represents the location at which each object
is allocated, and objects are referred to indirectly via these locations. Therefore to distinguish
between shared and unshared data structures, we need to determine whether locations are equal
or not. For instance, assume the pair is allocated at address x. In this case, a store that shares
the two components of = has the form:

{z = ({y,y),y— (2,3)}

whereas a store that does not share the two components of has the form:
{z = (y,2),y = (2,3),2 = (2,3)}

The first operational models of linear type systems (work by Lafont [Laf88] and some of
Abramsky’s early research) did not use an allocation semantics and, naturally, there was con-
siderable confusion as to the memory management properties that they possessed.

Formal Semantics In this chapter, locations are modelled as variables and the storable values
(sometimes called heap values) are a subset of the expressions:

storable values h == b|(z1,z2) | Az:T.€

For the sake of uniformity, all objects in the language are allocated in the store, even
“small” values, like booleans, that would not be heap-allocated in a practical space-conscious
implementation. Since all values are allocated in the store, the components of a pair, z; and
T9, are always addresses.

A store (S) is a finite partial map from variables to storable values. I use the notation
{z1 +~ hi,...,2n > hy} to denote finite partial maps. Dom(S) denotes the domain of a map;
Rng(S) denotes the codomain. The notation S\z denotes a store S’ that is undefined at z, but
is otherwise identical to S. Finally, when Dom(S) N Dom(S’) = (, the notation SS’' denotes a
new store S” such that

w, | h ifS(z)=h

() = { hoif S'(z) = h
Figure 2.2 presents the formal operational semantics, which maps programs to programs,
where a program (P) is a store paired with an expression to be evaluated. I use the notation
P —, P/ to denote a single operational step and P —7 P’ for the reflexive, transitive closure of
the single-step semantics. The presentation from of the semantics is simplified in the standard
way through the use of evaluation contexts E, which are expressions with a single hole ([]) that
can be filled by any beta-redex. These contexts fix the order of evaluation to be left-to-right and

11

evaluation ctzts E == []|if E(e1|e) | (E,e)| (z,E) | letz,y = Eine |
Ee|zE

(Sa 6) —L (Sl,el)
(S, Ele]) —1 (5", E[€'])

(LO-context)

(S,b) —1 (S{z > b},7) where z & Dom(S) (LO-bool)
(S{z > true},if (e1 | e2)) —1 (S e1) (LO-ift)
(S{z > false},if z (e1 | e2)) —1, (S, e2) (LO-iff)
(S, (z1,32)) 1, (S{z > (z1,32)},7) where z ¢ Dom(S) (LO-pair)

(S{z = (z1,22)},1et y1,y2 = vines) ——r (S, e2[z1,22/y1,72]) (LO-proj)
(S, Ay:r.e) —> 1 (S{z — Ay:7.e},x) where z & Dom(S) (LO-fun)

(S{z1 — Ay:T.e}, 1 x2) —1, (S, e[z2/y]) (LO-app)

Figure 2.2: A Linear Language: Operational Semantics

12

call-by-value. The notation X[Y1,...,Y,,/z1,...,x,] denotes the simultaneous capture-avoiding
substitution of Yi,...,Y, for z1,...,z, in X.

Whenever a program introduces a value, the run-time system allocates it in the store and
after any use, the value is immediately deallocated. For example, the pair introduction rule,
LO-pair, allocates the value (1, z2) at a fresh location z in the store. The pair elimination rule,
LO-proj, projects the two components of the pair 21 and x5, substitutes the components for the
bound variables y; and y9 in the body of the expression and removes the binding {z — (z1,z2)}
from the store. The rules for booleans and functions are similar in their use of the store.

2.1.2 Static Semantics

Since the operational semantics deallocates an object immediately after using it, the static
semantics must ensure that each object is used just once. Any attempt to use an object
multiple times will cause a program to crash due to the fact that an object is automatically
deallocated after its first use. In order to enforce the use-once condition, the linear type system
I will develop will impose the additional constraint that there is only one pointer to any object.!
In other words, it disallows aliasing. In order to see some of the potential dangers that can
arise when pointers are allowed to alias one another, consider the function pair:

pair = Az:7.(z, T)

The function makes a shallow copy of its argument and returns a pair y with the following
shape:

[<

\

Both elements of the pair are aliases of one another and if we are not careful, they could lead
to trouble. Once one pointer is used, the other will dangle. In other words, it will point to
unallocated storage and using it will cause the program to crash:

lety,z = pair(z) in
(use(y), % use the first component
use(z)) % use the dangling pointer & crash

One of the goals of linear type systems is to rule out these sources of failure. A second goal
of the linear type system is to prevent the creation of garbage. Under certain circumstances,
the discard function is guilty of the second sin:

discard = Az:T.true

If the only pointer to z is passed to the discard function then z will be unreachable after
the function call. In order to recycle z, we would have to rely on meta-linguistic support
mechanisms such as a tracing garbage collector to do it for us. Linear type systems make it
unnecessary to rely on this external support by rejecting such programs at compile time.

!Notice the distinction between the number of uses of an object and the number of pointers to an object.
Even if an object can only be used once, it may still be safe to allow multiple pointers to the object. However,
this is not the case in the linear type system we are studying here.

13

- L_
Tk x T (L-var)

-k b:bool (L=bool)

I'ikFrei:bool Tobpes:m Tobpesz:T

L-if
I',Tobp if g (62‘63):’7' ()

Pll—LeliTl FQ}—LengQ
', Tk (er,e2) : 1 @72

(L-pair)

IhWhFrer:mm®m Do,z yimo b e T3

I',FoFr letz,y =ejinep : 73 (z,y & Dom(T'2)) (L-proj)

e bFre:m

Chp Azimie:m —o 7 (z & Dom(T)) (L-fun)

P1|—L61:7'1—0T2 P2|—L€217'1

L-a
I',Tobreex:m (L-2pp)

I',z9:mo,z1:m, o bFpe: 7

L-exchange
Pl,.’ElZTl,.’I)QZTQ,PQ }—LGZT (&)

Figure 2.3: A Linear Language: Static Semantics

14

The standard linear type system is remarkably simple and yet it is able to prevent both the
dangerous pair function and the wasteful discard. The main judgement in the system has
the form I' k7, e : 7. This judgement states that in the context I', expression e is well-formed
and has type 7. The context I' is either empty (-) or it is a list of variable-type bindings:
(z1:71,...,Tp:Ty). The notation Dom(T") denotes the set of first-components of the bindings in
r.2

The typing rules for the language appear in Figure 2.3. These rules are designed to maintain
strict control over the context I' and through this mechanism ensure that every object is used
exactly once. For example, in the typing rule for variables, L-var, the type system requires
that the context I' contain exactly one binding, the binding for the variable expression itself.
The rule for booleans, L-bool, requires there be no bindings in the context at all. If either of
these rules allowed the context to contain multiple variable bindings where one (in the case of
L-var) or zero (in the case of L-bool) bindings are actually used then some bindings would go
unused and the program would create garbage.

For more complex expressions that contain several subexpressions, the context is split into
a number of disjoint parts that are used to check each subexpression separately. The notation
I'1,T9 on the right-hand side of a turnstyle indicates a nondeterministic split of the context.
For example, examine the rule L-pair for linear pairs. It splits the context into two parts, I'y
and I'9, and each part is used separately to check the two subexpressions e; and es. Here is a

sample derivation:
(L-var) (L-var)

T :
T X :IT1 (L—pair)

Yo Ly i T
Yo, bp (Y,) t o @ Ty

ZiT1,Y'T2 Fr <ya .’L') 1T ® T

(L-exchange)

In the first line of this derivation, I use L-exchange to reorder the elements in the context. In
many derivations, L-exchange will have to be used many times to sort the context. Fortunately,
however, there is no cost to reordering typing assumptions. For this reason, in future type
systems, I will omit the exchange rule and implicitly treat contexts that differ only in the
ordering of their elements as equivalent.

In terms of the role of the context, the rules L-proj and L-app are quite similar to L-pair.
The rule L-if splits the context into two parts, I'y and I's. The second part is used to check
both e; and e3. Since only one of the two branches of an if statement are ever executed, it is
safe to use I's to check both. As usual, the rule for functions, L-fun, appends a single copy of
the binding z:7 to the context.

Examples of programs that do not type check are often more instructive than those that
do. In this case, we can try to use the linear typing rules to verify the pair function:

sripair) Tp g, (Wrong)
(L-pair)
zThp(z,2):TQT
(L-fun)
chFpAzTz,) T —TQ®T
o7 Wone) oo gy (Lrvar)
oThp(z,2):TQT (L-pair)
IR A (L-fun)

‘ATz,) i T —TQ®T

Later, I will treat T" as a finite partial map and implicitly assume these maps are equivalent up to reordering
of their elements. However, for development of the semantics of the linear type system, I prefer to introduce the
structural rules for the context explicitly.

15

We quickly discover that there is no way to divide up the context in the (L-pair) rule to check
both occurrences of the variable z. Difficulties also arise when attempting to check the discard
function. This time, however, rather than having too few bindings in the context, we have too
many bindings and we are unable to apply the (L-bool) rule:

(Wrong)

z:7 b, true : bool (L-fun)

- Az:T.true : T —o bool

2.1.3 Store and Program Typing

The store typing rules capture memory management invariants that must be preserved by each
step of a computation. In the case of a linear type system, the central invariant is that there
must be no aliasing. This invariant is expressed in a judgement with the form 7 S : I'. The
two rules for store typing follow.

—— (L-store-empt
T (pty)

l_LS:Pl,PQ Fl |—Lh:7'
Fr S{z— h}:To,z:7

(z &€ Dom(S)) (L-store)

The first rule states that the empty store is well formed and can be described by the empty
context. The second rule is reminiscent of expression typing rules, such as L-pair, that split the
context into disjoint parts to verify separate subexpressions. Here, if a store S can be described
by the context I';, 'y then the first subcontext (I';) is to be used in verifying the next value in
the store (h) and the result is described by (I'e, z:7). Unlike the store typing rules we will see
later, these rules build up a store typing inductively. These rules, together with the expression
typing rules (used to check I'y 7, h : 7) guarantee that it is impossible to create sharing or
cycles in the store.

In order for a whole program P = (S, e) to be well-formed, all of the store locations must
be used during the execution of e. In order for the environment (the operating system that
runs the program, for instance) to interpret the final result of the computation properly, I also
require that the result inhabit a distinguished answer type and for simplicity, the answer type
will be bool.? Hence, to type closed programs, we use the rule

Fr, S:T" T'bpe: bool (L-prog)
l_L(Sae) prog

2.1.4 Properties of the Type System

As described in the introduction, the simplest way to prove several significant memory man-
agement properties of the linear type system is to adapt the syntactic proof techniques pop-
ularized by Wright and Felleisen [WF94]. I will not plod through all the details such proofs
here as similar results have been proven elsewhere in the literature already (see Turner and
Wadler [TW99]). I will give the central definitions and lemmas as the same concepts reappear
in the more challenging work later in this thesis.

Type Soundness, which informally states that well-formed programs “won’t go wrong,” is
the first important property to prove. To “go wrong” means to step to one of the bad or stuck
programs that is not a terminal state, but for which no operational rule applies:

3This restriction is inessential, but it makes some of the definitions below and analogous ones in the next
chapter slightly more elegant.

16

Definition 2 (Linear Stuck Program) A program P is stuck if it does not satisfy either of
the two following constraints:

1. There ezists a P' such that P — 1, P'.

2. P is a well-formed terminal program: P = (S,z) and S(z) = b.

For example, ({z + true,z’ — false},z z') is stuck because it is not a terminal program and
the only operational rule that might apply is the application rule LO-app, but LO-app requires
that location z hold a closure, which it does not.

Having defined the stuck programs, type soundness can be summarized by saying that
well-formed programs do not evaluate to stuck programs:

Proposition 3 (Linear Type Soundness) If 1, P and P —} P’ then P! is not stuck.

Type Soundness may be proven by induction on the length of the reduction sequence P —7% P'.
The proof relies directly on two lemmas, Progress, which states that well-formed programs
are not stuck, and Subject Reduction, which states that well-formed programs only reduce to
well-formed programs.

Lemma 4 (Linear Progress) If -y P then P is not stuck.
Lemma 5 (Linear Subject Reduction) IfFp P and P — P’ then b P'.

Type Soundness, as I have defined it, captures half the memory management properties of
the linear type system. It implies that the run-time system does not deallocate objects too
early since for any evaluation context F,

* (S, E[zy])
e (S,E[letz,y = zine|)
o (S,E[if z (e1 | €2)])

are all stuck when z ¢ Dom/(S). However, since the definition of stuck programs is rather weak,
the proposition says nothing about the linear type system’s capacity to rule out the creation of
garbage.

A common definition of garbage is based on the idea of reachability. As illustrated by
Morrisett, Felleisen and Harper [MFH95], reachability is not the only definition of garbage. In
general, it is only one approximation of a more semantic notion of garbage. I use it here as it
characterizes the garbage collection capabilities of the linear type system effectively yet nicely
contrasts those of the type systems to come.

Definition 6 (Reachability)

Reachable(S,e) = Reachable(S,FV(e))
Reachable(S, X) = X U|J,cx Reachable(S,S(z))

Definition 7 (Reachability-Based Garbage) A binding {z +— h} is garbage with respect to
a program (S{z — h},e), if x & Reachable(S{z — h},e)

17

We can easily prove that well-formed linear programs create no reachability-based garbage,
a property I call complete collection:

Proposition 8 (Linear Complete Collection) If -7, P and P —7} P’ then P’ contains no
reachability-based garbage.

The proof follows from Subject Reduction and the fact that well-formed programs contain
no reachability-based garbage:

Lemma 9 Iftp P then P contains no reachability-based garbage.

2.1.5 Intuitionistic Types

As always, the rules that are left out of a type system play at least as large a role as the rules
that have been put in. In this case, two rules, in particular, have been intentionally omitted:

e -
Dxrorbhre: T
!

L
Lhre:r . (I-weakening)

(I-contraction) P E—
L, LT e T

Lxrkre:r

An intuitionistic type system for the simply-typed lambda calculus can be formulated with
I-contraction and I-weakening and the same rules for variables, booleans, pairs and func-
tions as in the linear type system. In order to avoid confusion between intuitionistic and linear
systems, [will prefix rule names with I rather than L, as in I-var, I-bool, etc. when work-
ing in the intuitionistic setting. I use the standard arrow (—) and product (x) symbols for
intuitionistic function and pair types. In this new type system, it possible to type the pair
function. The I-contraction rule makes all the difference:

oThrx:T (I-var)
o, b (T, z) T X T

(I-pair)

(I-contraction)

Tk (z,z) T XT (T-fun)

ki A z,z) T T X T

Similarly, I-weakening makes it possible to type discard:

(I-bool)
(I-weakening)
(I-fun)

- b1 true : bool
z:7 1 true : bool
-1 Azt true : T — bool

The intuitionistic type system, being more lenient than the linear type system, does not
provide the same memory management properties. Data structures can clearly be used multiple
times, leading to aliasing that is not tracked in the type system. Hence, it is unsafe to deallocate
intuitionistic data structures and, in general, a garbage collector must run in the background
to recycle memory.

On the other hand, the fact that an intuitionistic type system accepts programs such as
pair and discard suggests that type-safe languages with implicit garbage collection may be
more expressive than type-safe languages that explicitly manage memory. Indeed, the linear
language described so far is unable to encode these programs. However, the linear language is
easily extended with primitives that express the computational content of the contraction and
weakening rules:

18

reduction ctrts E == ---|letz,y = deepcopy(E)iney | deepfree(E);es

(S1{z1 — h1},1letyi,y2 = deepcopy(z1) ine) —p, (LO-dcopy)
(S1{z1 = h1}S2{z2 — ho}, elz1,z2/y1,y2])
where (S2, 29, he) = copy(S1, hi,Var — (Dom(S1) U {z1}))

(S{z — h},deepfree(z);e2) — 1, (S, e2) (LO-dfree)
where S” = free(S{z — h},z,h)

copy(S,h, L) = (S}--- S {z} — hl,...,z}, — hl}, 2’ h')

n

where z1,...,z, = FV(h)
Lq,...,L, = a partition of L, each L; countably infinite
(Si,zi,hl) = copy(S,S(z;),L;) for1<i<n
! € L—Uei, nDom(S;)U{zi}
n = hlzl,...,z) /21, .., Ty
free(So, xz, h) = Spt1
where z1,...,z, = FV(h)
S; = free(Si—1,%;, So(z;)) for 1 <i<mn
Sn+1 = Sn\m

F1 |_L €1 : 71 Fg,:c:n,y:ﬁ |_L €o I T2

D r L-d
I'1,y kg let z,y = deepcopy(e;) iney : 7y (z,y & Dom(T2)) (L-dcopy)

Fl |—L61 . T1 P2|—L€2:7'2
I'1,Ty 1, deepfree(e;);es : 1

(L-dfree)

Figure 2.4: A Linear Language: Copy & Free

expressions e = ---|letx,y = deepcopy(ei)iney | deepfree(e;);es

The deepcopy primitive implements the contraction rule by making a complete copy of its
argument. No parts of the copy are shared with the original and both are used in the rest of the
program. The deepfree primitive implements the weakening rule. It deallocates its argument
and all of its substructures.

Figure 2.4 presents the extended operational and static semantics for the linear language
with deepcopy and deepfree. The operational rule for deep copies, LO-dcopy, duplicates the
subtree rooted at its argument location z. It depends on the auxiliary function copy, which is
careful to select fresh addresses for the new tree that do not appear elsewhere in the store. The
deep free rule, LO-dfree, deletes the subtree rooted at the location z; it relies on the auxiliary
function free to do most of the work. In the static sematics, the copy rule consumes the context
I'y when checking e; and then adds bindings for z and y to I'o when verifying es. The rule

19

L-dfree uses the entire context I' to check the single subexpression e.

Given a type-safe intuitionistic program, it is always possible to construct an equivalent
type-safe linear program. Whenever the intuitionistic type system uses I-contraction, it can
be replaced with the L-dcopy rule. Likewise, I-weakening can be replaced by L-dfree. For
example it is possible to define and verify a 1inear-pair function:

- - - L_
yThpy:T (L-var) zThpz: T (va?)
L) T ® (L-pair)
T, 2T L2V ITQT
Y LY (L-dcopy)

x:T Fp lety,z = deepcopy(z) in(y,2) : T QT

L-f
-k Az:t.lety,z = deepcopy(z) in(y,2) : T —< T QT (L-fun)

as well as a 1linear-discard function:

(L-var)

(L-bool)
(L-free)
(L-fun)

T T - 1, true : bool

x:7 b1, deepfree(x); true : bool

- b1 Az:7.deepfree(x);true : T — bool

Hence, it is possible to construct a linear language with the same expressive power as the in-
tuitionistic language. Nevertheless, because linear types disallow sharing, linear programs have
the potential to use exponentially more space than the corresponding intuitionistic program.

2.2 Controlling Space Reuse

The linear type system described in the previous section has the attractive feature that all
memory management is achieved without the need for a tracing garbage collector. However, a
programmer or compiler still has almost no control over when and how memory management is
performed. As soon as the components of a pair are projected, the linear run-time system takes
over and deallocates the heap binding associated with that pair. A programmer cannot make
decisions on how to reuse the memory for this pair. If space reuse operations were explicit and
under control of the application then a number of program optimizations, such as loop-invariant
removal, common subexpression elimination, and cancelling pairs of inverse operations, would
be possible.

For example, assume we want to write a simple swap function that inverts the order of the
elements of a pair:

Az:bool ® bool.lety,z = zin(z,y)

Operationally, this function projects y and z from the pair z, deallocates z (which in practice
would involve invoking memory manager routines that update the global data structures that
keep track of free data), allocates another pair (invoking other memory management routines)
and finally writes the results z and y into the two components of the freshly allocated pair.
This is a lot of work for a simple function; our application would clearly be more efficient
if the middle two steps were simply omitted. More reasonable code eschews the middle two
operations and uses the component-wise projections let y = x.7 in e and imperative component
assignments z..:=y:

20

Az:bool ® bool.
lety =z.1in
letz =x.21in

z.l:=2z;
T.2:=y;
T

Intuitively, this code is still be safe since it does not introduce aliasing, nor does it discard
memory without recycling it. Moreover, it appears impossible to reconcile the five uses of x
with a linear typing disciple. Nevertheless, in this section, I will show how to reorganize the
linear type system in a simple way to make it possible to prove the safety of the code above.

2.2.1 Explicit Allocation, Initialization and Reuse

The first step towards our goal is to introduce a new type junk for unuseable objects. Using
the junk type, we can remove the privileges for a data structure one at a time, instead of all
at once, as we did in the previous section. Now, rather than using the pair-wise projection
function letz,y = e; ines, one may project one component at a time using the expression
let z, 2 = ej.iiney, which binds z to the i** component of the pair e; and binds z to the pair
itself. The typing rule for the component-wise projection gives the i component the type junk
to prevent that component from being used again in the future. Once all components of a pair
have been projected, the memory structure may be deallocated using a free operation free.
Unlike its cousin deepfree, free deletes only the top-level memory cell; it does not recursively
delete all subcomponents.

For example, to implement the pair-wise projection exactly, using the new operations, one
might write

let 2 =e in % 2m®m

letzi,x =2p.1 in % zijunk @ T, 27y
letz9,y =21.2 in % zojunk Q junk,z:T1,Yy:To
free(zs);

€2

At each step in the computation, some of the privileges of the pair are removed. However,
the code is compatible with the type linear type system defined earlier. There is no need for
contraction or weakening rules as each variable is used exactly once. Formally, the typing rules
for these operations are straightfoward to define:

Tibrer:m®m Do, zijunk @ m,x:mi brea: 7 [2,2 & Dom(Ty)
I'o,I'1Fp letz,x =e;.liney : 7 T # junk

Cibrer:m®@m Doyzim Qgunk,zmobrex: 7 (2,z & Dom(Ds)
Iy, Ty b letz,z = €1.2iney : 7 Ty # junk

'y Frei:junk @ junk Tobpes:7

[y, T bk free(er);es = 7

21

As in many other rules of the linear type system, the context is split into two disjoint parts
and each part is used separately to check expressions e; and e;. As a matter of convenience, 1
disallow projection of the junk value. If one of the components of a tuple is junk, it is perfectly
safe to project that value, move it around and store it in another data structure, so this rule
could be relaxed. However, none of these operations are particularly useful. On the other
hand, the rule for free requires the two components of the pair to be junk and this restriction
is essential. If the two components could be any type, say pairs themselves, then because the
free operation is shallow, the component data structures would become unreachable and could
not be collected.

For the next step in the development of our language, observe how the first projection rule
specializes when e; is a simple variable (z):

(LO-var)

2T @To b z:T ® Ty Ty, 2 junk @ To, i1 Freg: T

[y, 2211 @b letz o =zliney : 7
) 7

Now, since the variable z is consumed when checking the pair, it cannot later appear free
in ey. Therefore, instead of binding a new name 2z’ for the pair resulting from the projection
operation, we could reuse the name z as in the following example:

LO- .
2T Q@TobrL z: 7T QT (LO-var) Do, 2" :junk @ 7o, z:m Freg i 7

o,z ® T b letz,x = z.1iney : 7

In fact, if we consistently use the convention that we only project off variables and we
always use the same variable name after the projection, the syntax for projection simplifies to
letz = z.iine. Moreover, since the LO-var rule always discharges the assumption on z, the
typing rules for projections simplify as follows.

T, z:junk @ To,z:m Fpe: T z & Dom(T') U {z}
Iz ®mbrletz =zline: T T1 # junk

D,zom1 @ junk,z:mo b e 7 z & Dom(T') U {z}
Iz @by letz =221ine: 7 Ty # junk

By restricting free to operation on a variable, its typing rule can also be rephrased.

T |_L €y I T
T, z:junk @ junk b free(z);es : 7

Using a similar development, we can also decompose the rule for pair introduction into
the more primitive expressions let z = new() ine, which allocates a pair and binds the result
to z in e and z.i:=y;e, which assigns y to the i* component of z and continues with the
expression e. In order for this operation to be safe, I require that the destination component of
the assignment contain junk beforehand. If the component contained a proper data structure,
then assignment would make that data structure unreachable garbage. The following typing
rules specify the static semantics of new and assignment.

I'z:junk @ junk Fre: 7

'ty letz =new() ine: 7 (z & Dom(T))

22

Iem®mnbre:r
U, z:junk @ mo,y:m1 b z.li=y;e: 7T

Iem®mnbre:r
I',z:m @ junk,y:mo Fp x.2:=y;e: T

Suddenly, although the essential structure of the type system has changed little, we have
exposed the operations for data construction and deconstruction, and have given our high-
level, functional language a much lower-level, imperative feel. Furthermore, programmers have
considerably more control over space reuse than in the high-level language. It is now easy to
write the swap function mentioned earlier in an efficient imperative style:

AL:T1 ® To.
lety=z.1in % z:junk @ mo,y:7
letz=2x.2in % z:junk Q junk,y:m,2:7To

z.1:=2z; h T @ junk,y T
z.2:=y; h T:T@T
x

2.2.2 Continuation-Passing Style

The programming constructs developed in the previous subsection rely on the invariant that all
data structures be named using some variable. After each projection or assignment operation,
the privileges associated with a name (as summarized by a type) are modified. For instance,
after projecting the first component of a pair named z with type 71 ® 79, the privilege to use
that component again is withdrawn and z is associated with type junk ® 1o in the following
code. Hence, propagation and processing of names is a central component of this programming
style.

Some programming language constructs, particularly branching constructs, complicate the
process of threading variable names through program. At the join point (i.e. the program point
immediately after the branching construct) the variables from each branch must be unified. For
instance, consider the following if statement:

if b (
let z = new() in
lety = new() in

|
let z =new() in
let w = new() in

% use T,y or z,w

Assuming the code executed after the if statement needs to use the data structures allocated
in the if statement then there must be some way to unify the names x and y with z and w so
the following code can refer to the pairs stored there. There are several ways to accomplish this
task. For instance, expressions could be allowed to return multiple results as in the following
code:

23

let 1,29 =
if b (
let z = new() in
let y = new() in

T,y

let z = new() in
let w = new() in

zZ,w)
% use names z; and T2

A second alternative, and the one I will adopt, is to move to a continuation-passing style (CPS)
language [Fis72, Plo75]. In a CPS language, control never directly “returns” from a nested
expression. Instead, when a nested expression completes its subcomputation, it invokes another
function, called a continuation, passing the returned objects as arguments to the continuation.
In this setting, the principle advantage to using CPS over a conventional direct-style language is
that CPS is slightly simpler from a technical standpoint because all control-flow transfers occur
via one mechanism (function call) as opposed to two mechanisms (function call and return). In
a CPS language, one need only consider multiple parameters and not multiple results. In later
chapters, when I consider polymorphic languages, CPS conveys a similar advantage at the level
of types; I need only consider types as parameters to functions and need not consider them as
results. A second benefit to CPS is that it makes the space required to store local variables
across a function call explicit. The continuation’s closure captures these local variables, and,
like other closures, it is allocated when the continuation is defined and deallocated when the
continuation is invoked.
The CPS variant of the code above follows.

if bthen
let z = new() in
lety = new()in

cont(z,y)

else
let z = new() in
let w = new() in

cont(z,w)
% where cont = \(z1:71,29:72).--- (uses z1, T2)
Here cont is a continuation function taking two arguments x and y or z and w. Technically, cont
is handled like any other (multi-argument) function. At run time, the names of the arguments

(z and y, or z and w) are substituted for the formal parameters (z; and z2) as in the standard
interpretation of function call.

24

types T u= junk |bool | 71 Q7| (T1,...,7Tn) — 0

exTpressions e u= letzx=bine|if z (e1 | e2) |
let z = new() ine | free(z);e |
letz =y.dine | z.i:=y;e |

letz = A(z1:71,...,%n:7y).€1 ines | z(z1,...,2p) |
halt x

pointers p = _|=z

storable values h == b|(p1,p2) | Mx1:71,...,Tpn:Tn)-€

stores S u= {z1- h1,...,xy — hy}

programs P == (S,e)

Figure 2.5: A Linear CPS Language: Syntax

CPS Syntax Figure 2.5 summarizes the syntax of a linear CPS language with explicit space
reuse for pairs. The types include a type for junk, booleans and pairs. Function types have
the form (71,...,7,) — 0. The notation “— 0” (0 is pronounced “void”) reflects the fact that
CPS functions do not return. Most functions types have the form (71,(m2) — 0) — 0. In
other words, they take two arguments: an input that has type 7 and a continuation that has
type (12) — 0. The continuation is invoked when the corresponding direct-style function would
have returned and, consequently, may be thought of as a return address. Intuitively, 72 can be
thought of as a result type.

Most CPS expressions specify some primitive operation, such as a projection or allocation
operation, which is followed by another expression. There are only two ways to terminate a
sequence of expressions: a function call or the halt instruction. The function call is standard.
The halt instruction is used to stop program execution. Its argument may be considered the
result of the computation.

As before, we distinguish a class of storable values. The only difference is that during
evaluation, when one of the components of a pair is used, it is marked as junk. Therefore, pair
components may either be valid locations (variables) or junk (denoted using an underscore).
Stores continue to be finite maps from variables to values and programs pair a store with an
instruction stream.

CPS Operational Semantics The operational semantics for the CPS language is concep-
tually simpler than the operational semantics for the direct-style linear language. Because
the beta redex or primitive operation that will be executed next never appears nested deep
within a CPS expression, it is unnecessary to define evaluation contexts. Figure 2.6 presents
the operational semantics formally.

The interesting rules involve pair construction and destruction. In particular, unlike the
previous semantics, the projection operations (rules cps0-p1 and cps0-p2) do not automatically
deallocate the pair. Instead, when a component is projected, the projection operation marks
that component as junk. Once a component is marked, it cannot be used, unless a new object
is stored there. Of course, on a real machine, it may be undesirable to physically mark pair
components after every projection. Fortunately, the marking process is not actually needed

25

(S,letz =bine) —¢p, (S{z > b},e) where z &€ Dom(S) (cpsO-bool)

(S{z — true},if z (e1 | €2)) —cps (S,€1) (cps0-ift)
(S{z > false},if z (e | e2)) —¢ps (S, €2) (cps0-iff)
(S,letz = new()ine) —¢ps (S{z — (_,-)} €) (cpsO-new)

where z &€ Dom(S)

(S{z = (p1,p2)},lety = z.1ine) — s (cps0-p1)
(S{z — (-, p2)}, elp1/y])
(S{z — (p1,p2)},lety = z.2ine) —¢ps (cps0-p2)

(S{z = (p1,-)},elp2/y])

(S{z = (p1,p2) }, w.1:=y5€) ——eps (S{z = (y,p2)},€) (cps0-al)
(S{z = (p1,p2)}, . 2:=y;5€) —reps (S{z = (p1,9)}, €) (cps0-a2)
(${z > (_,_)}, free(z);€) —eps (S, e) (cpsO-free)
(S,1et 2 = A(Y1:T1, - . ., Yn'Tn).€1 iDe€2) —eps (cpsO-fun)

(S{z — Ay1:71,---,Yn:Tn)-€1},e2) where x & Dom(S)

(S{z = My1:71, - s YniTn) e}, T (T1, ..o, Tn)) —eps (cpsO-app)
(S,e[x1, .y Tn /YLy, Yn))

Figure 2.6: A Linear CPS Language: Operational Semantics

for safe execution of the machine and it is easy enough to prove that, on well-typed programs,
an abstract machine that does no marking simulates the semantics I have given here. The
principle utility of the marking semantics is to simplify the proof of type soundness. By replacing
pointers with junk, it becomes readily apparent that the anti-aliasing condition on the store,
as formalized in the store typing rules, is preserved after each step in execution.

CPS Static Semantics Figures 2.7 and 2.8 summarizes the static semantics of CPS expres-
sions. These rules are derived directly from the discussion in section 2.2.1. The rules for typing
values (see figure 2.9) also need little explanation as they are almost identical to the rules for the
direct-style linear lambda calculus. The program and store typing rules are actually identical
to the rules for the linear lambda calculus.

Once again, it is straightforward to prove a simple type safety result.

Proposition 10 (Linear CPS Type Soundness) If -, (S,e) and
(S,€) m—rips (S',€') then (S',¢€') is not stuck.

26

[heps e

[, z:bool ¢ €
['Feps letz =bine

(z & Dom(T)) (cps-bool)

[hepser Thepseo
T, z:bool Feps if x (€1 | €2)

(cps-if)

I, z:junk @ junk Feps e

r |_cps letz = new() ine (‘T g Dom(I‘)) (Cps—new)

T, z:m, y:junk @ 7o Feps € xz & Dom(T) U {y}
[,y:71 ® T2 beps let z = y.line T # junk

) (cps-p1)

T, 21, y:m ® junk beps € z ¢ Dom(T) U {y}
Ly:71 @ 70 beps letz = y.21ine T # junk

) (cps-p2)

Lz:mi @ o beps e

-al
L, z:junk @ 1o, y:7m1 Feps .1:=y;€ (cps-at)
yz:m @ o beps € (—a2)
L,z @ junk,y:m Feps .2:=y;5€ cpsTa
[Feps e
e (cps-free)

I, z:junk ® junk bcps free(z);e

Fl; Z2:T2,X1:T1, PQ l_cps €

cps—exchange
Fl,.Z'l:Tl,.'L'Q:TQ,PQ l_CpS € (P &)

Figure 2.7: A Linear CPS Language: Static Semantics, Expressions

27

[heps e
Iy Feps M@1:T1, .o TpiTy).e1 : (T1, ...,) — 0
Lo, z:(T1,. .., Tn) — 0 bgps €2
Dom(T cps-f
[, T2 beps let w = A(21:71,. .., TpiTy)-€1 iner (z & Dom(I'2)) (cps—fun)
TT1y ey Tn) —0 0,107,y TniTh Feps T(T1, oo, Tp) (cps-app)
(cps-halt)

z:bool -¢ps halt

Figure 2.8: A Linear CPS Language: Static Semantics, expressions Cont.

TTbeps T 1T (cps-var)

Feps - junk (cps-junk)

Phegpsv:T

“Fope b s bool (cPSTP00D)

Pl l_cps P1:T1 FQ l_cps P2 T2
I-‘171-‘2 I_cps (P1,p2) 1T QT2

(cps-pair)

Loz, T Feps €

D r -f
P |_c]1s)\(fEl:T]_,._. ,u/I»‘n:Tn)-e : (T]_a-.- ,Tn) —0 0 (1‘1’ »&n ¢ Om()) (Cps un)

Figure 2.9: A Linear CPS Language: Static Semantics, Values

28

CPS Conversion The continuation-passing style transformation was developed in the 70s by
Fischer[Fis72] and Plotkin [Plo75]. Since then, many facets of the translation (both typed and
untyped variants) have been studied in great detail [DF92, SF93, HL93, DDP99]. I have nothing
further to add on this topic at this point but the interested reader may wish to refresh his or
her memory and I highly recommend the splendid exposition by Danvy and Filinski [DF92].

2.3 Discussion

The continuation-passing style transformation is the first phase in several successful compilers
for functional programming languages including the Rabbit [Ste78], Orbit [KKR86] and Stan-
dard ML of New Jersey [AM91] compilers. CPS conversion is also the first stage in a theoretical,
type-preserving compiler that maps the polymorphic lambda calculus into a Typed Assembly
Language [MWCG99, MWCG98].

The next major step in these compilers is closure conversion. This transformation replaces
every function with a pair of a pointer to closed, top-level code and an environment for that code,
which is a tuple containing the values of the (formerly) free variables of the nested function.
After closure conversion, the problem of compiling an intermediate language is no harder than
compiling a language like C that contains first-class code pointers but no nested functions.

A closed, continuation-passing style intermediate language gives great control over mem-
ory management. Activation records (stack frames) are represented explicitly as continuation
closures and closures of all types are represented as simple memory blocks (pairs or, more gen-
erally, tuples). Hence, the techniques discussed earlier in this chapter can be used to manage
all the data structures necessitated by functions. More specifically, allocation, deallocation and
reuse of stack frames and of closures can be managed explicitly by the application program and
closures are explicit in the language. In fact, if lists were added to the language, applications
could manage all their own memory; primitives such as new and free would be unnecessary.
Every time a pair is required, it could be removed from a free list under programmer control
and whenever a pair is unneeded it could be returned to the free list, just as Baker suggests in
his article describing an (untyped) ”lively linear LISP” [Bak92].

The primary advantage of a linearly typed intermediate language that controls all its own
memory resources is that it would have a tiny trusted computing base: Only a simple interpreter,
the underlying hardware and the type checker need to be trusted, not the garbage collector.
Such a language would make an attractive choice as platform for verifying untrusted mobile
code. Alternatively, linear types could be smoothly integrated with existing research on Typed
Assembly Language [MWCG99, MCGW98] or, with a little more work, other frameworks for
machine-level proof-carrying code [Nec97, Koz98]. By verifying machine code directly, the
interpreter can be eliminated from the trusted computing base, leaving only the machine and
type checker. The complex invariants linking a garbage collector to application code would not
need to be trusted.

Despite the memory-management opportunities afforded by working in a low-level language
with explicit closures, I will continue to develop high-level languages with implicit closures. In
general, closure-converted code (particularly typed, closure-converted code) is quite complicated
and it would obscure the central technical work. When the details of closure implementation
are relevant to the discussion, I will point them out.

29

2.3.1 Related Work

The elegance, simplicity and wealth of applications of Girard’s linear logic has lead to extensive
research in the logic, programming languages and semantics communities. For a superb intro-
duction to linear logic and the relationship with intuitionistic logic, see Wadler [Wad93]. The
volume of research related to linear logic makes it impossible to mention it all, so I will restrict
myself to only the most relevant work, which involves operational interpretations of linear logic,
optimization and applications in functional programming languages

Lafont [Laf88] was one of the first to study an operational interpretation of the linear lambda
calculus in detail. He defines a linear abstract machine, which is derived from the Categorical
Abstract Machine [GC85]. The linear abstract machine is not typed itself, but it can interpret
a linear lambda calculus and performs its own storage management.

Abramsky [Abr93] studied both intuitionistic and classical linear logic and gives them oper-
ational interpretations. His interpretation of intuitionistic linear logic leads to a linear lambda
calculus whereas his interpretation of classical linear logic leads to a concurrent programming
model. Lincoln and Mitchell [LM92] develop a semantics that is quite closely related to Abram-
sky’s intuitionistic interpretation and they also analyze type inference techniques for linear
lambda calculi.

In some of these early operational models, there was considerable confusion about their
precise storage management properties. Unlike the purely linear language presented in this
chapter, Lafont, Abramsky, and Lincoln and Mitchell’s languages are referred to as intuitionistic
linear because of the presence of the intuitionistic types !7 in addition to the linear types
7® 7 and 7 — 7. Objects of linear type are never copied (or discarded) directly, only the
intuitionistic objects are. However, the precise definition of the copy operation on intuitionistic
objects has considerable impact on the memory management properties of the linear fragment
of the language. More specifically, unless a value of intuitionistic type is completely recomputed
each time it is used or else the intuitionistic copy operation actually performs a deep copy then
programs may evaluate to states where objects of linear type have multiple pointers to them!
This surprising property was observed by several research groups including Wadler [Wad90],
Lincoln and Mitchell [LM92], and Chirimar, Gunter and Riecke [CGR92].

In order to avoid the expense of a deep copy and yet collect linear objects, Chirimar, Gunter
and Riecke [CGR92, CGRY6] prove that an intuitionistic linear lambda calculus can be correctly
implemented using reference counting. One of the main advantages of their operational model
over previous models is the use of a store that maps locations to values. This construction makes
sharing explicit and allows them to reason correctly about reference counts. Launchbury’s
semantics for lazy languages [Lau93] and Morrisett, Felleisen and Harper’s investigation of the
semantics of garbage collection [MFH95, MH97] use related ideas to analyze sharing. Previous
work on linear type systems used more abstract storage models that obscured the semantics of
memory management.

Inspired by Chirimar et al., Turner and Wadler [TW99] decided to further analyze the
difference between the semantics that recomputes intuitionistic values each time they are used
and the semantics that shares intuitionistic values. Like Chirimar et al., they use a store to
make aliasing explicit. Turner and Wadler then define two sets of reduction rules and formally
prove that the rules that recompute intuitionistic values ensure every linear value has exactly
one pointer to it and the rules that allow intuitionistic values to share do not ensure every
linear value has exactly one pointer to it. The main problem with objects of type !7 is that
they may contain subcomponents of linear type, which when extracted multiple times but not
copied, become shared.

30

In terms of storage management, Turner and Wadler’s formal analysis puts us in the ex-
tremely uncomfortable position of having to choose between making copies of intuitionistic
values or allowing values of linear type to be shared. In my opinion, this analysis indicates that
the ! operator, when used without restriction, really is not the right operator for a practical
memory managment system.* Wadler’s earlier work on linear type systems [Wad90] may be a
better approach. Instead of using a single intuitionistic type constructor (!7) and a replication
construct (le), Wadler used two distinct sets of types and terms: a set of intuitionistic types
(—, X, etc.) and terms, and a set of linear types (—, ®, etc.) and terms. He disallowed linear
types from appearing inside intuitionistic ones, thereby ensuring that intuitionistic types share
and linear types do not.

The semantics most closely related to the one given in this chapter is Turner and Wadler’s
recomputing semantics. Like them, I use an explicit store so it is possible to express the
difference between objects with multiple pointers to them and objects with a single pointer
to them. On the other hand, unlike Turner and Wadler, I do not use the intuitionistic types
7. Instead, I allow linear objects to be explicitly copied. This decision makes it possible to
encode an intuitionistic calculus, but it diverges from the traditional logical interpretation of
linearity, which views linear objects as “uncopyable.” The essence of an object of linear type,
as I interpret it, is the property of being “unshared.”

This sharing interpretation implies a close relationship with Reynold’s syntactic control of
interference (SCI) [Rey78, Rey89, O’H93, O’HO00]. The goal of SCI is to prevent aliasing so that
assignment to one program identifier does not influence (i.e. interfere with) the values referred
to by any other program identifier. As in linear logic, there is close control over the use of
the contraction rule. O’Hearn [O’HO00] elegantly explains further similarities and dissimilarities
between the two systems.

There are a number of other type systems based on notions of linearity that have been
applied to optimization problems or to the problem of controlling effects in purely functional
languages. For instance, Guzman and Hudak [GH90] developed the single-threaded polymor-
phic lambda calculus in order to allow in-place update of data structures in a purely functional
languages such as Haskell [PH99]. Wadler [Wad91] has studied a system of use types to accom-
plish similar ends. Turner, Wadler and Mossin [TWM95] and later Wansbrough and Peyton
Jones [WP99] have discovered analysis techniques based on linear typing for avoiding thunk
update and for making decisions about inlining and other program transformations. Barendsen
and Smetsers [BS93] have developed uniqueness types that are used for inplace update as well
as structuring I/0O and concurrency operations in the purely functional language Clean [AP95].

2.3.2 Limitations

Garbage collection based on the idea of linear typing is certainly not without its limitations.
Indeed, linear typing can negatively impact both the time and the maximum amount of space
required to run a program. For example, a linear tree may require exponentially more space
than a dag that shares internal nodes to represent the same information. Likewise, graphs,
general recursive functions, and any data structure that contains cycles cannot be represented
without finding a way to break the cycle. Finally, a variety of standard data structures used
in compilers such as static links or displays [ASU86] and some implementations of exceptions
create shared data structures.

In the next several chapters of this thesis, I will develop more expressive languages that can
represent shared data structures, yet safely and explicitly reuse memory.

4Unless Chirimar et al.’s reference counting semantics is used.

Chapter 3
Aliasing

Of the terrible doubt of appearances,
Of the uncertainty after all—that we may be deluded,
That may-be reliance and hope are but speculations after all ...

- Walt Whitman. Of the Terrible Doubt of Appearances.

The linear type 71 ® 70 captures an extremely valuable memory management invariant:
There is only one access path to any value with this type. If x has type 7 ® 7o then the only
way to access z’s data is through z itself. Therefore, x may be safely reused to store objects of
different types and deallocation does not leave potentially dangerous dangling pointers around.
Unfortunately, as discussed in the previous chapter, the restriction to a single access path makes
it impossible to construct a number of important data structures and to implement natural,
efficient algorithms. The goal of this chapter is to introduce a new language of alias types that
makes it possible to represent shared data structures and yet retain the capacity to safely reuse
or deallocate memory. The material in this chapter is derived from research I have done jointly
with Greg Morrisett and Fred Smith [SWMO00, WMO00].

3.1 Informal Development

Chapter two suggested that one of the keys to meta-level reasoning about sharing is to explicitly
represent stored values as two-part structures consisting of a block of memory and a location
(the memory’s address). The central idea of this chapter is to show how to reflect this two-part
structure into a type system so that a mechanical type checker can reason about sharing within
the language itself.

Locations One difficulty with separating pointer types from memory types is that in order to
use a pointer to update or dereference memory, there must be some way to relate the pointer to
the memory block it points to. In other words, the type system must contain some mechanism
for expressing the dependency between pointers and memory. The traditional way to express
such dependencies is to allow types to include expressions. For example, the type for memory
blocks might include pointer expressions to indicate which pointers point to the block. In this
design, the algorithms for deciding the equivalence of two types (a fundamental procedure in any
type checker) will require a decision procedure for the equivalence of expressions. Therefore,
if we allow arbitrary expressions to appear inside types, type checking will be as hard as
determining when two lambda calculus expressions are equal. We will quickly find ourselves

31

32

working in an undecidable system on par with Martin-Lof type theory [ML82], Nuprl [CAB*86],
or the Calculus of Constructions [CH88]. In order to ensure the type system is decidable, we
introduce a special syntactic class of memory locations £ that is distinct from the expressions.
Only locations, not expressions, will be found in types. Since testing the equivalence of two
locations is a simple syntactic operation, type checking will be relatively easy.!

Store Types In the alias type system, every heap-allocated data structure has two parts to
its type, connected together using locations. A pair, for example, may be factored into:

e A type for the memory, called a store type, that takes the form {£ — (71, 72)}. This type
states that at location £ there exists a memory block containing components with types
71 and 1.

e A type for a pointer to the location: ptr(£). This type is a singleton type—any pointer
described by ptr(¥) is a pointer to the one location £ and to no other location.

Complex data structures can be described by joining together a number of capabilities using
the * constructor. For instance, an unshared pair of pairs of booleans might be described using
the following type:

{€1 — (ptr(Ls),ptr(¢3))} * {€3 > (bool,bool)} x {¢3 > (bool, bool)}

For the sake of brevity, we often abbreviate the store type {¢1 + 71} % --- % {£, — 7,} with
{1 — 11,...,€y, — 7, }. The meta-variable C ranges over store types.

A crucial aspect of this division is that store types, not pointers, bestow the privilege to
access data structures. For example, suppose a variable z is a pointer and has type ptr(£). In
order to dereference z at a particular program point p, the type checker must be able to prove
that the store has a type containing the constraint {¢ — (71,...,7,)} at p. Once this obligation
has been satisfied, access will be granted. If the obligation cannot be satisfied, then the type
checker will reject the program, even though = is a well-formed pointer. In this language,
deallocation can leave dangling pointers behind. Dangling pointers are well-formed objects and
may be safely stored in data structures or passed to functions, but they cannot be dereferenced.
Since z may well be a dangling pointer, the type system conservatively rejects programs that
access ¢ without presenting evidence that the access is safe.

Because store types play a central role in controlling data access rights, they may be
viewed as a form of static capability and 1 will sometimes refer to them as such. Like their
dynamic counterparts, which are found in operating systems such as Hydra [WLHS81] or the
J-Kernel [HCC™98], object access involves a two-part protocol: The system first verifies that
a client possesses the appropriate capability and then grants access. However, unlike their dy-
namic counterparts, static capabilities incur no run-time overhead — all memory management
operations are safely checked at compile time.

!There are other ways to ensure the type system is decidable. For instance, instead of defining a distinct class
of locations, I could use expression variables z and y to represent locations as I did in chapter two and allow
expression variables (not general expressions) to appear in types. However, such a choice makes the type system
slightly more complicated as type well-formedness would then depend upon value contexts I' (which themselves
contain types). The use of a syntactically separate class of locations is a convenient simplification with no loss
in expressive power.

33

Allocation and Deallocation Allocation operations extend store types. For instance, if the
store is described by C before an allocation operation, then after allocation the store may be
described by the extended type Cx{£ +— (11,...,7,)} where £ is a fresh location. If we consider
the capability metaphor again, then object allocation is the act of granting new capabilities.
Operations for memory deallocation have the opposite effect. If Cx{£ +— (11,...,7,)} describes
the current store, then after deallocating the object in location ¢, the program is left with a
store of type C. In other words, object deallocation revokes capabilities. Section 3.2 describes
the static semantics for these operations in more formal detail.

Structural Rules for Store Types Pointers are cheap: They fit in machine registers and
copying a pointer can be as inexpensive as a single move instruction. In contrast, a memory
block is much more expensive to allocate, copy or deallocate. Each of these operations requires
non-trivial work. Hence, while we can be somewhat care-free with pointers, copying and dis-
carding them at will, we will have to be much more prudent with memory blocks. More to the
point, I will treat pointers intuitionistically and apply a linear typing discipline to memory.

A linear store typing discipline naturally allows an exchange rule. Informally, the inference
rule is admissible:

Cl*{EQ!—)TQ}*{eli—)Tl}*Cgl—Ae
Cix{l1—>1}*{la—>T}*xCoble

(A-exchange)

Also like the linear type system, contraction and weakening rules are not admissible:

Cix{l—1}x{l—>1}xColye
Cix{l—71}xCobye

(Wrong)

Cl*CQ}_Ae
Cix{l—71}xCoblye

(Wrong)

Sample Store Types The principle reason the new type system is more expressive than the
linear type system is that the pointer types ptr(£) are intuitionistic. They may be discarded
and copied without performing a deep copy of the underlying memory structure. Therefore
multiple occurrences of the type ptr(£) may appear in a store type; each occurence represents
an alias. This flexibility makes it possible to construct and reason about shared structures. For
example, a DAG:

21: EQZ €3:
3

Y

may be represented using these constraints:

{41 = (ptr(la), ptr(€3)), La = (ptr(€3)), L3 — (int)}

Notice that the type ptr(£3) appears twice in the store type. Whenever two objects are described
by equal singleton types, then the objects themselves are identical. In the case of pointers, equal
singleton types provide us with useful must alias information.

34

Function Types In the linear languages of the previous chapter, the shape of the store passed
to a function was completely specified by the types of the standard function arguments. In the
new language, the store may have much more complex aliasing structure. Therefore, every
function must specify store shape in addition to specifying the types of its arguments. As in
section 2.2, functions are defined in continuation-passing style. Hence, a typical function type
has the form

(Cymyeeaym) =0

where C types the store of the calling context and 7 through 7,, give types to the function
arguments as usual. Unlike in chapter two, I will not attempt to control the space used by
function closures here.? Consequently, I will treat functions intuitionistically (as I do data
pointers) — they may be used multiple times or not all. To remind us of this fact, the syntax
of function types uses the intuitionistic — rather than the linear —o.

With these points in mind, I might give a function deref that projects the value stored at
location £ and leaves the store unaltered the type:

({€— (1)}, ptr(£), Tcont) — 0

where Teont = ({€ — (7)},7) = 0. In order to call deref, the current store must have the
type {£ + (7)}. Upon “return,” the continuation may assume the store continues to have type

{£= (")}

3.1.1 Abstraction Mechanisms

Any particular store can be represented exactly using the store types that have been described
so far, even stores containing cyclic data structures. For example, a node containing a pointer
to itself may be represented with the type {£ — (ptr(£))}. However, the principal difficulty
in describing aliasing relationships is not specifying one particular store but being able to
specify a class of stores using a single compact representation. By specifying a wide class
of stores as a function precondition, it is possible to reuse the function code in variety of
different contexts. In the following paragraphs, I informally describe a number of type-theoretic
abstraction mechanisms that can be used to describe classes of pointer-rich data structures.
Section 3.2 describes the type structure formally.

Location Polymorphism The interpretation of a location £ is a specific machine address,
perhaps the address 0xFF2644. However, in general, the physical address of an object is incon-
sequential to the algorithm being executed. The relevant information is the connection between
the location /£, the contents of the memory residing there, and the pointers ptr(£) to that loca-
tion. Routines that only operate on specific concrete locations are almost useless. For example,
the deref function mentioned above can only operate on the single concrete location ¢ (address
0xFF2644) and therefore we would have to implement a different dereference function to deref-
erence another location (say address 0xFFAC00). In fact, in general, we have to implement a
different dereference function for every location in the store!

2T will add existentials to the language. Therefore, it is powerful enough to encode closure conversion in the
style of Morrisett et al. [MWCG98].
3I cannot represent a store containing a pointer into the middle of a memory block.

35

By introducing location polymorphism, it is possible to abstract away from the concrete
location £ using a variable location (, but retain the necessary dependencies. The location-
polymorphic deref promotes greater code reuse than the monomorphic variant, but performs
exactly the same operations. Its type is:

V[¢:Locl.({C = (1)}, ptr(C), Teont) — O

where Teone = ({¢ +— (7)},7) = 0. Loc is the kind of the variable ¢. Soon, I will be adding
other kinds of type variables and, formally, I use kinding annotations to distinguish between
them. However, normally, the kind of the variable is evident from context, and in any event,
I will use the meta-variable ¢ alone for variables of location kind. Therefore, in examples, I
will normally omit kind annotations. I use the meta-variable 7 to refer to locations generically,
either concrete (¢) or variable (().

Store Polymorphism Any specific routine only operates over a portion of the store. In
order to use that routine in multiple contexts, we abstract irrelevant portions of the store using
store polymorphism. A store described by the constraints € * {f — (7)} contains some store of
unknown size and shape € as well as a location 7 containing objects with type 7.

The deref function is good example of function that should be made store polymorphic as
well as location polymorphic. An even better type to give the deref function is:

V[e:Store, (:Loc].(e * {¢ — (1)}, ptr(C), Teont) — O

where Teont = (6 ¥ {¢ — (1)}, 7) — 0. The kind Store is the kind of store types.

Type Polymorphism The final degree of polymorphism is useful for compiling languages
like ML or Haskell. Type polymorphism allows functions to accept arguments with a variety of
different types. Using type, store and location polymorphism, the best type this language can
give the deref function is

V[a:Type, e:Store, (:Loc].(e x {¢ — (a)}, ptr(C), Teont) — O

where Teont = (€ % {¢ — (a)},a) — 0.

In their most general form, functions types have the shape V[A].(C, 71, ..., 7,)—0 where A is
a list of type variable-kind pairs. I will continue to write monomorphic types as (C, 71, ...,7,)—
0, but they should be considered abbreviations for a general function type with an empty type
context (i.e.for V[-].(C,71,...,7) = 0).

Unions Unlike polymorphic types, unions provide users with the abstraction of one of a
finite number of choices. A memory block that holds either junk or a pointer may be encoded
using the type (junk) U (ptr(n)). However, in order to use the contents of the block safely,
there must be some way to detect which element of the union the underlying value actually
belongs to. There are several ways to perform this test: through a pointer equality test with
an object of known type, by descriminating between small integers (including null/0) and
pointers, or by distinguishing between components using explicit tags. All of these options will
be useful in an implementation, but here I concentrate on the third option (see section 3.5.3
for more discussion of this point). Hence, the alternatives above will be encoded using the type
(S(1), junk) U (S(2), ptr(n)) where S(7) is another form of singleton type — the type containing
only the integer . As a second example, a store containing a single boolean value in location
n has the shape {n — (S(1)) U(S(2))}.

36

Recursion As yet, I have defined no mechanism for describing regular repeated structure in
the store. I use standard recursive types of the form pa.7 to capture this notion. However,
recursion by itself is not enough. Consider an attempt to represent a store containing a linked
list where the tag S(1) signals an empty list, and the tag S(2) signals a non-empty list:*

{n = pa(S(1)) U(S(2),a)}

An unfolding of this definition results in the type
{n = (8(1)) U(S(2),(S(1)) U(S(2), List))}

rather than the type

{n = (SMW)U(S2),ptr(n)),n" = (S(1)) U(S(2), List)}

The former type describes a number of memory blocks flattened into the same location
whereas the latter type describes a linked collection of disjoint nodes. If a linked list is what
we are after, then the former type will not do.

Encapsulation In order to represent linked recursive structures properly, each unfolding must
encapsulate its own portion of the store. I use an existential type for this purpose. Hence, a
sensible representation for linked lists is

pa.(S(1)) U3[¢:Loc | {¢ — a}]-(S(2),ptr(C))

The existential 3[(:Loc | {¢ + 71}].70 may be read “there exists some location (, different from
all others in the program, such that { contains an object of type 71, and the value contained
in this data structure has type 72. More generally, an existential has the form 3[A | Cl.7. Tt
abstracts a sequence of type variables with their kinds, A, and encapsulates a store described
by some constraints C. Once again, in our examples, we will omit the kinds from the sequence
A as they are clear from context. A similar definition gives rise to trees:

pa(S(1)) U3¢, ¢ | {¢1 = o, (o = a}](S(2), ptr(¢r), ptr(l2))

Notice that the existential abstracts a pair of locations and that both locations are bound in
the store. From this definition, it follows that the two subtrees are disjoint. For the sake of
contrast, a DAG in which every node has a pair of pointers to a single successor is coded as
follows. Here, reuse of the same location variable { indicates aliasing.

pa(S(1)) U3[C[{¢ = a}](S(2),ptr(C), ptr(C))

Cyclic lists and trees with leaves that point back to their roots also cause little problem—simply
replace the terminal node with a memory block containing a pointer type back to the roots.

CircularList =

{¢1 = pen(S(1), pir(G1)) UG | {C2 = a}].(8(2), pir(C2))}

CircularTree =

{¢1 = pa(S(1),pir(¢i)) U3IC2, (s [{G2 = @, (3 = a}](S(2), ptr(C2), pir(¢s)) }

“Throughout we use the convention that union binds tighter than the recursion operator.

37

Parameterized Recursive Types One common data structure we are unable to encode
with the types described so far is the doubly-linked list. Recursive types only “unfold” in one
direction, making it easy to represent pointers from a parent “down” to its children, or all the
way back up to the top-level store, but much more difficult to represent pointers that point back
up from children to their parents, which is the case for doubly-linked lists or trees with pointers
back to their parent nodes. One solution to this problem is to use parameterized recursive types
to pass a parent location down to its children. In general, a parameterized recursive type has
the form rec a (f1:k1, ..., Bniky).7 and has kind (k1,...,K,) = Type. We will continue to use
unparameterized recursive types pya.7 in examples and consider them to be an abbreviation
for reca().7[a () /a]. Once again, kinds will be omitted when they are clear from the context.
Trees in which each node has a pointer to its parent may be encoded as follows.

{Croot = <S(2),pt’f‘(§L),pt’f‘((R))} *
{CL — REC (gTOOta CL)} *
{CR — REC (C’roota CR)}

where

REC =
recua (Cprta Ccurv‘)-
<S(1)7ptr(Cp'rt)>U
3L, Cr | {¢L = a (Ceurr, CL) }
{CR e’ (Ccuw‘: CR)}]
(8(2), ptr(Ce), ptr(Cr), ptr(Cpre))

The tree has a root node in location (.0 that points to a pair of children in locations (g,
and (g, each of which are defined by the recursive type REC. REC has two arguments, one
for the location of its immediate parent (,,; and one for the location of the current node (eyr-
Either the current node is a leaf, in which case it points back to its immediate parent, or it
is an interior node, in which case it contains pointers to its two children (7, and (g as well as
a pointer to its parent. The children are defined recursively by providing the location of the
current node ((eyrr) for the parent parameter and the location of the respective child (¢z or
Cr) for the current pointer.

3.2 Formal Syntax and Semantics

In this section, I define the syntax and semantics of the language, starting with the type
constructors in subsection 3.2.1 and following with the term constructs in subsection 3.2.2.

3.2.1 Type Constructors

Figure 3.1 presents the formal syntax for the type constructor language. I use the term type
constructor (and meta-variable ¢) when speaking generically about locations, store types or
“standard” types. The meta-variable S is used to range over constructor variables generically.
The domain of a type context A (Dom(A)) is the set of type constructor variables in the
first-components of the list. If A is 31:k1, ..., On:ky then A(S;) is K.

When I wish to refer to a component (either € or {n — 7}) of a store type generically, I will
use the meta-variable a to range over components. Hence, in general, a store type C has the
form @ xaq * -+ - *a,. I will continue to omit the initial “(” when a constraint is non-empty. For
example, I write {n — 7} instead of § x {n — 7}.

38

kinds k u= Loc | Store | Type | (kK1,.--.,kn) = Type
constructor vars f§ == (|e|a

constructor ctzts A == | A, Bk

constructors c == r|C|T

locations n u= (|2

constraints C == 0|Cx{r—r71}|Cxe

types T u= aljunk | SGE) | ptr(r) | (T1,...,Tn) | LU T2 |

V[AL(C, 71, ...) — 0 | 3[A | Cl7 |

reca(A).7 | c(er,...,cn)

Figure 3.1: Alias Types: Syntax, Kinds & Constructors

As before, I use the notation A[X/z] to denote the capture-avoiding substitution of X for
a variable z in A. Occasionally, I use the notation X|ci,...,c,/A] to denote capture-avoiding
substitution of constructors ci, ..., c, for the corresponding type variables in the domain of A.

Substitution is defined in the stardard way in all cases except for the substitution of con-
straints in constraints. To see why this case is different, consider substituting a constraint C’
for € in C * e. Assuming C does not contain €, the natural result is C x (C"), but this store type
is not syntactically well-formed: C' should be a single store component (say, a).®> The result
we want from this substitution is the list of the elements of C’ appended to the list of elements
C. I overload the * symbol to denote the append operation. Thus,
') def

ph ! !
) =0%ay % - kapxalx---xa

(@*al*-.-*am)*(@*a’l*...*a "

Using the overloaded * symbol, the definition of substitution of constraints in constraints is
straightforward:

0[C" /€] def g
(C*{n—THC')d € (C[C')d) * {n — 7C"/€]}
(C*e)[C'/d] L (o1c'fd) « ¢

Type Well-Formedness Since types possess free variables of different kinds, not all syn-
tactically well-formed type constructors make sense. Consequently, I introduce a new typing
judgement to specify the meaningful type constructors. The judgement A 4 ¢ : k states that
a type constructor c¢ is well-formed and has kind s according to the assignment of free type
variables to kinds given by A. The inference rules for this judgement are quite straightforward.
Figures 3.2 and 3.3 contain the details.

Type Equality The type equality relation required for this type system is also somewhat
more complex than those we have seen before. Types that differ only in the names of bound
variables are equal to one another as before. In addition, store types are equal up to reordering

®I could change the syntax and allow C % C’ to be a syntactically well-formed store type. This decision makes
the proofs slightly trickier. This is the approach I will take in the next chapter where capabilites have a more
complex algebra.

39

AbF42:Loc (AT-£)
AF pC:Store Al 4e:Store
AT- t -
AF40:Store (AT-empty) A4 C xe: Store (AT=c)

AF4C:Store AFyn:Loc Alby7:Type
Aby 4 Cx{n— 1} :Store

(AT-pt)

Figure 3.2: Alias Types: Well-formedness, Locations & Store Types

of their components. A recursive type is not considered equal to its unfolding—objects of
recursive type are explicitly unfolded using term-level coercions (see section 3.2.2).

The judgement A 4 ¢; = ¢o : K states that type constructors ¢; and ¢y are equivalent at
kind . The type context A is included in the judgement so that well-formedness of the two
constructors can be checked at the same time as equality. Formally:

Proposition 11 If Atgci =co:k then At gci: 5 and Ab4 et K.

The only interesting rule is the exchange rule (notice the rule checks well-formedness so the
proposition holds):

AF4Cqxay xagxCy: Store
AFACi*xay*xagxCy=C1xagxa1 xCy: Store

(AT-exchange)

The equality relation also includes the obvious rules for reflexivity, symmetry, transitivity and
congruence.

3.2.2 Small Values and Expressions

Figure 3.4 describes the syntax of the expression language. Expressions contain small values,
the values that need not be allocated on the heap such as pointers and code®, and a language of
coercions that directs the type checker. Each of these components is described in the following
paragraphs. A formal explanation of large, heap-allocated values such as memory blocks is
deferred to section 3.2.3 where I also define programs and their operational semantics.

Small Values Small values are those values that are easily copied. They fit inside a single
field of a memory block and may be passed directly to functions. In chapter two, pointers and
junk were the only small values. In this chapter, I have extended this class considerably to
allow us to write more realistic programs. There is junk (_) as before. We also have integers
that are written (S(7)) to indicate they will be given the specific singleton type S(i) rather
than a standard (non-specific) integer type. Singleton integers will be used to construct the

5Recall we will not concern ourselves with garbage collecting code in this chapter and therefore will treat code
as a small value.

40

— _ (AT- -
Arap a@ M) AT unk Type (ATTIunk)
AF4mn:Loc
AT-si AT-pt
Aty S(i) : Type (AT-sing) A4 ptr(n) : Type (AT-ptr)
: VAN : T
Aty 1 Type A Tn : Type (AT-tuple)
AFa(r1,...,7s) : Type
AF : T AF : T
ATL: TYPO AT2: 2YPO (AT-union)

At a7 UTe: Type

A,A"F4 C : Store
A, A"y T Type A A'F4 1, Type
(Dom(A) N Dom(A') = 0)

AT-f
A4 V[AN(C,T1y,...,Tm) = 0: Type (o)
A, A"y C : Store A, A'Fy T Type
Dom(A) N Dom(A") =0
(Dom(@) 0 Dom(&) =0)

AF43[A"| C).m : Type

A, a:(Ky...,kn) = Type, f1:K1y- -, Bnikin Fa 7 : Type
(for 1 <i<n.B; & Dom(A))

Atgreca(Biiki, .-, Bnikin)-T: (Kiy... k) — Type

(AT-rec)

Abtyc:(kiy.o.ybn) > Type Abgciiky -+ Abgcp:bn

AT-rec-
Atac(e,...,cq) : Type (AT-rec-app)

Figure 3.3: Alias Types: Well-formedness, Types

41

small values v == z|_|S8@)|ptr(l) | fix f [ANC,z1:71,...,Tp:Ts).€ | v[(]

coercions Yy #= union;un(r) | T01lreca(A)r (c1,..cn) () | unToll(r) |
PaCk[c1,...,cn|C’]as 3[A|C].T(T) | unpackrwith A

expressions e u= letp,r =new (i)in e | free v;e |
let z =wv.dine | vi.i:=vy;e | if v (e1 | €2) |
v(v1,...,v,) | halt v |

coerce(y);e

Figure 3.4: Alias Types: Syntax, Expressions

data types described in the previous section. The second kind of singleton value is the pointer
to location ¢, written ptr(£).

Functions are much more exciting than in the last chapter as they may be both polymorphic
and recursive. Polymorphism is necessary to promote code reuse and recursion allows us to
construct and traverse recursive data types. Recursive functions have the form

fix f [A|(C,z1:71,...,TpiTh)-€

The type context A binds free variables in the store type C, argument types 7; through 7,, and
body of the function. The function has type

V[IAL(C,T1,...,) >0

and f (the recursive function name) is given this type in the function body. In other words, these
functions support polymorphic recursion, a feature that is critical for coding many practical
examples (See section 3.4).

In order to keep type checking simple, I use explicit syntax for instantiating polymorphic
types. If v is a polymorphic function with type

V[B:k,Al.(C,T1,...,Tn) =0
then the explicit instantiation v[c]” has type
V[A]L(C, 71, ...,m) = 0[c/B]

Notice that partial type instantiation is allowed.

Figure 3.5 presents the static semantics of small values. The judgements have the form
A;T F4 v : 7 where A contains the free type variables of types in I and v. The value context I"
is handled somewhat differently here than before. In the previous chapter, I took special care
to lay out all of the structural rules for contexts (exchange for linear values, weakening and
contraction for intuitionistic ones). However, here, I have engineered the expression language so
that only small values are bound to variables. This is why variables themselves are considered
small. Since small types are cheap, I treat them intuitionistically and consequently, the entire

"The form v[c] is still considered a value because type constructors have no real run-time representation—they
may be erased before executing a program. Thus at run time, after types have been erased, v[c] is represented as
v. In section 3.2.3, I will give a typed operational semantics, but it can easily be proven equivalent to a semantics
in which types have been erased. The typed operational semantics simplifies the proof of type soundness.

42

AT Fypz:T(2) (A-var)
AT R4 - junk (A-junk)
(A-1)

AT FaS(3): S()

AT apor() pir(e) AP

A4 V[AT(C T1,...,m) = 0 =17f: Type
AALT, forp, xim, ., 20 O Fa e

AT Ry fix f [AT(C, 1T, ... &piTy) € 0 Ty

(A-fix)

AT Eqv:V[Bik, A(C 11, .yT) 20 Abagc:k
AT Fa o[(V[AT(C 11, .., Ta) = 0)[c/]

(A-tapp)

A;Thav:t Abys7 =7:Type (A-veq)
AThFav:T ved

Figure 3.5: Alias Types: Static Semantics, Values

value context I' is also intuitionistic, just the opposite of the pure linear languages. Hence,
rather than spell out all of the structural rules for a purely intuitionistic context, I prefer to
use a more standard treatment and assume that I" is simply a finite partial map from variables
to types. In the typing rule for variables, there is no restriction that the context contain only a
single binding. Similarly, in the rules for junk and singletons, there may be unlimited amounts
of left-over bindings in the context—the system does not attempt to garbage collect small
values. Aside from these points, the rules are as one might expect.

Expressions Figure 3.6 present the typing rules for expressions. The judgement A;T; C F4 e
states that in type context A, a store described by C' and value context I', the expression e is
well-formed. Most of the expressions have similar operational interpretations in this language
as in the linear languages of the previous chapter, but the typing rules are considerably more
complex due to the necessity of tracking dependencies between memory and pointers.

Memory Management Expressions Consider the new expression. It allocates a memory
block containing ¢ junk fields at a fresh location £. A pointer to the location is substituted for
z and £ is substituted for the location variable (. This operation is modeled in the type system
(see rule A-new) by extending the store type with a memory block type of length 1.

43

A;T;Chlhye

1
A
Ve ~

A, p:Loc; T, z:ptr(p); C x {p = (junk, ..., junk)} Fae (z & Dom(T) (A-new)
A;T;C 4 letp,z =new (7)in e p & Dom(A)

A;T 40 ptr(€)
Ab,C=C"*{¢ (11,...,T)} : Store A4 C'Te
A;T;C 4 free vse

(A-free)

AT 40 ptr(€)
A, C=C"*{(+ (11,...,7)} : Store
A;T,z:1;;C e 1<i<n .
A;T;C 4 let z =w.iine (:v ¢ Dom(I‘)) (A-pi)

AT Fy v ptr(€) AT o9 T
A, C=C"*{(~ (T1,...,Tiy...,Tn)} : Store
AT C" % {11,y Ty yTr) Fae
A;T;C 4 vydi=vgse

(1<i<n) (A-ai)

AT a0 ptr(C) Aby,C=C"*{(+ 1 UT} : Store
AFam =38 | O3 | CLS(), 7.7 : Type
Aty = AL | U] 3AL | CHILS(2), 70, 72) : Type
AT;C"x{(—>7ntbFaer AT;C"x{C— o} bae

A_
A;T;CRaif v (er | e2) (A-case)
AT hgv: (Cyoreyeeoym) =0 ATHqgv i oo AsTRq0, 7, (A-app)
A;T5C Fqv(vg, ... op) app
AT H : ARy C= S(1)U(S5(2))}:st
T ravspirl) AFaC = {10 (S) USE)) sstore |\

A;T;C Ry halt v

Figure 3.6: Alias Types: Static Semantics, Instructions

44

Once a block has been allocated, it may be operated on by accessor functions let z =
vi.iine and vy.i:=ve; e, which project from or store into the i** field of v;. The projection
operation (typed by rule A-pi) is well-formed if v; is a pointer to some location 1 and that
location contains a object with type (71,...,7,) (where 7 is less than n). In this case, the
following expression e must be well-formed given the additional assumption that x has type
7;. The update operation (typed by rule A-ai) is similar to the projection operation in that vy
must be a pointer to a location containing a memory block. However, e is verified in a context
where the type of the memory block has changed: The 3** field has type 7 where 7 is the type
of the object being stored into that location, but is otherwise unconstrained.

As a concrete example, consider the process of allocating and initializing a pair of pairs,
where the deeper pair is aliased. The comments on the right-hand side present a portion of the
type checking context after each program point.

let (s, xz =new (2)in % x:ptr((y)
% {C = (junk, junk)}

=

b z:ptr(Ca), yiptr(Gy)
b {Ce — (Junk, junk)} * {Cy — (junk, junk)}

let (y,y =new (2)in

==

z.1:=y; h zptr((sr), y:ptr(Cy)
% {Co = (ptr(Cy), junk)} * {¢y — (junk, junk)}

T.2:=Yy; h -'L':ptr(Cx)vy:pt'r(Cy)
% {Ce = (ptr(Gy), ptr(Gy))} * {Gy = (Junk, junk)}

At each update operation, the type checker verifies that has a pointer type and modifies
the type of z’s memory block accordingly. The interesting aspect of this example is that after
the fourth instruction in the sequence, there are three aliases to the second memory block: the
variable y and the two components of z. We can see this is true, simply by counting the number
of occurences of ptr((y) in the type checking context. Each occurence must alias the others.
All three aliases are accurately tracked in the type system and any of them may be used. The
code could even create a fourth alias z by projecting one of the components z and use it to
initialize the second pair:

let z =z.lin % @:pir((s), y:pir(Gy), z:ptr((y)
% {Co = (Dtr(Gy), ptr(Gy))} + {Cy = (unk, junk)}

z.1:=3; % a::ptr(Cx),y:ptr(Cy),Z!PtT(Cy)
{Ca = (ptr(Cy), pr(Cy))} * {Gy = (int, junk)}

==

2.2:=3; % z:ptr(Ce), yiptr(Cy), z:ptr((y)
b {Ce = (ptr(Cy), ptr(Gy))} * {Cy = (int,int)}

==

To understand formally where we obtain extra flexibility over a linear type system, recall
the linear CPS rule for projection:

45

T, z:7y, yzjunk @ o beps € z & Dom(T) U {y}
[,y:71 @ 7o beps letz =y.line T # junk

) o

The principle difference is that after projection, the first component in the linear rule becomes
junk. This is not the case in rule A-pi: Both projected object and component v;.7 are useful
aliases of one another. The reason this rule is admissible here, but not in the linear type system
is that our types are much more precise. Singleton types allow the type checker to keep track
of all aliases.

A second subtle difference is that the rule A-pi no longer prevents projection of junk com-
ponents; there is no side condition asserting that 7; is not equal to junk. In the presence of
polymorphism, we cannot give this guarantee—at least, not without other complications. Still,
as stated in chapter two, this side condition is not essential for soundness. The important
constraint for soundness is that junk is not dereferenced or used as a function and the other
typing rules ensure this does not happen. However, because the typing rule is a little more
lax here than in the linear type system, in some cases, an error may be reported later in the
program text (errors are flagged when junk is used in the alias type system) than it would be
otherwise (errors are flagged when junk is first projected, which may be well before it is used
in the linear type system).

Rule A-ai also bears an interesting relation to the analogous rule for the linear CPS language
(rule cps-al):

D,z:m @ o beps €

L, z:junk @ T2, y:11 beps z.1:=y5€ (cps-al)
When verifying the following expression e, the rule cps-al deletes the binding for y from the
context I" so y can no longer be used. In contrast, the rule A-ai allows the value that is assigned
to be used repeatedly. If that value is a pointer, then the assignment copies it, creating an alias.
Fortunately, the dependencies in the type system track these aliases.

Rule cps-al also requires that the first component of the pair being stored into is junk.
This constraint ensures that no object is made unreachable due to component assignment
and it made it possible to prove the Complete Collection theorem for the linear type system.
Surprisingly, the new type system can be less restrictive than the linear type system. Even if
the first component of a pair holds a valid pointer, it need not be the only pointer to a particular
location—it may have many aliases—so the rule A-ai allows the assignment. Of course, we now
run into a problem. What if the assignment does, in fact, overwrite the last pointer to some
heap-allocated data structure? There is nothing in the rule A-ai that prevents this possibility
and it would cause the data structure to become unreachable and uncollectable. Does the alias
type system provide any guarantees about the amount of garbage that a program collects?

In fact, the type system does provide formal guarantees about how much garbage is collected,
although the guarantees have a slightly different quality than those for the linear type system
and the mechanism for enforcing them is different as well. The key is in the rule A-halt for
the terminal expression. It requires programs terminate with a store that can be typed by the
constraints

Char = {n — (S(1)) U(S(2))}

The only stores that satisfy this constraint are ones with exactly one location (7). Moreover,
that one location must contain a boolean. In earlier sections, I looked upon stores of this form

46

unfavourably — they are not very polymorphic. Without any store polymorphism, these types
characterize very few stores. However, that is exactly what we need here. It means that if a
program terminates, the store cannot contain any garbage. For example, suppose a programmer
forgets to deallocate a reference cell, but otherwise writes a type-safe program. At the program
point immediately preceding the halt instruction, the store will have the type

{n = (W) V(S@)} *{n" = (1)}

When checking the halt instruction, the type checker will flag an error since the weakening rule
is not valid for store types:

{n = (SW)YU(S@)} = {n" = (1)} # Chaue

This design decision has several ramifications for the garbage collection properties of the
alias type system. As was the case for the projection rule, the additional flexibility in the rule
for component update may cause the type checker to flag certain program points as erroneous
(the halt expression) when the actual logical error occurred much earlier (the last pointer to
an object is over-written without freeing the object). However, the situation is perhaps more
grave here as non-terminating programs have no constraint on how much unreachable storage
they may create. As an example, consider the parameterless function loop:

fix loop [€](e,).1et {,z =new (1) in loop[e * {¢ — junk}]()

The loop may be invoked in any state, simply by instantiating the polymorphic variable ¢ with
the current store type. Each time around the loop, another useless reference cell is allocated
and then the only pointer to it is discarded.

The last memory management operation is free v;e. It deallocates the memory block
pointed to by v. This effect is reflected in the typing rule for free by requiring that the following
expression be well-formed in a context C’ that does not include the location in question. Again,
the presence of aliasing makes the free expression more interesting in this language than in
the linear language. The pointer being freed may have many aliases that suddenly become
potentially dangerous dangling pointers. Fortunately, none of these dangling pointers will be
useable; they may be copied and passed to functions, but never dereferenced. The rules for
projection and assignment always verify that when dereferencing a pointer with type ptr(n),
the store is described by a type containing the mapping {n — (71,...,7,)}, so that pointer
cannot dangle.

As in the assignment rule, there are no restrictions on the types of components of the
memory block that is freed. Since the free is shallow and the components of the object freed
may contain pointers, deallocation can make an object unreachable. Once again, the formulation
of the A-halt rule ensures that programmers clean up after themselves.

Other Expressions The if v (e; | e2) expression checks the first field of the memory block
in the location pointed to by a value v. If the first field is a 1, execution continues with the
first branch, and if it is a 2, execution continues with the second branch. The typing rule for
the construct is somewhat complex as the memory type constructor (---) will not be the top-
most type constructor (otherwise, the case would be unnecessary). The type system expects a
union type to be the top-most and each alternative may contain some number (possibly zero)
of existential quantifiers to abstract the store encapsulated in that alternative. The underlying
memory value must have either tag 1 or tag 2 in its first field. As mentioned earlier, it is

47

A;T;Clhae

A;Chay= A;C" ACThHue
A;T;C 4 coerce(y);e

(A-coerce)

A;CI—A'y:A';C"

AbF4 1 Type A4 7o Type
AbFyC=C"*{r— 7} :Store

A;C F4uniong, un, (r) = A;C" + {r = 11 U}

(for i =1 or 2) (A-V)

Aby 1= (reca(A).7) (c1,-..,cn) : Type
AbFpC=C"*{r— t'[reca(A).7"/d][c1,...,c,/A"]} : Store

A-roll
A;CFAT0ll (r) = A;C' x {r— 71} (A-roll)
A4 C=C"x{r— 1} :Store
Aby 1= (reca(A).7)(c1,...,¢,) : Type (A-umroll)

A;C Fyunroll(r) = A;C' * {r = 1'[reca (A").7"/d][c1, ..., cn/A]}

A" = Bi:k1, ..., Buikn ‘Faciik; (for 1 <i<n)
Ab,C=C"x{r—r7lc1,...,cn/A"} xC'[c,...,cn/A'] : Store

A;CEapacky, . c.(Cer,...en/Aas T[AN 07 (1) = A;C% 5 {r = (A" | C').7}

(A-pack)

AbFy4C=C"*{r— J[A"| C'.7} : Store
A;C F 4 unpackrwith Al = A A C" x{r — 1} x C'

(A-unpack)

Figure 3.7: Alias Types: Static Semantics, Coercions

48

(vi,...,vn) [<(h)

storable val’s h

witnesses S = uniongur | paCk[cl,...,cn|S]asﬂ[A|C’].'r | r°11(reca(A)-7’) (€15e56n)
stores S u= {li— hy,..., 4, — hy}
programs P == (S,e)

Figure 3.8: Alias Types: Syntax, Stores & Programs

possible to formulate other union elimination constructs including pointer equality checks or
discrimination between pointers and small integers (such as null implemented by 0).

Function calls are handled in the standard way and justification for the halt expression has
been given above.

The last expression coerce(y) applies a typing coercion to the store. Coercions, unlike
the other expressions are for type-checking purposes only. Intuitively, coercions may be erased
before executing a program and the run-time behaviour will not be effected. The judgement
form A;C k4 v = A’;C' indicates that a coercion is well-formed, extends the type context
to A’, and produces new store constraints C’. These judgements are presented in figure 3.7.

Each coercion operates on a particular store location 7. The union coercion lifts the object
at 7 into a union type and the roll/unroll coercions witness the isomorphism between a
recursive type and its unfolding. The coercion

Packi, . c.|C'c1,mcn/AJas a[Af|c'].T(77)

introduces an existential type by hiding the type constructors c;,...,c, and encapsulating
the store described by C'[cy,...,c,/A’]. Tt is critical that the constraints C'[cy,...,c,/A]
be removed from the context when verifying the instructions that follow the pack coercion.
Otherwise there would be two copies of the constraints (one in the top-level type-checking
context and one in the existential) and the linear nature of the store typing would be broken.
The unpack coercion eliminates an existential type, augments the current constraints with the
encapsulated C’, and extends the type context A with A’, the hidden type constructors.

3.2.3 Stores and Programs

As before, programs are pairs of a store and an expression. Stores are finite partial maps from
concrete locations to storable values. Figure 3.8 defines the syntax of stores and programs.

Storable Values The storable values consist of memory blocks (v1,...,v,) and witnessed
values ¢(h). Notice that the components of memory blocks must be small values. As mentioned
in the previous section, projection operations copy the components of memory blocks. In order
to ensure that this copying is cheap and requires no allocation, memory block components
must be small. Witnessed values are introduced by coercions. For example, the union coercion
introduces a union witness and similarly for roll and pack coercions. These witnesses have no
effect on the run-time behaviour of well-typed programs; their purpose is to keep type checking
(almost) syntax-directed.

Figure 3.9 presents the static semantics of storable values. These values only appear during
evaluation of a program and therefore they are always closed. As result, the typing judgements
require no context to verify that storable values are well-formed. Aside from this fact, the rules

49

v b . cee B .
) AUV IT1L) AUp Ty (AS‘blOCk)
Fa(vi, .o vn) i (11,0, Tn)
.I—A7'1U72:Type. Fah:1 or Fgah:my (A5-U)
F 4 uniony yr, (h) : 71 U Ty
-FaT1=(reca(A).7) (c1,...,cn) : Type
Fah:1'[reca(A).7/a]lc,. .., cn/A]
(AS-rec)
Faroll (h):7
Azﬂllﬁl,...,ﬁn:/ﬁ)n '}_Acz':/ﬂ"i (fOI‘lS’LSn)

FaS:Clei,...cn/A] Fah:tlcl,...,cn/A]
Fa paCk[cl,...,cn\S]asEI[A|C].T(h) : H[A | C]T

(AS-3)

Fah:7 Fa7 =7:Type
Fah:T

(AS-eq)

Figure 3.9: Alias Types: Static Semantics, Storable Values

for storable values are mostly unremarkable. Memory blocks have type (ry,...,7,) and the
witnesses coerce values of a particular type into unions, existentials or recursive types as one
might expect.

Stores The store well-formedness judgement is written 4 S : C and is given below.

S:{Ethl,...,gnl—)hn}
FaC={l1—1,...,4, — T} : Store
Fahi:m Fahy:mh
FaS:C

(A-store)

Unlike in the typing rules for linear stores, the locations in the domain of the store can appear
many times in the storable values h, making it possible to represent shared data structures and
cycles.

There is one important restriction, called Global Uniqueness, on where locations may appear
that is not captured in the store typing rule. It states that there can be no duplication of
locations in the domain of the store or in any encapsulated store:

Definition 12 (Global Uniqueness) GU(S) if and only if there are no duplicate locations in
L(S).

Definition 13 (Global Store Locations) L(S) is the multi-set given by the following defi-

50

nition.
L({él =Ry, by hn}) = {El,..., n}H:JL(hl) (GO LﬂL(hn)
L(paCk[c1,...,cn|5}as7'(h’)) = L(S) W (h)
L(z) = L(z1)¥--- WL(zy)
for any other term construct x
where x1,...,x, are the subcomponents of x.

Programs A program is well-formed, written -4 (S, e), under the following circumstances.

Definition 14 (Well-formed Program) 4 (S,e) iff
1. The store adheres to global uniqueness GU(S).
2. There exists constraints C such that -4 S : C.

3. The expression is well-formed with the given constraints: -;-;C F 4 e.

3.2.4 Operational Semantics

The small-step operational semantics for the language is given by a function P — 4 P’. The
majority of the operational rules are entirely standard and formalize the intuitive rules de-
scribed earlier in the chapter. The operational rule for the coercion expression depends upon
a separate semantics for coercions that has the form S ——4 S’,0 where 0 is a substitution
of type constructors for type constructor variables. Inspection of these rules reveals that co-
ercions do not alter the association between locations and memory blocks; they simply insert
witnesses that alter the typing derivation so that it is possible to prove a type soundness result.
Figures 3.10 and 3.11. contain the rules for program and coercion operational semantics.

3.3 Properties of the Aliasing Language

As in the linear language, the two important properties of the alias type system are Type
Soundness and Complete Collection.

3.3.1 Type Soundness

As before, I define the stuck program states and then use Subject Reduction and Progress
lemmas to prove type soundness. In this language, a stuck program is a program that is not in
the terminal configuration

({£ — v},halt ptr(¥))

where v is a boolean (i.e.union g(1)yus(2)) ({(S(7)))) and for which no operational rule applies.
The definitions of Subject Reduction and Progress lemmas and their proofs can be found in
Appendix A.

Theorem 15 (Alias Type Soundness)
IfFa (S,e) and (S,e) —% (S',€) then (S',€') is not stuck.

ol

(S,€) —a (S,0)]

(S,1let (,x = new (i) in)

i

——
where £ ¢ S,eand h = (_,...,_)

(S{€ — h},free ptr({);e)
where h = (vi,...,v,)

(S{€+ h},1et z =ptr(f).iine)
where 1<i<n

h = (vi,...,Vy...,0p)
(S{¢ — h},ptr(f).i:=v";e)
where 1<i<n
h = <’U1,...,’U¢,...,’Un>
B = (v1,...,v ... 00)
(S{€+— h},if ptr(f) (e1 | e2))
where 7 = lor2
h = unionyur,(h')
Moo= alam((S@),v,...

(S,v(v1,-.-,v,))

where = v[ery...,Cm)

(S, coerce(y); e))

where y(S) —4 5,0

v\ = fix f [A|(C,z1i7, ..
0 = [c1,...,em/AlV) flv1,-. -, vn/21,. ..

—>A

—>A

—>A

—>A

—>A

7“71)) te

—>A

(5{€ = h},elt/(]lptr(£)/z])

(S€)

(S{¢ — h},elv;/z])

(S{¢— h'},e)

(S{€— h'},e)

)

(5,0(e))

.y TpiTp)-€

—>A

> wn]

(5",0(¢))

Figure 3.10: Alias Types: Operational Semantics, Programs

52

¥(S) —>a S',0
union,, uy, (£)(S{€ — v}) >4 S{£+~ uniony,(v)},[]
roll, (£)(S{f — v}) 4 S{f~ roll (v)},][]
unroll(4)(S{¢ — roll,(v)}) —a S{L—v},][]
packy, . clasr(O)(S{€ — v}S') —ra S{€— packy, . isasr(V)} (]
where C = {1 = 71,.... ¢y = T} and S' = {1 = v1,... . by — v}
unpack {with A 4SS v}, [e1, ... en/A]

(S{€ — packy, .. is7as30a(c) (V)})

Figure 3.11: Alias Types: Operational Semantics, Coercions

3.3.2 Complete Collection

Complete Collection is formulated quite differently here than in the linear type system. Reach-
ability characterizes the garbage collected by the linear type system accurately, but it is in-
comparable to the garbage collected by the alias type system. As I have demonstrated, non-
terminating alias type programs can make memory unreachable. They can also collect data
that is still reachable, leaving safe, but dangling pointers in data structures.

Instead of specifying garbage through reachability, the theorem specifies the termination
behaviour of well-formed programs. Informally, if a well-formed program runs to completion,
then it collects all stored data structures, save the single boolean result. This proof also follows
from Subject Reduction and Progress lemmas. It can also be found in Appendix A.

Theorem 16 (Alias Type Complete Collection)
If -4 (S,e) and (S,e) —% (S, halt v) then for some location £, v = ptr(f) and S' = {{ —

unionsyu(s(e) ((S()))}

3.4 Applications

In this section, I demonstrate via example how alias types can be used, primarily by compiler
writers, to verify the safety of low-level intermediate code. First, I show how to verify programs
written using the destination-passing style pattern, an efficient technique for constructing re-
cursive data structures. Second, I show how to encode stack typing disciplines in the alias types
framework. Finally, I investigate Deutsch-Schorr-Waite or “link-reversal” patterns, which tra-
verse data structures using minimal additional space.

3.4.1 Destination-Passing Style

The destination-passing style (DPS) transformation detects certain “almost-tail-recursive” func-
tions and automatically transforms them into efficient properly tail-recursive functions. The
transformation improves many functional programs significantly, leading a number researchers

53

to study the problem in depth [Wad85, Lar89, CO96, Min98]. My contribution is to provide a
type system that is capable of verifying that the code resulting from the transformation is safe.
Append is the canonical example of a function suitable for DPS:

fun append (xs,ys) =
case xs of
1 ->ys
| hd :: t1l -> hd :: append (tl,ys)

Here, the second-last operation in the second arm of the case is a function call and the last
operation constructs a cons cell. If the two operations were inverted, we would have an efficient
tail-recursive function. In DPS, the function allocates a cons cell before the recursive call and
passes the partially uninitialized value to the function, which computes its result and fills in
the uninitialized part of the data structure.

The following untyped pseudo-code presents append in DPS, making allocation and initial-
ization of the data structures explicit (an empty list is tagged 1 and a non-empty list is tagged
2).

fun appendDPS (xs,ys,prev,start,cont) =
case xs of
<S8(1)> -> free xs; prev.3 := ys; cont (start)

| <S(2),hd,t1> ->
let next = new(3) in
prev.3 := next;
next.1l := S(2);
next.2 := hd;
appendDPS (tl,ys,next,start,cont)

In the code above, xs and ys are as they were before. The node in the list xs that was
partially processed on the previous iteration is called prev. The tail position for prev has
not yet been filled in, but it will be on this iteration, either by ys or by the next node in xs.
The variable start points to the eventual result and cont is the continuation. Before calling
appendDPS, a wrapper function would check for the case that xs is initially null, and if not,
would allocate the first cell in the output list and pass a pointer to that cell to appendDPS as
both prev and start.

If the input list xs is linear, it will not be used in the future. In this case, it is possible to
further optimize the program by reusing the input list cells for the output list. With this fact
in mind, we could rewrite appendDPS as follows:

fun appendDPS’ (xs,ys,prev,start,cont) =
case xs of
<S(1)> -> free xs; prev.3 := ys; cont (start)
| <8(2),hd,t1> -> appendDPS’ (tl,ys,xs,start,cont)

To facilitate readability, I will define a number of abbreviations before presenting a typed
variant of appendDPS’ in the alias type system. For expository purposes, I will assume the
language is augmented with integers and the lists are integer lists. The type of integer lists List
and their unrolling List' is:

List = pa(S(1))U3[C|{¢— a}](S8(2),int,ptr(())
List' = (SQ)YUIC|{¢ > List)](S(),int, ptr(C))

o4

fix append [6, Cmsa Cysa Cpa Cs](e * {Cp = <S(2), intapt"'(Cms»a Cms = LiSta Cys = LiSt}a
zs . ptT(Cws)a Yys: ptr(@“ys),prev : ptT(Cp), start : ptr(gs), cont : Tc[ea Cpa Cs])

unroll((ys);
casezs
(inl =
free xs; h1.
prev.3:=ys; h 2.
rollList (p,packing(ys; % 3.
cont(start)
| inr =
unpack (s with (y ; % 4.
let tl = xs.3in % 5.

append[e * {Cp = <S(2), intapt""(Czs»}a Cet, Cysa Cas) 45]

(tl,ys, zs, start, cont'))

where 7.[€,(p, (5] = (e * {(p — List}, ptr((s)) =0

Figure 3.12: Alias Types: Optimized Append

Given these list definitions, we can define the following composite coercion.

rolllList (; packing (s =
PaCK(, | 1¢yes List}]as 3[Ca|{Cors List}].(S(2),int,ptr((2)) (¢1);
unionp;gy (¢1);
rollys:(¢1)

This coercion operates on a portion of the store with shape

{C1 = (8(2),int, ptr(C2)) } * {C2 = List}

It packs up (2 into an existential around (i, lifts the resultant object up to a union type and
finally rolls it up, producing a store with the shape {(; — List}.

Figure 3.12 presents the well-typed, optimized function append. append’s caller passes two
pointers to the beginning of the first list (aliases of one another) for parameters prev and start.
It also passes a pointer to the second element in that list for parameter xs and a pointer to
the second list for parameter ys. Notice that the contents of location (s are not described by
the aliasing constraints. On the first iteration of the loop (is an alias of (, and on successive
iterations, its contents are hidden by e. However, these facts are not explicit in the type
structure and therefore (; cannot be used during any iteration of the loop (cont will be aware
that (, equals (, and may use the resultant list).

The first place to look to understand this code is at the aliasing constraints, which act as a
loop invariant. Reading the constraints in the type from left to right reveals that the function
expects a store with some unknown part (€) as well as a known part. The known part contains
a cons cell at location (, that is linked to a List in location (;s. Independent of either of these
objects is a third location, (ys, which also contains a List.

The first instruction in the function unrolls the recursive type of the object at (s to reveal
that it is a union and can be eliminated by a case statement. In the first branch of the case,

95

xs must point to null. The code frees the null cell, resulting in a store at program point 1 that
can be described by the constraints

ex {Gp = (8(2), int, ptr(Cas)) } * {Cys = List}

Observe that the cons cell at (, contains a dangling pointer to memory location (s, the location
that has just been freed and no longer appears in the constraints. Despite the dangling pointer,
the code is perfectly safe: The typing rules prevent the pointer from being used.

Next, the second list ys is banged into the cons cell at (. Hence, at program point 2, the
store has a shape described by

ex {(p — (S(2),int, ptr(Cys)) } * {Cys — List}

The type of the cons cell at (, is different here than at 1, reflecting the new link structure of
store. The tail of the cell no longer points to location (g, but to (ys instead. After packing
and rolling using the composite coercion, the store can be described by e * {(, — List}. This
shape equals the shape expected by the continuation (see the definition of 7.), so the function
call is valid.

In the second branch of the case, s must point to a cons cell. The existential containing
the tail of the list is unpacked and at program point 4, the store has shape

ex {(p — (S(2),int, ptr((zs)) } * {(zs = (S(2),int, ptr(Cy))} * {(u — List}x
{Cys — List}

It is now possible to project the tail of xs. To complete the loop, the code uses polymorphic
recursion. At the end of the second branch, the constraint variable ¢ for the next iteration of
the loop is instantiated with the current € and the contents of location (,, hiding the previous
node in the list. The location variables (;s and (, are instantiated to reflect the shift to the
next node in the list. The locations (ys and (, are invariant around the loop and therefore are
instantiated with themselves.

The last problem is how to define the continuation cont’ for the next iteration. The
function should be tail-recursive, so we would like to use the continuation cont. However,
close inspection reveals that the next iteration of append requires a continuation with type
Te[e ¥ {{p — (S(2),int, ptr(Css))}, Czs, Cs] but that the continuation cont has type .[e, (p, (s]-
The problem is that this iteration of the recursion has unrolled and unpacked the recursive
data structure pointed to by xs, but before “returning” by calling the continuation, the list
must be packed and rolled back up again. Therefore, the appropriate definition of cont’ is
cont o (rollList (, packing(,s). Once the continuation packs (;s and rolls the contents of
location (, into a List, the constraints satisfy the requirements of the continuation cont. Se-
mantically, cont’ is equivalent to the following function.

fix _ [J(e* {{p — (S(2),int, ptr(Ces))} * {Cos > List}, (startiptr(Cs))).
rollList (, packing (gs;
cont(start)

However, because coercions can be erased before running a program, it is simple to arrange for
cont' to be implemented by cont.

56

3.4.2 Stack Typing

In order to compile programming languages with recursive functions, it is necessary to allocate
space to save the values of local variables across a function call. Most compilers use a conven-
tional stack to store these values. However, CPS-based compilers, such as the Standard ML
of New Jersey [App92], save local variables in the closures of continuation functions. These
closures carry the same data as conventional stack-allocated activation records and in the ab-
sence of non-local control constructs such as call/cc, they are allocated and used in a first-in,
first-out order. The essential difference between the two data structures is that conventional
stack-allocated activation records are placed adjacent to one another in memory whereas con-
tinuation closures are not usually allocated adjacent to one another. As a result, the callee’s
continuation closure contains an explicit pointer to link it to its caller’s continuation closure:

A

sp

A

sp

Adjacent Activation Records Linked Activation Records
(Conventional Stack) (Continuation Closures)

When programs allocate and deallocate linked activation records in a stack-like fashion, they
can be proven safe using the type system developed in this chapter. For example, assume we
want to implement a safe C-like language (i.e. a language with no nested function declarations)
using a linked list of activation records. If the source-level C function has the type 71 — T8
then a natural type for its implementation is

V[E, Csp]-(G, ptr(Csp), 7—{, Tcont) -0

where

€ = the stack

Csp = location of the caller’s activation record
Teont = (eapt""(Csp)a Té) —0

] = implementation type corresponding to 7|
75 = implementation type corresponding to 7o

There are now three arguments to the function: a stack pointer (with type ptr(¢sp)), an
argument (with type 7{) and a continuation or return address (with type Teont). In a C-like

8For simplicity, I will assume 71 and 72 are the types of small values so their translation need add nothing to
the store type.

o7

language, functions only have access to explicit parameters, their own local variables and global
variables (which are straightforward to add, but will not be modeled here). They do not, in
general, have access to the locals of their callers. The store variable e hides the contents of
the caller’s activation record and all other preceding activation records from the callee, thereby
restricting the callee’s access to its own locals until the continuation is invoked.

When a function is called, it allocates an activation record of sufficiently large size to hold
its locals and to store the results of intermediate computations. This process is identical to the
construction of any other data structure. One slot in the activation record should be reserved
for the continuation (return address) and another slot should be reserved for the pointer to its
caller:

fix f [e, (spl (€, spptr(Csp), arg:T{, cont:Teont)-

let (g, sp' = new (n) in % n = size of activation record
sp'.n:=sp; % store pointer to caller’s act. record

sp'.(n — 1):=cont; % store pointer to return address

At a function call site, the caller passes a pointer to its activation record, an argument of
the correct type and a continuation to the callee. If the function above (f) has only a single
value (the integer z) that needs to be saved across a function call, then the activation record
for f should have the type (int, Tcont, ptr((sp)). In this case, a recursive call of f to itself has

the form:

sp'.l:=x; % store x in activation record

% store type = €x {(f(int, Teont, ptr((sp))}
fle* {Csp = (int, Teont, ptr(Csp)) }s Copl (sP's arg', cont’)

As in the previous section, I use polymorphic recursion to establish the safety of a recursive
function call. The callee’s type parameter €.y is instantiated with the stack e joined with a
type for the caller’s activation record: {(y, = (int, Teont, Ptr(Csp)) }-

If a compiler uses these implementation techniques then there will always be exactly one
pointer to any activation record: The pointer to the topmost activation record resides in one of
the current function’s local variable (sp) and every other activation record in the stack is pointed
to by the activation record of the function it called. Since activation records are unshared, linear
types and polymorphism are sufficient to give types to these stacks; the more advanced features
presented in this chapter are unnecessary for this particular compilation strategy. However,
implementation techniques for other language features, particularly Pascal-like nested functions
and (in some cases) exceptions, create aliasing amongst activation records.

Consider a language that allows nested but not first-class functions.® Since nested functions
may contain references to the local variables of their enclosing functions, there must be some way
to access the activation records of enclosing functions. One way to implement such a language
is to use a display, which is simply a data structure that points to the activation records of the
lexically enclosing functions of the current function (See Aho, Sethi and Ullman [ASU86] for
details). Displays create aliasing because activation records are pointed to both by a dynamic

9Functions may not be stored in data structures or returned as results. Pascal allows function parameters,

but I do not consider them here either.

o8

link that, as in the simple stack model, connects caller to callee, and also by a static link that
connects a function to its statically enclosing functions.

The store typing invariant for a display with two lexical levels can be described by the
following type:

{Clea:Q = < .- aptr(gleaﬁcalle'r))}*
{Clewl = < .- aptr(glewlcaller»}*
{Cdisplay = (ptr(lexl),ptr(ler))}*
€

At any given program point, one program variable (sp with type ptr({s2)) points to the top
of the stack and another variable (display with type ptr(Caispiay)) points to the display. The
location (je42 holds the activation record for the function currently being executed and (¢ez2catier
is the location storing the activation record of its caller. The pointer with type ptr((iez2calier)
is the dynamic link to its caller. The activation record of an enclosing function at lexical depth
1 is stored in location (j¢;o and its caller’s activation record is stored in (jez1calier-

3.4.3 Deutsch-Schorr-Waite Algorithms

Deutsch-Schorr-Waite or “link reversal” algorithms, are well-known algorithms for traversing
data structures while incurring minimal additional space overhead. These algorithms were
first developed for executing the mark phase of a garbage collector [SW67]. During garbage
collection, there is little or no extra space available for storing control information, so minimizing
the overhead of the traversal is a must. Recent work by Sobel and Friedman [SF98] has shown
how to automatically transform certain continuation-passing style programs, those generated
by anamorphisms [MFP91], into link-reversal algorithms. Here I give an example how to encode
a link-reversal algorithm in our calculus.
For this application, I will use the definition of trees from section 3.1.

Tree =

pa(8(1)) U3ICL, Cr | {SL = o, Cr = a}](S(2), pir(CL), pir(Cr))

Tree =
(§(1)) U3[CL,Cr | {CL > Tree,(r = Tree}].(S(2), ptr(CrL), ptr(Cr))

The code for the algorithm appears in figures 3.13 and 3.14. The trick to the algorithm is
that when recursing into the left subtree, it uses space normally reserved for a pointer to that
subtree to point back to the parent node. Similarly, when recursing into the right subtree, it
uses the space for the right pointer. In both cases, it uses the tag field of the data structure to
store a continuation that knows what to do next (recurse into right subtree or follow the parent
pointers back up the tree). Before ascending back up out of the tree, the algorithm restores the
link structure to a proper tree shape and the type system checks this is done properly. Notice
that all of the functions and continuations are closed, so there is no stack hiding in the closures.

3.5 Discussion

Reasoning about aliasing is an extremely important and well-researched topic as pointers and
sharing are ubiquitous in all mainstream programming languages. Surprisingly, there has been
very little work on combining aliasing information with type systems for high-order languages

99

% Traverse a tree node
letrec walk [e, p1, p2](€ *x {p1 — Tree},t : ptr(p1),up : ptr(pz),cont : 7.[€, p1, p2])-
unroll(p);
casetof
(inl =
unionyy.ees (pl);
r0ll7ree(p1);
cont(t, up)
| inr =
unpack py withpr, pr;
% store cont in tag position
t.1:=cont;
let left=1t.21in
% store parent pointer as left subtree
t.2:=up;
walkle * {p1 — (7c[€, p1, p2], ptr(p2), ptr(pr))} * {pr > Tree}, pr, pi1]
(leftﬂ 2 rwalk[e, P1,P2,PL, ,OR]))

% Walk the right-hand subtree
and rwalk [e, p1, p2, PL, PR)
(e x{p1 = (7cl€, p1, pal, pir(p2), ptr(pr))} * {pr — Tree} * {pr > Tree},
left: ptr(pL),t: ptr(p1))-
let up =1%.2in
% restore left subtree
t.2:=left;
let right =t.3in
% store parent pointer as right subtree
t.3:=up;
walk[ex
{p1 = (7cle, p1, p2], ptr(pr), ptr(p2)) }+
{1, = Tree}, pr, pi
(right,t, finishle, p1, p2, pL, PR])

where 7.[e, p1, pa] = (€ * {py = Tree}, ptr(p1), ptr(ps)) = 0

Figure 3.13: Deutsch-Schorr-Waite Tree Traversal

60

% Reconstruct tree node and return
and finish [€, p1, p2, PL, PR)
(e {p1 = (Tc[e, p1, pa]; ptr(pL), ptr(p2))} * {pr — Tree} * {pgr — Tree},
right : ptr(pr),t : ptr(p1)).
let up =t.3in
% restore right subtree
t.3:=right;
let cont =t.1in
% restore tag
t.1:=8(2);
packy, . (01);
uniongyee (01);

rollyree(p1);
cont(t, up)

where 7€, p1, p2] = (e x {p1 — Tree}, ptr(p1), ptr(p2)) = 0

Figure 3.14: Deutsch-Schorr-Waite Tree Traversal, Cont.

as I have done here. There is definitely more work to be done in this area to determine both
the limitations and practical possibilities of this research.

3.5.1 Arrays

Arrays involve non-trivial extensions to the language described in this chapter. If we attempt
to treat arrays in the same way that we treat tuples then different elements of an array will
have different types at various points in a computation. In this case, the type system will have
to represent array types as dependent functions from array indices to types and in order to
decide the type of an array projection operation, the type system will have to be equipped with
a decision procedure for (some fragment of) arithmetic. It may be possible to adapt Xi and
Pfenning’s work on Dependent ML [XP98, Xi99] to accomplish this task, but this path would
complicate (an already complex) type system significantly.

A simpler, more practical alternative is to diverge from the treatment of arrays as tuples and
to design language constructs that preserve the types of array elements from one operational
step to the next, yet retain the strong memory management properties of the language. This
design path immediately forces us to define constructs for atomic allocation and initialization
of arrays, as in conventional typed languages. Element-wise initialization would cause array
elements to take on two different types (uninitialized junk and valid element types) and requires
the complex dependent type structure discussed above.

Array projection and update operations could be handled using an atomic swap operation:

let (,,z = swap(a,v1,v2) ine

Operationally, the swap expression projects the element z from array a at offset v; and inserts
object v9 at the same offset. The elements of an array implicitly have existential type, just as
the elements of other aggregate data structures such as lists and trees were existentials. The

61

existential abstracts the names of the locations used to store each array element. The swap
operation packs the storage required for vs and unpacks the storage required for z, making the
location for z (i.e., (,) accessible. The typing rule for swap follows.!°

AT R4 a: ptr(c,)
A;F |_A v1 :int
AT Fy vg: ptr(e)
Aty C=C"*{{,— Tarray} «{(2 — 7} : Store
A, (:Loc; T ziptr((,); C' « {(u — Tarray} « {(, — T} Fae
A;T5C R4 let (,, 2z = swap(a,v1,v2) ine

The swap operation should ensure that objects in arrays are unshared. Therefore they can
be extracted from an array at any time and safely deallocated. Of course, whenever an object
is projected from an array, another is put in its place and therefore it may seem as though we
cannot do any effective memory management with arrays in this language. However, each array
element can be given an option type, either nil or the element itself. In this case, to deallocate
an object contained in an array, we simply swap in nil, swap out the legitimate object and free
it. The cost of this programming technique is that we must check for nil before using array
elements.

3.5.2 Related Work

This research has much in common with efforts to define program logics for reasoning about
aliasing [Bur72, CO75, M6193, Rey00, I000]. In particular, if we view propositions as types,
there are striking similarities with recent work by Reynolds [Rey00] who builds on earlier
research by Burstall [Bur72]. Reynolds’ logic employs a “spatial conjunction” operator which,
like linear logic’s tensor, is not contractive. This spatial conjunction separates propositions that
depend upon disjoint portions of the store similarly to the way that the * operator separates
types for disjoint portions of the store. Using the spatial conjunction, Reynolds defines Hoare
logic rules for an imperative programming language such that a certain degree of local reasoning
is possible: Unlike standard Hoare-logic rules for assignment that perform a global substitution,
Reynolds formulation ensures that assignment alters at most one of the propositions joined by
the spatial conjunction.

Ishtiaq and O’Hearn [IO00] have further analyzed Reynolds’ rules in the context of the
logic of bunched implications. They are able to give both an intuitionistic and a classical
interpretation of the logic (Reynolds could only give an intuitionistic semantics) and to introduce
operations for safe object deallocation. Moreover, they have reformulated Reynolds’ Hoare rules
and proven that they generate weakest preconditions.

The Hoare rules defined by Reynolds, Ishtiaq and O’Hearn are highly similar to the typing
rules defined in this chapter. The most significant difference between the two pieces of work is
that Reynolds, Ishtiaq and O’Hearn use a full first-order logic including implication, conjunc-
tion, disjunction, equalities and first-order quantifiers to express properties of the store whereas
my type system is relatively inexpressive. On the other hand, it is possible for a mechanical
type checker to verify our code, without requiring human intervention or a sophisticated the-
orem prover. In fact, the central elements of the type system have been implemented in the
context of Cornell’s typed assembly language project [TAL].

10 A slightly modified rule is necessary to deal with arrays of small values such as integers.

62

One way to approach the expressiveness of Hoare logic in a type system may be to combine
alias types with the dependent type system devised by Xi and Pfenning [XP99, Xi99]. They
combine singleton types with logical and arithmetic constraints to tackle problems such as ar-
ray bounds check elimination [XP98]. They are also able to specify and check the correctness
of small programs including red-black tree algorithms and an interpreter for the simply-typed
lambda calculus. My choice to use singleton types and polymorphism rather than more tradi-
tional dependent type theory was largely inspired by their research.

There are also similarities with alias analysis techniques for imperative languages [JM81,
LH88, Deu94, GH96, SRW98]. Alias types appear most closely related to the shape analysis
developed by Sagiv, Reps, and Wilhelm (SRW) [SRW98], which has also been used to develop
sophisticated pointer logics [SRW99, BRS99]. Although the precise relationship between sys-
tems is unclear, several of the key features that make SRW shape analysis more effective than
similar alias analyses can be expressed in my type system. More specifically:

1. Unlike some other analyses, SRW shape nodes do not contain information about concrete
locations or the site where the node was allocated. My type system drops information
about concrete locations using location polymorphism.

2. SRW shape nodes are named with the set of program variables that point to that node.
My type system can only label a node with a single name, but it is able to express the
fact that a set of program variables point to that node using the same singleton type for
each program variable in the set.

3. SRW shape nodes may be flagged as unshared. Linear types account for unshared shape
nodes.

4. A single SRW summary node describes many memory blocks, but through the process of
materialization a summary node may split off a new, separate shape node. Some summary
nodes may be represented as recursive types in my framework and materialization can be
explained by the process of unrolling and unpacking a recursive and existential type.

One of the advantages of my approach is that my language makes it straightforward to create
dependencies between functions and data using store or location polymorphism. For example,
in my implementation of the Deutsch-Schorr-Waite algorithm, I manipulate continuations that
know how to reconstruct a well-formed tree from the current heap structure and I am able to
express this dependence in the type system. Explicit manipulation of continuations is neces-
sary in sufficiently low-level typed languages such as Typed Assembly Language when return
addresses are interpreted as continuations [MCGW98].

Several other authors have considered alternatives to pure linear type systems that increase
their flexibility. For example, Kobayashi [Kob99] extends standard linear types with data-
flow information and Minamide [Min98] uses a linear type discipline to allow programmers to
manipulate “data structures with a hole.” Minamide’s language allows users to write programs
that are compiled into destination-passing style. However, Minamide’s language is still quite
high-level; he does not show how to verify explicit pointer manipulation. Moreover, neither of
these type systems provide the ability to represent cyclic data structures.

3.5.3 Limitations

The type system described in this chapter is considerably more flexible than a linear type
system, but it is also considerably more complex. Hence, before adapting this technology, a

63

programmer must carefully consider whether their application requires the extra expressiveness
or if a simpler solution will do. On the other hand, the type system is not without its limitations.
For some applications, it may be necessary to move to a proof-carrying code framework and
employ a more powerful logic along the lines proposed by Reynolds or Ishtiaq and O’Hearn.

One significant limitation of the type system is the inability to represent storage blocks
that may (or may not) alias one another. In many contexts, precise must-alias information is
not necessary to ensure code safety and using imprecise may-or-may-not-alias information can
result in better code reuse. For example, consider an add function that sums the contents of
its arguments. In an untyped language, we might write:

A(z,y, cont).

lett; =z.1in % project first integer
letiy =y.lin % project second integer
letresult =t; +t2in 7% add them together
cont(result) % return result

This code is safe regardless of whether z and y point to the same memory block or not and as
a result, it is not clear whether add should have the type

Ve, (1, Co].(e % {1 = (int)} * {Ca > (int) }, ptr((1), ptr(C2), Teont) — 0

or

V[e, C1].(e * {C1 = (int)}, ptr(Cr), ptr(Ci), Teont) — O

Each of these two types is appropriate for different contexts; neither one is better than the
other. More generally, any n-ary non-destructive function!!, where n is greater than one, is
safe regardless of aliasing structure and yet cannot be efficiently encoded in this language.
Either the code for these functions, or, in certain circumstances, their arguments, must be
copied to satisfy the type system. In chapter four, I will study this problem in more detail and
provide a solution.

A more general problem occurs when some data structure has (statically) unknown aliasing
structure. For instance, it is not possible to define or manipulate a general directed graph in
the language of alias types. Assuming a node in this graph has two outgoing edges, then we
could give the corresponding memory block the type (ptr((i),ptr((2)). However, to use the
links in the node, we must know ezactly which two other nodes ptr(¢1) and ptr({2) point to.
In the case of a general graph, we do not have this information. Chapter four also provides a
solution to this problem, based on Tofte and Talpin’s notion of memory regions [TT94].

Unfortunately, there are also some data structures that have regular structure but that
cannot be handled effectively using the techniques developed here or in future chapters. One
problem is that the logic describing the store has a very specialized form. It is essentially a
conjunction of points-to constraints that describe the contents of individual locations. This
specialized form makes the type system easier to decide but restricts its expressiveness. There
are many memory structures that can be summarized if a full and unconstrained logic is used
to describe the shape of the store that my restricted logic cannot handle. For example, this
formula:

(r=y=>C)A(x#y=Cy)

A non-destructive function is one that does not alter the state of its arguments either by deallocation or
assignment.

64

implies that the shape of the store (either C; or C3) depends upon the relationship between
variables z and y. Such constraints cannot be expressed in my language. Of course, the cost of
such expressiveness is that it is necessary to use a theorem prover (bound to be incomplete if
the logic is powerful enough) or human intervention (time-consuming and therefore expensive)
to decide the validity of these formulae.

The last main limitation of this type system is that the introduction and elimination rules,
combined with a lack of equalities between types, force data structures within the store to take
on a specialized form. In particular, unions always have the form

H[Al | Cl] e El[A] | CJ]<S(1)’Tla cee 7Tk>
U

AL O]+ 3[A L CIAS(2), 715 -5 T
and the only way to eliminate them is by testing the singleton tags. There are several situations
in which it is desirable to have more flexibility. For instance, it is possible to define another
elimination form that tests equality of the union against a pointer of known type instead of
testing the tags. Using this mechanism, a data structure could save one memory word per union.
It is also useful to be able to be able to descriminate between pointers and small integers (zero,
for example, to represent null). Using this representation, the definition of a list type is:

pa.S(0) U3¢ | {¢ — al].(ptr(())

Notice that the union takes on a slightly different form here; the first alternative is a simple
singleton. Such a union would require a new introduction rule as well as a new elimination rule.

Yet another variant arises when implementing a queue. Assuming the head of the queue
points to ¢; (variable head has type ptr((1)) and the tail of the queue points to (, (variable tail
has type ptr((2)) then the queue’s body can be described using these constraints:

{C1 = paeptr(Ge) UG [{G — a}](ptr(G))} + {2 = (S5(0))}

Here the union takes on yet another form and new coercions are necessary to construct and
manipulate the queue.

The central point of these examples is that although they fall into the general framework
provided by the language, each new data invariant requires additional ad hoc typing rules and
coercions. These new rules complicate the implementation and pollute the trusted computing
base. Therefore, in summary, alias types are an effective mechanism for tracking local aliasing
and can model stacks as well as certain forms of lists and trees, but to handle more complicated
data structures, it may be necessary or at least more effective either to move to a more general
purpose logic or to coarsen the granularity at which memory management is performed — the
latter approach being the central topic of the next chapter.

Chapter 4
Regions

Double, double, toil and trouble;
Fire burn, and cauldron bubble.

— William Shakespeare. Macbeth.

In real programs, the aliasing relationships between individual objects are often too complex for
compiler-writers or programmers to keep track of. One technique for handling these situations
is to give up on tracking the references to every object precisely and instead to group objects
with similar lifetimes into one of many memory regions. This design simplifies the memory
management problem as a region-based system need only track region aliases, which are fewer
and have less complex structure than per-object aliases.

Tofte and Talpin [TT94, TT97] realized the benefits of region-based memory management
and recognized that it might be possible to infer region allocation and deallocation points for
ML programs automatically. They developed a sound, non-deterministic collection of inference
rules (not yet an algorithm), inspired by earlier work on type and effects systems by Gifford,
Lucassen, Jouvelot and Talpin [GL86, JG91, TJ92]. In later work, Tofte and Birkedal [TB98]
developed a remarkably effective inference algorithm and proved it sound and terminating,
though incomplete. Tofte, with others, has implemented the algorithm and developed many
sophisticated optimization techniques [BTV96]. Currently, Tofte’s implementation, the ML Kit
with Regions [TBE198], is competetive with, if not superior to, other compilers for ML in terms
of time and space on many memory-intensive programs.

In this chapter, I will develop a new type system for region-based memory management.
This research is based on joint work I have done with Karl Crary and Greg Morrisett [CWM99,
WCMO00]. The main innovation of the work is that it combines ideas from linear type systems
with Tofte and Talpin’s type and effect system. An important contribution of this language
design is that it gives rise to a more flexible region deallocation principle than Tofte and
Talpin’s calculus, yet it can be proven sound using Wright and Felleisen’s Subject Reduction
and Progress properties.

In the next section, I will review the highlights of the Tofte-Talpin calculus to show where
it lacks expressiveness. Section 4.2 develops the technical aspects of the new region-based
language, which I call the “Capability Calculus” because it is based on the capability mechanism
of the previous chapter.! Section 4.5 informally discusses different ways of handling recursive

'Historically, the region-based capability calculus was developed first (see [CWM99]) and the alias types of
the previous chapter were derived from it (see [SWMO00, WMO00]).

65

66

data types in the language and the advantages of mixing alias types with regions. It also
comments on related work.

4.1 Introduction to Region-based Memory Management

In order to ensure that regions are used safely, the Tofte-Talpin language includes a lexically-
scoped expression (letregion r in e end) that delimits the lifetime of a region r. A region
is allocated when control enters the scope of the letregion construct and is deallocated when
control leaves the scope. Programs may allocate values into live regions using the notation v
at r. These values may be used until the region is deallocated. For example,

letregion r in % Allocate region r
Region lifetime let x = v at r in % Allocate value v in r
f (r,x) % Call f, may access r
end % Deallocate r (and v)

Tofte and Talpin ensure that deallocated values are not accessed unsafely using a type and
effects system. Informally, whenever an expression uses a value in region r, the type system
expresses this fact using the effect access(r). However, effects occuring within the scope of the
letregion construct are masked. More specifically, if the expression e has effects access(r)
U 9 (for some set of effects 1)) then the overall effect of the expression letregion r in e end
is simply 1. Hence, if there is no overall effect for an entire program then every region access
must have occured within the scope of the corresponding letregion construct. In other words,
values in region r are used only during the lifetime of r and not before or after. If this condition
holds, we can conclude the program is safe.

The Tofte-Talpin language makes efficient use of memory provided that the lifetimes of
values coincide with the lexical structure of the program. However, if lifetimes deviate from
program structure then this style of region-based memory management may force programs
to use considerably more memory than necessary. Consider the following (yet to be region-
annotated) program fragments.

% Scope 2: The Function
% Scope 1: The Call Site

fun f (x) =
let x = v in :
: x is dead
let y = f (x) in :
: let y = v/ in
y is dead

return y

The value v is an argument to the function £ and must be allocated in the scope of the function
call. However, when f is executed, v dies quickly. The value v’ exhibits the inverse behaviour.
It is allocated inside £ but is returned as the function result. Both v and v/ have lifetimes that

67

span two lexical scopes, but neither is live for very long in either scope. Consequently, vanilla
region inference does not perform well in this setting. The best it can do is wrap the function
call in a pair of letregion commands.

% Scope 1: The Call Site

. . % Scope 2: The Function
letregion r in

let x = v at r in
fun f (r,r',x) =

letregion r' in ;
& ' . x is dead
let y = £ (r,r',x) in

& is dead let y = v at r’ in

end () :
end (r) return y

Here, the regions r and r’ are live much longer than they need to be due to the inflexibility
of the letregion construct. Both regions must be allocated outside the function call. Notice
also that even though v is dead when the function call returns, the outer region r cannot be
deallocated until after the inner region r’ has been deallocated. Lexical scoping enforces a
stack-like, last-allocated /first-deallocated memory management discipline.

In this example, a much better solution is to provide two separate commands for region
allocation (newregion) and region deallocation (freeregion). The following program takes
this approach. In principle, since the lifetimes of regions r and r’ do not overlap, the memory
for these regions could be reused.

h 2: The Functi
% Scope 1: The Call Site % Scope € Function

let newregion r in
let x = v at r in

fun f (r,x) =

x is dead

iet r',y = £ (r,x) in let freeregion r in

let newregion r’ in

is dead
vy let y = v at r’ in

let freeregion r' in

return (r',y)

Unfortunately, we cannot write this program in the Tofte-Talpin language because it is
based on the idea of lexical scoping. Another consequence of this language design is that
any transformation that alters program structure can affect memory management. One of the
most devastating transformations for the Tofte-Talpin type system is the continuation-passing
style transformation. CPS places each successive computation in the scope of all previous
computations, with the result that no regions can be deallocated until the entire computation
has been completed. In the following example, the CPS transformation prevents the region r

68

from being deallocated until after code has been executed when it could be deallocated as soon
as f has completed its computation.

letregion r in
f (r,v)

end;

code

letregion r in
= f (r,v,\.code)
end

The observation that the Tofte-Talpin type system will make poor use of memory in such
cases has been made before. Both Birkedal et al. [BTV96] and Aiken et al. [AFL95] have pro-
posed optimizations that allow regions to be freed early. However, although their optimizations
are safe, there is no simple proof- or type-checker that an untrusting client can use to check the
output code. Therefore, in order to construct a verifyably safe, efficient region-based language,
we must rethink the language design.

4.2 The Capability Calculus

The Capability Calculus is a new statically-typed intermediate language that supports the
explicit allocation, freeing and accessing of memory regions. The key aspect of its design is the
incorporation of notions of linear and non-linear regions. Linear regions make it possible to
define a new principle for region deallocation and result in a type system that is strictly more
powerful than Tofte and Talpin’s type system.

This section defines the syntax and static semantics of the Capability Calculus. Like the
language of the previous chapter, Capability Calculus are written in continuation-passing style.
The complete syntax of the language appears in Figure 4.1. I will discuss the semantics of the
language in the following subsections.

4.2.1 Operational Semantics

We specify the operational behavior of the Capability Calculus using a call-by-value allocation
semantics [MFH95, MH97], which makes the allocation of data in memory explicit. The seman-
tics, which is specified in Figure 4.2, is given by a deterministic rewriting system P —p P’
mapping programs to programs. As before, a program consists of a pair (S, e) of a store and
an expression to be executed.

The store now has a slightly more complicated structure. It is represented as a finite
mapping of region names (v) to memory regions where a memory region itself is a finite mapping
from locations to stored values. When convenient, I abbreviate S(v)(£) by S(v.£) and S{v —
Sw){¢— h}} by S{v.L— h}.

Regions are created at run time by the declaration newrgn p,z, which extends the store
with a new region (v)?, substitutes v for p in the following instructions, and the handle for the
region (handle(v)) for z.> Notice the strong similarity between region variables p and location
variables ¢ and between region handles and pointers. The former are compile-time concepts
that are used during type checking. The latter are data structures needed at run time to access
the appropriate memory structure (either a region or a simple memory block). More specifically,

2A “new” region is one that does not occur anywhere in the current memory (i.e., the region’s name does
not occur in the domain of current memory nor does it occur in any stored value) or in the expression being
executed.

3Both p and z are considered bound variables for the purposes of alpha-conversion.

69

kinds
constructor vars
constructors

types

regions
capabilities

con. conterts
value contexts
region types

memory types

small val’s
storable val’s
arithmetic ops
declarations

terms
Memory regions

stores
programs

a, p, €

KRR =D Qs

a Qe >

N wn X

Type | Rgn | Store

alt|r|C

a | int | handle(r) | (11,...,7n) at 7 |
V[AL(C,T1,...,7) > 0atr
plv

e|0[{r}|C1xCy| C

Ak | Aje < C

| T,z
{111, LniTn}
{vi: Yy, v Ty}

z | 4| v.£ | handle(v) | v[]
fixf[A|(C,z1:71, ..., Zn:Ty).€ | (V1,...,0p)
£1= %
r=v|x=vipve|z=hatv|z=mv|
newrgn p, z | freergnv

letd ine | if v (e2 | e3) | v(v1,...,v,) | halt v
{£1+—>h1,...,£n+—>hn}

{vi = Ry,...,un— Ry}

(S,e)

Figure 4.1: Capabilities: Syntax

70

region handles are needed when allocating objects within a region and when freeing a region,
but not when reading data from a region. In the last case, only an object pointer is required.
Region handles are normally implemented as a pair consisting of a pointer to the beginning of
the region and pointer to the next available (i.e. unallocated) address in the region. However,
the internal structure of region handles is unimportant for our purposes. They may be thought
of simply as pointers to regions.*

Regions are freed by the declaration freergn v, where v is the handle for the region to
be freed. Objects h large enough to require heap allocation (in this language, functions and
tuples) are allocated by the declaration x = hat v, where v is the handle for the region in which
h is to be allocated. Data are read from a region in two ways: functions are read by a function
call, and tuples are read by the declaration z = m;(v), which binds z to the data residing in the
1th field of the object at address v. Each of these operations may be performed only when the
region in question has not already been freed.

A region maps locations (£) to heap values. Thus, an address is given by a pair v.£ of a region
name and a location. In the course of execution, word-sized values (v) will be substituted for
value variables and type constructors for constructor variables, but heap values (h) are always
allocated in the store and referenced indirectly through an address. Thus, when executing the
declaration z = h at v (where v is handle(r), the handle for region v), h is allocated in region
v (say at £) and the address v.£ is substituted for z in the following code.

A term in the Capability Calculus consists of a series of declarations ending in either a
conditional expressioin, a function call, or a halt expression. The class of declarations includes
those constructs discussed above, plus two standard constructs, £ = v for binding variables to
values and z = v; p vo (where p ranges over +, — and x) for integer arithmetic.

For example, the program below allocates a region and puts a pair of integers inside it.
Next, the components of the pair are projected from the tuple and the region is deallocated.
Finally, the program sums the two integers and terminates.

letnewrgn p, z, in % Allocate region p

lety =(1,2)atz, in % Allocate pair in p

lett; = my in % Access region p, no handle required
let o = moy in

let freergn(z)) in % Deallocate region p

letz =11 + 12 in

halt z % Terminate

4.2.2 Types

The types of the Capability Calculus include type constructor variables and int, a type of region
handles, as well as tuple and function types. If r is a region (i.e.r is either a region name v
or, more frequently, a region variable p), then handle(r) is the type of r’s region handle. This
is a singleton type, just like the pointer types of the previous chapter. Hence, as before, we
can use this type to track certain facts about aliasing. If two values, v and v’, both have the
same type handle(r) then they are handles for the same region. I also use singleton types
to connect objects with the region they inhabit. For example, if a tuple is allocated using a
handle with singleton type handle(r), then the tuple has type (71,...,7,) at r. The function
type (C,71,...,T,) = 0 at r contains functions taking n arguments (with types 7; through 7,,)

“The interested reader may refer to the ML Kit with Regions [TBE*98] for more details.

71

(S,e) —g (5, €)

(S,letz =vine) —r (S,€[v/z])
(S,letz =1ipjine) —r (S, €'[k/z])
where k =ipj

(S,1letz = h at (handle(v))ine') +—pgr (S{vl— h},e'[v.l/x])
where v € Dom(S) and ¢ ¢ Dom(S(v))

(S,letz = m;j(v.f) ine') —r (S, €[vi/z])
where v € Dom(S) and £ € Dom(S(v)) and S(v.f) = (v1,...,v,) (1 <i<n)

(S,letnewrgn p,zine’) —r (S{v — {}},€[v,handle(v)/p, z])
where v € S and v ¢ €

(S,let freergn (handle(v))ine’) +—pr (S\v,€)
where v € Dom/(S)

(5,if 0 (e2 | e3)) —r (S, €2)

(S,1f i (e2 | e3)) —r (5 e3)

where ¢ # 0

(Sa I/.e[Cl, AR Cm](’l)l, R 7“”)) =R (Sa 02(01(6)))
where S(v.0) = £ixf[A|(C,z1:71,...,TnTn).€

and 61 = [c1,...,cm/00, .. ,ap] and Dom(A) = ay,..., 0y
and 6y = [Vl v1,..., 00/ , %1, .., Tp]

Figure 4.2: Capabilities: Operational Semantics

72

Arn (R-ctxt-empty)

AFg A
—_— D AA! - -
N (a & Dom()) (R-ctxt-var)
AFr A" AA'bFg C:Store

AFg A,,e <C

(e € Dom(AA")) (R-ctxt-sub)

Figure 4.3: Capabilities: Static Semantics, Context Formation

that may be called when capability C is satisfied (see the next two subsections). The suffix
“at r”, like the corresponding suffix for tuple types, indicates the region in which the function
is allocated.

As in the previous chapter, polymorphism plays a central role. Functions may be made
polymorphic over types, regions or capabilities by adding a constructor context A to the function
type as in V[A].(C,Ty,...,7,) = 0 at r. For convenience, types, regions and capabilities are
combined into a single syntactic class of “constructors” and are distinguished by kinds. Thus, a
type is a constructor with kind Type, a region is a constructor with kind Rgn, and a capability
is a constructor with kind Store. We use the metavariable ¢ to range over constructors, but
use the metavariables 7, r and C' when those constructors are types, regions and capabilities,
respectively. We also use the metavariables p and e for constructor variables of kind Rgn and
Store, and use the metavariable « for type variables and generic constructor variables.

For example, a polymorphic identity function that is allocated in region r, but whose con-
tinuation function may be in any region, may be given type

V[c:Type, p:Rgn].(C, o, (C,a) - 0at p) > 0atr

for some appropriate C. Let f be such a function, let v be its argument with type 7, and let g
be its continuation with type (C,7) — 0 at r. Then f is called by f[7][r](v,g).

Figure 4.4 specifies all well-formed constructors and constructor contexts. The two main
judgments A Fr A’ and A Fg c: k assume that the constructor context A is well-formed. The
first judgement states that A’ is a well-formed constructor context and the second judgement
states ¢ is a well-formed constructor with kind . If A is a sequence of bindings of the form
a;:k; or o; < C (where 7 ranges from 1 to n) then the domain of A is the sequence of construc-
tor variables aj,...,ay,. Occasionally, we will use the notation [cy,...,c,/A] to refer to the
simultaneous capture-avoiding substitution [c1,...,cy/a1,...,a,]. We use the notation AA'
to indicate the constructor context formed by concatenating the elements of A’ onto A. This
notation is only defined if Dom(A) N Dom(A') = 0.

4.2.3 Store Types

There are two different sorts of store types: one sort to give types to memory addresses and
another sort to track the allocation status and aliasing of regions. Both sorts appear in the
typing judgements for values and expressions so [will explain their structure here. For the

73

AFnain (A(a) = k) (R-type-var)

AT, ¢ Store (€S 0) €4) (R-type-sub)

A Fgint: Type (R-type-int)

AFgrr:Rgn
A Fg handle(r) : Type

(R-type-handle)

AbFp7i:Type (for1<i<n) AFpgrr:Rgn

R-type-tupl
AFg(m,...,7) at r: Type (ype-tuple)

AFr A" AA'Fp T; : Type (fOTlS’LSn)
AA'"FR C :Store Alpgr:Rgn

R-t -
A l_R V[A'].(C’ Tly--- ,Tn) —0atr: Type (ype arrow)

R-type-name) (R-type-0)

AI—RV:Rgn(AFg(:Store

AFgrr:Rgn
AFpg{r}:Store

(R-type-single)

AFgrCq:Store AFgCy:Store
A g CixCy: Store

R-type-plus
y

AFgr C:Store
A Fpg C : Store

(R-type-bar)

Figure 4.4: Capabilities: Static Semantics, Type Formation

74

'l_RTi (foI‘lSiSn)
Fr{lim,... lnTn}

(R-region-type)

Fr ¥
Fr T (for i <7< mn)
Fr{vi:Yi,...,vn: Yo}

(R-memory-type)

Figure 4.5: Capabilities: Static Semantics, Memory Types

proof of soundness of the type system, we must also specify rules that relate the store to each
of these two sorts of types. I will defer a formal discussion of the latter rules to section 4.2.6.

The first part requires considerably less complex type structure than the work of the previous
chapter since I will not attempt to track aliasing between individual addresses here and the types
of addresses will be invariant throughout their lifetimes. Type invariance obviates the need for
dependency mechanisms and makes it possible to use simple store typing rules reminiscent of
Harper’s treatment of references in ML [Har94]. I define memory types as finite partial maps
from region names to region types and region types as finite partial maps from locations to
object types. The meta-variable ¥ ranges over memory types and T ranges over region types.
Now, if a region named v appears in the domain of the memory type ¥ and ¢ appears in
the domain of region ¥(v), then the address v.£ has the type ¥(v.£), regardless of where the
address appears in the program. The judgements for well-formedness of region and memory
types appear in figure 4.5.

The second part of the store typing discipline involves tracking aliasing and allocation status
of regions. Unlike address types, these properties vary from one program point to the next.
To capture this variability, I use similar store typing mechanisms in this chapter (the C types)
as in the previous one, on top of the memory types ¥. To avoid confusion between the two
cooperating mechanisms for store typing, both of which are slightly different from anything
we have seen before, I will refer to the C' types exclusively as capabilities and the ¥ types
exclusively as memory types.

The structural rules for the capabilities of this chapter are somewhat more complex than
in the previous chapter as there are both linear capabilities and a special form of non-linear
(contractive) capability. T will defer discussion of the non-linear capabilities until a point when
they can be properly motivated and explained (section 4.2.5). As for linear capabilities, they
have the form 0, {r}, € or Cy * Cy where C; and C> are both capabilities. We can partially
understand each of these capabilities in terms of the regions that they give access to. The
empty capability, (), grants access to no regions. The singleton capability {r} grants access
to the single region r. As in the previous chapter, the capability € is used to make functions
store-polymorphic. It grants access to an unknown number of regions. Finally, C; * Cy grants
access to all the regions in C; or in Cy. Often, I abbreviate the capability {ri} *--- * {r,} by
{Tla s 7’rn}'

I call these capabilities linear because, as for the store types of the previous chapter, the
standard weakening and contraction rules are not admissible. Capabilities are, however, asso-
ciative and commutative and therefore an exchange rule is admissible. The empty capability is
the identity for the x operator. Figure 4.6 defines the equality relation on linear capabilities.

75

AFrpreci=co:k

AbFgrc:k
m (R eq reflex)
AFgpe=c:k
AFgpeci=co:k

(R-eq-symm)

AFrci=c:k AFgrc=c3:k
Al—Rq:C?,ZK,

(R-eq-trans)

AFrCy =C]:Store AtpCy=Cl:Store
AI—RCl*ngC{*Cé:Store

(R-eq-congruence-join)

AFpg C:Store
AFr0xC =C : Store

(R-eq-0)

AbtgrC:Store AFpgrCy:Store
AI—RCl*ngCQ*Cl:Store

(R-eq-comm)

Atg Ci:8tore (for1<i<3)
A |_R (C1 * CQ) * Cg =C1* (C2 * Cg) : Store

(R-eq-assoc)

Figure 4.6: Capabilities: Static Semantics, Linear Capability Equality

76

4.2.4 Expression Typing

The central problem is how to ensure statically that no region is used after it is freed. The
typing rules enforce this property using capabilities that specify the region accesses that are
permitted. The main typing judgement is

U, A;T;Chpe

which states that (when the store has type ¥, free constructor variables have kinds given by A
and free value variables have types given by I') it is legal to execute the term e, provided that
the capability C is held. A related typing judgement is

U A;T;C Frd= AT C

which states that if the capability C' is held, it is legal to execute the declaration d, which
results in new constructor context A’, new value context I and new capability C’. Since ¥ is
invariant, it does not appear on the right-hand side of this judgement.

In order to read a field from a tuple in region r, it is necessary to hold the capability to
access 7, as in the rule:

AtpC=C"*{r}:Store
U:A;TFro: (1y,...,T)atr
U AT C R =mi(v) = AsT{z7};C

(x € Dom(T)A1<1i<mn)

The first subgoal indicates that the capability held (C) is equivalent to some capability that
includes {r}.

A similar rule is used to allocate an object in a region. Since the type of a heap value reflects
the region in which it is allocated, the heap value typing judgement (the second subgoal below)
must be provided with that region.

AFgrC=C"*{r}:Store
U:A;T'Frhatr: T
U; A;T FR vt handle(r)
U AT Chgpz=hatv= A;T{z:7};C

(z & Dom(T))

Functions Functions are defined by the following form
fixf[A|(C,z1:11,. .., Zn:Ty).€

where f stands for the function itself and may appear free in the body, A specifies the func-
tion’s constructor arguments, and C is the function’s capability precondition. When A is
empty and f does not appear free in the function body I may abbreviate the fix form by
MC,z1:71,y .oy TpiTy) €0

In order to call a function residing in region r, it is again necessary to hold the capability
to access 7, and also to hold a capability equivalent to the function’s capability precondition:

AFrC=C"*{r}:Store AtgrC=C":Store
U: AT hgov: (Cy7,...,7) > 0atr U:A;ThRrv 7y
U AT C Frv(v, .-y 0n)

7
The body of a function may then assume the function’s capability precondition is satisfied, as
indicated by the capability C in the premise of the rule:®

U AsT{z1:71, ...,z };C PR e
U AT Fp MC, 21271, ..., ZpiTy).eat r @ 7y

(z; & Dom(T))

As might be expected, the annotation “at r” indicates that the closure value resides in region
7. The resultant function type 77 is (C,71,...,7,) = 0atr.

As in previous chapters, we will extend the required capability for a function with a quan-
tified capability variable. This variable may be instantiated with whatever capabilities are
leftover after satisfying the required capability. Consequently, the function may be used in a
variety of contexts. For example, functions with type

V[e:Store].({r} x¢,...) > 0atr

may be called with any capability that extends {r}.

When a function or continuation is polymorphic, its type constructor arguments may be
instantiated one at a time, leading to partially-applied polymorphic functions with the form
v[c]. The following rule gives a type to this sort of value:

U AT Fg ot Vs, A'l(Cy11,...,7) > 0atr AFc:k
U; AT Frole : (V[A(C,1,...,7) = 0)[c/a] at r

The common case is still to apply multiple type arguments at once. We often abbreviate
multiple type applications v[c1]---[cn] by v[ci,...,cq]. As indicated in the rule for function
call, a function must be fully-applied before it can be called.

Allocation and Deallocation The typing rule for region allocation is quite similar to the
rule we saw for allocating new memory blocks. It extends the current capability with a new
linear capability for the region that is allocated:

Dom(A),z & Dom(I
U; A; T C g newrgn p,z = (o ¢ (A)z¢ ()

A, p:Rgn; T{z:handle(p) }; C * {p}

We already have a great deal of experience with deallocation so it is not surprising that
the rule for region deallocation removes a linear capability for the region in question from the
current context:

AT Frv:handle(r) AbFgr C=C"x{r}:Store
U: A;T;C kg freergno = A; T C'

Intuitively, this rule is safe because the capability {r} is linear and cannot appear elsewhere in
C'. Since the capability does not appear in C’, the following code does not have access to the
region 7.

5This rule specializes the full rule for fiz to the case where the function is neither polymorphic nor recursive.

78

Shortcomings The type system I have defined to this point is sound and has some attractive
garbage collection properties for regions. However, it is incomparable to Tofte and Talpin’s type
system. We need a type system that is at least as expression as Tofte and Talpin’s language in
order to use the region inference algorithms that have been developed by Tofte and others. To
see where the current system falls short, consider the following perfectly reasonable increment
function:

fixiner [p1:Rgn, p2:Rgn|({p1, p2}, z:handle(p1),y:(int) at pa, cont:Teont)-
let z; = my in
let 20 =21 +1 in
let 23 = (22) at x in
cont(z3)

where Teont = ({p1,p2}, (int) at p1) — void.

This function is well-formed according to the typing rules: The function begins with the
capability {p1, p2}, meaning that the regions p; and py are both accessible. The function makes
use of this fact when it extracts z from region p2 and then allocates in region p; using the region
handle z.

Now suppose we want to increment a value stored in some region r and place the result
in the same region, rather than a different one. In other words, assume z’ has type handle(r)
and y' has type (int) at r. Even if the current capability is {r}, we cannot call incr. The
expression incr[r,r](z,y', cont') for any continuation cont’ is ill-formed in a context where the
current capability is {r} since the capability {r} * {r} is required by incr when p; and py are
both instantiated by r and we cannot use a contraction rule to relate these two capabilities. In
other words,

{r} # {r}+ {1}

After seeing this example, one’s first thought might be that the linear discipline is unnec-
essarily strong. Perhaps, we should allow a contraction rule. Unfortunately, the solution is not
so simple. If we were to allow contraction, we would quickly find ourselves in trouble with the
following simple function:

fix f [p1:Rgn, p2:Rgn]({p1, p2}, z:handle(py), y:(int) at py, cont:1l,,.,).
let freergn z in
let z; = my in
cont(z3)

where 7., = ({p2}, (int) at p1) — void.

This function is well-formed according to the typing rules: The function begins with the
capability {p1, p2} and p; is removed by the freergn declaration, leaving {p2}. The tuple y is
allocated in pg, so the projection is legal. However, if we allow a contraction rule of the form

{r}=1{r}s {r}

then we can instantiate p; and py with the same region r as in f[r,r](z',y', cont’). In other
words, we can create a situation in which p; and ps alias one another. In this case, the freergn
declaration will deallocate r and the projection will attempt to read from r, which is a run-time
€error.

79

AFgr C=C":Store
AFrC =C":Store

(R-eq-congruence-bar)

AFgr C :Store
AFRrC =C«C :Store

(R-eq-dup)

— R-eq-bar-
AI—RQ):Q]:Store(eq-bar-)

Atpgr C:Store
AI—Rﬁ:6:Store

(R-eq-bar-idem)

AFgrCi:Store AtbpgrCy:Store
AFgrCi%Cy =Ci*C5: Store

(R-eq-distrib)

Figure 4.7: Capabilities: Static Semantics, Non-linear Capability Equality

This problem is a familiar one. To free a region safely it is necessary to delete all copies of
the capability. If capabilities are linear, this can be handled easily. However, in order to type
realistic code, we must have some way of dealing with region aliases, despite the fact that in
the presence of polymorphic variables (such as p; and p3), there may be no local analysis we
can do to determine when two variables alias one another.

4.2.5 Non-linear Capabilities

My solution is to introduce a new form of non-linear capability, C. Capabilities of this form
resemble intuitionistic types (!7) in that they allow a special form of contraction, which I call
the duplication rule:

AFpgrC :Store
AFrC=C*C :Store

(R-eq-dup)

This rule makes it possible to create an unlimited number of aliases of a non-linear capa-
bility. As demonstrated by the function f above, such aliases are dangerous in the presence of
deallocation. Hence, while non-linear capabilities grant the privilege to access objects within
a region as well as the privilege to allocate within a region, they do not grant the privilege to
deallocate a region. Only regions for which we have a linear capability may be deallocated.®
The remaining equivalence rules for non-linear capabilities appear in Figure 4.7.

Suppose we rewrite the function incr so that it expects non-linear capabilities rather than
linear ones:

51t is possible to deallocate regions with non-linear capabilities eventually. See section 4.2.5.

80

fixincr' [p1:Rgn, po:Rgn]({p1, p2 }, z:handle(p1), y:(int) at pa, cont:Teont)-
let z; = my in
let z9 =21 +1 in
let 23 = (22) at x in
cont(z3)
where Teont = ({pl, pg}, (znt) at p1) — 0.

Intuitively, the function should continue to type check. In particular, the projection from
region po is safe and the allocation into p; is also safe since non-linear capabilities allow this
sort of access. Furthermore, if we hold capability m, we may call incr’ by instantiating p; and
p2 with r, since

{r}={r}«{r}={r} = {r}

On the other hand, we cannot rewrite the function f with non-linear capabilities because f
deallocates one of its regions:

fix f' [p1:Rgn, p2:Rgn]({p1, p2}, x:handle(p1), y:(int) at ps, cont:7.,,;).
let freergn z in % Type check fails
let 2; = my in
cont(z3)

Subcapabilities The capabilities {r} and m are not the same, but the former should provide
all the privileges of the latter. We therefore say that the former is a subcapability of the latter.
We write subcapability judgements using the form A Fr C < C’. The principal rule relates
any capability C to its non-linear relative C:

A kg C :Store
AFRrC<C

(R-sub-bar)

In the complete type system, some of the access rules from Section 4.2.4 are modified to
account for subcapabilities. These new rules allow us to check the incr’ function given above.
For example, the allocation and projection rules become:

U: A;T' FR v handle(r) o
U:A;Thgphatr:T AFC <O «{r}
U A CFrx=hatv = A;T{z:7}; C

(z € Dom(T")) (R-hval)

U:A;TFrov: (1q,...,T) atr
AFC<Cx{r}
U AT C kg =mv = Ay T{z: | C

(x € Dom(C') A1 <i<mn) (R-proj)

Both of these rules require that the current capability be less than some capability that includes
the region r that is being accessed.

In contrast to these new rules, the rule for deallocation is unchanged in the presence of
subcapabilities. It continues to require that the deallocated region be linear. Therefore, the

81

unsafe function f’ will not type check. We are saved because there is no capability C’ (in
particular C" = {po} is insufficient) such that

{p1,p2} = C" + {p1}

The rule for function calls must also be modified slightly to take advantage of subcapabilities.
Like a projection, a function call reads from a region and this region may be non-linear. Hence
the complete type system uses the following rule:

U:A;Tkgv: (Cly1y...,Th) > 0atr
AT FRrvi i (for 1 <i<n)
AFCLCO"x{r} AFC=C":Store
U AT C Fpo(vg,. .., op)

(R-app)

This rule relates the current capability C to the required capability C’ via an equality
judgement. Therefore, if we hold a non-linear capability, we can make as many copies of it as
we need to satisfy the required capability on a function like incr’. However, what happens if
we hold a linear capability rather than a non-linear one? Can we use the function incr’? The
immediate answer is no: {r} # {r,r}.

Perhaps we should relax this rule by replacing the equality with an inequality judgement.
If we choose this path, upon a function call, linear capabilities could be replaced by non-linear
capabilities. For example, if the current capability was {r} then it would be possible to call a
function with the following type

V[p1:Rgn, p2:Rgn].({p1, p2},...) > 0atr

by instantiating p; and po with r and using the inequality relation:

{ry <{r}={r}«{r}={r}={r}

Unfortunately, this solution, while sound, simply raises other difficulties. It transforms
linear regions that can be deallocated into non-linear regions that can never be deallocated
and so it is almost always a mistake. For example, suppose we hold the capability {r} and a
function g has type:

Vip1:Rgn, p2:Rgn].({p1, p2}, ..., ({p1,p2},...) > 0at p;) > Oatr

We could use the subcapability relation to call this function by instantiating p; and ps with
r. However, the continuation would be unable to free r when the region was logically dead.
The continuation only possesses the non-linear capability {r,r} = m, not the linear capability
{r} necessary to free the region. Moreover, it does not help to strengthen the capability of the
continuation to (for example) {r}, because then g may not call it (g itself only possessing the
capability {r,r}).

We may recover uniqueness information by quantifying a capability variable. Suppose we
again hold capability {r} and the function ¢’ has type:

V[p1:Rgn, p2:Rgn, e:Store].(¢,...,(¢,...) > 0at p;) > 0atr

We may instantiate ¢ with {r} and then the continuation will possess that same capability,
allowing it to free r. Unfortunately, the body of function ¢’ no longer has the capability to
access p1 and po, since its type draws no connection between them and e.

82

AFCL <0y

AFgr Cy =Cs:Store
AFgpC; <0

(R-sub-eq)

AFrCi<Cy AFgrCy <Cs
AFrCi1 <Cs

(R-sub-trans)

AFRCI<C, AFpCy<C
AI—RCl*ngC{*Cé

(R-sub-congruence-join)

< !
M (R-sub-congruence-bar)
AFpC<C'

m ((6 S C) € A) (R—sub—var)

AR 0O :StoTe b b-bar)
AFrC<C

Figure 4.8: Capabilities: Static Semantics, Subcapability Relation

Bounded Quantification We solve these problems by using bounded quantification to relate
p1, p2 and €. Suppose h has type:

V[p1:Rgn, p2:Rgn, € < {p1, pa}].(€,...,(6,...) > 0at p;) > 0atr

If we hold capability {r}, we may call h by instantiating p; and ps with r and instantiating e
with {r}. This instantiation is permissible because {r} < {r,r}. As with g, the continuation
will possess the capability {r}, allowing it to free r, but the body of h (like that of f) will have
the capability to access p; and po, since ¢ < {p1,p2}. The complete subcapability relation,
including a rule for bounded quantification, is defined formally in Figure 4.8.

Bounded quantification solves the problem by revealing some information about a capability
€, while still requiring the function to be parametric over e. Hence, when the function calls
its continuation we regain the stronger capability (to free r), although that capability was
temporarily hidden in order to duplicate r. More generally, bounded quantification allows us
to hide some privileges when calling a function, and regain those privileges in its continuation.
Thus, we support statically checkable attenuation and amplification of capabilities.

Static Semantics So Far Together, bounded parametric polymorphism, and notions of lin-
earity and aliasing provide a flexible language for expressing the lifetimes of regions. Figures 4.9,
4.10, 4.11 formally summarize the rules for type checking instructions and values that depend
upon these concepts. We have already explained the majority of these rules in previous sections
and the rules that we have not yet specified are the obvious ones (integers are given type int,
etc.). Notice, however, that the form of the judgement for heap values h is slightly different
from the judgements for instructions and small values v. The judgment U; A;T' Fp hatr: 7

83

states that when memory has type W, free constructor variables have kinds given by A and free
value variables have types given by I', the heap value h resides in region r and has type 7.

4.2.6 Run-time Values and Store Typing

The previous section contains all of the information programmers or compilers require to write
type-safe programs in the Capability Calculus. However, in order to prove a type soundness
result in the style of Wright and Felleisen [WF94], we must be able to type check programs at
every step during their evaluation. In this section, we give the static semantics of the store and
of the run-time values (including concrete region handles and addresses) that are not normally
manipulated by programmers, but are nevertheless necessary to prove our soundness result.

Figure 4.12 specifies the rules for typing memory, most of which are straightforward. The
judgment Fr S : U states that S is described by ¥ and the judgement ¥ Fr Rat v : T states
that region R with name v is described by T. Informally, these judgements ensure that for
addresses v.f, U(v.f) is type T if and only if the store S described by ¥ contains a value v at
address v.£ that has type 7.

The next judgment, ¥ Fr C sat, is called the satisfiability judgment and it formalizes
the connection between the static capability and the run-time state of memory. Clearly, the
current capability must not contain any regions that are not in the store; this could lead to a
runtime error. However, it is equally important that the store not contain regions for which
we have no capability as such regions can never be freed. Consequently, satisfiability ensures
that at any time during execution of a program, our capability is equal to {r1,...,r,} where
each r; occurs exactly once in the current memory. Furthermore, by virtue of the fact that
- Fr {r} # {r} *{r} : Store, no region may appear more than once in C. Each of these
properties are essential to ensure that regions are used safely.

Figure 4.13 contains rules for small values that only appear at run time (addresses and
region handles). The rules for typing an address v.£ are quite unusual, but crucial to the type
soundness proof. The first rule, v-addr, is used during the lifetime of the region v: If the region
v is in memory then v will also be in the domain of the memory type W. Therefore, rule v-addr
applies and v.£ will have type ¥(v.£). Now consider some point in the computation after the
region v has been deallocated. The region v is no longer in the memory, but the addresses v.¢
may still appear embedded in tuples or closures allocated in other regions, and, therefore, they
must be given types. If a region v does not appear in memory type ¥, the type system has the
flexibility to give v.£ any function type (by rule R — v — addr — arrow) or tuple type (by rule
R — v — addr — tuple).

At first glance, these rules would appear to lead to unsoundness: The address v.f is a
dangling pointer and it may be given a valid type. Fortunately, though, capabilities prevent
anything from going wrong. The satisfiability judgment ensures that programs only ever possess
capabilities for regions that appear in the store, and, as we explained earlier, programs can only
access the regions for which they have capabilities. Consequently, a dangling pointer may be
given a valid tuple or function type, but capabilities prevent it from being accessed.

We now have all components necessary to define a well-formed program. The program (.5, e)
is well-formed if S can be described by a well-formed heap type ¥, there exists a capability C
such that C' satisfies the heap type ¥, and finally, the expression e is well-formed with respect
to ¥ and C:

FrRS: U U g, C sat U;::Clpre
l_R(Sae)

(R-program)

84

U;A;Thphatr:7 |

AFpgr 7f : Type
U AN T ferg, ziimi, .., 2)5C FRre
Tp =V[A.(C,T1,...,7n) 2 0atr
fsx1,...,xn & Dom(T)
U AT Fg fixfIA(C,z1:7, ... ZpiTn).eat r:7p

(R-h-fix)

U; AT Frv; i (for1<i<n) AFgr:Rgn
U A;T FR (v1,...,vop)atr: (71,...,7Tp) atr

(R-h-tuple)

U:A;TFphatr: 7 AbFgp7 =1:Type
U:A;I'Frhatr: T

(R-h-eq)

U:A;TFpo: T

T AT Rz s (T'(z) = 7) (R-v-var)

T AT i int B777i0Y)

U: AT R v Vak, Al(C,11,...,T) > 0atr AlFc:k
U: AT Frole] : (V[A(C, 71,...,7) = 0)[c/a] at r

(R-v-type)

U: AT Fpov:V[e<C" A'l(C',71,...,7) > 0atr AFC<C”
U; A;T FRo[C) : (V[A](C!,11,. .., T) = 0)[C/€| at r

(R-v-sub)

U A;THRv:T Abg7 =17:Type (R-v-eq)
U;A;TFrpo:T vTed

Figure 4.9: Capabilities: Static Semantics, Heap and Word Values

85

U:A;T;C Fpd = AT CY

U:A;TFro:T
— Dom(T)) (R-val
AT Chpe=v = A;T{z:7}; C (z & Dom(I')) (R-val)

U: AT Frvrint U AT Fgwg zint
U AT C kg =01 poe = AT {ziint}; C

(z & Dom(T")) (R-prim)

U; A;T Fg v handle(r) o
U, A;T'Frhatr:7 AFCLC x{r} Dom(I)) (R-hval
U A;CFrx=hatv = A;T{z:7};C (z & Dom(T')) (R-hval)

U AT FRv: (T1,...,Tp) atr

AFC <O+ {r} xz ¢ Dom(T") X
AT — T : (R-proj)
U AT C bz =mv = A T{zi 5 C 1<i<n

(p & Dom(A)

R-newrgn
U: A; T C g newrgn p,z — x¢Dom(F)) (gn)

A{p:Rgn};T'{z:handle(p)}; C x {p}

U; AsT Fgpo:handle(r) AFC=C"+{r}:Store
U A;T;C g freergny = A; T C'

(R-freergn)

Figure 4.10: Capabilities: Static Semantics, Declarations

86

U, A;T;C e

U:A;T;C Fpd = AT C U: AT C' e

U; A;T;C R letdine (R-letdec)
U AsT Fpotint
U AT CFR e U AT C FRes
- (R-1f)
\I/;A;P;C '_R ifv (62 ‘ 63)
U;A;Thgpov: (Clhmy..oymy) > 0atr
U AT FRrv 7 (for 1 <i<n)
AFCLCO"x{r} AFC=C":Store .
U AT C FRrou(ve, - -5 0n) (R-app)
AN) AFC=0:
U AT Frpo:int C =0 : Store (R-halt)

U; A;T; C g halte

Figure 4.11: Capabilities: Static Semantics, Expressions

Ul Ratv:T|

U;-Fphjatv:7 (for 1 <i<n)
U kg {él »—>h1,...,€n i—)hn}atl/:{ﬁllTl,...,ﬁ”:Tn}

(R-region)

Fr U
UkFpR;aty; : 15 (fOIlSiS’I’L)

FR{Vli—)Rl,...,an—)Rn}:\If

(U ={v1:T1,...,vp:Ty}) (R-memory)

‘Fr C ={v1,...,vy} : Store
{vi: Yy, .., : T} FR C sat

(R-sat)

Figure 4.12: Capabilities: Static Semantics, Memory

87

U A;T'kFpo: T

U AT Fpud:T (¥(.£) = 7) (R-v-addr)

At (7,...,7,) at v : Type
U:A;TFrvl:(my,...,7n) at v

(v & Dom(¥)) (R-v-addr-tuple)

AFV[AN(C,71,...,7) > 0at v: Type
U AT R vl :V[A(C,q,...,7,) > 0atv

(v & Dom(¥)) (R-v-addr-arrow)

R-v-handl
U; A;T' - handle(v) : v handle (R-v-handle)

Figure 4.13: Capabilities: Static Semantics, Run-time Values

4.3 Properties of the Capability Calculus

As in previous chapters, I will focus on two properties of the Capability Calculus: Type Sound-
ness and Complete Collection.

4.3.1 Type Soundness

As before, Type Soundness states that a program will never enter a stuck state during execution.
A state (S, e) is stuck if there does not exist (S’,€') such that (S,e) — (S',€') and e is not
halt ;. For example, a state that tries to project a value from a tuple that does not appear in
memory is stuck.

Theorem 17 (Type Soundness)
If R P and P —pP' then P! is not stuck.

In the previous sections of this chapter, we have explained how to type memory, how to
relate the memory typing to static capabilities and finally, given a collection of capabilities, how
the rules for typing expressions prevent unsafe accesses to the store. These invariants are the

main elements in the formal proof of soundness. However, there are many details to fill in. The

proof is in the style of Wright and Felleisen [WF94| and uses the standard Type Preservation
and Progress lemmas. Progress states that well-typed states are not stuck, and Preservation

states that evaluation steps preserve well-typedness.

Lemma 18 (Type Preservation)
IftRr P and P —gR P’ then bR P!

Lemma 19 (Progress) If g (S,e) then either:
1. There exists P' such that (S,e) —gr P', or

2. e =halt s

The proofs of these lemmas and the soundness theorem itself appear in Appendix B.

88

4.3.2 Complete Collection

A second important property of the language is that well-typed terminating programs return
all of their memory resources to the system before they halt.

Theorem 20 (Complete Collection) If Fg P then either P diverges or P —} ({ },halt).

By Subject Reduction and Progress, terminating programs end in well-formed machine
states (S,halt 7). The typing rule for the halt expression requires that the capability C be
empty. Using this fact, we can infer that the store S contains no regions. Appendix B also
contains a formal proof of this theorem.

4.4 Examples

Example 1 Figure 4.14 shows an example program, including a function count that counts
down to zero. The program begins by allocating regions p; and ps using the newrgn declaration,
and puts the closure for count into p;. The count function takes two arguments, a handle for
region p and an integer reference z allocated in region p. If z is nonzero, count decrements it,
storing the result again in p, and recurses. The count function requires a capability € at least as
good as the capability {p1, p, pcont } needed to access itself, its argument, and its continuation;
and it passes on that same capability ¢ to its continuation k. As we type check the body of
the count function, we verify that we possess the necessary capabilities. Comments in the code
indicate where these checks occur.

After defining the count function, we allocate another region (p3) that will hold the con-
tinuation closure (cont). This continuation requires the capability {pi, p2,p3} in order to free
the three regions. The last line of the code in figure 4.14 is a function application. At this
point, count is passed the primary argument ten, the continuation “count” and a handle for
the region p;. We instantiate count’s capability, €/, with the current capability {p1,p2, ps3},
which a subcapability of the required capability @ * {p1, p2, p3}.

Example 2 In the first example, the count function uses all of the regions that are currently
allocated and the capability variable € is redundant. When the code instantiates e at the call
site for count, it does so with exactly the regions p1, p, and pcont Which already appear in the
bound on €’. However, in general, e will hide some “left-over” capability. For example, if we had
allocated a fourth region, ps4, we would need to instantiate € with the capability {ps} and make
corresponding changes to the continuation. Now, € would hide the capability on the fourth
region from count but preserve it across the call so it could be deallocated in the continuation:

%%h% count with ¢ hiding a left-over capability
let newrgn p1,z, in
let newrgn p2,T,, in
let newrgn p3, %y, in
let newrgn p4,z,, in
let count = ... as before ...
% capability held is {p1,p2,p3,p4}
let ten = (10) at z,, in
let cont =
(A ({PlaPQaP3aP4}) ...) at Lpy

89

let newrgn p1,%p, in
let newrgn p2,T,, in
% capability held is {p1,p2}
let count =
(fix count

[p:Rgn, peont:REN, €:Store, € < €* {p1, P, Peont }]

(€', zp:handle(p), z:(int) at p, k:(¢') — 0 at peont) -

% capability held is € < ex*{p1,p, Pcont}
let n = m(z) in
ifO n
C k()
|
let ' =n—1in
let ¢’ = (n')atz, in
count [p, peont, 0, €] (wpaxlak))
) at z, in
let newrgn ps3,T,; in
% capability held is {p1,p2,ps}
let ten = (10) at z,, in
let cont =
A ({p1,p2, p3}) -
% capability held is {p1,po,ps}
let freergn r,, in
let freergn z,, in
let freergn r, in
halt O
) at z,,
in
count [py, p3,0,{p1,p2, p3}] ()., ten, cont)

% p ok

h Pcont Ok

%h p ok
% p1 ok

% p3 unique
% p2 unique
% p1 unique

Figure 4.14: The Function

count

90

in
count [927 P3; {/’4}: {94} * {pla P2, PS}] (mpzatena COIlt)

Example 3 The power of bounded quantification comes into play when a function is called
with several regions, some of which may or may not be the same. For example, the original
code could be rewritten to have ten and cont share a region, without changing the function
count in any way:

%%4% count with ten and cont sharing ps
let newrgn p1,%p, in
let newrgn p2,T,, in
let count = ... as before ...
% capability held is {p1,p2}
let ten = (10) at z,, in
let cont =
A ({p1,p2}) -.) at z),
in
count [pg, p2,0,{p1,p2}] (z,,, ten, cont)

In this example, peopn: is instantiated with ps and € is instantiated with {py, po} (which is
again the capability required by cont). However, count proceeds exactly as before because ¢’
is still as good as {p1, p, Peont } Since:

{p1,p2} < {p1,p2}
= {p1,p2,p2}
0 * {p1,p2, p2}
0 * {p1,p2, p2}
(6 * {pla p2ap2})[®/6]

Example 4 In the examples above, even though count is tail-recursive, we allocate a new cell
each time around the loop and we do not deallocate any of the cells until the count is complete.
However, since p never contains any live values other than the current argument, it is safe to
reduce the program’s space usage by deallocating the argument’s region each time around the
loop, as shown in Figure 4.15. Note that this optimization is not possible when region lifetimes
must be lexically scoped.

In order to deallocate its argument, the revised count requires a unique capability for its
argument’s region p. Note that if the program were again rewritten so that ten and cont shared
a region (which would lead to a run-time error, since ten is deallocated early), the program
would no longer typecheck, since {p1,p2} £ {p1,p2} * {p2}. However, the program rewritten
so that count and cont share a region does not fail at run time, and does typecheck, since

{p1, 02} <A{p1, 1} * {p2}-

4.5 Discussion

There are several ways to extend the capability system developed in this chapter and a number
of directions for future research. This section discusses some of these extensions and research
possibilities as well as related work.

91

let newrgn p1,T, in
let newrgn p2,T,, in
% capability held is {pi,p2,p3}
let count =
(fix count
[PZRgIl, Pcont:RgN, € < {plapcont}]
(e * {p}, z,:handle(p), z:(int) at p,
k:(e) — 0 at peont) -
% capability held is ex* {p}

let n = m(z) in % p ok
let freergn z, in % p unique
% capability held is €
ifO n
then k() h Peont Ok
else

let n' =n—1 in
let newrgn p',z, in
% capability held is ex* {p'}
let z/ = (n')atzy in % p ok
count [p', peont, €] (2", k) % p1 ok
) at z,, in
let ten = (10) at z,, in
let newrgn p3, T, in
let cont =

(A ({p1,p3}) -
% capability held is {p1,p3}

let freergn z,, in % ps3 unique
let freergn z, in % p1 unique
halt O
) at z,,

in
count [p2a p3, {pla p3}] (‘Tp2 ,yten, COIlt)

Figure 4.15: Count with Efficient Memory Usage

92

4.5.1 Aggregate Data Structures

The region inference algorithm used in the ML Kit with Regions (or simply “the Kit”) [TBET 98]
all the nodes in an aggregate data structure in the same region. Intuitively, their algorithm
might give S-lists the following recursive type:

List[r, 8] = pa.(8(1)) at r U (8(2),8,a) at r

This type indicates that all of the cons cells in the list inhabit the same region (the region r).
When one aggregate data structure contains another aggregate data structure, the Kit may
place them in different regions. Hence, a list of lists could have the following form:

Listof List[ri,r9,8] = List[ry, List[re, 5]]
= pa.(S(1)) at m U (S(2), List[rs, 8], a) at r;

This organization is very effective when all of the nodes in a list, tree or other aggregate have
the same or similar lifetimes. However, a different strategy is required when the lifetimes of
nodes in the aggregate differ. This may well be the case in a long-lived data structure that
has insert, lookup and delete functions. From time to time, nodes are inserted into the data
structure and then later removed. However, if we use the type structure explained above then
when a node is removed, it cannot be deallocated because it continues to inhabit the same
region as all the other nodes in the data structure. In fact, no nodes can be deleted until the
entire long-lived data structure is disposed of.

Tofte and others [TBE*98] have developed some programming techniques that often help
avoid this sort of pitfall in practice. One such technique is to mimic a copying garbage collector.
Once in a while, the programmer explicitly copies the entire aggregate data structure from the
old region (analogous to the copying collector’s from space) to a freshly allocated region (analo-
gous to the copying collector’s to space) and then deallocates the old region. One disadvantage
of using this clever trick is that the programmer must track down all references into the old
region themselves and make sure these references are never used in the future. Otherwise, the
old region will not be able to be deallocated. A second disadvantage is that if the aggregate is
a very large data structure then copying it will be expensive. As is the case for any copying
garbage collector, space proportional to twice the size of the structure is required.

An alternative solution is to combine my region framework with the alias types described
in chapter 3. Alias types allow fine-grained reuse that complements the courser-grained region
approach. The key is to use a (linear) existential type to encapsulate the region used to store
each node of the data structure. For example, here is an alternative list definition:

List'[] =
pa3[p | {p}-(S(1),p handle) at p U
3o, s Ca | {0} {¢p > B} * {Ca > a}].
(8(2), p handle, pir((s), pir(Ca)) at p

Every node in this list is stored in a distinct region. Therefore, when nodes are removed from
list, they can be disposed of individually without having to delete the entire list. Notice that
each list cell now contains a region handle to make deallocation possible.

We can define a list of lists just as easily as we did before:

Listof List'[8] = List'[List'[5]]

93

However, depending upon the context, we might choose to mix and match different list repre-
sentations. If each of the internal lists has a different lifetime than the others but the cells of
the internal lists have similar lifetimes then we might choose the type:

Listof List"[f] =
pa3p | {p}]-(S(1), p handle) at p U
3P s Ca [{p} + {Cp = List[p, B} * {Ca = }].
(8(2), p handle, pir((s), pir(Ca)) at p

This time, each inner list is a different region than any other inner list, but all cells in each inner
list are in the same region. The real benefit of type theory is the ease with which the various
type-theoretic abstractions compose with one another. In this case, alias types and regions are
highly compatible and bringing them together results in a powerful language for typed memory
management.

4.5.2 Related Work

Throughout this thesis I have emphasized the connections between linear typing and the
novel type systems I have developed. However, there are several other formalisms for rea-
soning about computational effects in programming languages including type-and-effects sys-
tems [GL86, Luc87, JG91, TT94] and monads [Mog91, PJW93, LPJ95, Fil96]. Many researchers
are actively investigating the relationships between these different areas, but the overall picture
is not yet fully understood. I am eager to continue this line of research and explore the formal
links between this system and the others.

In related work with Karl Crary and Greg Morrisett [WCMO00], I have given a translation
from Tofte and Talpin’s region calculus into the Capability Calculus, demonstrating that the
relationship between type and effect systems and capabilities is quite close. A necessary pre-
requisite for the use of either system is type inference, performed by a programmer or compiler,
and much of the research into effects systems has concentrated on this difficult task. However,
because of the focus on inference, effect systems are usually formulated as a bottom-up syn-
thesis of effects. This work may viewed as producing verifiable evidence of the correctness of
an inference. Hence, while effect systems typically work bottom-up, specifying the effects that
might occur, we take a top-down approach, specifying by capabilities the effects that are per-
mitted to occur. Moreover, unlike Tofte and Talpin’s effect system, capabilities are sensitive to
control-flow. Rather than constructing the overall effect of an expression by taking the union of
the effects of the subexpressions, and thereby losing information about the order of evaluation,
a type checker verifies programs are safe by checking one instruction after another and using
the capability produced by previous instructions to verify that following instructions are safe.
Because capabilities take evaluation order into consideration, it is possible to use capabilities
to ensure that a sequence of system calls is made in the correct order or that programs fol-
low particular security protocols. This is a fruitful area for research and it is discussed more
completely in chapter 5.

A connection can also be drawn between capabilities and monadic type systems. Work
relating effects to monads has viewed effectful functions as pure functions that return state
transformers. This might be called an ex post view: the effect takes place after the function’s
execution. In contrast, we take an ex ante view in which the capability to perform the relevant
effect must be satisfied before the function’s execution. Nevertheless, there is considerable simi-
larity between the views; just as monads can be used to ensure that the store is single-threaded

94

through a computation, our typing rules thread a capability (which summarizes aspects of the
store) along the execution path of a program.

Region-Based Memory Management There has been much prior research on the theory
and implementation of region-based memory management. With respect to implementation,
Birkedal et al. [BTV96] describe several optimizations to the basic region-allocation scheme
that are used in the ML Kit with Regions to improve space-efficiency. One of their observations
is that functions can be used in two different contexts: one context in which no live object
remains in a region after a function call and a second context in which there may be live
objects remaining in a region after a call. In order to avoid code duplication and yet ensure
efficient space usage, the call site passes information to the called function at run time. Using
this information, the function may make dynamic decisions about region deallocation. The
type system we present here is not powerful enough to encode these storage-mode polymorphic
functions. However, we believe these dynamic tests may be viewed as a form of intensional
type analysis [HM95, CWM98], and, therefore, if we augment the Capability Calculus with a
variant of Harper and Morrisett’s typecase mechanism, we may be able to verify the results of
storage-mode optimizations as well.

Aiken et al. [AFL95] have also studied how to optimize the original Tofte-Talpin region
framework. As in the Capability Calculus, they separate region allocation from region deal-
location. However, they have not presented a technique for verifying that the results of their
optimizations are safe. We conjecture, based on the soundness proof for Aiken et al.’s analyses,
that the analysis could be used to produce typing annotations and that verification could take
place using the Capability Calculus.

Gay and Aiken [GA98] have developed extensions to C that gives programmers complete
control over region allocation and deallocation. They use reference counting to prevent pro-
grammers from accidentally accessing deallocated regions. Hawblitzel and von Eicken [HvE9S]
have also used the notion of a region in their language Passport to support sharing and revo-
cation between multiple protection domains. Both of these groups use run-time checking to
ensure safety and it would be interesting to investigate hybrid systems that combine features
of our static type system with more dynamic systems.

Tofte and Talpin [TT97] have studied the soundness of region-based type systems at length.
They use a greatest fixed-point construction and a co-inductive argument to prove the correct-
ness of their region-inference scheme. In contrast, our formulation of the Capability Calculus
allows us to use the syntactic proof techniques popularized by Wright and Felleisen [WF94].
However, despite the high-level differences between the proof techniques, there are illuminating
similarities in some of the details. Most notably, Tofte and Talpin’s proof involves a notion
of consistency that relates source and target values in the region inference translation. Con-
sistency is defined with respect to the effect () of the rest of the computation. Informally,
one of the consistency conditions states that a source value is consistent with a target value in
region p, with respect to effect 1, if p does not appear in 3. Hence, if p is not in the effect,
or capability, of the rest of the computation, then we can deallocate that region because the
rest of the computation cannot distinguish a dangling pointer into p from a value in the source
language. Therefore, within the Tofte-Talpin proof, the effect of the rest of the computation
plays a role very similar to a capability. We are able to give a syntactic proof of soundness for
our language because continuations and their capabilities are explicit in our framework whereas
Tofte and Talpin introduce this idea as a meta-level construction in their proof.

Since the Capability Calculus was developed, other research groups have investigated alter-

95

native proofs of Tofte and Talpin’s type system. Banerjee, Heintz and Riecke [BHR99] translate
a simplified version of the region calculus (without effect variables) into a variant of system F.
They develop a model for the language and use it to prove deallocation is safe. Dal Zilio and
Gordon [DGOO] discuss the relationship between Tofte and Talpin’s language and the 7-calculus
with groups. They also give an extremely elegant proof of soundness (again without consid-
ering effect variables). It may be a simple matter to extend these proofs to handle Tofte and
Talpin’s effect variables, but this point deserves scrutiny. During the initial development of
my capability framework, I only considered linear and duplicatable regions {p} and {p} and
simple linear effect variables e. However, after attempting a translation of Tofte and Talpin’s
full region calculus, I discovered that the non-linear type constructor had to be lifted to effect
variables as in € and, more generally, to arbitrary capabilities as in C.

Chapter 5

Summary and Directions for Future
Research

1t is difficult to make predictions,
especially about the future.

— Yogi Berra

In this thesis, I have developed type systems capable of encoding a variety of memory
management invariants and for each type system, I have formally investigated two central
meta-theoretic properties. The first property is Type Soundness. It ensures programs do not
crash due to memory errors and is crucial if the type system is to be used in mission-critical
software or as the basis of a security system. The second property is a garbage collection
property. It prevents programs from wastefully discarding memory resources and can be used
to limit certain kinds of memory leaks.

The central novelty of the more advanced type systems described in this thesis is that they
view the store as an implicit additional parameter to every function and give it a type. This
sort of store-passing style is quite common in Hoare-logic program correctness proofs, but I do
not know of any other type systems that use the idea.! Given a collection of store types, it is
possible to apply more standard type theoretic ideas to the problem of memory management:

e Singleton types specify object identity. They provide useful must-alias information both
for single memory blocks and for entire memory regions.

e Linear types safely control state changes: An update can alter the form of a linear object
and such changes can be represented in the object’s type. The deallocation operation
transforms a useful object into an unusable one, and again, the state transition may be
represented in the type system.

e Values of intuitionistic type may be efficiently copied and shared.

e Parametric polymorphism helps increase code reuse. Location, region and store polymor-
phism helps hide the size and shape of the store and inconsequential details of region
names and concrete locations.

!Haskell and some other purely functional languages encapsulate the store in a monad, which gets threaded
through the program in a store-passing style. However, these monadic systems do reveal the store’s structure
and, consequently, are not nearly as expressive as the languages described in this thesis.

96

97

e Bounded parametric polymorphism makes it possible to restrict privileges on a particular
data structure for the duration of a function call but to recover these privileges when the
function returns.

e Existential types encapsulate large data structures and hide the details from the outside
world.

e Recursive types specify repeating structure in the store.

5.1 Other Memory Management Strategies

There are so many different memory management strategies that I could not possibly explore
them all in a single thesis.? As a result, there is still much work to be done this topic.

Regions And Linear Types In chapter 4, I informally developed the idea that regions can
be combined with linear or alias types. Certainly, there is work to be done to fully formalize
these ideas. However, perhaps more interesting is research that attempts to lift these ideas out of
compiler intermediate and target languages and exposes them to source language programmers.
Currently, there are no safe languages that provide explicit memory management primitives.
For space-critical applications, it is almost always necessary to live dangerously with a language
like C. I hope that using the advanced type systems described in this thesis, it will be possible
to define a C-like language with explicit control over memory. The central challenge in this
project is to find the right balance between explicit programmer annotations that give control
over allocation and type inference techniques that take care of checking unimportant details
and that scale effectively. It is also extremely important that the cost model be well-defined and
easy to understand so that programmers can analyze and rewrite their own programs to improve
performance. The Popcorn language [MCG™99] has C syntax and control-flow constructs but
an ML-style typing discipline. It is an ideal starting point for such an effort. Deline and
Féahndrich [DF00] are in the preliminary stages of a similar design.

Reference Counting Chirimar, Gunter and Riecke [CGR92] demonstrated that reference
counting has close connections with intuitionistic linear type systems by proving that the former
can safely implement the latter. One can easily imagine that a similar relationship holds between
a calculus of linear and intuitionistic regions (similar to the one proposed in chapter 4) and the
reference counting implementation of regions for C investigated by Gay and Aiken [GA98]. One
avenue for future research is to try to use this observation to optimize Gay and Aiken’s reference
counting strategy by performing run-time reference counting operations at compile time instead.
Static checking also detects errors earlier in the software development process. Alternatively,
using dynamic reference counts may increase the flexibility of (mostly) static region-based type
systems considerably. Certainly, there is a lot of room to explore the trade-offs between static
and dynamic approaches to memory management.

Stack Allocation In chapter 3, I showed how to encode a stack typing discipline in the
alias types framework. In the encoding, each activation record was allocated on the heap so
sharing of stack frames could be handled in the same way as sharing of any other heap-allocated
data structure. In earlier work with Greg Morrisett, Karl Crary and Neal Glew [MCGW98], I

2Thank God.

98

presented a typing discipline for a more conventional stack implementation. The latter typing
discipline has a much more limited capacity to represent aliasing. It gives rise to two classes
of stack pointers, a ”strong” stack pointer that lives in a fixed register and any number of
weak stack pointers that depend on it. Modifications to the strong pointer may invalidate a
weak pointer under certain conditions. Moreover, pointers to the stack are always distinguished
from pointers into the heap, making it impossible to encode certain stack-allocation strategies.
It appears as though combining the technology described in this thesis, particularly singleton
types and bounded quantification, with the earlier stack typing discipline could eliminate many,
if not all, of these deficiencies.

Tracing Garbage Collection There are countless tracing garbage collection algorithims.
Wilson [Wil92] provides an excellent survey of the most common ones. While a great deal
is known about garbage collection when it is the only memory management technique being
used, more research is required to discover how it interacts with static memory management
techniques, such as those described in this thesis. Neils Hallsberg has an excellent start in this
area. He has investigated the trade-offs involved in combining region inference and garbage
collection [Hal99]. Wang and Appel [WA99] are attempting to write a garbage collector in a
type-safe programming language with regions.

5.2 Towards More Expressive Safety Policies

The goal of this thesis is to demonstrate how to use type-theoretic technology to enforce memory
safety. However, similar techniques may be used to enforce other safety policies.

Concurrency It is possible to ensure mutually-exclusive access to shared mutable data in a
multi-threaded environment, by viewing locks as analogous to regions. More precisely, the set
of locks currently held by a thread may be described by a type C and every function could
be annotated with the lock set it requires for safe execution (just as a function in the region
calculus is annotated with the live regions it requires). If we associate each piece of sensitive
data with a lock, we can statically check that every client of the data obtains the corresponding
lock before attempting access. When the code releases the lock, the type system would revoke
the capability to dereference the data, just as it revokes the capability to dereference certain
objects when a region is freed. Flanagan and Abadi [FA99] have investigated this idea in the
context of a high-level lexically-scoped language. I conjecture it is possible to compile Flanagan
and Abadi’s locking language into a variant of my region calculus with locking primitives instead
of allocation primitives.

Reliability and Security Files, windows, executable programs, CPU cycles and hardware
devices such as printers or network ports are all valuable resources; a well-functioning computer
system must carefully control how these components are manipulated. In an environment of
cooperating processes, safe use of common resources is an important reliability issue. When
a software system interacts with one or more untrusted and potentially malicious agents, the
issue becomes one of security. In either case, when the stakes are high, it becomes increasingly
important to be able to give strong guarantees about software quality. Once again, in these
situations, it appears that type theory may be able to contribute to a solution. Static type
systems detect errors early in the software development cycle, well before software is deployed
in mission-critical or high-security domains.

99

By generalizing store types so they express a broader collection of constraints on the state
of the computation and its environment, it is possible to restrict access to hardware devices and
disallow dissemination of private files. It is also possible to check that untrusted software obeys
particular security protocols. I have taken preliminary steps in this direction by defining a flex-
ible, typed intermediate language capable of representing and verifying a wide range of security
policies [Wal00]. Several other researchers, including Skalka and Smith [SS00] and Deline and
Fahndrich [DF00] have initiated projects for analysis and verification of similar properties in
high-level languages. Still others [RG94, NL97, HP99, CW00] have studied termination prop-
erties and resource bounds policies. However, the research space remains wide open. We still
do not know how to integrate these techniques with mainstream programming languages for
the analysis and certification of a broad, practical set of safety policies.

5.3 Conclusions

Accidentally dereferencing dangling pointers and forgetting to deallocate dead objects are
amongst the most common programming errors in languages with explicit memory manage-
ment. This thesis is the first step in a research program aimed at eliminating these sorts of
errors through the use of flexible static type systems. It demonstrates that by combining linear
and dependent typing mechanisms, it is possible to control aliasing and to enforce a variety
of memory management invariants. Moreover, through the use of operational semantics and
relatively straightforward syntactic proof techniques, I have obtained strong theorems about
memory safety and garbage collection properties of the languages defined herein. The next
step in my research program is to bring these advanced type-theoretic techniques to bear on
main-stream source-level programming languages. Careful consideration of type structure and
programming language design can have a profound impact on the reliability, integrity and
security of practical software systems.

Appendix A

Alias Type Soundness & (zarbage
Collection Properties

The proof of aliasing type soundness is the first write-only appendix of this thesis.
Lemma 21 If At 4 c: k then FV(c) C Dom(A).
Proof: By induction on the kinding and equality derivations.
Lemma 22 If At c:k and a Dom(A) then A,a:k' Fac: K
Proof: By induction on the kinding derivation.
Lemma 23 (Type Substitution) If -4 c: k and 6 = [c/a] then
1. if Ak, A'sT Eqg v 7 then A, A 0(T) B4 0(v) - 6(7).
2. if Ak, A'sT;C 4 e then A, A 0(T);0(C) a4 0(e)
Proof: By induction on the typing derivation.
Lemma 24 (Value Substitution) If ;-4 v : 7 and 0 = [v/z] then
1. if AT, TV g o' o 7 then AT, T 4 0(0') 7/
2. if AT, 27, T';C Fy e then AT, T C 4 6(e)
Proof: By induction on the typing derivation.

Lemma 25 If for all t € Dom(T), A 4 T'(z) : Type and A;T Fa v :7 and A;T Fqa v 7/
then A4 7=17":Type

Proof: By induction on the typing derivation.

Lemma 26 If for all x € Dom(T),A 4 T'(z) =T'(z) : Type and A4 C = C': Store then
1. if A;sTFgqv:T then AT v T

2. if A;T;C 4 e then AT ;C' 4 e

100

101

Proof: By induction on the typing derivation.

Lemma 27 (Canonical Small Value Forms) If ;-4 v: 7 then
1. if T = 8(i) then v = S(7)
2. if T = ptr(£) then v = ptr(¥)
3. if T =V[A].(C,11,...,Tn) = O then

(a) v=""[c,...,c,] and
v =fix f [AANC!, 17, .. 2T €
(b) A" = aiiky, ..., apiky

(c) for1<i<m, -Fad:k;
(d) - b4 fix f[AANC, 2171, ..y TpiTy) €2 T

(e) -Fa (V[AL(C',7],...,7)) = 0)[c1,--.,cn/A"] = (V[AL(C, 71, -

Proof: By induction on the typing derivation.

Lemma 28 (Canonical Storable Value Forms) Ifl4 h: 7 then
1. if T ={(71,...,7,) then
(a) h = (v1,-..,0n)
(b) bah;:m
2. if T =7 U7 then
(4) h = wnion,y .y ()
(b) Fa h':1; where i =1 or2
(c) -Fam =] :Type
(d) -4 10 =T1):Type
3. if r=reca(A).7"(c1,...,¢,) then
(a) h = I'OllT// (h’)
(b) Fah':Treca(A).7'/a]ler,. .., cn/A]
(c) -FaT=1":Type
4. if T=3[A | C).7" then
(a) h = PaCk[cl,...,cn|S]as7'" (hl)
(b) -Fa1=1":Type
(c) A =ai:kl,...,anky
(d) for1<i<m,-Fac:k
(e) Fah':7'[c1,...,cn/A]
(f) FaS:Clei,...,cn/A]

Proof: By induction on the typing derivation.

.yTn) = 0):

102

Lemma 29 b4 {{1 = 11,... .y = T} = {¢) = 7,..., L, — 7]} : Store if and only if

1. n=m and for some one-to-one function 7 : {1,...,m} — {1,...,m},
Ay A

2. for 1 <i<m, -FaTp; =7]:Type
Proof:

(=) By induction on the store type equality judgement.
(«=) By successive application of the rule AT-exchange, we have:

cha{li= T,y T = {fﬂ(l) = Tr(1)s - - - ,fﬂ(m) — Tﬁ(m)} : Store
Now, for 1 <4 <m, - Fa 7 = 7, : Type therefore, by the congruence rule for store types:

A TR =7 : Type for 1 <i<m

-Fa {fﬂ(l) = Tr()s--- ,éw(m) = Tw(m)} = {61 — ’T{, B 7'7In} : Store
By transitivity of equality,

ba{li =T, = Ty = {0 = T, b, = T} Store

|

Lemma 30 (Canonical Store Forms) Ift4 S:C and - +4 C = C' x {¢,, — 7).} : Store
then

1. 8 =840+ h}

2., 8:C
3. Fah:1l,
Proof:

The typing derivation 4 S : C has the form
S = {El = hi,...,l, hn}

FAaC={l1—11,...,4, — T} : Store
Fah;:m (for 1 <i<n)
FaS:C

From the fact that - -4 C = C' % {£,, — 7).} : Store, and by Lemma 11 and Lemma 21, C’
can contain no free variables and therefore may be written {¢} — 7{,...,¢ _ — 7/ _}. By
symmetry and transitivity of equality,

ba{li ol Tl Ty =l = Ty, ... Ly > T,)} 2 Store

By lemma 29, we know that

1. n = m and for some one-to-one function 7 : {1,...,m} — {1,...,m},
La(tys- s La(m) = €15+ by

103

2. for 1 <i<m, -t 7pq) =7, : Type
Hence,

3 n = m and for some one-to-one function 7 : {1,...,m} — {1,...,m},
!

Ew(l),...,&r(m,l) zéll,..., m—1
4 for 1 <i<m—1, ka7 =7]: Type

Consequently, assuming 7(m) = k, by lemma 29, we know that
-4 C' = {El > Ty eeey D1 > kal,ek—kl > Tkl -- A Tm} : Store

Let S" be {21 — hl, - ,gk,1 — hk,1,8k+1 — hk_|_1, - ,em — hm} We have S = S’{ﬁk — hk}
We also know from the judgement -4 C : S that for 1 <i <m, 1 #k, -4 h; : 7;. Therefore,

S'={l = h1,.. g1 = hg—1,Leg1 = Bggry oo by = hin}
-4 C' = {El = T1,...,€k_1 '_>7'k—1a£k+1 — T]H_l,...,fm = Tm} : Store
|_Ahz'57'z' (fOIlSiSm,’i;fék‘)
Fa 8 :C

From the judgement 4 S : C, we also know that b4 hy : 7, and since - b4 7, = 7/, : Type, we
have b4 h : 7], using the rule A-veq.

Ol

Lemma 31 Ift4 S'{¢+— h}:C and -+4 C =C"«x{£+— 7} : Store then
1. k48 :C
2. Fah:T

Proof: Corollary of Canonical Store Forms.

Lemma 32 If
1. kg S"{{—h}:C
2. - FaC=C"x{{— 7} :Store
3. Fah' 7
then b4 S"{— K} :C'+x{— 7'}
Proof:

By (1), (2), and Lemma 31, F4 S’ : C'. Hence, by (3) and inspection of the store typing
judgement, -4 S'{£+ h'} : C'* {€ — 7'}

|

Lemma 33 If Dom(S) N Dom(S") =0 andb4 S:C andb4 S": C' thent4 SS': CxC’

104

Proof:

Since Dom(S) N Dom(S’) = 0, we know that SS’ is a store. Inspection of the store typing
judgement and examination of the definition of equality provides the result.

Ol
Lemma 34

1. If A;sT -4 v 7 then L(v) = 0.

2. If A;T;C F4 e then L(e) = 0.
Proof: By induction on the typing derivations.
Lemma 35 (Preservation) Ift4 (S,e) and (S,e) —>a (S',€') then 4 (', ¢€)
Proof:
By cases on the operational rule that applied.

e Operational Rule:

(S,1et ¢,z =mnew (i) in e) —> 4 (S{¢ — h},e[¢/C][ptr(£)/x])

%

—f—
where £ ¢ S;eand h = (_,...,_)
Typing Assumption:

1. GU(S)
2. FS:C.

3. ;;C k4 let(,x =new (i) in e.
First, we know GU(S{¢ +— h}) since GU(S) and £ ¢ S.

Second, we can conclude:
”~ L N

Fa h: (junk,...,junk)

Consequently, by inspection of the store typing judgement,

7
A
Ve ~

FaS{¢{— h}:Cx*x{l— (junk,...,junk)}

Third, the premise of the instruction typing judgement is

7
A
Ve ~

C:Loc; z:ptr(C); C + {¢ — (junk,...,junk)} F4 e

By Type and Value Substitution Lemmas,

7
A
- ™~

5 C % {€ — (junk,...,junk)} b4 e[l/(][ptr(£)/x]

Consequently, -4 (S{£— h},e[l/(][ptr(£)/z])

105

Operational Rule:
(S{€— (v1,...,vn)}, free ptr(f);e) —a (S,€)

Typing Assumption:
1. GU(S{f — (v1,...,vn)}
2. FaS{l— (v1,...,0n)} -
3. ;3 C k4 free ptr(f);e.

From 1, we have GU(S).

The instruction judgement 3 must have the form:

)
C.

e ba v ptr(f)
FaC=C"x{l— (11,...,7)} : Store
50 g
;C 4 free vse

Hence, by Lemma 31, we can deduce that -4 S : C".
Moreover, we have -;-; C' -4 e directly.
Therefore, 4 (S, e).

Operational Rule:

(S{€+ (v1,...,vn)},1let £ =ptr(f).iine) —i4
(S{€ — (v1,...,vn)}, €e[vi/z])
where 1 <i<n
Typing Assumption:
1. GU(S{£ > (v1,...,vn)})
2. b4 S{€— (v1,...,up)} : C.
3. ;;C Falet x =ptr(f).iine.

Where the instruction derivation has the following form:

5 a4 ptr(f) = ptr(f)
FaC=C"x{— (71,...,75)} : Store
sor;Clhae
550 Fglet z=ptr(f).iine

The instruction derivation contains the fact -;z:7;;C 4 e and by Lemma 31, we can
conclude that -;- F4 (v1,...,v,) : (71,...,7,). By Canonical Storable Value Forms, we
can conclude that ;- F4 v; : 7. Hence, from the Value Substitution Lemma, we know
that -;+; C 4 e[v;/z]. From this judgement and (1) and (2), we can conclude F4 (S{£+—
(v1,...,0n)}, e[vi/x])

Operational Rule:

(S{€— (v1,. o, 055, vp) }, ptr(f).8:=0";€) —4
(S{€— (v1,...,0 ...)}, €)

Typing Assumption:

106

1. GU(S{f — (v1,...,Viy...,0n)})
2. FaS{l— (v1,...,0i,...,05)} : C.
3. 55 C Faptr(l).i:=v;e.

The instruction typing judgement has the form:

3+ Fa ptr(f) : ptr(£)
gebad T
FaC=C"x{{—>(r,...,Tiy...,Tn)} : Store
g C' s {l—= (T1,...,7y...,Ta)Fae

5 C kg ptr(f).a:=v'se

By Lemma 31 we can conclude that
Fa(viyeeoyon) i (T1,.. 0y Tn)
By Canonical Storable Value Forms, we can deduce that (4) for all 1 <i <mn
sebavjiT

From the instruction typing judgement, we also have the fact that (5)

-;-I—AU':T

By Lemma 34, L(v;) = L(v') = 0.
Consequently, since GU(S{£ — (v1,...,0i,...,n)}), we know (6)

GU(S{L — (v1,...,v ... un)})

By Lemma 31 we can also conclude that 4 S : C'. From (4), (5), and the typing rule for
tuples, we can conclude that (7)

geba (v, v o) (T T Th)

Therefore, from (2), (7), and the constraint equality judgement from the instruction typing
judgement, we can conclude by Lemma 32 that

FaS{€m (vy,...,v o)} O« {l= (T, Ty)}
These facts and the instruction typing judgement imply that
Fa (S{€m (v1,...,v",...,0n)) €)
Operational Rule
(S{€ > h},if ptr(f) (e1 | e2)) —a (S{€L— h'},€)
where
1or2

h = union; . (k')
K = §1('"§m(<8(i),vla--'avn>)"')

.
|

Typing Assumption:

107

1. GU(S{£+— h})
2. b4 S{{— h}:C.
3. 5 CFaif ptr(f) (e1 | e2).
Where the instruction typing judgement has the form:

-4 ptr(f) : ptr()
FaC=C"x{{— 11 UTy}: Store
-Fam =7]:Type
-Fa T =17 Type
s C' x> 1mtlaer
s C'x{l— mlae
5 C Faif ptr(f) (e1 | e2)

Where 7 is
3[AT | C1].---3[AL | CH1A(S(1), 715+, Th)
and 75 is

AT | G-+~ F[Ar | Crl(S(2), 71,)

n

First, by inspection of the definition of L(:), we can conclude that L(h') = L(h) and
therefore that L(S{{ — h'}) = L(S{¢ — h}). Since GU(S{¢{ — h}) we can conclude
GU(S{L — h'}).

Second, from (2) and by Canonical Store Forms and Canonical Value Forms, we can
conclude that

Fah':
Hence, by Lemma 32, we can deduce that
FaS{L—=h}:C' s {{— 7}
From the instruction typing judgement, we have
s C' s {1} bae

Therefore, we can conclude that -4 (S{¢ — h'},e;).

e Operational Rule

(S,v(vi,...,vn)) —4 (S, 60(e))

where
v = Ve, ..., cm]
vl = fix f [AN(C,z1:71, ... TniTh) €
0 = ey o em/AlV/fv1y- - son/T1, .. Ty
A = ﬁl:ﬁla---,ﬁm:”m
Typing Assumption:
1. GU(S)
2. F48:C.

3. 55 CFav(vr,y...,vp).

108

Where the instruction typing judgement has the form:

.;-I—AU:V[']-(C,TI""’TH)_}O
s-bhaviim 5 hatn

5 CFav(vi,...,vp)

By Canonical Small Value Forms,
A; fV[ALC, 7, ..., 1) = 0,217, T Th Ol e

and
kA ONV[).(C' 1, .. 1)) = 0) =V[].(C,T4,...,) — 0 : Type

By definition of equality - -4 (C') = C : Store and also, for 1 <7 < m,
kG K

From the instruction typing judgement, each value v; is well-formed with type 7;. Conse-
quently, by Type and Value Substitution, we know that

50(C") B4 0(e)
By Lemma 26 and the fact that - -4 8(C') = C : Store, we have
550 Fa 6(e)

From this fact (1) and (2), we can conclude 4 (S, 6(e)).

Operational Rule
(S, coerce(y);e) —4 (5, 0(e))

where y(S) —4 S’,0 and v = union,yr,(£) or roll, (£) or unroll(¥) is similar to the
case for the instruction v.i:=v';e.

Operational Rule

(S{€ > h},coerce(y);e) —a (SS'{£+— h'},0(e))

where
h packy, . c.1slas3alc)r (')
v = unpack/ZwithA
0 = [Cl,...,cn/A]
A = piki, ..., Buikn

Typing Assumption:
1. GU(S{£+— h})
2. F4 S{¢{—h}:C.
3. -3 C F 4 coerce(y);e.

Where the coercion typing judgement is

. |_A C=0C"+% {Z = H[A | C,]_T} - Store
3 C F4 unpacklwithA = A;C"«{{ — 7} x C'

109

and the instruction typing judgement implies e is well-formed:
A C"s {1} xC'Fae

By inspection of the definition of L(-), we can deduce that L(S{¢ +— h}) =L(SS'{£— h'})
Therefore, since
GU(S{¢ — h})

, we can conclude that

GU(SS'{¢ — h'})

By (2), the coercion typing judgement and Lemma 31 we can deduce that 4 h : J[A |
C'].r. Consequently, by Canonical Storable Value Forms, we can conclude that F4 A’ :
0(7). From this fact, (2), and the equality from the coercion typing judgement, using
Lemma 32, we can conclude that

FaS{—h'}:C"x{t— 0(7)}
By Canonical Storable Value forms, we also know that
Fa S :0(C")

Therefore, by Lemma 33 we can conclude that

FaS{— h}S :C"x{f— 0(1)} x 6(C")
Hence the equivalent store is also well-formed:

FaSS{L—h}:C"x{f— 6(1)} x6(C")
Canonical Storable Value Forms also implies that for 1 < < n,

4K

Now by the instruction typing judgement and the Type Substitution Lemma we can deduce
that
5 C"x {l 0(7)} *0(C") 4 6(e)

Consequently, 4 (SS'{¢ — h'},0(e)).
Operational Rule:

(SS'{f s h},coerce(y);e) —4 (S{£— h'},e)

where
n = pack, .. |sas3alcr.r(R)
v = packy, .. j9c)as 3[a] (£)
0 = [cl,...,cn/A
S’ = {gllﬁhl,...,gmlﬁhm}

9(0’) = {21 = T1y.-- ,ém — Tm}
Typing Assumption:
1. GU(SS'{¢ — h})

O

110

2. F4 88'{¢— h}:C.
3. -3 C F 4 coerce(y);e.
Where the coercion typing judgement is
A= B1:K1y. .., PBrikin ‘Facik; (for1<i<n)
P4 C=C"x{+— 6(r)} x6(C') : Store

5C 4 paCk[ch...,cn\O(C”)]asEI[A\C’].T(E) =
sC"x {— 3[A | C').7}

and the instruction typing judgement implies e is well-formed:
5C"x (L= J[A]|CryFae

By inspection of the definition of L(-), we can deduce that L(SS'{£ — h}) = L(S{£— h'}).
Therefore, since GU(SS'{/ — h}), we can conclude that (4) GU(S{¢ — h'}).

From the definitions above, we know that
SS"{ s h} =8S{l1+— h1,... b > Ay £ — B}

Moreover, the constraint equality judgement in the coercion typing judgement with the
definition of 6(C"’) implies that

FAC=C"x{ty = 11,... by > T, £ — 0(7)} : Store

Now from (2) and by induction on m and Lemma 31, we can conclude the following facts:
6. Fah:0(7)
7. for 1 <i<m, g h;:7
8. F48:C"

From (7), we can prove k4 S’ : 8(C") using the store typing rule. Consequently, we can
show that h' is well-formed:
A= Bi:k1, ..., Bnikn ‘Faciik; (for 1<i<n)
FaS":6(C") Fah:0(7)
Fa packy, . c.|s1as3(alcr.-(B) 1 3[A [Cr

Since F4 S : C" and 4 B’ : I[A | C'].7, we can conclude by the store typing judgement
that (8)

Fa ST WY C" % {0 I[A |)1}

Finally, using (4), (5), (8), we can conclude that k4 (S{£+— h'},e).

Lemma 36 (Progress) If b4 (S,e) then either e = halt i or (S,e) —4 (S, €).

Proof: By cases on the syntax of the first instruction of e. The proof makes heavy use of the
Canonical Forms lemmas. Here, we show a couple of representative cases.

111

e (S,1et(,z =new (i) in ;e). This program always steps to
1

(S{= (...,)} ell/CDlper (6) /2))

where /£ is some location not present in S.

e (S, free v;e).
Typing Assumption:
1. GU(S)

2. k4 S:C.
3. ;-3 C 4 free v;e.
The instruction typing judgement must have the form:
b v ptr(l)
FaC=C"x{{ (11,...,m7)} : Store
550 Fae
;C k4 free vse

By Canonical Small Value Forms, v must be ptr(¢). By Canonical Store Forms, S =
S{¢+ h'} and 4 B’ : (1y,...,7,). By Canonical Storable Value Forms again, h’ must
be (v1,...,v,). Therefore this program meets the precondition for the operational rule
for free and it steps to (S, e).

e halt v. By inspection of the typing rule for halt, we see that

gsobaviptr(l) -FAC=C"x{€— (S(1))U(S(2))} : Store
3 CF4halt v

By Canonical Small Value Forms, v must be ptr(£). By Canonical Store Forms, S =
{£ — h'}. By Canonical Storable Value Forms

h' = unionsyus() ((S(1))
Therefore, (S,halt v) is a well-formed terminal state (not stuck).

e (S, coerce();e) where v = unpack/with A
Typing Assumption:

1. Gu(S)
2. F48:C.
3. ;3 C F 4 coerce(y);e.

Where the coercion typing judgement has the form:

. l_A C=0C"+% {E 4 H[A ‘ Cl]_T} : Store
3C k4 unpackfwithA = A;C"x {{ — 7} x C'

112

and the instruction typing judgement implies e is well-formed:
A;-;C”*{ér—)r}*C' Fae
By Canonical Store Forms, S = §'{£ +— h} and
Fah:3[A|CNT
By Canonical Value Forms,

h = paCk[cl,...,cn|S”]asE|[A\C’].T (h,)

By inspection of the definition of GU(S), we can conclude that
(Dom(S") U{£}) N Dom(S") =0

Therefore, S’S"{¢ +— h} is a store. Canonical Value Forms also implies that A =
Bi:K1, ..., Bnik1 and therefore [cq,...,c,/A] is a substitution. Therefore,

(S, coerce(y);e)v —s4 (S'S"{l h'},elcy, ..., cn/A))

Definition 37 (Stuck Program) A program (S, e) is stuck if no operational rule applies and
e is not halt 1.

Theorem 38 (Alias Type Soundness) Ift4 (S,e) and
(S,e) —% (S',€) then (S',¢€') is not stuck.

Proof: By induction on the length of the evaluation sequence. Uses Progress and Preserva-
tion.

Theorem 39 (Alias Type Complete Collection)

If -4 (S,e) and (S,e) —% (S, halt v) then for some location £, v = ptr(f) and S' = {{ —
uniong(1yyuis(2)) ((S()))}

Proof:

By Progress and Preservation and induction on the length of the evaluation sequence, 4
(S',halt v). By inspection of the typing judgement for halt and Canonical Value Forms,
v = ptr(¢) for some location £. By inspection of the typing judgement again and Canonical
Store Forms, there exists an A such that

1. §'=8"{{— h}
2. k48" 0
3. k4 h: (S(1))U(S(2))

From 3 and Canonical Value Forms, we can conclude that

h = union;s(1)yus(2)) ((S(i)))

for some i. By induction on the type equality judgement, we can deduce that () is equal to
() and no other store type. Therefore, from 2 and inspection of the store typing rule, we
know that S” must be the empty map and consequently, from 1, S’ is simply equal to {£ —

unions(1yus(z)) ((S(9))}-
O

Appendix B

Capability Calculus Type Soundness

&

Garbage Collection Properties

Overview The proof is broken down into a series of lemmas, most of which are proven by
induction on the typing derivations or by induction on the syntax of the language. The proof
culminates in a proof Type Soundness and Complete Collection. The supporting lemmas are
grouped as follows:

Lemmas 40 to 42 describe when extensions to type contexts or exchanges of elements
within a type context are permissible.

Lemmas 43 to 45 state that constructors involved in equality and subtyping judgements
are well-formed and that all free variables of well-formed constructors are bound by the
type context.

Definitions and lemmas 46 to 53 describe which capabilities are equal to one another and
which capabilities are subtypes of one another. They provide a higher level of abstraction
than the rules for equality and subtyping and are used frequently in the rest of the proof.
Lemmas 54 and 55 are substitution lemmas for types and values respectively.

Lemma 56 states that well-formed small values, heap values, and declarations have well-
formed types.

Lemmas 57 to 59 are Canonical Forms lemmas. Given a type, these lemmas describe the
shape of memory or of values.

Lemmas 60 to 62 describe the conditions under which you can add labels or regions to
the memory type and preserve typing.

Lemma 64 states that satisfiability is preserved across equality (under the empty context).
Lemma 65 states that satisfiability is preserved when a region and the corresponding
unique capability are removed both from the store and the current capability simulata-
neously.

Lemmas 66 and 67 are the Preservation and Progress lemmas respectively. They are used
directly in the proof of Type Soundness.

Lemma 40 If Atgr A’ then Dom(A) N Dom(A") = 0.

Proof:

By induction on the derivation.

|

113

114

Lemma 41 (Type Context Exchange) If Dom(A1) N Dom(Ag) = 0 then
1. If AgA1AA3 FRr A then AgAgA1AszFr A
2. If AgA1A3A3 R c: k then AgAyA1Askrc: k

Proof:

By induction on the derivations. In the rule type-var:

AgA1AA3 Rt K (ApA1A2A3(a) = k)

we know AgA1AsAs(a) = AgAsAiAs(a) because the domains of Ay and Ay are disjoint.
Consequently, AgAsA1As R a: k.

]

Lemma 42 (Type Context Extension) If At A’ then
1. If Abr A" and Dom(A") N Dom(A’) = (0 then AA' i A"
2. If AFgc:k then AA'FRrc: Kk
3. If AFgrci=co:k then AN Frc1=co: K

4. If AFRrci <cy:k then AA'FRreir <co:k

Proof:

By induction on the derivation. Almost all cases follow directly from the inductive hypothesis.
Rules ctxt-sub and type-arrow require Type Context Exchange where Ag is -.

|

Lemma 43 If Atg c: k then FV(c) C Dom(A).

Proof: By induction on the derivation.

Lemma 44 (Equality Regularity) If AFr C=C':k then AFr C: K and Atg C' : k.
Proof: By induction on the derivation.

Lemma 45 (Subtyping Regularity) If - Fr A and A tgr C < C' : k then A Fr C : k and
AtgrC':k.

Proof:

By induction on the derivation. In the rule sub-var, we show by induction on the derivation
-Fgr A, that if (e < C) € A then A Fr A(e) : Store.

|

115

Definition 46 (Atomic Element) An atomic element, a, is a type variable € of kind Store, a
singleton capability {r}, or a barred capability € or {r}. The meta-variable a ranges over atomic
elements.

Definition 47 E(C) is the set of elements € or {r} that appear in C (where {|z1,...,z,|} is
notation for the set of elements x1,...,%y):

) = 0
) = {{r}}
E(e) = {elt
) = E(C1)UE(Cy)
) = E(C)

Lemma 48 (Equality) If A g C : Store then
1. AFprC =a1 *---*xa, : Store for some atomic capabilities a1,...,a,

2. AbFRai - - %@j_1 %@ * Q1 %+ ¥ Qp = Q1 %+ %k Qi1 ¥ Qj1 * -+ * Ay * @; : Store

!

3. Abgpay*---*xa, =a)x---xal : Store where dl,...,d,

is any permutation of ai,. .., ay.

!

4. Abgpay*---xay, =a) x---*al, : Store where a,...,al,

with all duplicate barred elements removed.

is a subsequence of ay,...,an

5. If AFr C = C': Store then the sets E(C) and E(C") are equal.
6. If E(C) = E(C") and AR C': Store then AFr C = C' : Store.
7. If AbRr Cx{r} =C"«{r} : Store then Atr C = C': Store.

Proof:

Part 1 follows by induction on the derivation A Fr C : Store. Case type-0) is immediate.
Case type-single, follows from application of the equality rules R-eq-symm and R-eq-(). Case
type-plus is more intricate. The inductive hypothesis gives us:

AFgrCi=aj*---*xay,:Store
AtprCy=a)x---xal :Store

By induction on m and using the rules R-eq-0, R-eq-assoc, and R-eq-trans
Atgal*--xa, =a)*(ay*--*(a,_ xal)) :Store
By equality congruence and R-eqg-trans,
AbrCr*xCy= (a1 *--*ay)*ay * (ahx---x(al,_,*a,,)) : Store
By induction on m again and using R-eg-assoc, R-eq-symm, and R-eqg-trans,

AI—RCl*Cz:al*---*an*a'l*---*a;n:Store

For the case C, we have A Fgr C = aq * - * a,, : Store by IH. By congruence, A Fr C =
a1 * -+ * Gy, : Store. By induction on n, A C =a71 %--- %@, : Store. For each q;, either a;

116

is an atomic element or a; is already barred and we use the R-eqg-bar-idem rule to show that
A Fga; = a; : Store. In either case, by induction on n again and use of the congruence rules,
we are done.

Part 2 follows by induction on m — % using R-eqg-assoc, R-eq-comm as well as the transitivity
and symmetry of equality. Part 3 is a corollary of part 2. Part 4 follows by induction on the
number of barred duplicates and uses part 3, transitivity, symmetry, and R-eq-dup rules. Part
5 follows by induction on the equality judgement.

Part 6 may be proven as follows:

AFrC=aj*---*ay,:Store where E(C) = E(aj *--- % a,) by parts 1 and 5.
AlFpC'=al*---%al, : Store where E(C') = E(a} *--- % a],) by parts 1 and 5.

By parts 3 and 4 and congruence of equality: AFr C =a; - *a, = aj, * aj, : Store

ArrC' =a\ x---xadl, aj1 *aém Store
where the a;; and a] contain no duplicates and are ordered according to some canonical order-
ing. If E(C) = E(C") then the a;, and the @} are the same and are in the same order. Hence,

the constructors are syntactically equal and thus definitionally equal.

Part 7 follows by induction on the typing derivation.

|

Definition 49 (Linear/Non-Linear Capabilities) A capability C is linear in C' ithere does
not exist C" such that C" € C' and C € C". A capability C is non-linear in C' if C" € C' and
CcecC".

Lemma 50 If AFg C': Store and C is non-linear in C' then A +r C' = C" x C : Store.
Proof: By induction on the typing derivation.

Lemma 51 If Aty C':Store and C is linear in C' then A+r C' = C" + C : Store.
Proof: By induction on the typing derivation.

Lemma 52 (Capability Equality Cardinality Preservation(CECP))
If A Cy = Cy: Store and A bR a: Store and a = € or {r} then

1. a is linear (non-linear) in Cy iff a is linear (non-linear) in Cs.

2. The number of linear occurences of a is the same in Cy and Cs.

Proof: By induction on the derivation.

Lemma 53 (Capability Subtyping Cardinality Preservation(CSCP))
If -+Fp C1 < Cy: Store then

1. For all region names v, {v} € Cy iff {v} € Ca.

2. For all region names v, if {v} is not linear in Cy then {v} is not linear in Cy.

Proof:

117

By induction on the derivation and Capability Equality Cardinality Preservation. Note that by
Subtyping Regularity and Lemma 43, no type variables € appear in C; and consequently, the
rule sub-var never appears in the derivation.

Ol

Lemma 54 (Type Substitution)

Let
Ag be Aler, ..., cn /A" T be Tler,...,cn/A'] Cy be Clea,. .. cn/A]
ro be rlcy, ..., cn/A] 0 be Tlc1, ... cn /A

If A is by, ..., b, where for 1 <i < mn:
Al. if b; is a;:K; then - FR ¢t K;
A2. if b; is ¢ < C; then - Fg ¢; < C; : Store
then

1. If NlA R A" then Ag Fr A[cy, ..., cn/A]
If N'Atgc:k then AgFRrcler,...,cn /A 1k
IfA',Atgc=c :k then Ao Frclcr,...,cn /A ={c1,...,en/A] i K
If AN Atge<c :k then AgFRrcer,...,cn /A < de1y...en/A] i K
If A", AR Ay = Ag then Ao Fr Avlct, ... cn/A"] = Agler, ... cn/A]
IfU; A" AT Bg b7 then U5 Ag; Tosmo R hler, ..., cn /At 1o
IfU; A" AT R o7 then U3 Ag;Tg b vler, ..., cn/A"] 2 79

RS & e e

IfU; A" AT;C Fpd= A, A";T";C" then
U Ag; To; Co Frdlct, - .., en /A = (A"; T C")er,y - - -, en /A].

9. If U; A" A;T;C g e then U; Ag; To;Co Frefer, ... cn/A]

Proof:

By induction on the derivations. Almost all cases follow directly from the IH. In part 2, we
must prove our lemma for the rules:

(A", A(a) = k)

- < !
A Atpa:k ((e<C)ea’n)

A',Atge:Store
In the first case, we have our result by Al and Type Context Extension. In the second case,
assume € is ¢;. By A2, we have - Fr ¢; < C; : Store. Because - g -, Subtyping Regularity tells
us that - Fg ¢; : Store. By Type Context Extension Ag Fg ¢; : Store. In part 4, for the rule:

< A’
Al A+gre<(C :Store (e<C)eALA)

our result follows by A2 and Type Context Extension. In part 9, the case for 1et , we can apply
the induction hypothesis because inspection of the rules for declarations show that U; A;T; C kg
d = A,A";T"; C" instead of the more general ¥; A;T';C Frd = A";T";C".

118

O

Lemma 55 (Value Substitution) If T is {z1:71,...,Zp:7Tn}, - FR T and for 1 <i<n, ¥;-;-Fp
v; : T; then

1. If U; A;T T Fr hatr: 7 then U; AT Fg hlvy, ..., vn /21, .., 2] at 7o T
2. If U; A;T T Fro s 7 then U; AT Frofvr, ..o yon /T, ooy xn] o T

3. If U; A;T,T;C kpd = AT, T CY
then Q;A;FI;C Fr d[Ul,' . ,Un/$1,--- axn] = A,;F”;C,

4. If U; AT T C bR e then U AT C bR efvr, ..oy /T1, -0, T

Proof:

By induction on the typing derivations. In part 4, the case for let, we can use the induction
hypothesis because inspection of the typing rules for declarations reveals that ¥; A;T;C Fpg
d = A";T,T"; C' instead of the more general U; A;T;C Frd = A';T7; C'.
Ol
Lemma 56 (Term Judgement Regularity)
If
Al Fr U
A2 -+g C : Store
A8 -Fgrr:Rgn
then
1. If U;-;-Frv: 7 then - Fgr 7 : Type
2. If U;-;-Frhatr:7 then - Fgr 7 : Type
3. If U;:sCtrpd = A";T";C" then - Fr A" and A’ Fr T and A’ g C' : Store

Proof:

By induction on the typing derivations. Almost all cases follow directly from the induction
hypothesis and Equality Regularity or Subtyping Regularity. In part 1, consider the case for
type application:

Ui bp o Viak,Al(C 1,...,7) > 0atr -Frc:k
U; - bFrolc] : (V[AL(C!,71,...,7) = 0)[c/a] at T

By the induction hypothesis, and then inspection of the typing rules for arrow types, we can
deduce a judgement of the following form:
akbFr A
-Frak, A ak,AFgrC':Store a:k,AbFpg7i:Type (for1<1i<n)
-FrV][ak,Al(C',11,...,7) > 0atr: Type

By Type Substitution, we may deduce that - Fp (V[A'].(C',71,...,7n) = 0)[c/a] at . The
second type application rule follows similarly.

119

O

Lemma 57 (Canonical Memory Forms)
IfFp {v1 = Ri,...,vp = Ry} : {vi:Y1...,vn: Ty} then for all 1 < i < n and for all £ €
Dom(7Y;), either

1. Yi(8) is (T1,...,Tm) at v; and R;(€) = (vi,...,vp) and for 1 < j <m, U;-;- Frv; : 7
or

2. Ti(£) is V[AL(C,11y...,7) = 0aty;
and R;(£) = £fixf[A|(C,x1:T1,. .., Tn:Tp)-€
and U; A; {f:V[A].(C, T1y- - ,Tn) —+0at vy, z1:71, .- .. ,.’L‘n:Tn}; Cltre

Proof: By inspection of the typing judgements for the store, regions, and heap values.

Lemma 58 (Canonical Memory Forms IT)
1. IfFrS: VYV andv ¢ S thenv €U
2. IfUtrRatv : T and v € R and V' is not v thenv &€ T
3. If U;:-Frhatv :7and V' isnotv and v € h then v € T
4. If Uso-bFpviT andv v thenv g

Proof: By induction on the typing derivations.

Lemma 59 (Canonical Forms) If-r S : ¥ and ¥;-;- Fr v : 7 then
1. If 7 is int then v = 1.
2. If T is handle(v) then v = handle(v).
3. If T is V[AL(C,71,...,7,) = 0 at v then
(a) v="vdci,... ,cm]

b) S(v.L) = fixf[A", A"[(C', z1:7q, ... TpiTy)€
1 n

c) A is by,...,by and for 0 < i < m, either b; is a;:k; and - Fg ¢i:ki, or b; is ¢ < C;
? 7
and - Fr ¢; < C; : Store.

(d) - FrA=A"c1,...,cn/A"], and Abgr C=C'le,...,cn/A'], and
for1<i<n, Abr7=1[ci,...,cm/A"] : Type

(e) U; A" A" {fV[A, A")(C,11,...,7.) = 0atv,z1:7], ..., 2.7, };C FR €
or instead of (b),(c),(d), and (e): v & V.

4. If T is (1,...,T,) at v then
(a) v="r.t

(b) Sw.L) = (vi,...,vp)
() Wi

120

or instead of (b),(c): v & V.

Proof:

Part 1, 2 follow by inspection of the typing rules for word values.

Part 3 follows by induction on the derivation, ¥;-;- Fr v : 7 . By Canonical Memory Forms
and inspection of the typing rules for word values, either v.£ or one of the type application rules
are last:

case v.f where v & U:

(a) Trivial.

case v.f where v € U:

case v[C]

case v|c]

(a) Trivial.

(b) By Canonical Memory Forms where A’ is -, A" is A, C" is C, and for 1 <4 <mn, 7] is
Ti-

Trivial.

(d) Trivial.

By inspection of judgement.

—
o
~

—
D
~—

U - Frov:Ve<C,,AlL(Cy,1,...,7n) > 0atr +FrC < (C, : Store
Vs - Frol[C] : (V[A]L(Cy,T1,...,T) = 0)[C/elat r

By Term Judgement Regularity and Lemma 43, r is v. The inductive hypothesis is as
follows:

(a) v=vLcy,...,cp]
(b) S(v.l) = fixf[A', e < Cl, A"|(C}, z1:71, ..., T5:T)).€
(c) A"is by,..., by, and for 0 < i < m, either b; is a;:k; and - Fg ¢;:k4, or b; is €; < C; and

-Fgrc;i < C;: Store.
(d) ‘Fre< Coyy, A= (e <CL AN e1,. .., em/A]
and € < Cy, A g Cy = Cilet, ..., e [A]
and for 1 <i<n, e < Co,Abpg 7 =17][ci,...,cm] : Type
(e) T;A" e <C,,A";T;Cy R e
where I' = {f:V[A!,e < C,, A"].(C},71,...,7},) > 0at v,z1:7], ..., 257}, }
or instead of (b),(c),(d), and (e), v ¢ ¥. Thus,
(a) v[C] =vLecy,...,cn, C] from TH.
If v ¢ ¥ then the result follows trivially. Thus assume v € W.
) By IH.
(c) By IH and the typing judgement which states - - C < C, : Store.
) By IH and Type Substitution.
(e) By IH.

Similar.

Part 4 follows by inspection of the typing rules for word values. Notice only the v.£ rule when
v € U, or the rule for tuples when v ¢ ¥ can apply. Assuming the former (the latter is trivial),
then (a) is immediate and (b), (c) follow by Canonical Memory Forms.

121

]
Lemma 60 (Memory Type GC) IfFr ¥ and U’ is U\v then

1. If U;A;sTFphatr:7 then U; A;T g hatr: 7
IfU;A;TFRv: 7 then U A;TFpo: T
IfU; AsT;C bpd = AT C! then U5 AT C brpd = AL T C
If U; A;T;C Fre then U A;T;C FRre

AT R

IfVtrRatv:Y then ¥'Fr Ratv: T

Proof:
By induction on the typing derivation. All cases follow directly from IH except the rule:

(T('L) =1)

U AT FRpV LT

When v is not ¢/, this case is trivial so assume v is /. By Canonical Memory Forms, 7 is either
V[A"].(e,T1,...,7)—0atvor (1,...,7,) at v. Because - ¥, we have - - 7 : Type. By Type
Context Extension, A Fg 7 : Type. Thus, in either of the above cases, U; A;T g /.4 : T via
one of the two rules for v ¢ Dom/(¥).

|

Lemma 61 (Memory Type Extension) If v does not appear in ¥, A, T, r, h, v, d, e, or R,
and V' is U{v:{}} then

1. If U;A;TFgphatr:7 then V;A;T'Frhatr: 7
2. If U; A;T Fpv:T then U; AT Fro: T
3. If U; A;T;C Frd = ALTY;C then U AT C Frd = AT O
4. If U; A;T;C Fre then O, AT, C bRre
5. If Utpr Ratv' : Y then W'Fr Ratv' : T
Proof:
By induction on the typing derivation. In part 2, for the rule:

AFgp(r,...,7)at v : Type
U AT gVl {ry,..., 1) at v/

(' ¢9)

V' is not v by assumption and thus the result holds and similarly for the analogous rule for
arrow types.

O

Lemma 62 (Region Type Extension) If v € Dom(¥), £ ¢ Dom(¥(v)), and ¥ is U{v.L:T}
then

122

1. If U;A;TFphatr: 7 then U'; A;T kg hatr: 7
IfU;A;TFRv:T then VAT ko T

IfU; A;T;C bpd = AT C then U5 AT, C Frd = AL T CY
If U;A;T;C Fre then W5 AT;C b e

IfUFr Ratv : Y then U'Fr Rat v/ : Y

S ;v e

If U g C sat then U’ g C sat

Proof:

By induction on the typing derivation.

]

Lemma 63 If AFr C1%Cy: Store and AFr C1 *Cy =ay1 *---%ay : Store then AFgp Cy =
al *---xal :Store and a},...,al, is a subset of ay,...,an.

Proof:

By Lemma 48 (1), A Fr C1 = a) * -+ x al, : Store. By Lemma 48 (5), E(a) *---*al,) =
E(Cy) CE(C1%Cy) = E(ay *---*ay). By CECP, q; is linear (non-linear) in a} *---*a}, if and
only if a; is linear (non-linear) in ay * - - - * a,,. Therefore, a € a},...,a}, implies a € ay,...,ay.

|

Lemma 64 (Capability Satisfiability Preservation) If ¥ kg C sat and - Fr C = C' : Store
then U Fp C' sat.

Proof:

By symmetry and transitivity of equality and inspection of the sat derivation.

|

Lemma 65 If U Fp C x {v} sat then U\v kg C sat.

Proof:

1. Assume U Fp C* {v} sat

2. and U = {v:Ty,...,vn: Ty}

3. From 1, we know - Fr C * {v} = {v1,...,v,} : Store

4. and v; #vj,for 1 <4,5 <nandi#j

5. From 3, 4, and CECP, v appears once in {vy,...,v,} and once in C * {v}.
6. From 5, and Equality (3),

-Fr {I/l, ey Vi1, Uy Vi e ;Vn} = {Vl, sy Vi1, Vi gy ;Vn} * {l/} : Store
7. From 3, 6, transitivity of equality, and Equality (7),

-FrC = {I/l,... yVic13Vit1,y--- ,I/n} : Store

8. Hence, from 2,4,7 we have U\v g C sat

123

Ol
Lemma 66 (Preservation) If Fg (S,e) and (S,e) — g (S',€') then Fg (S, ¢€)

Proof:

The proof proceeds by cases on the structure of e. In each case, we show the form of the typing
judgement that can be inferred by inspection of the typing rules and refer to it throughout
the case as “the typing judgement”. Then we give the transition specified by the operational
semantics. Using these two facts, we derive the result kg (5, €').

e letw
FRS: T ThgpC sat (A)

Fr(S,letx =vine)

U:-Fpo:T
U Chpz=v= {7} C U;s{z:7};Clpge
U;:sClhpletz =wvine

(4)

and (S,letz = vine) —> g (S5, e[v/z]). By the typing judgement and Value Substitution,
Fr (S, e[v/z]).

e leth
FRS:\I’ \DI—RCsat (A)

Fr (S,letx = hatwvine)

U; ;- Fr v handle(v)
U;-Frhatv:T -FpC<C'+{v} :
U Chrpz=hatv=— - {z:7};C U {x:t};C FRre
U;:sClFpletz =hatvine

(4)

where v = handle(v)
and v € Dom(S) and £ ¢ Dom(S(v))
and S = S{v.l — h}
and (S,letz = hatwvine) —p (9, e[v.l/z])
and let ¥ = ¥{v.l:7}
1. (a) 7is(ry,...,m)atvor V[].(C",1y,...,7,) = 0at v by inspection of the heap value
typing rules and the typing judgement.
(b) Fr S": ¥ by the typing judgement and inspection of the memory typing rule.
2. ¥ g C sat by Region Type Extension.
3. (a) U5+ kg vl : 7 by the typing rules for word values.
(b) ¥';+;+;C kg e[vt/z] by (a) and Value Substitution.
By 1(b), 2, and 3(b), we have kg (5’, e[v.4/z]).
® TV
FRS:\I/ \Ill—RC sat (A)
Fr(S,letx = mvine)

124

\I!;-;-I—Rv:<'rl,...in)atl/
FRC < C'x{v}
U:sChpe=mv = {z;};C ¥;{zr;};Cltpre
U;sCrFpletx =mvine

(4)

where v = v.4
and S(v.f) = (v1,...,vp)
and (S,letz = mvine) — g (S, e[v;/z])

1. Fr S : U by the typing judgement.

2. U g C sat by the typing judgement.

3. (a) ¥;-;-FRrv;: 7; by Canonical Forms and the typing judgement.

(b) W;-;+;C kg efv;/x] by Value Substitution, (a), and the typing judgement.
By 1,2,and 3(b), Fr (S, e[v;/z]).
e freergn
FrRS: ¥ WhgC sat (A)
Fr (S,freergnvine)

U; - Frov:handle(v) -FpC < C'*{v}
¥;-;C b freergny = 5 C' U C' Fre
U+ C bR freergnvine

(4)

where v is handle(v) and (S, freergnvine) — g (S\v,e). Let ¥’ be T\v.
1. kg S’ : ¥’ by Memory Type GC and the typing judgement.
2. (a) kg C sat and - Fr C < C' % {v} by the typing judgement.
(b) U kg C'*x{v} sat by Capability Satisfiability Preservation and (a)
(¢) 'k C" sat by Lemma 65 and (b)
3. U/;.:.;C" kg e by the typing judgement and Memory Type GC.
By 1, 2(e), and 3, Fgr (S\v, e).
e newrgn
-FrC =C":Store () (A) (B)
FrS: U U g C sat "7 ;- C Frnewrgn p,z,ine
Fr (S,newrgn p,z,ine)

A
U; ;- C kg newrgn p,z, = p:Rgn; {z,:handle(p) }; C * {p} (4)

T pivgas (,handle()}; C + {0} Fre)

The operational rule is
(S,newrgn p,z,ine) —p (S, e[v,handle(v)/p, z,))

where ' = S{vr—{}} andv ¢ S and v €e.
In what follows, let ¥/ = ¥{v:{ }}.

125

1. g ¥’ by Memory Type Extension and the typing judgement.

2. Since v ¢ ¥ by assumption in the operational semantics, we can satisfy the side
condition on the sat judgement. We can also prove - g C * {v} = C' * {v} : Store
by the congruence rule for equality. Consequently, U’ Fr C * {v} sat.

3. U5+, C* {v} g e[v,handle(v)/p, z,] from the typing judgement and application of
Type and Value Substitution and then Memory Type Extension Lemmas.

By 1, 2(e), and 3, Fg (S’, e[v,handle(v)/p, z,]).

e if0
U;-bFpitint Uy Chkpey Vi 5ChpRes

FrRS: ¥ WhkgC sat \IJ;-;-;CI—Rifi(62|e3)
|_R (S, if s (62 ‘ 63))

(S,e) — g (S,e2) if i = 0 and (S,e) — g (S, e3) otherwise. By the typing judgement,
Fr (S,e2), or Fg (S, e3).

e vo(v1,...,0n)
U bFpw o m (fﬂogz‘gn)
-FrRC < C"x {v} : Store
-|—RT():V[].(C’,Tl,...,Tn)—)Oatl/
-Fr C =C":Store
FrRS: U UhkgC sat U+ C R vg(vry-..,vp)

|_R (S,’Uo(’l)l,... ,Un))

(S, ’Uo(’Ul, P ,’Un)) —>R (S, S(e))
where vy = v.[cy, ..., cn)
and S(v.f) = fixf[by,...,bn)(C" 21 1 11, ..., ZpiTy).€
and for 1 <i<m, b; = a;:5; or b; = a; < C}
and S =[c1,...,Cm, V., V1, ..., Un/Q1y oy, [y X1,y -y Ty
1. Fr S : U by the typing judgement.
2. U g C' sat by Capability Satisfiability Preservation.
3. (a) ¥ kg C"+{v} sat by Capability Satisfiability Preservation and the typing judge-
ment
(b) v € Dom(¥) by CECP and (a).
(€) ¥;+-Fruo: V[].(C",r",...,7}') — 0 and
ErV[](C" T) = 0 =V[].(C',T1,...,7s) = O by the typing judgement
(d) U;by,...,bm;{z1:11,...,Zn:Tn }; C" FR e by Canonical Forms 3(e), (b), and (c).
() -FrRC'"=C"[c1,...,cm/ai,-..,an] : Store by the transitivity of equality, Canon-
ical Forms 3(d), (b), and (c)
(f) ¥;-;;C" g S(e) by Type and Value Substitution, and (e).

By 1, 2, and 3(f), Fr (S, S(e))

Ol
Lemma 67 (Progress) If g (S,e) then either:

1. There exists (S',€') such that (S,e) —g (S',€'), or

126
2. e =haltv and VU; ;- Fp v : int.

Proof:

The proof proceeds by cases on the structure of e and makes heavy use of the Canonical Forms
lemma.

e letwv Trivial.
e leth
U; ;- Fr v handle(r)
U:-Frhatr: T
FROSC’*W
U:Chpr=hatv= - {z:7};C
FrRS:U WhgC sat U;CkFpletx =hatvine
Fr (S,letz = hatvine)

U; ;- Fr v : handle(r) directly from the typing judgement. By Term Judgement Regularity
and Lemma 43, r is v, and by Canonical Forms, v is the value handle(v). By Capability
Satisfiability Preservation, ¥ Fr C’ % {v'} sat and thus v € Dom(¥). By inspection of the
memory typing rules, v € Dom(S). Thus (S, e) — g (S{v.l — h},e[v.l/z)).
o ;v
FRSI\IJ q’l_RCSBJt (A)
Fr (S,letx = mvine)

Uses- kv (T1,...,Th) atr -I—RCSC’*W
U Chrpz=mv = {zn};C
U;sCFgrletx = mvine

- (4)

By Capability Satisfiability Preservation, ¥ g C' * {v'} sat. By CECP, v € Dom(¥) and
by Canonical Forms, S(v.£) = (v1,...,v,). By the typing judgement, 1 < i < n. Thus
(S,letz = mvine) — g (S, e[v;/x]).

e newrgn Trivial.

e freergn

FrRS: ¥ WhgC sat (A)
Fr (S,freergnvine)

U;--bgpv:handle(r) -Fr C < C'*{r}:Store
U5 C kg freergny = ;- C'
U; .+ C Fp freergnvine

- (4)

By Term Judgement Regularity and Lemma 43, r is v, and by Canonical Forms, v is
handle(v). By Capability Satisfiability Preservation, ¥ g C % {v} sat. Thus, by CECP,
v € Dom(¥), and by inspection of the memory typing rules, v € Dom(S). Consequently,
(S,freergnvine) — g (S\v,e).

127

e if0
U A;TFroint
U A;T;C FRes U, A;T5C FRes
U AsT;C Fr if v (ea | e3)

By Canonical Forms, v must be integer. Therefore, one of the two operational rules for
if0 applies.

L] U()(’Ul,...,vn)
U;-Fpui (for 0 <i < n)
-FrC < C"x{r}:Store
'I_RTO:v[].(C’,Tl,...,Tn)—)Oatr
-Fr C < C':Store
FrRS: U UhkgC sat U+ C R vo(vly-..,vn)

Fr (S,vo(v1,...,vp))

By Subtyping Regularity and Lemma 43, r is v. By Capability Satisfiability Preservation,
U kg C" % {v} sat, and by CECP, v € Dom(¥). Thus, by Canonical Forms,

— vy =vdhci, ..., cm),

— S(v.l) = fixf[by,...,bp](C,z1:11,...,2Tpn:Ty).e and

—for1<i<n, b =aq;k; or b =a; <Cj.

If we let S; be [c1,...,¢m/00,...,qy] and Sy be [v.4,v1,...,v,/f,%1,...,T,] then:

(S, 1)()(’()1, . ,’Un)) —R (S, 52(51(6)))

e halt
U;-bFgpoviint -Fr C =0:Store

FrRS:U UhkpC sat W;-;-;C g haltv
Fr (S,haltv)

Part 2 holds by inspection of the typing judgement.

|

Definition 68 (Stuck State) An abstract machine state (S,e) is stuck if e is not haltv and
there does not exist (S',€') such that (S,e) —> g (S, €').

Theorem 69 (Capability Type Soundness) If kg (S, e) and (S,e) —% (5", ¢') then (S',€') is
not stuck.

Proof:

By induction on the number of steps taken in the operational semantics and Preservation, if
Fr (S,e) and (S,e) —% (9',€') then Fg (S',€'). By Progress, no well-typed state (5,¢') is
stuck: either €’ is haltv or (S',€') — g (S”,€").

|

128

Theorem 70 (Capability Complete Collection) If Fr (S,e) then either (S,e) ft or
(S,e) —% (8, haltw) and S" = { }.

Proof:

Assume g (S, e) and (S, e) —% (S',¢’) and there is no (S”, ") such that (S',€') — g (5", €").
By Preservation and Progress, ¢/ = haltv and

U;-Fpv:iint -Fp C=0:Store

FrS': U WhgC sat W:-;-;C g haltv
Fr (S, haltw)

By CECP and the sat judgement, v € Dom/(¥) if and only if v €). Consequently, ¥ = {}. By
inspection of the judgement for memory types, S’ = { }.

O

Bibliography

[Abr93]

[AFL95)

[AMY1]

[AP95)

[App92]

[ASUS6]

[Bak78]

[Bak92]

[BCYY]

[BGY6]

[BHR9Y]

[BRS9Y]

Samson Abramsky. Computational interpretations of linear logic. Theoretical
Computer Science, 111:3-57, 1993.

Alexander Aiken, Manuel Fahndrich, and Raph Levien. Better static memory
management: Improving region-based analysis of higher-order languages. In ACM
Conference on Programming Language Design and Implementation, pages 174-185,
La Jolla, California, 1995.

Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In Martin
Wirsing, editor, Third International Symposium on Programming Language Imple-
mentation and Logic Programming, pages 1-13, New York, August 1991. Springer-
Verlag. Volume 528 of Lecture Notes in Computer Science.

Peter Achten and Rinus Plasmeijer. The ins and outs of Clean I/0O. Journal of
Functional Programming, 5(1):81-110, 1995.

Andrew W. Appel. Compiling with Continuations. Cambridge University Press,
1992.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, 1986.

Henry G. Baker. List processing in real-time on a serial computer. Communications
of the ACM, 21(4):280-294, 1978.

Henry G. Baker. Lively linear Lisp — 'Look Ma, no garbage!’. ACM Sigplan Notices,
27(8):89-98, August 1992.

Guy Blelloch and Perry Cheng. On bounding time and space for multiprocessor
garbage collection. In ACM Conference on Programming Language Design and
Implementation, pages 104-117, May 1999.

Guy Blelloch and John Greiner. A provably time and space efficient implementation
of NESL. In ACM International Conference on Functional Programming, pages
213-225, June 1996.

Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. Region analysis and the
polymorphic lambda calculus. In Fourteenth Symposium on Logic in Computer
Science, pages 8897, Trento, Italy, 1999. IEEE Computer Society Press.

Michael Benedikt, Thomas Reps, and Mooly Sagiv. A decidable logic for describing
linked data structures. In Furopean Symposium on Programming, pages 2-19,
Amsterdam, March 1999.

129

[BS93]

[BTV96]

[Bur72]

[CAB+86]

[CGRY92]

[CGRY6]

[CHSS]

[COT5]

[COY6]

[CWOO]

[CWMOYS]

[CWM99]

[DDPYY]

130

Erik Barendsen and Sjaak Smetsers. Conventional and uniqueness typing in graph
rewrite systems (extended abstract). In Shyamasundar, editor, Thirteenth Confer-
ence on the Foundations of Software Technology and Theoretical Computer Science,
volume 761 of Lecture Notes in Computer Science, pages 41-51, Bombay, 1993.
Springer-Verlag.

Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region inference to von
Neumann machines via region representation inference. In Twenty-Third ACM
Symposium on Principles of Programming Languages, pages 171-183, St. Peters-
burg, January 1996.

Rodney M. Burstall. Some techniques for proving correctness of programs which
alter data structures. In Bernard Meltzer and Donald Michie, editors, Machine
Intelligence, pages 23-50, Edinburgh, 1972. Edinburgh University Press.

R. Constable, S. Allen, H. Bromley, W. Cleaveland, J. Cremer, R. Harper, D. Howe
an T. Knoblock, N. Mendler, P. Panangaden, J. Saski, and S. Smith. Implementing
Mathematics with the Nuprl proof development system. Prentice-Hall, 1986.

Jawahar Chirimar, Carl A. Gunter, and Jon G. Riecke. Proving memory manage-
ment invariants for a language based on linear logic. In ACM Conference on Lisp
and Functional Programming, pages 139-150, April 1992.

Jawahar Chirimar, Carl A. Gunter, and Jon G. Riecke. Reference counting as a
computational interpretation of linear logic. Journal of Functional Programming,
6(2):195-244, March 1996.

Thierry Coquand and G. Huet. The Calculus of Constructions. Information and
Computation, 76:95-120, 1988.

Stephen Cook and Derek Oppen. An assertion language for data structures. In
Second ACM Symposium on Principles of Programming Languages, pages 160-166,
New York, 1975. ACM Press.

Perry Cheng and Chris Okasaki. Destination-passing style and generational
garbage collection. Unpublished., November 1996.

Karl Crary and Stephanie Weirich. Resource bound certification. In Twenty-
Seventh ACM Symposium on Principles of Programming Languages, pages 184—
198, Boston, January 2000.

Karl Crary, Stephanie Weirich, and Greg Morrisett. Intensional polymorphism in
type-erasure semantics. In ACM International Conference on Functional Program-
ming, pages 301-312, Baltimore, September 1998.

Karl Crary, David Walker, and Greg Morrisett. Typed memory management in a
calculus of capabilities. In Twenty-Sizth ACM Symposium on Principles of Pro-
gramming Languages, pages 262-275, San Antonio, January 1999.

Olivier Danvy, Belmina Dzafic, and Frank Pfenning. On proving syntactic prop-
erties of CPS programs. In Andrew Gordon and Andrew Pitts, editors, Third
International Workshop on Higher-Order Operational Techniques in Semantics,

[Deu94]

[DF92]

[DFO0]

[DGO00]

[DMTW97]

[FA99]

[Fil96]

[Fis72]

[GAYS]

[GCS85]

[GHY0]

[GHY6]

[Gir87]

131

volume 26 of Electronic Notes in Computer Science, pages 19-31, Paris, Septem-
ber 1999. Elsevier.

Alain Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting.

In ACM Conference on Programming Language Design and Implementation, pages
230241, Orlando, June 1994.

Olivier Danvy and Andrzej Filinski. Representing control: a study of the CPS
transformation. Mathematical Structures in Computer Science, 2(4):361-391, De-
cember 1992.

Rob Deline and Manuel Fahndrich. The vault project. Personal Communication.,
June 2000.

Silvano Dal Zilio and Andrew D. Gordon. Region analysis and a w-calculus with
groups. In Twenty-Fifth Mathematical Foundations of Computer Science, Lecture
Notes in Computer Science, Brutislava, August 2000. Springer-Verlag.

Allyn Dimock, Robert Muller, Franklyn Turbak, and J. B. Wells. Strongly typed
flow-directed representation transformations. In ACM International Conference on
Functional Programming, pages 85-98, Amsterdam, June 1997.

Cormac Flanagan and Martin Abadi. Types for safe locking. In S.D. Swierstra,
editor, Lecture Notes in Computer Science, volume 1576, pages 91-108, Amster-
dam, March 1999. Springer-Verlag. Appeared in the Eighth European Symposium
on Programming.

Andrzej Filinski. Controlling Effects. PhD thesis, Carnegie Mellon University,
School of Computer Science, Pittsburgh, Pennsylvania, May 1996.

M. J. Fischer. Lambda calculus schemata. In Proceedings of the ACM Conference
on Proving Assertions about Programs, pages 104-109, 1972.

David Gay and Alex Aiken. Memory management with explicit regions. In ACM
Conference on Programming Language Design and Implementation, pages 313 —
323, Montreal, June 1998.

M. Mauny G. Cousineau, P.L.. Curien. The categorical abstract machine. In J. P.
Jouannaud, editor, Functional Programming Languages and Computer Architec-
ture, volume 201 of Lecture Notes in Computer Science, pages 130-139, Berlin,
1985. Springer-Verlag.

Juan C. Guzman and Paul Hudak. Single-threaded polymorphic lambda calculus.
In Symposium on Logic in Computer Science, pages 333-343, Philadelphia, June
1990. IEEE Computer Society Press.

Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a DAG, or a cyclic graph?
A shape analysis for heap-directed pointers in C. In Twenty-Third ACM Sympo-
sium on Principles of Programming Languages, pages 1-15, St. Petersburg Beach,
Florida, January 1996.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

[GL.86]

[Hal99]

[Har94]
[Hay00]

[HCCT98]

[HL93]

[FIMY5]

[HP99)

[HR9S]

[HvE98]
[1000]

[JG91]

[TM81]

[KCR9S]

[KKR*86]

132

D. K. Gifford and J. M. Lucassen. Integrating functional and imperative pro-
gramming. In ACM Conference on Lisp and Functional Programming, Cambridge,
Massachusetts, August 1986.

Niels Hallenberg. Combining garbage collection and region inference in the ML
Kit. Master’s thesis, Department of Computer Science, University of Copenhagen,
1999.

Robert Harper. A simplified account of polymorphic references. Information Pro-
cessing Letters, 51(4):201-206, August 1994.

Mark Hayden. Distributed communication in ml. Journal of Functional Program-
ming, 10:91-120, January 2000.

Chris Hawblitzel, Chi-Chao Chang, Grzegorz Czajkowski, Deyu Hu, and Thorsten
von Eicken. Implementing multiple protection domains in Java. In 1998 USENIX
Annual Technical Conference, New Orleans, June 1998.

Robert Harper and Mark Lillibridge. Explicit polymorphism and CPS conversion.
In Twentieth ACM Symposium on Principles of Programming Languages, pages
206-219, Charleston, January 1993.

Robert Harper and Greg Morrisett. Compiling polymorphism using intensional
type analysis. In Twenty-Second ACM Symposium on Principles of Programming
Languages, pages 130-141, San Francisco, January 1995.

J. Hughs and L. Pareto. Recursion and dynamic data structures in bounded space:
Towards embedded ML programming. In ACM International Conference on Func-
tional Programming, pages 70-81, Paris, September 1999.

Nevin C. Heintz and Jon G. Riecke. The SLam Calculus: Programming with
secrecy and integrity. In Twenty-Fifth ACM Symposium on Principles of Program-
ming Languages, San Diego, January 1998.

Chris Hawblitzel and Thorsten von Eicken. Sharing and revocation in a safe lan-
guage. Unpublished manuscript., 1998.

Samin Ishtiaq and Peter O’Hearn. BI as an assertion language for mutable data
structures. Preliminary draft, March 2000.

Pierre Jouvelot and D. K. Gifford. Algebraic reconstruction of types and effects.
In Fighteenth ACM Symposium on Principles of Programming Languages, pages
303-310, January 1991.

Neil D. Jones and Steven Muchnick, editors. Flow analysis and optimization of
Lisp-like structures. Prentice-Hall, 1981.

Richard Kelsey, William Clinger, and Jonathan Rees. Revised® report on the
algorithmic language Scheme. ACM SIGPLAN Notices, 33(9):26-76, September
1998.

David Kranz, R. Kelsey, J. Rees, P. R. Hudak, J. Philbin, and N. Adams. ORBIT:
An optimizing compiler for Scheme. In Proceedings of the ACM 86 Symposium on
Compiler Construction, pages 219-233, June 1986.

[Kob99]

[Koz98]

[Laf88]

[Lar89]

[Lau93|

[LHSS]

[LM92]

[LPJ95]

[Luc87]

[LY96]

[MCG+99]

[MCGW98]

[MFH95]

[MFP91]

133

Naoki Kobayashi. Quasi-linear types. In Twenty-Sizth ACM Symposium on Prin-
ciples of Programming Languages, pages 29-42, San Antonio, January 1999.

Dexter Kozen. Efficient code certification. Technical Report TR98-1661, Cornell
University, January 1998.

Yves Lafont. The linear abstract machine. Theoretical Computer Science, 59:157—
180, 1988.

James Richard Larus. Restructuring Symbolic Programs for Concurrent Ezxecution
on Multiprocessors. PhD thesis, University of California at Berkeley, May 1989.
Available as Berkeley technical report UCB/CSD 89/502.

John Launchbury. A natural semantics for lazy evaluation. In Twentieth ACM
Symposium on Principles of Programming Languages, pages 144-154, Charleston,
January 1993. ACM Press.

James R. Larus and Paul N. Hilfinger. Detecting conflicts between structure ac-
cesses. In ACM Conference on Programming Language Design and Implementa-
tion, pages 24-31, June 1988.

Patrick Lincoln and John Mitchell. Operational aspects of linear lambda calculus.
In IEEE Symposium on Logic in Computer Science. IEEE Computer Society, 1992.

John Launchbury and Simon L. Peyton Jones. State in Haskell. LISP and Symbolic
Computation, 8(4):293-341, December 1995.

John M. Lucassen. Types and Effects—Towards the Integration of Functional and
Imperative Programming. PhD thesis, MIT Laboratory for Computer Science,
1987.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 1996.

Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Freder-
ick Smith, David Walker, Stephanie Weirich, and Steve Zdancewic. TALx86: A
realistic typed assembly language. In ACM Workshop on Compiler Support for
System Software, pages 25-35, Atlanta, GA, May 1999.

Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based Typed
Assembly Language. In Second International Workshop on Types in Compilation,
pages 95-117, Kyoto, March 1998. Published in Xavier Leroy and Atsushi Ohori,
editors, Lecture Notes in Computer Science, volume 1473, pages 28-52. Springer-
Verlag, 1998.

Greg Morrisett, Matthias Felleisen, and Robert Harper. Abstract models of mem-
ory management. In ACM Conference on Functional Programming and Computer
Architecture, pages 66—77, La Jolla, June 1995.

Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with
bananas, lenses, envelopes, and barbed wire. In ACM Conference on Functional
Programming and Computer Architecture, 1991. Also published in Lecture Notes
in Computer Science, 523, Springer-Verlag.

[MHY7]

[Min98§]

[Min99]

[ML82]

[Mog91]

[M&193]

[MTC96]

[MTHM97]

[MWCG98]

[MWCG99)

[NAS99a]

[NAS99b]

[Nec97]

[NL97]

134

Greg Morrisett and Robert Harper. Semantics of memory management for poly-
morphic languages. In A.D. Gordon and A.M. Pitts, editors, Higher Order Opera-
tional Techniques in Semantics, Publications of the Newton Institute. Cambridge
University Press, 1997.

Y. Minamide. A functional representation of data structures with a hole. In
Twenty-Fifth ACM Symposium on Principles of Programming Languages, pages
75-84, San Diego, January 1998.

Y. Minamide. Space-profiling semantics of the call-by-value lambda calculus and
the CPS transformation. In A. D. Gordon and A. Pitts, editors, Third Interna-
tional Workshop on Higher-Order Operational Techniques in Semantics, volume 26
of Electronic Notes in Computer Science, pages 103—118, Paris, September 1999.
Elsevier.

Per Martin-Lof. Constructive mathematics and computer programming. In Pro-
ceedings of the Sizth International Congress for Logic, Methodology, and Philosophy
of Science, pages 153-175, Amsterdam, 1982. North Holland.

Eugenio Moggi. Notions of computation and monads. Information and Computa-
tion, 93:55-92, 1991.

Bernhard Moller. Towards pointer algebra. Science of Computer Programming,
21:57-90, 1993.

G. Morrisett, D. Tarditi, P. Cheng, C. Stone, R. Harper, and P. Lee. The TIL/ML
compiler: Performance and safety through types. In Workshop on Compiler Sup-
port for Systems Software, Tucson, February 1996.

Robin Milner, Mads Tofte, Robert Harper, and Dave MacQueen. The Definition
of Standard ML (Revised). MIT Press, 1997.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to
Typed Assembly Language. In Twenty-Fifth ACM Symposium on Principles of
Programming Languages, pages 85-97, San Diego, January 1998.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to
Typed Assembly Language. ACM Transactions on Programming Languages and
Systems, 3(21):528-569, May 1999.

Nasa mars climate orbiter news and status.
November 1999. http://mars.ipl.nasa.gov/msp98/orbiter/.

Nasa mars climate orbiter news and status. MCO failure board releases report,
September 1999.
http://mars.jpl.nasa.gov/msp98/news/mco991110.html.

George Necula. Proof-carrying code. In Twenty-Fourth ACM Symposium on Prin-
ciples of Programming Languages, pages 106-119, Paris, 1997.

George C. Necula and Peter Lee. Safe, untrusted agents using proof-carrying code.
LNCS 1419: Special Issue on Mobile Agent Security, October 1997.

[NL98]

[0'H93]

[0’HOO]

[PHYY]

[PJHH'93]

[PIW93]

[Plo75]

[Rey78]

[Rey83]

[Rey89]

[Rey00]

[RGY4]

[SA95]

[SF93]

[SF98]

135

George Necula and Peter Lee. The design and implementation of a certifying com-
piler. In ACM Conference on Programming Language Design and Implementation,
pages 333 — 344, Montreal, June 1998.

Peter O’'Hearn. A model for syntactic control of interference. Mathematical Struc-
tures in Computer Science, 3(4):435-465, 1993.

Peter O’Hearn. On bunched typing. Unpublished manuscript, July 2000.

Simon Peyton Jones and John Hughes (editors). Report on the programming
language Haskell 98, a non-strictpurely functional language. Technical Report
YALEU/DCS/RR-1106, Yale University, Department of Computer Science, Febru-
ary 1999. Available from http://www.haskell.org/definition/.

Simon L. Peyton Jones, Cordelia V. Hall, Kevin Hammond, Will Partain, and
Philip Wadler. The Glasgow Haskell compiler: a technical overview. In Proc. UK
Joint Framework for Information Technology (JFIT) Technical Conference, July
1993.

Simon L. Peyton Jones and Philip Wadler. Imperative functional programming. In
Twentieth ACM Symposium on Principles of Programming Languages, Charleston,
South Carolina, January 1993. ACM Press.

G. D. Plotkin. Call-by-name, call-by-value, and the lambda calculus. Theoretical
Computer Science, 1:125-159, 1975.

John C. Reynolds. Syntactic control of interference. In Fifth ACM Symposium on
Principles of Programming Languages, pages 39-46, Tucson, 1978.

John C. Reynolds. Types, abstraction, and parametric polymorphism. Information
processing, pages 513-523, 1983.

John C. Reynolds. Syntactic control of interference, part 2. In Sizteenth Interna-
tional Colloquium on Automata, Languages, and Programming, July 1989.

John C. Reynolds. Intuitionistic reasoning about shared mutable data structure.
In Symposium in Celebration of the Work of C. A. R. Hoare, 2000. To appear.

B. Reistad and D. K. Gifford. Static dependent costs for estimating execution time.
In ACM Conference on Lisp and Functional Programming, pages 65-78, Orlando,
June 1994.

Z. Shao and A. Appel. A type-based compiler for Standard ML. In ACM Con-
ference on Programming Language Design and Implementation, pages 116-129, La
Jolla, June 1995.

Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-
passing style. LISP and Symbolic Computation, 6(3/4):289-360, 1993.

Johnathan Sobel and Daniel Friedman. Recycling continuations. In ACM Interna-
tional Conference on Functional Programming, pages 251-260, Baltimore, Septem-
ber 1998.

[SRWOS]

[SRW99]

[SS00]

[Stags]
[Ste78]
[SW67]
[SWMOO]
[TAL]
[TBYS]

[TBE*98]

[TDY6]
[TJ92]

[TMC*96]

[Tof90]

[TT94]

[TT97]

136

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-analysis prob-
lems in languages with destructive updating. ACM Transactions on Programming
Languages and Systems, 20(1):1-50, January 1998.

Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via
3-valued logic. In Twenty-Sizth ACM Symposium on Principles of Programming
Languages, pages 105-118, San Antonio, January 1999.

Christian Skalka and Scott Smith. Static enforcement of security with types. In
ACM International Conference on Functional Programming, September 2000. To
appear.

R. Statman. Logical relations and the typed lambda calculus. Information and
Control, 65:85-97, 1985.

Guy L. Steele Jr. Rabbit: A compiler for Scheme. Master’s thesis, MIT, 1978.

H. Schorr and W. M. Waite. An efficient machine-independent procedure for
garbage collection in various list structures. Communications of the ACM,
10(8):501-506, August 1967.

Frederick Smith, David Walker, and Greg Morrisett. Alias types. In Furopean
Symposium on Programming, pages 366—-381, Berlin, March 2000.

TALx86. See http://www.cs.cornell.edu/talc for an implementation of Typed As-
sembly Language based on Intel’s IA32 architecture.

Mads Tofte and Lars Birkedal. A region inference algorithm. Transactions on
Programming Languages and Systems, 20(4):734-767, November 1998.

Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Hgjfeld Ole-
sen, Peter Sestoft, and Peter Bertelsen. Programming with regions in the ML Kit
(for version 3). Technical Report 98/25, Computer Science Department, University
of Copenhagen, 1998.

David Tarditi and Amer Diwan. Measuring the cost of storage management. Lisp
and Symbolic Computation, 9(4):323-342, December 1996.

J.-P. Talpin and P. Jouvelot. Polymorphic type, region, and effect inference. Jour-
nal of Functional Programming, 2(3):245-271, July 1992.

D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A
type-directed optimizing compiler for ML. In ACM Conference on Programming
Language Design and Implementation, pages 181-192, Philadelphia, May 1996.

Mads Tofte. Type inference for polymorphic references. Information and Compu-
tation, 89:1-34, November 1990.

Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value A-
calculus using a stack of regions. In Twenty-First ACM Symposium on Principles
of Programming Languages, pages 188-201, Portland, Oregon, January 1994.

Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Informa-
tion and Computation, 132(2):109-176, 1997.

[TW99]

[TWMO95]

[WA99]

[Wad85]

[Wad89)

[Wad90]

[Wad91]

[Wad93]

[Wal00]

[WCMO0]

[WF94]

[Wil92]

[WLHS1]

[WMOO]

[WP99]

137

David N. Turner and Philip Wadler. Operational interpretations of linear logic.
Theoretical Computer Science, 227:231-248, 1999. Special issue on linear logic.

David N. Turner, Philip Wadler, and Christian Mossin. Once upon a type. In ACM
International Conference on Functional Programming and Computer Architecture,
San Diego, CA, June 1995.

Daniel C. Wang and Andrew Appel. Garbage collection = regions + intensional
types. Unpublished manuscript., October 1999.

Philip Wadler. Listlessness is Better than Laziness. PhD thesis, Carnegie Mellon
University, August 1985. Available as Carnegie Mellon University technical report
CMU-CS-85-171.

Philip Wadler. Theorems for free! In Fourth ACM Conference on Functional
Programming and Computer Architecture, London, September 1989.

Philip Wadler. Linear types can change the world! In M. Broy and C. Jones,
editors, Progarmming Concepts and Methods, Sea of Galilee, Israel, April 1990.
North Holland. IFIP TC 2 Working Conference.

Philip Wadler. Is there a use for linear logic? In ACM Conference on Partial
FEvaluation and Semantics-Based Program Manipulation, New Haven, Connecticut,
June 1991.

Philip Wadler. A taste of linear logic. In Mathematical Foundations of Computer
Science, volume 711 of LNCS, Gdansk, Poland, August 1993. Springer-Verlag.

David Walker. A type system for expressive security policies. In Twenty-Seventh
ACM Symposium on Principles of Programming Languages, pages 254267, Boston,
January 2000.

David Walker, Karl Crary, and Greg Morrisett. Typed memory management in a
calculus of capabilities. ACM Transactions on Programming Languages and Sys-
tems, 2000. To appear.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38-94, 1994.

Paul R. Wilson. Uniprocessor garbage collection techniques. In Yves Bekkers and
Jacques Cohen, editors, International Workshop on Memory Management, number
637 in Lecture Notes in Computer Science, pages 1-42, St. Malo, September 1992.
Springer-Verlag.

W. A. Wulf, R. Levin, and S. P. Harbison. Hydra/C.mmp: An Ezperimental
Computer System. McGraw-Hill, New York, NY, 1981.

David Walker and Greg Morrisett. Alias types for recursive data structures (ex-
tended version). Technical Report TR2000-1787, Cornell University, March 2000.

Keith Wansbrough and Simon Peyton Jones. Once upon a polymorphic type. In
Twenty-Sizth ACM Symposium on Principles of Programming Languages, pages
15-28, San Antonio, January 1999.

138

[Xi99] Hongwei Xi. Dependent Types in Practical Programming. PhD thesis, Carnegie
Mellon University, 1999.

[XP98] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through de-
pendent types. In ACM Conference on Programming Language Design and Imple-
mentation, pages 249-257, Montreal, June 1998.

[XP99] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In
Twenty-Sizth ACM Symposium on Principles of Programming Languages, pages
214-227, San Antonio, TX, January 1999.

William Shakespeare’s Macbeth:

First Witch
When shall we three meet again
In thunder, lightning, or in rain?

Second Witch
When the hurlyburly’s done,
When the battle’s lost and won.

Third Witch
That will be ere the set of sun.

