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Abstract

In previous work, we presentedDDCα, a semantic framework for understandingData
Description Languages, a class of domain-specific languages for declaratively de-
scribing data formats for the purpose of automatically constructing format-specific
data-processing tools. However, our initial work onDDCα told only a fraction of the
semantic story concerning data description languages. Many data description lan-
guages not only provide parsers, but also other tools. Amongst the most common
auxiliary tools are printers, as reliable communication between programs depends
upon both input (parsing) and output (printing). In this work, we have defined the
semantics of printers forDDCα, thereby specifying more completely the relationship
between raw data and in-memory data, for any given format described inDDCα. We
also prove a collection of theorems for the new semantics that serve as duals to our
theorems concerning parsing. This new printing semantics has many of the same
practical benefits as our older parsing semantics: We can use it as a check against the
correctness of our printer implementations and as a guide for the implementation of
future data description languages.

1 INTRODUCTION

Data description languagesare a class of domain specific languages for specifying
ad hoc data formats, from billing records to TCP packets to scientific data sets to
server logs. Examples of such languages include BRO [Pax99],DATASCRIPT[Bac02],
DEMETER[Lie88], PACKETTYPES[MC00], PADS/C [FG05],PADS/ML [MFW+07]
and XSUGAR [BMS05], among others. All of these languages generate parsers
from data descriptions. In addition, and unlike conventional parsing tools such
as Lex and Yacc, many also automatically generate auxiliary tools ranging from
printers toXML converters to visitor libraries to visualization and editor tools.

In previous work, we developed theData Description Calculus(DDC), a calcu-
lus of simple, orthogonal type constructors, designed to capture the core features of
many existing type-based data description languages [FMW06a, FMW06b]. This
calculus had a multi-part denotational semantics that interpreted the type construc-
tors as (1) parsers that transform external bit strings into internal data representa-
tions andparse descriptors(representations of parser errors), (2) types for the data
representations and parse descriptors, and (3) types for the parsers as a whole. We
proved that this multi-part semantics was coherent in the sense that the generated
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Kinds κ ::= T | T → κ | σ → κ
Types τ ::= C(e) | λx.τ | τe | Σx:τ.τ | τ+ τ

| {x:τ |e} | α | µα.τ | λα.τ | ττ | ...

FIGURE 1. DDCα syntax

parsers always have the expected types and generate representations that satisfy an
importantcanonical formslemma.

The DDC has been very useful already, helping us debug and improve several
aspects of PADS/C [FG05], and serving as a guide for the design of
PADS/ML [MFW+07]. However, this initial work on theDDC told only a fraction
of the semantic story concerning data description languages. As mentioned above,
many of these languages not only provide parsers, but also other tools. Amongst
the most common auxiliary tools are printers, as reliable communication between
programs, either through the file system or over the Web, depends upon both input
(parsing) and output (printing).

In this work, we begin to address the limitations ofDDC by specifying a print-
ing semantics for the various features of the calculus. We also prove a collection
of theorems for the new semantics that serve as duals to our theorems concerning
parsing. This new printing semantics has many of the same practical benefits as
our older parsing semantics: We can use it as a check against the correctness of
our printer implementations and as a guide for the implementation of future data
description languages.

In this paper, we give an overview of the calculus, its dual semantics and
their properties. A companion technical report contains a complete formal spec-
ification [MFW+06]. In comparison to our previous work on theDDC at POPL
06 [FMW06a], the calculus we present here has been streamlined in several subtle,
but useful ways. It has also been improved through the addition of polymorphic
types. We call this new polymorphic variantDDCα. These improvements and ex-
tensions, together with proofs, appear in Mandelbaum’s thesis [Man06] and in a
recently submitted journal article [FMW06b]. This abstract reviews theDDCα and
extends all the previous work with a printing semantics and appropriate theorems.
To be more specific, sections 2 through 4 present the extendedDDCα calculus, fo-
cusing on the semantics of polymorphic types for parsing and the key elements of
the printing semantics. Then, Section 5 shows that both parsers and printers in the
DDCα are type correct and furthermore that parsers produce pairs of parsed data
and parse descriptors incanonical form, and that printers, given data in canonical
form, print successfully. We briefly discuss related work in Section 6, and conclude
in Section 7.
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2 DDCα SYNTAX

Figure 1 presents the syntax ofDDCα. The syntax is parameterized by that of a
host language– the language in whichDDCα parsers and printers are encoded.
For concreteness, the host language ofDDCα is a straightforward extension ofFω
with recursion and a variety of useful constants and operators. The simplestDDCα

description is a base typeC(e). The base type’s parametere is an expression drawn
from the host language. ThePADS/ML typePstring is an example of such a base
type. Structured types include value abstractionλx.τ and applicationτe, which
allow us to parameterize types by host language values. The dependent sum type,
Σx:τ.τ, describes a pair of values, where the value of the first element of the pair
(x) can be referenced when describing the second element. Variation in a data
source can be described with the sum typeτ+τ, which deterministically describes
a data source that either matches the first type, or fails to match the first branch
but does match the second one. We specify semantic constraints over a data source
with type{x:τ |e}, which describes any data that satisfies the descriptionτ and the
predicatee. Within host language expressione, the valuex is bound to the result of
parsing the data accordingτ. Type variablesα are abstract descriptions; they are
introduced by recursive types and type abstractions. Recursive typesµα.τ describe
recursive formats, like lists and trees. Type abstractionλα.τ and applicationττ
allow us to parameterize types by other types. Type variablesα always restricted
to monomorphic types (type with kindT).

To specify the well-formedness of types, we use a kinding judgment of the
form ∆;Γ ` τ : κ, where∆ maps type variables to kinds andΓ maps host language
value variables to host language types (σ). The interpretation of a type with kind
T is a parser that maps data from an external form into an internal one. A type
with kind T → κ is a function mapping a parser to the interpretation of a type with
kind κ. Finally, types with kindσ → κ map values with host language typeσ to
the interpretation of types with kindκ. For concreteness, we adoptFω as our host
language. In our original work [FMW06a], the kinding rules were somewhat
unorthodox, but we have since simplifed them. Details appear in the companion
technical report [MFW+06].

3 HOST LANGUAGE

The host language ofDDCα is a straightforward extension ofFω with recursion
and a variety of useful constants and operators. The constants include bitstrings
B; offsetsω, representing locations in bitstrings; and error codesok, err, and
fail, indicating success, success with errors, and failure, respectively. We use the
constantnone to indicate a failed parse. Because of its specific meaning, we forbid
its use in user-specified expressions appearing inDDCα types. We use the notation
bs1 @bs2 to append bit stringbs1 to bs2. Our base types include the typenone,
the singleton type of the constantnone, and typeserrcode andoffset, which
classify error codes and bit string offsets, respectively.
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[[τ]]rep = σ

[[C(e)]]rep = Btype(C)+none

[[λx.τ]]rep = [[τ]]rep

[[τe]]rep = [[τ]]rep

[[Σx:τ1.τ2]]rep = [[τ1]]rep∗ [[τ2]]rep

[[τ1 + τ2]]rep = [[τ1]]rep+[[τ2]]rep

[[{x:τ |e}]]rep = [[τ]]rep+[[τ]]rep

[[α]]rep = αrep

[[µα.τ]]rep = µαrep.[[τ]]rep

[[λα.τ]]rep = λαrep.[[τ]]rep

[[τ1τ2]]rep = [[τ1]]rep[[τ2]]rep

FIGURE 2. Representation type translation, selected constructs

We extend the formal syntax with some syntactic sugar for use in the rest of
this section: anonymous functionsλx.e for fun f x = e, with f 6∈ FV(e); span for
offset ∗offset. We often use pattern-matching syntax for pairs in place of ex-
plicit projections, as inλ(B,ω).e andlet (ω,r,p) = ein e′. Although we have no
formal records with named fields, we use a dot notation for commonly occuring
projections. For example, for a pairx of rep and PD, we usex.rep andx.pd for
the left and right projections ofx, respectively. Also, sums and products are right-
associative. Finally, we only specify type abstraction over terms and application
when we feel it will clarify the presentation. Otherwise, the polymorphism is im-
plicit. We also omit the usual type and kind annotations onλ, with the expectation
the reader can construct them from context.

The static semantics (∆;Γ ` e : σ), operational semantics (e → e′), and type
equality (σ ≡ σ′) are those ofFω extended with recursive functions and recursive
types and are entirely standard. See Pierce’s text [Pie02] for details.

4 DDCα SEMANTICS

The primitives ofDDCα each have four interpretations: two types in the host lan-
guage, one for the data representation itself and one for its parse descriptor, and two
functions, one for parsing and one for printing. We therefore specify the semantics
of DDCα types using four semantic functions, each of which precisely conveys a
particular facet of the meaning of a type. The functions[[ · ]]rep and[[ · ]]PD describe
the type of the data’s in-memory representation and parse descriptor, respectively.
The semantic functions[[ · ]]P and[[ · ]]PP define the parsing and printing functions
generated fromDDCα descriptions.
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[[τ]]PD = σ

[[C(e)]]PD = pd hdr∗unit
[[λx.τ]]PD = [[τ]]PD
[[τe]]PD = [[τ]]PD
[[Σx:τ1.τ2]]PD = pd hdr∗ [[τ1]]PD∗ [[τ2]]PD
[[τ1 + τ2]]PD = pd hdr∗ ([[τ1]]PD+[[τ2]]PD)
[[{x:τ |e}]]PD = pd hdr∗ [[τ]]PD
[[α]]PD = pd hdr∗αPDb

[[µα.τ]]PD = pd hdr∗µαPDb.[[τ]]PD
[[λα.τ]]PD = λαPDb.[[τ]]PD
[[τ1τ2]]PD = [[τ1]]PD[[τ2]]PDb

[[τ]]PDb = σ

[[τ]]PDb = σ where[[τ]]PD ≡ pd hdr∗σ

FIGURE 3. Parse-descriptor type translation, selected constructs

4.1 DDCα representation types

In Figure 2, we present the representation type of selectedDDCα primitives. While
the primitives are dependent types, the mapping to the host language erases the de-
pendency because the host language does not have dependent types. This involves
erasing all host language expressions that appear in types as well as value abstrac-
tions and applications. A type variableα in DDCα is mapped to a corresponding
type variableαrep in Fω. Recursive types generate recursive representation types
with the type variable named appropriately. Polymorphic types and their applica-
tion becomeFω type constructors and type application, respectively.

4.2 DDCα parse descriptor types

Figure 3 gives the types of the parse descriptors corresponding to selectedDDCα

types. All parse descriptors share a common structure, consisting of two compo-
nents, a header and a body. The header reports on the corresponding representation
as a whole. It stores the number of errors encountered during parsing, an error
code indicating the degree of success of the parse—success, success with errors, or
failure—and the span of data (location in the source) described by the descriptor.
To be precise, the type of the header (pd hdr) is int∗errcode∗span. The body
contains parse descriptors for the subcomponents of the representation. For types
without subcomponents, we useunit as the body type. As with the representation
types, dependency is uniformly erased.
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[[τ:κ]]PT = σ

[[τ:T]]PT = bits∗offset → offset∗ [[τ]]rep∗ [[τ]]PD

[[τ:σ → κ]]PT = σ → [[τ e:κ]]PT, for any e.

[[τ:T → κ]]PT = ∀αrep.∀αPDb.[[α:T]]PT → [[τ α:κ]]PT (αrep,αPDb 6∈ FTV(κ)∪FTV(τ))

FIGURE 4. Host language types for parsing functions

[[τ:κ]]PPT= σ

[[τ:T]]PPT = [[τ]]rep∗ [[τ]]PD → bits

[[τ:σ → κ]]PPT = σ → [[τ e:κ]]PPT, for any e.

[[τ:T → κ]]PPT = ∀αrep.∀αPDb.[[α:T]]PPT→ [[τ α:κ]]PPT (αrep,αPDb 6∈ FTV(κ)∪FTV(τ))

FIGURE 5. Host language types for printing functions

Like other types,DDCα type variablesα are translated into a pair of header
and a body. The body has abstract typeαPDb. This translation makes it possible
for polymorphic parsing code to examine the header of a PD, even though it does
not know theDDCα type it is parsing.DDCα abstractions are translated intoFω
type constructors that abstract the body of the PD (as opposed to the entire PD)
andDDCα applications are translated intoFω type applications where the argument
type is the PD body type.

4.3 DDCα parsing semantics.

The parsing semantics of a typeτ with kind T is a function that transforms some
amount of input into a pair of a representation and a parse descriptor, the types of
which are determined byτ. The parsing semantics for types with higher kind are
functions that construct parsers, or functions that construct functions that construct
parsers,etc. Figure 4 specifies the host-language types of the functions generated
from well-kindedDDCα types.

For each (unparameterized) type, the input to the corresponding parser is a bit
string to parse and an offset at which to begin parsing. The output is a new offset,
a representation of the parsed data, and a parse descriptor.

For any type, there are three steps to parsing: parse the subcomponents of the
type (if any), assemble the resultant representation, and tabulate meta-data based
on subcomponent meta-data (if any). For the sake of clarity, we have factored the
latter two steps into separate representation and PD constructor functions which
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[[τ]]P = e

[[C(e)]]P = λ(B,ω).Bimp(C) (e) (B,ω)
[[λx.τ]]P = λx.[[τ]]P
[[τe]]P = [[τ]]P e

[[Σx:τ.τ′]]P =
λ(B,ω).
let (ω′,r,p) = [[τ]]P (B,ω) in
let x = (r,p) in
let (ω′′,r′,p′) = [[τ′]]P (B,ω′) in
(ω′′,RΣ(r,r′),PΣ(p,p′))

[[τ+ τ′]]P =
λ(B,ω).
let (ω′,r,p) = [[τ]]P (B,ω) in
if isOk(p) then

(ω′,R+left(r),P+left(p))
else let (ω′,r,p) = [[τ′]]P (B,ω) in
(ω′,R+right(r),P+right(p))

[[{x:τ |e}]]P =
λ(B,ω).
let (ω′,r,p) = [[τ]]P (B,ω) in
let x = (r,p) in
let c = ein
(ω′,Rcon(c,r),Pcon(c,p))

[[α]]P = parseα

[[µα.τ]]P =
fun parseα (B,ω) : offset∗σ1 ∗σ2 =
let (ω′,r,p) =

[[τ]]P[σ1/αrep][σ3/αPDb] (B,ω)
in

(ω′,fold[σ1]r,(p.h,fold[σ3]p))
whereσ1 = [[µα.τ]]rep ,σ2 = [[µα.τ]]PD,

andσ3 = [[µα.τ]]PDb
[[λα.τ]]P = Λαrep.ΛαPDb.λparseα.[[τ]]P
[[τ1τ2]]P = [[τ1]]P [[[τ2]]rep] [[[τ2]]PDb] [[τ2]]P

FIGURE 6. DDCα parsing semantics, se-
lected constructs

[[τ]]PP= e

[[C(e)]]PP= λ(r,pd).Bpp(C) (e) (r,pd)
[[λx.τ]]PP= λx.[[τ]]PP

[[τe]]PP= [[τ]]PPe

[[Σx:τ1.τ2]]PP=
λ(r,pd).
let x = (r.1,pd.2.1) in
let bs1 = [[τ1]]PPx in
let bs2 = [[τ2]]PP(r.2,pd.2.2) in
bs1 @bs2

[[τ1 + τ2]]PP=
λ(r,pd).
case (r,pd.2) of
| (inl r1,inl p1) ⇒ [[τ1]]PP(r1,p1)
| (inr r2,inr p2) ⇒ [[τ2]]PP(r2,p2)
| ⇒ badInput()

[[{x:τ |e}]]PP=
λ(r,pd).
case (r,pd.2) of
| (inl r1,p1) ⇒ [[τ]]PP(r1,p1)
| (inr r2,p2) ⇒ [[τ]]PP(r2,p2)

[[α]]PP= printα

[[µα.τ]]PP=
fun printα (r : σ1,pd : σ2) : bits =

[[τ]]PP[σ1/αrep][σ3/αPDb]
(unfold[σ1]r,unfold[σ3]pd.2)

whereσ1 = [[µα.τ]]rep ,σ2 = [[µα.τ]]PD,

andσ3 = [[µα.τ]]PDb

[[λα.τ]]PP= Λαrep.ΛαPDb.λprintα.[[τ]]PP
[[τ1τ2]]PP= [[τ1]]PP [[[τ2]]rep] [[[τ2]]PDb] [[τ2]]PP

FIGURE 7. DDCα printing semantics,
selected constructs
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we define for each type. For example, the representation and PD constructors
for the dependent sums areRΣ andPΣ, respectively. We have also factored out
some commonly occuring code into auxiliary functions. These constructors and
functions appear in the companion technical report [MFW+06].

The PD constructors determine the error code and calculate the error count.
There are three possible error codes:ok, err, andfail, corresponding to the
three possible results of a parse: it can succeed, parsing the data without errors;
it can succeed, but discover errors in the process; or, it can find an unrecoverable
error and fail. The error count is determined by subcomponent error counts and
any errors associated directly with the type itself.

Figure 6 specifies the parsing semantics of a selected portion ofDDCα. We
explain the interpretations of select types, from which the interpretation of the
remaining types may be understood. The full semantics appears in the technical
report [MFW+06]. A dependent sum parses the data according to the first type,
binding the resulting representation and PD tox before parsing the remaining data
according to the second type. It then bundles the results using the dependent sum
constructor functions.

A type variable translates to an expression variable whose name corresponds
directly to the name of the type variable. These expression variables are bound
in the interpretations of recursive types and type abstractions. We interpret each
recursive type as a recursive function whose name corresponds to the name of the
recursive type variable. For clarity, we annotate the recursive function with its type.
We interpret type abstraction as a function over other parsing functions. Because
those parsing functions can have arbitraryDDCα types (of kindT), the interpre-
tation must be a polymorphic function, parameterized by the representation and
PD-body type of theDDCα type parameter. For clarity, we present this type param-
eterization explicitly. Type applicationτ1 τ2 simply becomes the application of the
interpretation ofτ1 to the representation-type, PD-type, and parsing interpretations
of τ2.

4.4 DDCα printing semantics

The definition of the printing semantics for aDDCα description uses a similar set
of concepts as the parsing semantics. To begin, the semantic function[[τ:κ]]PPT= σ
gives the host language typeσ for the printer generated from typeτ with kind κ.
As shown in Figure 5, the printing semantics for descriptions with higher kind are
functions that construct printers, while the printing semantics for descriptions with
base kind are simple first-order functions that map a representation and a parse
descriptor into a string of bits.

Figure 7 presents the printing semantics of selectedDDCα constructs. Base
typesC(e) are printed in various ways according to the definitionBpp, which is a
parameter to the semantics. The base type printerBpp accepts the parse descrip-
tor as a parameter, and in the case of an error, prints nothing. Dependent sums
print one component and then the next in order. An ordinary sum prints the un-
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derlying tagged value. Notice that the structure of the parse descriptor and the
representation should be isomorphic – both should be left injections or both should
be right injections. Any pair of structures generated by the parser are guaranteed
to satisfy this invariant. If the pair do not match, then the programmer is using the
printer incorrectly. In this case, the printer calls an unspecified error routine named
badInput().

The semantics of printing recursive and parameterized types follows similar
lines to the semantics of parsing these constructs. In particular, whenever a type
parameter is introduced in the syntax of a description, a corresponding value pa-
rameter with printer function type is introduced in the generated printer code. We
give the value parameter the nameprintα. Both type abstractions and recursive
functions introduce such parameters. Notice that whereas the parsing semantics
uses a fold to build a recursive data structure when interpreting a recursive type,
the printing semantics uses an unfold to deconstruct a recursive data structure for
printing.

5 METATHEORY

To validate our semantic definitions, we have proven two key metatheoretic re-
sults. First, we show that parsers and printers aretype-correct, always returning
representations and parse descriptors of the appropriate type. Second, we give a
precise characterization of the results of parsers and input requirements of printers,
by defining thecanonical formsof representation-parse descriptor pairs associated
with a dependentDDCα type.

5.1 Type Correctness.

Demonstrating that generated parsers and printers are well formed and have the
expected types is nontrivial primarily because the generated code expects parse
descriptors to have a particular shape, and it is not completely obvious they do in
the presence of polymorphism. Hence, to prove type correctness, we first need to
characterize the shape of parse descriptors for arbitraryDDCα types.

Unfortunately, the most straightforward characterization is too weak to prove
directly, and hence Definition 1 specifies a much stronger property as a logical
relation. Lemma 2 establishes that the logical relation holds of all well-formed
DDCα types by induction on kinding derivations, and the desired characterization
follows as a corollary.

Definition 1
• H(τ : T) iff ∃σ s.t. [[τ]]PD ≡ pd hdr∗σ.

• H(τ : T → κ) iff ∃σ s.t. [[τ]]PD ≡ σ and whenever H(τ′ : T), we have H(ττ′ :
κ).

• H(τ : σ → κ) iff ∃σ′ s.t. [[τ]]PD ≡ σ′ and H(τe : κ) for any expression e.
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Lemma 2
If ∆;Γ ` τ : κ then H(τ : κ).

Lemma 3
• If ∆;Γ ` τ : κ then ∃σ.[[τ]]PD = σ.

• If ∆;Γ ` τ : T then ∃σ.[[τ]]PD ≡ pd hdr∗σ.

With this lemma, we can establish the type correctness of the generated parsers
and printers. We prove the theorem using a general induction hypothesis that ap-
plies to open types. This hypothesis must account for the fact that any free type
variables in aDDCα type τ will become free function variables in[[τ]]P. To that
end, we define the functions[[∆]]PT and[[∆]]PPT which map type-variable contexts
∆ in the DDCα to value-variable contextsΓ in Fω. In addition, the function‖∆‖
generates the appropriateFω type-variable context from theDDCα context∆.

‖·‖ = · ‖∆,α:T‖ = ‖∆‖,αrep:T,αPDb:T
[[ · ]]PT = · [[∆,α:T]]PT = [[∆]]PT,parseα:[[α:T]]PT
[[ · ]]PPT= · [[∆,α:T]]PPT= [[∆]]PPT,printα:[[α:T]]PPT

Lemma 4 (Type Correctness Lemma)
• If ∆;Γ ` τ : κ then ‖∆‖,Γ, [[∆]]PT ` [[τ]]P : [[τ:κ]]PT

• If ∆;Γ ` τ : κ then ‖∆‖,Γ, [[∆]]PPT ` [[τ]]PP : [[τ:κ]]PPT.

Proof: By induction on the height of the kinding derivation. �

Theorem 5 (Type Correctness of Closed Types)
• If ` τ : κ then ` [[τ]]P : [[τ:κ]]PT.

• If ` τ : κ then ` [[τ]]PP : [[τ:κ]]PPT.

5.2 Canonical Forms for Parsed Data.

DDCα parsers generate pairs of representations and parse descriptors designed to
satisfy a number of invariants. Of greatest importance is the fact that when the
parse descriptor says there are no errors in a particular substructure, the program-
mer can count on the representation satisfying all of the syntactic and semantic
constraints expressed by theDDCα type description. When a parse descriptor and
representation satisfy these invariants, we say the pair of data structures is incanon-
ical form. While generated parsers produce canonical outputs, generated printers
expect canonical inputs.

For eachDDCα type, its canonical forms are defined via two (mutually recur-
sive) relations. The first relation, Canonν(r, p), defines the canonical form of a
representationr and a parse descriptorp at normal typeν. Normal typesare those
closed types with base kindT that are defined in Figure 8. Types with higher kind
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Normal Types ν ::= C(e) | λx.τ | Σx:τ.τ | τ+ τ | {x:τ |e} | µα.τ | λα.τ
Types τ ::= ν | τe | ττ | α

FIGURE 8. DDCα normal types, selected constructs

such as abstractions are not described by this relation as they cannot directly pro-
duce representations and PDs. Another relation, Canon∗

τ(r, p) (formal definition
omitted) normalizesτ, thereby eliminating outermost type and value applications.
For brevity, we writep.h.nerr as p.nerr and usepos to denote the function that
returns zero when passed zero and one when passed another natural number.

Definition 6 (Canonical Forms (selected constructs))
Canonν(r, p) iff exactly one of the following is true:

• ν = C(e) and r = inl c and p.nerr = 0.

• ν = C(e) and r = inr none and p.nerr = 1.

• ν = Σx:τ1.τ2 and r =(r1, r2) and p=(h,(p1, p2)) and h.nerr= pos(p1.nerr)+
pos(p2.nerr), Canon∗τ1(r1, p1) and Canon∗τ2[(r,p)/x](r2, p2).

• ν = τ1 + τ2 and r = inl r ′ and p = (h,inl p′) and h.nerr = pos(p′.nerr)
and Canon∗τ1(r

′, p′).

• ν = τ1 + τ2 and r = inr r ′ and p = (h,inr p′) and h.nerr = pos(p′.nerr)
and Canon∗τ2(r

′, p′).

• ν = {x:τ′ |e}, r = inl r ′ and p = (h, p′), and h.nerr = pos(p′.nerr) and
Canon∗τ′(r ′, p′) and e[(r ′, p′)/x] →∗ true.

• ν = {x:τ′ |e}, r = inr r ′ and p = (h, p′), and h.nerr = 1+pos(p′.nerr) and
Canon∗τ′(r ′, p′) and e[(r ′, p′)/x] →∗ false.

• ν = µα.τ′, r = fold[[[µα.τ′]]rep] r
′, p = (h,fold[[[µα.τ′]]PD] p′), p.nerr =

p′.nerr and Canon∗τ′[µα.τ′/α](r ′, p′).

The first part of Theorem 7 states that parsers for well-formed types (of base
kind) produce a canonical pair of representation and parse descriptor if they pro-
duce anything at all. Conversely, the second part states that, given a canonical rep-
resentation and parse descriptor, the printer for well-formed types (of base kind)
will not “go wrong” by calling thebadInput() function.

Theorem 7 (Parsing to/Printing from Canonical Forms)
• If ` τ : T and [[τ]]P (B,ω) →∗ (ω′, r, p) then Canon∗τ(r, p).

• If ` τ : T , Canon∗τ(r, p) and [[τ]]PP (r, p) →∗ e then e 6= badInput().
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6 RELATED WORK

There are other formalisms for defining parsers, most famously, regular expres-
sions and contex-free grammars. In terms of recognition power, our type theory
contains dependency and hence easily expresses languages that are not context-
free. Perhaps more importantly though, unlike standard theories of context-free
grammars, we do not treat our type theory merely as a recognizer for a collection
of strings. Our type-based descriptions define external data formats, rich invari-
ants on the internal parsed data structures and parser and printer functions to relate
them. This multi-part interpretation of types lies at the heart of tools such asPADS.

As mentioned in the introduction, there are many domain-specific specifica-
tion languages that allow users to write down descriptions of data and generate
tools from them [Bac02, Lie88, MC00, FG05, MFW+07, BMS05]. Many of these
projects contain great ideas, but we would like to highlight just two of them:
DEMETER [Lie88] and XSUGAR [BMS05]. DEMETER generates a number of
different kinds of visitor patterns, including visitors for printing, from high-level
type-based descriptions calledclass dictionaries. XSUGAR is a specialized tool for
converting back and forth from ad hoc data toXML . A static analysis guarantees
that XSUGAR’s generated transforms are inverses of one another, something we
have not yet proven forDDCα. On the other hand, neither DEMETERnor XSUGAR

supports dependent types or polymorphism.
There is also a clear relation between our work and the parser/printer combi-

nator libraries developed for many functional programming languages. One dif-
ference between theDDCα and, for instance, Haskell combinator libraries [HM98,
Wad03], is that a singleDDCα description specifies multiple programs (i.e.,a parser
and a printer) whereas a program built from Haskell combinators will generally
only specify one thing – either a parser or a printer.

The DDCα and its semantics are also closely tied totype-directedprogram-
ming techniques [HM95, JJ97, CW99, Jan00, Hin00]. Of particular interest is the
elegant work by Jansson and Jeuring on polytypic data conversions [JJ99, JJ02].
These authors demonstrate how to program a variety of different data transforma-
tion functions together with their inverses in PolyP, a type-directed extension of
Haskell. For instance, they describe a generic compressing printing/parsing algo-
rithm, a generic noncompressing (“pretty”) printing/parsing algorithm, and a “data
extraction” (merge) algorithm that separates (merges) primitive data from (into) its
containing structure. The authors prove that each function pair is invertible – print
followed by parse is the identity (though not necessarily the other way around),
which is a substantially stronger correctness property than any we have proven in
this paper.

What makes our work here and the overallPADSproject independently interest-
ing from Jansson and Jeuring’s is our domain-specific focus. For instance, whereas
Jansson and Jeuring show how to parse and print anyinternaldata structure,PADS

focuses on parsing and printing anyexternalformat – there is a shift in goal. In
addition,PADSprovides the capability to generate a number of format-specific pro-
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grams specially designed for ad hoc data processing including an XML translator,
query engine, formatter and statistical analysis. This domain-specific collection of
tools allows one to usePADS to rapidly investigate, query and transform new, unan-
ticipated data formats that show up at one’s doorstep without advanced warning. It
is also important to note thatPADS is compiled for performance reasons and this is
reflected in our denotational semantics, which is quite different from the semantics
used by Jansson and Jeuring.

7 CONCLUSIONS

TheDDCα, a dependent data description calculus, now has both parsing and print-
ing semantics. Moreover, these semantics have been proven to satisfy important
type correctness and canonical forms theorems. In the future, we hope to provide
semantics for other tools generated by data description languages in general, and
the PADS family of languages in particular. The ease with which we were able to
augment our existing semantic framework with a printing semantics suggests this
goal is within our reach.
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