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Abstract

A transient hardware faulbccurs when an energetic particle strikes
a transistor, causing it to change state. Although trah&erts do
not permanently damage the hardware, they may corrupt campu
tions by altering stored values and signal transfers. Byghper, we
propose a new scheme for provably safe and reliable congpixtin
the presence of transient hardware faults. In our schenfteysse
computations are replicated to provide redundancy whitisp
instructions compare the independently computed resuligtect
errors before writing critical data. In stark contrast ty @nevious
efforts in this area, we have analyzed our fault tolerantese
from a formal, theoretical perspective. To be specific,,fikg pro-
vide an operational semantics for our assembly languagéhwh
includes a precise formal definition of our fault model. Setave
develop an assembly-level type system designed to defettite
ity problems in compiled code. Third, we provide a formalafie
cation for program fault tolerance under the given fault eiahd
prove that all well-typed programs are indeed fault tolerbmad-
dition to the formal analysis, we evaluate our detectioresud and
show that it only takes 34% longer to execute than the urlelia
version.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guage Formal Definitions and Theory; B.8.Pgrformance and
Reliability]: Reliability, Testing, and Fault-Tolerance

General Terms Languages, Reliability, Theory, Verification

Keywords transient hardware faults, soft faults, fault tolerance,
type systems, typed assembly language

1. Introduction

A transient faultor soft erroris a temporary hardware failure that
alters a signal transfer, a register value, or some otheregsmr
component. While transient faults are temporary, theyugircom-
putations and have led to costly failures in high-end systamme-
cent years. For example, in 2000 there were reports thadiénain
faults caused crashes at a number of Sun’s major custonest sit
including America Online and eBay [2]. Later, Hewlett Patka
admitted multiple problems in the Los Alamos Labs superaamp
ers due to transient faults [7]. Finally, Cypress Semicatmuhas
confirmed “The wake-up call came in the end of 2001 with a major
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customer reporting havoc at a large telephone company.nfech
cally, it was found that a single soft fail...was causing atef-
leaved system farm to crash” [28].

Unfortunately, while soft errors can already cause sulisan
reliability problems, current trends in hardware desigggast that
fault rates will increase in the future. More specificallgster
clock rates, increasing transistor density, decreasitiggyes and
smaller feature sizes all contribute to increasing fauksdl, 11,
21]. Due to a combination of these factors, fault rates in enod
processors have been increasing at a rate of approximatelyed
generation [3].

These trends are well known in the architecture and compiler
communities, and, consequently, many solutions to theathwé
soft errors have been proposed. At a high level, all of thekgiens
involve adding redundancy to computations in one way ortaatot
but the specifics vary substantially. For instance, thex@erposals
involving hardware-only solutions such as error-corrggitodes,
watchdog co-processors [6] and redundant hardware thféaéls
16, 25] as well as software-only techniques that use bothlesin
and multiple cores [12, 13, 17, 18, 20, 24]. Broadly speakihg
the technique can scale, hardware-only solutions are nfficeet
for a single, fixed reliability policy, but software-onlylstions are
more flexible (they may be deployed exactly when, where, and t
the degree needed) and less costly in terms of hardware. &t an
tempt to gain some of the best of both worlds, researchers hav
also recently proposed hybrid software-hardware solatiovolv-
ing strong fault tolerance mechanisms implemented in harew
but controlled by the software running on the processor.[19]

Software-only and hybrid hardware-software techniques al
possess at least one further, little-mentioned drawbacdkey-may
not actually work To be fair, many of these techniques appear ex-
tremely promising. However, as far as we are aware, the ghi
transient fault-tolerance techniques come with no rigemroofs
that they guarantee any particular reliability propertigs gen-
eral, researchers satisfy themselves with presenting goritdm
for fault-tolerance and leave the audience to judge for Hedves
whether or not the algorithm is correct. In fact, the literatdoes
not even precisely define what it might mean for an assengvigt|
program to be fault tolerant. This paper tackles this gapivlg in
the existing literature by defining a new hybrid hardwarkveare
technique for tolerating transient faults, and, unlike angvious
work, actually proving it has strong fault-tolerance pndjgs.

The specification and proof of fault tolerance comes in sdver
stages. First, before proving any particular propertieis neces-
sary to define a fault model precisely. Most of the curremtrdit
ture uses the&ingle Event Upset (SEU) Modsthich states that
only one fault may occur during execution [16, 19, 26]. Hoarev
the details of exactly where and when faults may occur arellysu
given in English. We also assume the SEU model, but we specify
exactly where by including faulty transitions as formalesiin the
operational semantics of our assembly language.



Second, it is necessary to state precisely what “fault aoles”
actually means. Abstractly, a program is fault-toleramof fault
can change the observable behavior of a program. More dehgre

computation generally leads slightly, and the blue comntprna
generally trails, though there is a fair amount of flexililit how
the instructions in each computation may be interleaveidr Ro

we assume our system operates in the presence of a memorywriting data out to a memory-mapped output device, the tesidl

mapped output device, and hence a programoisfault-tolerant

if a fault can cause a deviation in the sequence of valuegenrit
to memory. We formalize this property more precisely as ahmat
ematical theorem that relates faulty and non-faulty exenstof a
program.

Third, itis necessary to provide a technique for actualtwprg
that specific programs are fault tolerant relative to thdt faodel.
Our proof technique is presented in the form of a type sysfdm.
well-typed programs satisfy variants of the standard msgrand
preservation lemmas, even in the presence of transiensfad
well as the stronger fault tolerance property mentioned/@btm
addition to being theoretically important as a proof teqaei for
fault tolerance, the type system can be used to debug camikt
intend to generate reliable code. If the output from thesepiters
type check, their code will have strong fault tolerance gotaes.
In the past, researchers have proposed testing compilputsut
using fault injection techniques that randomly insert errmto

the two computations are checked for equivalence. If thaltes
are not equivalent, the machine will signal that a fault hasrb
detected. The arguments to any control-flow transfer msst la¢
checked for faults. This methodology has been show in tkealit
ture as an effective implementation of fault tolerance [i&, and
we expand on this style of implementation by formalizing finglt
model and coverage.

The execution of assembly programs is specified using a-small
step operational semantics that mapachine state¢X) to other
machine states. These machine states are made up of a nuimber o
components. The first component is the machiregsster bankR,
which is a total function that maps register names to theeglu
contained therein. The meta variahteranges over all sorts of
registers, and meta variabteranges only over general-purpose
registers {1, r2, ...). In addition to general-purpose registers, there
are two program counter registetg andpcg), which contain the
same value unless there has been the fault. There is onéadtlit

programs. However, using a type checker in this case is a muchspecial register, thdestination registerd. Its role in control-flow

better idea. In principle, a conventional testing techaigould
need to test all combinations of featuri@sconjunction with all
combinations of faultscausing an explosion in the number of
test cases, and yet still failing to achieve perfect faultecage in
practice. By using the type checker we have designed, orievash
perfect fault coverage relative to the fault model withoegding to
increase the compiler test suite.

The rest of this paper presents the details of our hybridviraret
software fault-tolerance technique. Section 2 presergssyimtax
and operational semantics of the new, idealized assemidyiége
we have designed for fault tolerance. Itis a RISC-basedtaathre
with special instructions to facilitate reliable commuation with
memory and to detect control-flow faults. Section 3 presémts
key principles and formal definitions for the fault-tolerassem-
bly language type systenTQALgrr for short). Though the typing
rules are specific to our particular setting, the underlypnigci-
ples are more general; we believe many of these principlds wi
apply to reasoning about related fault-tolerant systens.i@no-
vative combination of a TAL-like type-theory with concefitsm
classical Hoare Logics is a particularly general and imgurtech-
nical contribution. Section 4 describes the key theorem$ave
proven including Progress, Preservation, “No False Resifi and
Fault Tolerance. Section 5 provides empirical evidence tla
new hybrid solution to fault tolerance is feasible for mampplé
cations by measuring performance results on simulatedizaed
Related work is discussed in more detail in Section 6. Dupace
considerations, some of the technical details and all ofotibefs
have been omitted. A companion technical report [15] costttie
complete specification of our system and a relatively dedgiroof
outline.

2. TheFaulty Hardware

The faulty hardware is based on a simple RISC architecture, e
tended with features to support detection of control-floulttaand
safe interaction with memory-mapped output devices. Cbuse
of these features makes it possible to detect all faults rtight
change a program’s observable behavior. Most practicaésys
also need a fault recovery mechanism of some kind. Howewvee s
recovery is largely orthogonal to detection, we omit therfer, fo-
cusing only on the latter in this paper.

The general strategy of every fault-tolerant program is &irnm
tain two redundant and independent threads of computation,
green (G) computation and dlue (B) computation. The green

checking will be explained later.

To facilitate proofs of certain theorems, the value in eathis-
ter is tagged with the color (either green or blue) of the cotapon
to which it belongs. However, these tags have no effect onuhe
time behavior of progrants.

In addition to a register bank, the machine state includes a
code memony”, which we model as a function mapping integer
addresses to instructions: The machine also hasvalue memory
M, which maps addresses to integer values. In between the valu
memory and the processor is a spestale queug, which is used
to detect faults before data is written to a memory-mappéegubu
device. The store queue is a queue of address-value pairaillWe
discuss the role of the queue in greater detail later.

Overall, an abstract machine stalg) (nay have the fornfault,
indicating the hardware has detected a transient faulheotdi-
nary statg R, C, M, Q, ir), where the first four components are as
discussed above, and is either an instruction to be executed,
or “.” indicating the next instruction should be fetched from eod
memory. Figure 1 summarizes the syntax of machine states. He
and elsewhere in the paper, we use overbar notation to tedica
sequence of objects.

2.1 TheFault Model

The operational semantics is designed both to model proger e
cution of machine instructions and to make perfectly explpe-
cise, and transparent all of our assumptions about when aadaw
faults may occur. The central operational judgment has ohe f
¥ —} 39, which expresses a single step transition from sfate

to stateX» while incurringk faults and writing data to a memory-
mapped output device. We will work under the standard assamp
of a single upset event and hercwill always be either O or 1. The
datas is a (possibly empty) sequence of address-value pairs.enhil
the operational semantics models the internal workingb®hta-
chine, the only externally observable behavior of the maehs
the sequence of writesto the output device or the signaling of a
hardware-detected fault. If faults cause the processoave Hras-
tically different internal behavior, but the externallysalovable se-
guences is unchanged, we consider the program to have executed
successfully.

11n contrast, the tags on instruction opcodes, to be intredusomentarily,
do have an effect on evaluation.

2 Address 0 is not considered a valid code address.



colors c = G|B

colored values v = cn

registers T = Tn

general regs a = r|d|pce

register file R = |Rya—v

code memory C == -|Cin—i

value memory M == -|M,n—n

store queue QR == (n,n)

ALU ops op == add|sub|mul

instructions 1 = 0PTd,Ts, Tt | OP T, TS,V
| ldera,rs | SteTa, s | MOV T4,V
| bze ra,ral| jmp, Ta

inst register  ir  u= Q|-

state b = (R,C,M,Q,ir) | fault

Figure 1. Syntax of instructions and machine states.

Different fault-tolerance techniques protect differeimpo-
nents of machines. In the literature, the protected arenssarally
inside theSphere of ReplicatiofSoR) [16]. In our case, we tar-
get faults that may occur in data manipulated within the gssor.
We assume that both code memdaryand value memon) are
fully protected. This is often the case since error-comgctodes
can very efficiently protect memory. To make these assumgptio
explicit, the following three operational rules specifyaety how
faults may occur within our system.

R(a)=cn

(RO, Qi) — (Rla e '], C M, Quir) (97220
Q= (77,1777,’1), (m17 m,)v (77,27 n/2)
Q2 - (n17n/1)7 (m27 m/)7 (TL27 Tll2)
(RO 0.1 ir) — (R0, Qrir) (729
Ql = (TL17 77/1)7 (m7 m,1)7 (77,2, n/2)
Q2 = (TZ1, nll)v (m7 ml2)7 (n27 nl2)
(Q-zap?

(R7 C7 M7Q17i7l) -1 (R7 C7 ]\47 Q277:7')

Rulereg-zapnondeterministically introduces a fault into any regis-
ter by replacing the value in that register with some othbitary
value. There are no restrictions on how the underlying valight

be changed. For instance, code pointers can be changedttargrb
integer values; references may no longer be in bounds. Hawev
the color tag is preserved to facilitate fault-toleranceofs. Since
the color tag is fictional (has no effect on run-time behgyithis
poses no limitation on the fault model. Rul@s-zapand Q2-zap
alter the contents of the store queue in similar ways.

Formally, these are the only faults that can occur. Howener,
tice that since the program counters and targets of indjoeeps
are susceptible to theeg-zaprule, we effectively capture many
forms of “control-flow faults” studied previously. Noticésa that
we do not explicitly consider faults that ocaduring execution of
an instruction. However, many such faults may easily be show
equivalent to correct execution of an instruction composét a
fault either immediately before or afterwards. For examptan-
sider a simple register-to-register add instruction. Aawltf within
the adder hardware during execution of the add is equivateat
correct add followed by a fault in the destination register.

Animportant benefit of our formal model is that there is attjua
some precise, concrete specification to analyze. Morediver,
researcher wants to reason about the consequences of saine fa
that lives outside the formal model, this may be done by agldin
new operational rule to the system and studying its semafigct.

Instruction Fetch:

R’Ual(pCG) = R’ual(pcs) R/ual(pCG) (S Dom(C’)

fetch
(R7 07 M7Q7’) -0 (R,C, M7Q7C(R1/(Ll(pcG))) ( )
R/ua C, RU(L C
pee) 7 Rua(pen) - cor
(R7 07 M7 Q7 ) -0 fault
Basic Instructions:
R/ = R++[7‘d — Rcol (Tt) (R’ual (7”3) op Rval (Tt))] (0 2r)
(R707M7Q7Op 7"(1,7'5,7'15) -0 (R,7O7M7Q7') P
R’ = R++[rqg — c (Ryai(rs) op n)]
7 (op1r)
(R7 07 M7Q,0p Td, Ts, CTL) -0 (R 707 M?Q7 )
R = R++
[ra — v] (mov)

(R7 Cy M,Q,mov 7ﬂd:v) -0 (Rlvcv M:Q?')

Figure 2. Operational rules for basic instructions.

2.2 Instruction Semantics

The syntax of machine instructions was presented along tvéh
rest of the components of our abstract machine in Figure & Th
semantics is described formally by the inference rulesgufgs 2,

3, and 4, and explained informally below. The formal rules us
several notational conventions. For instanceRifs a register file
thenR(a) is the contents of registerand R[a +— v] is the updated
register file with registes mapped ta. R++ is the register file that
results from incrementing botbce andpcg by 1. If R(a) is the
colored valuec n, we write R,4;(a) to denoten and R.;(a) to
denotec. The functionfind(Q,n) produces the first paifn, n’)
that appears i, or () if no pair (n,n’) appears irQ.

Instruction Fetch. The machine operates by alternatively fetch-
ing an instruction from code memory and executing that ugstr
tion. When there is no current instruction to execute (i-e= -),

the fetchrule should fire. This rule tests for equality of the two
program counters to check for faults and loads the apprepiria
struction from code memory. lpcc and pcg are the same but
Ryai(pee) is not a valid address in code memory, execution “gets
stuck” (no rule fires). Fortunately, however, well-typedgrams
never get stuck, even when a single fault occurs. On the btred,

a fault can render the two program counters inequivalenthi
case, ruldetch-fail fires and causes a transition to the fault state.
Abstractly, this transition represents hardware detaatioa tran-
sient fault. Controlled program termination or perhapsovecy
may follow. Fault recovery is an orthogonal issue to fautedéon,

so we leave it unspecified here. The fault model does not dtow
the instruction itself to be corrupted.

Basic Ingtructions. The arithmetic and move instructions (rules
op2r, oplr, andmo\) are completely standard. The first arithmetic
operatiorop rq4,rs, 7+ performsop on the values im; andr,, stor-

ing the resultin-;. The second arithmetic operation uses a constant
operandv in addition tor; andr4. All constants are annotated with
the color of the computation they belong to. Likewise, thev
instruction loads an annotated constant into a register.

Memory Instructions. Transient faults are problematic only
when they change the results of computations and thosetgesul
areobserveddy an external user. In our model, the only way a re-
sult can be observed is for a program to write it to memory,rehe
a memory-mapped output device may read and process it.



Q" = (Rvat(ra), Rvai(rs)), Q)
(R7 C7 M7 Q7 sta Td, TS) -0 (R++7 07 M7 Q,7 )

(ste-queue

Rval("'s) = n;
(R7 07 M7 ((n7 nl)7 (nlvnz))v stp T4, TS)

(ng,m]

0 2 (R++707M[nl Hn;]v(n7n/)7')

Ryai(ra) =

(stz-men)

—

Find(Q, Ryai(rs)) = (Ryai(7s),n)
R’ = R++[rq — G n|

(R7 Cy M7Q7ldG Td7r8) -0 (R/7O7 M7Q7’)

(Idg-queue

find(Q, Ruai(rs)) = ()
Ryai(rs) € Dom(M)
R = R++[rg — G M(Ryai(rs))]

(R7 07 M7ledG 7"(177‘5) -0 (R,7O7 M7Q7 )

(Idg-mem)

Rval(TS) € Dom(M)
R = R++[7"d — B M(Rval(TS))]

(R7 Cy M7Q7ldB 7"(1,7'5) -0 (R/7O7 M7Q7 )

(Idg-memn)

Figure 3. Selected operational rules for memory instructions.

Without special hardware it appeangpossiblgo guarantee that
storage operations guard access to memory properly. Neematt
what sophisticated software checking is performed jusbrieeh
conventional store instruction, it will be undone if a fasttikes
between the check and execution of the store instructios.igthe
conundrum of th@ime-Of-Check-Time-Of-UggOCTOU) fault.

the freedom to allocate registers however it chooses, feusing
registers 1 and 2 in instructions 4-6 instead of registersd¥a and
to change the instruction schedule in various wag/g,(moving
instruction 3 to a position between instructions 5 and 6).
Interestingly, however, not all conventional optimizasoare
sound, and, of course, this is why type checking generateel can
be so helpful in detecting compiler errors. For example, mom
subexpression elimination might result in the followingleo

1 mov r1, G5
2 mov 12, G 256
3 stg 2, ™1

4 stp T2, T1

In this case, a fault im, after instruction 1, or a fault im. after
instruction 2 will cause both instructions 3 and 4 to marapeil
the same, but incorrect, address-value pair. The resulldimito
store an incorrect value at the correct location or a conalcte at
an incorrect location. Fortunately, tiR\ Lyt type system catches
reliability errors like this one.

As mentioned in Section 2.1, many "intra-instruction” fawtan
be modeled by modifying the register file before or after tistruc-
tion. However, this is not the case for a fault that occursrduthe
execution of thestz-memrule in between the comparisons and the
store. The hardware designer must implement structurésgehect
or mask any faults that occur here. If the hardware desigae+ ¢
not meet the specification given by the operational senmnitie
acknowledges there may be a vulnerability.

The load instructions also come in pailgiz and lds. The
only difference in their semantics is thial; checks for a pending
store in the queue before loading its value from memory, eder
ldp goes directly to memory, ignoring the queue. This wrinkle
increases the freedom in instruction scheduling by allgwtime
green computation to load a value it may have recently stored
before the blue computation has necessarily committedttre.s
Ruleslds-queue ld¢-mem andld s-memspecify these behaviors.

Notice that there is no mechanism for verifying the address
used in loads. Hence, a fault can result in an invalid addiess

To avoid TOCTOU faults, our machine possesses a modified practice such a load might induce a hardware exception ssieh a

store buffer (the queu®), which is similar to the store buffer
used in previous hardware [16] and hybrid [19] fault tolersys-
tems. In addition, there are two special storage instraostieach
tagged with a color. The green store instructisa 4, s places
the address-value paiRvai(rq), Rvai(rs)) on the front of the
queue (rulestz-queud. The blue store instructiosts rq, s re-
trieves the pain;,n;) on the back of the queue, checks that it
equals(Ryqi(ra), Ruai(rs)), and then stores it in memory (rule
stg-men). If the pairs are different, the hardware signals a fault.
Failure rules appear in Appendix A.1. Since green stored alus
ways come before blue stores, instruction scheduling isssdrat
constrained. As we will show later in Section 5, we have eatald
the performance both with and without this scheduling aairst
and show that its performance impact is negligible.

As an example, consider the following straight-line seqaen

1 mov 71, G5

2 mov ro, G 256
3 stg 12, T1

4 mov rs, B 5
5 mov r4, B 256
6 stp 74, T3

These six instruction have the effect of storing 5 into memor
address 256. Moreover, a fault at any point in executionjttee
blue or green values or addresses, will be caught by the laaedw
when the blue store (instruction 6) compares its operantisose
in the queue. In addition, our instruction set gives a coenpil

segmentation fault or might result in loading some arbjtraue.
Failure rules that model both possibilities appear in Aplder.1.

Control-Flow Instructions.  Any change in the control-flow of a
program may cause a different sequence of values to be sinckd
observed by an external user. Consequently, the hardwataics
mechanisms to detect faults in addresses that serve asquggis.
Intuitively, these mechanisms mirror the solution to fautt stored
data in that execution of a control-flow transfer is accosi@d
through two instructions. Our solution uses a combinatibsoft-
ware and hardware control-flow protection that is similawtdch-
dog processors [6], but that makes both versions of the alditdw
explicit as in software-only control flow protection [12,]18

To achieve an unconditional jump, one executgaf; instruc-
tion first and a relatefinpg instruction at some point in the future.
A jmpe r1 moves the destination address freminto the special
destination registed (rule jmpg). Like the store queue, the desti-
nation register stores a programmer intention, initiatethle green
computation. Later, when the blue computation attemptemangit
the jump by executing pnpg 72 instruction, the contents ef, are
compared to the contents of the destination register areyjf are
equal, control jumps to that location (rylpz). If the addresses
are different, the hardware detects a fault (seejmjg; -fail). Sim-
ilar to the constraint for the store queue, forcing greertrobfiow
instructions to be executed before the corresponding dusion
constrains the instruction schedule. Section 5 will shoat this
scheduling constraint has only a minimal performance irhpac



Ryai(d) =0 R’ = R++[d — R(rq)] )
. ; (impc)
(R7 C7 M7 Q7.7mpG Td) -0 (R ) C7 M7 Q7 )
Ryar(d) # 0 . il
(R.C, M, Q, jmpe ra) — Jauit "™
Rval(d) 7é 0 R’ual(rd) - R/ual(d)
R’ = Rlpcg — R(d)][pcg — R(ra)lld — G 0] (imps)
(R7 C7 M7Q7jmp5 Td) -0 (R,7C7 M?Q7') Imps
Ryar (Td) 7é Ryal (d) or Ryal (d) =0 . .
(jmpp-fail)

(R7C7M7Q7jmp3 Td) -0 fCLUZt

R/ual(d) =0 R’ual(rz) 7é 0
(R7 07 M7 Q: bZC Tz, Td) -0 (R++7 07 M7 Q7 )

(bz-untakeh

Rval(d) =0 R’ual(rz) =0
R’ = R++[d — R(rg)]
; (bz-taken
(R7C7M7Q7bzG Tz,Td) -0 (R 7C7M7Q7 )
Rval (d) 7é 0 Rval (Tz) =0
, Ryar (Td) = Ryal (d)
R = Rlpeg = Rd)lpey = RO GOl

(R7 Cy M7Q7bZB Tz,Td) -0 (R/7O7 M7Q7 )

Figure4. Selected operational rules for control flow instructions.

The following code illustrates a typical control-flow tréeis

1 1dg 71, 72
3 1dp 73, 74
2 jmpg T1
4 jmpp T3

Initially, registersr, and r4 should point to the same memory
location, which contains a code pointer to jump to. The eXxamp
illustrates some of the flexibility in scheduling jump ingttions.

Conditional jumps are more complex, but follow the same-prin
ciples. The green conditionbf ., rq testsr, and ifitis O, moves
the contents of; into destination register d (rulde-untakerand
bz -taken. No control-flow transfer occurs until a blue conditional
bzs ., r}, tests the contents of it$ register. Ifr’, is 0 thenr’, must
equal the contents af, and if so, the control flow transfer occurs
(rule bzs-taken). If v is not 0, it is not good enough merely to fall
through — the contents of, might be faulty. To avoid this pos-
sibility, the instruction examines the destination resistf it is 0
(and hence a priobz¢ instruction did not store an address), the
fall-through occurs (ruldz-untakeh The rules for the associated
failure cases appear in Appendix A.1. Our metatheory witivgh
that this mechanism suffices to detect faults either in thegrom-
putation (registers, andr,) or the blue computation (registers
andr’).

Static Expressions

exp kinds K o= Kint | Kmem
exp contexts A = - |Azx:k
exps E = z|n|EopFE|selEy,E,
| emp | upd Em En, En,
substitutions S u= -|S,E/x
Types
zap tags Z = e
basic types b == int|O© — void | bref
reg types t = {(¢,b,E)|E'=0= (c,b,E)
reg file types r == -|Ta—t
result types RT == © |woid
Contexts
heap typing v o= -|U,n:d

static context ~ © AT (Ea, Es); Em

Figure5. TALpr type syntax.

3. Typing
The primary goal of th&'ALrr type system is to ensure that well-
typed programs exhibit fail-safe behavior in the preserfcean-
sient faults. In other words, well-typed programs must gotae
that a memory-mapped output device can never read a coaluygt v
and make it visible to a user. We call this property “fauletaince.”
In the following sections, we explain the intuitions andngit
ples behind the various elements of the type system. Thauigh
the discussion, the reader will notice that our typing raes not
syntax-directed. Of course, as with other sorts of typeérabty
language or proof-carrying code, this fact presents naquéat dif-
ficulty in practice — it is easy for a compiler to generate sigft
“typing hints” to make type reconstruction trivial. For theader’s
reference, the objects used in the type system are preserfegt
ure 5.

3.1 Static Expressions

Our “type system” is actually a combination of two theoriese
being a relatively simple type theory for assembly, ingpitey
previous work on TAL [8], and the second being a Hoare Logic,
designed to enforce the more precise invariants requinestfong
fault tolerance. The latter component requires we definagulage

of static expressionfor reasoning about values and storage.

For the purposes of this paper, the static expressions avendr
from the standard theory of arithmetic and arrays used inyman
classical Hoare Logicz(f., Necula’s thesis [10]). These static ex-
pressions are classified as either integers (kingl) or memo-
ries (kind kmem ). The integer expressions include variables, con-
stants, simple arithmetic operations, and values from a ongm
(sel E, E, isthe integer located at addres in E,,,). The mem-
ory expressions include variables, the empty memenyy(), and
memory updatesuppd E., En, En, iSamemoryE,, updated so
that addres&,,, stores valuev,,,).

The contextA is a mapping from variables to kinds, and the
judgmentA + FE : k classifies expressioR as having kindx.
The judgmentA + S : A’ holds when the substitutiof maps
variables inDom(A’) to values well-formed inA with types in
Rng(A’). The judgmentA + E; = E» is valid whenE; and E;
are equal objects in the standard model. The fundtighsupplies
the denotation of the closed static expression E as eithieteger
or a memory, depending on its kind. The definitions [f&f] and
A+ E; = E, are shown in Appendix A.2, and the remaining
judgments are defined in the companion technical report [15]
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3.2 Value Typing

Since faults strike values, corrupting their bit pattermsuibitrary
ways, the subtleties of value typing are a key concern. inédly,
the type system maintains three key pieces of informaticyugb
every value:

1. A color (green or blue)The type system is organized to ensure
that when a value is known to be green, its contents can only
depend on the contents of other green values not blue orgs, an
likewise, blue can only depend upon blue. Hence, while & faul
in a green value can eventually corrupt arbitrarily manyeoth
green values, it cannot corrupt any blue values, and vicgaver

. A “basic type”. When no fault has occurred in the value’s
color, the value’s basic type describes its shape. Valués wi
type int may have any bit pattern. Values with tygg# —
void are pointers to code (continuations). One must satisfy the
precondition® before jumping to them. Values with typeref
are pointers to values with tyge

. A static expressioriWhen there has been no fault in a value’s
color, the value exactly equals the static expressionicSat
pressions are used to guarantee that in the absence of thalts

green and blue computations produce equal values, and,hence

dynamic fault detection checks always succeed.

To summarize, every value is typed using a trifileb, E'), where
c is a color,b is a basic type, and is a static expression. The
presence of the static expression makes this type a kindgieton
type.

Value Typing Judgment. The value typing judgment has the form
U; A F2 v : t, where® maps heap addresses to basic types, and
A contains the free expression variables. In the valet, a colored
valuec n is given the typec, b, E) when the static expressiaf

is equal ton, and¥ + n : b. The judgmenty + n : b allowsn

to be given either the basic typet or the type of the addressin
memory.

The two rulescond-tand cond-t-nOare used to type the con-
ditional type(E’ = 0 = (G,© — woid, E,.)). When the static
expressionE’ is equal to zero, values of this type also have type
(G,0 — woid, E..). WhenE' is not equal to zero, values with this
type must be 0.

The final two rules forl; A 2 v : ¢ make use of theap tag
Z, which is either empty or a colar. If the zap tag is a coloe,
then there may have been a fault affecting data of that cDlata
colored the same as the zap tag can be given any type, as it may
have been arbitrarily corrupted. The static expression urs¢his
type may not contain any free expression variables.

Value Subtyping. There is also a subtyping relatich + ¢ <

t' that allows all types(c, b, E1) to be subtypes ofc, int, F-)
when A + E; = FE,. This relation is extended to register file
subtypingA + I'; < T', by requiring that the type of each general-
purpose register ift; be a supertype of the corresponding register
in T';. Note that here is no required relationship between thaapec
registersd, pc;, andpcg. The rules for these judgments appear in
the companion technical report [15].

3.3 Instruction Typing

While many of the instruction typing rules are quite complése
essential principles guiding their construction may be mamized
as follows.

1. In the absence of faults, standard type theoretic prinsiple
should be validin order to guarantee basic safety properties,
the type system checks standard properties in much the same
manner as previous typed assembly languages [8]. For exam-
ple, jump targets must have code types, while loads andsstore
must operate over values with reference types.

. Green values only depend on other green values, and blue val-
ues only depend on blue valu&¥hen this invariant is main-
tained, a fault in a blue value can never corrupt a green value
and vice versa.

Both green and blue computations have equal say in any dan-
gerous actionsDangerous actions include storing values to
memory-mapped output devices and executing control-flow op
erations. When both blue and green computations are indplve
a fault in just one color is insufficient to deceive the hardwa
fault detection mechanisms.

3.

4. In the absence of faults, green and blue computations must
compute identical value§o be more precise, green and blue
computations must store identical values to identicalagter
locations and must issue orders to transfer control to idaint
addresses. If not, the hardware will claim to detect faulemv
there have been none, or alternatively, might exhibit irexir

behaviors when there is a fault.

The first three principles are relatively straightforwaoden-
force. The fourth principle leads to the most technical lemagjes as
itrequires we check equality constraints between valuesebler,
since construction of these values depends on storaggbeys-
tem must maintain a relatively accurate static represientaf stor-
age. We accomplish this latter challenge using techniquasrd
from Hoare Logics. The former challenge (testing valuestpral-
ity) is achieved through the use of the singleton types dasdr
earlier.

The Instruction Typing Judgment. The judgment for typing in-
structions has the forn¥; © + ir = RT'. Unlike the context,
which only contains invariant heap typing assumptiéhgontains
fine-grained context-sensitive information about the entrrstate
of memory and the register file. More specificaly,consists of
the following subcontexts: (1, which describes the free expres-
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sion variables appearing in the other context-sensitiyeatd, (2)

T", which describes the mapping of register names to typespr r
ister values, (3] E4, Es), which describes the values in the queue,
and (4)E., which describes memory, as one does in Hoare Logic.

The “result” of checking an instruction is a result tyRgd". A
result type may either bevoid, indicating control does not proceed
past the instruction (it is a jump), or a postconditién, which
describes the state of memory and the register file afterutioec
of the instruction.

The typing rules are defined using several notational abbrev
ations. The notatiod™++ adds one to the static expression asso-
ciated with each program counter registerlin The expression
upd Em (Eq, Es) is (upd (...(upd Em Eaq, Es,)...) Eq, Es;)
when(Eq, Es) = ((E4,, Esy), ..., (Ea,,, Es,,)). Figure 7 presents
the typing rules for instructions, and the following pawgans ex-
plain the main points of interest.

Typing Basic Instructions. Basic arithmetic operations are not
“dangerous” to execute, so the definitions of their typinigsware
driven by principles 1 and 2, mentioned earlier. Considgrekam-
ple, ruleop2r-t for an arithmetic operationp. This rule requires
that the operand registers contain integers with the saroe co
in accordance with principal 2 (green depends on green, ddue
pends on blue). The result registerhas a type colored as well.

In accordance with principle 1, the result has integer tiipe rule
also states that the static expression describing thet regigter is

E’ op E; and that the state of the queue and memory are unchanged:

by evaluation of the instruction.

Typing Memory Instructions. Store operations are “dangerous”
— they make computed values observable by the outside world —
so we must be particularly careful in the formulation of thgping
rules. In accordance with principle 1, both green and bloeest
instructions (rulest¢-t andst g-t) require that the address register
has the basic typleref and the value register has the corresponding
basic typeb. Intuitively, the store queue is a green object, and in
accordance with principle 2, the green store instructioy pizsh

an address-value pair onto the front the queue as long aslots

are green. In accordance with principle 4, the rule for theIstore
checks that the address-value pair to be stored is exaatiyl ¢g|

the address-value pair at the end of the queue. Since thmangs

to the blue store have a blue type and the queue always centain
green objects, both blue and green computations contributtee
actual storage operation (in accordance with principle 3).

The load operations are somewhat simpler than the store in-
structions since they are not “dangerous” in our model. Hane
like the store instructions, the operands of blue loads tedtlue
and the operands of green loads must be green. Once aga, in
cordance with principle 2, the result of a blue load is valuth\a
blue type and likewise for a green load.

a

Typing Control-Flow Instructions. While the typing rules for
control-flow instructions have many premises, they comtino
follow the same four principles as the other instructionsichl of
the complexity is inherently due to principle 1, which matega
checking all the usual constraints associated with jumpaniy
typed assembly language.

The simplest rule involves the green unconditional jumpsTh
instruction is just a move from registey to the special destination
registerd. The type of registerl is updated to the type ofy
(obeying both principles 1 and 2). The rule contains comgsahat
d must be equal t6 in bothT" andT” since the hardware resets the
destination register t0 after a jump.

The blue unconditional jump is a true jump. According to prin
ciple 1, it checks the standard typing invariants needechture
safety in any typed assembly language, including (1) trajump

target has code type (see the first two premises), and (2}hbat
current state, including register file, memory, and quewsches
the expected state at the jump target, modulo some submtitbit
of static expressions for universally quantified varialllesom the
code type (see the final seven premises).

The typing of the conditional branches is quite similar tatth
of unconditional jumps. One difference is that the; instruction
is now a conditional move as opposed to an unconditional move
Hence, to represent the result of the move (unknown at cempil
time) the conditional typdE, = 0 = (G,© — woid, E}.)) is
used. In addition, since the conditional branch may falbdgh,
the result of typing théz instruction is a proper postcondition as
opposed taoid, like jmpea.

3.4 Machine State Typing

In order to prove various properties of the type system, vezite
specify the invariants of machine states that are presetuedg
execution. The judgments for typing a machine statare shown
in Figure 8 and explained below.

Register File Typing. The judgmenty -2 R : T states that the
register fileR has the register file typeé under heap typing and a

zap tagZ. The contents of each register must have the type given to
that register by". Each program counter must have the appropriate
color, and the program counters must compute equal vallres. (
he case where one program counter is corrupted, the zap tag

he first premise allows its actual value to differ from thpested
computed value.)

Code Typing. The judgment¥ + C states that code memory

C is well-formed with respect to heap typing. The address 0

is not a valid code address. Each address must have a code type
and the code type must contain the precondition for theunttm

at that address. If the instruction typing results in a pmsdition

©’ (meaning that control may fall through to the next instroia}i

then the subsequent instruction must be well typed uSihgs its
precondition.

Memory Typing. The judgmentV - M : E,, states that given
heap typing¥ the value memoryM is well-formed and can be
described by the static expressiéh,. The static expressioft,,
must have kintkem, andM must be the denotation @,,. Each
location in the domain al/ must have a typgref and the contents
of that location must have tyge

Queue Typing. The judgmentl -2 Q : (Eq4, E;) means that
queue@ can be described by the sequence of static expressions
(Eq, E5) given heap typingl and zap tagZ. When the queue is
empty, it is described by the empty sequence. When the zaf tag
is notG, the first pair(n1, n2) must consist of an address with
type b ref and a valueny with type b. This pair is described by
the static expression pa(i©4, Es) when E4 evaluates tm; and

E; evaluates tms. The remainder of the queue must be described
by the remainder of the static expression sequence. Allegain

the queue are considered to be green, so when the zap @g is
these values may have been arbitrarily corrupted. Accghgiim

this case, the only requirements are that each static estprasiust
have kindx;,: and the length of the queue must be the same as the
length of the static expression sequence.

Machine State Typing. The judgment-Z X states that a machine
stateX is well-typed under zap tag. This judgment holds when

is a five-tuple(R, C, M, Q, ir), and these elements are each well-
typed and consistent with each other. Note thas not well-typed
when it is the fault statgault.
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4. Formal Results

In order to prove properties of our type system, we extend our
single-step transitiols; — X2 from Section 2 to a sequence
of n transitions containing exactly faults X, LZEQ, wheren

is greater than or equal to zero, ahdb still either O or 1.

4.1 Type Safety

Progress states that well-typed states can take a steprticuper,

a machine state that is well-typed under the empty zap tatptan
a non-faulty step to another ordinary, non-faulty machitages A
machine state that is well-typed under a zap tag of cotmn take
a step, but the result of that step may either be another amdin
machine state or thzult state.

Theorem 1 (Progress)
1. If -3 theny —§ ¥ andX’ # fault.
2. If ¢ X thenyY —§ X.

According to Preservation, if a machine state is well-typed
under a zap tag, and it takes a non-faulty step to another machine
state, then that resulting state will also be well-typed eund.
Additionally, if a state is well-typed under the empty zag,tand it
takes a faulty step, then there is some celsuch that the resulting
state is well-typed under.

Theorem 2 (Preservation)
1. If FZ L ands —§ Y andY’ # fault then-Z %',

2.If FYandy —5 ¥ thenJe. Y.

Progress and Preservation define the usual notion of typeysaf
In addition, part one of Progress, together with part onereér-
vation entail the following important corollary: The hardwe never
claims to have detected a fault when no fault has occurreichglur
execution of a well-typed program.

Corollary 3 (No False Positives)
If F X thenV n. 2—"—,>" and %',

4.2 Fault Tolerance

A program is fault tolerant when all the faulty executionstludt
programsimulatefault-free executions of the program. More pre-
cisely, the sequence of outputs from the faulty executioesre:
quired either to be identical to the fault-free executioniorthe
case the hardware detects the fault, a prefix of the faudtdxecu-
tion.

In order to reason about pairs of faulty and fault-free ekeos,
we define similarity relations between values, registes fitpieues
and machine states. Each of these relations is definedveelati
the zap tagZ. Intuitively, if Z is empty, the related objects must be
identical. If Z is a colore, the objects must be identical modulo val-
ues colored. In the latter case, values coloredhay be corrupted,
and there is no hope they satisfy any particular relatioe. fohmal
definitions of these relations are shown in Figure 9.

Using the similarity relations, we can state and prove tlt fa
tolerance theorem for well-typed programs precisely. Assthat
machine stat& is well-typed under the empty zap tag, and non-
faulty execution oft for n steps results in a stad®’ and outputs
a sequence of value-address pairslf somewhere during that
execution a single fault is encountered, the faulty exeoutwill
either run forn + 1 steps or terminate in the fault state during
that time. If the faulty execution takes + 1 steps and reaches
the non-faulty stat&’;, thenX’ simulates:’; and the sequence of
output pairs is identical the original execution. Alteimaly, if the
faulty execution reaches the fault state then the outpus pall be
a prefix of the non-faulty output pairs.
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Theorem 4 (Fault Tolerance) (i)
If + 3 andS—5,%' then eithel——, X

or 3m < (n+1) . ©—"- fault, and

1. Forall derivation§<n—+1)>1
' =sand3c. X' sim® X},

' whereX'; # fault.

2. For all derivation£—"— fault wherem < (n+1).
s’ is a prefix ofs.

5. Performance

To better understand hoWA Lyt can be applied to real world sit-
uations, we simulated th€ALrt hardware in the framework of
a current computer architecture, the Intel Itanium 2 1SAe Tin
struction set of the Itanium 2 contains many more types dftis
tions than those specified TPALrr. While not an exact represen-
tation of the performance aFALrr, simulating the performance
of TALrr applied to this architecture will give guidance as to the
feasibility of this system in a real architecture.

To evaluate the performance impact of our techniques, a ver-
sion of the VELOCITY compiler [23] was modified to add the re-
liability techniques ofTALrt and was used to compile the SPEC
CINT2000 and MediaBench benchmark suites. These exesution
were compared against binaries generated by the originaD@E
ITY compiler, which have no fault detection. The relialyilttans-
formation was compiled into the low level code immediatedjdre
register allocation and scheduling. To simulate the newdare
structures ofTALgT, extra instructions were inserted to emulate
the timing and dependences of the hardware structure &scess

Performance metrics were obtained by running the resulting
binaries with reference inputs on an HP workstation zx60@6 w
2 900Mhz Intel Itanium 2 processors running Redhat Advanced
Workstation 2.1 with 4Gb of memory. Theerfmon utility was
used to measure the CPU time.

Figure 10 presents the execution time of the fault-tolecane
relative to baseline binaries with no fault detection. \é&j, one
might expect the fault-tolerant code to run twice as slovettze

fault intolerant code since the number of instructions &easally
doubled. However, we find that smart instruction scheduéing
efficient allocation of resources reduces the executioe tmronly
34% more than the fault-intolerant baseline average. Téiesgla-
tions are in line with previously published software-ondjiability
performance experiments [18] that show the degradationaltes
dundant code to be less than double.

As alluded to in Section 2.2, Figure 10 compares the perfor-
mance degradation both with and without the schedulingtcaing
that green memory and control flow instructions must be eeecu
before the corresponding blue versions. In order to perfbmsec-
ond set of experiments, our compiler was modified to prodode ¢
that had more flexibility in the scheduling of the green andebl
versions. We then simulated a more aggressive hardwaresimpl
mentation that could correlate the original and redundasrhory
operations regardless of the executed order. As expettisdyer-
sion has better performance (in most cases) than the unamest
code. Comparing both to the unprotected code, the versitm wi
out the ordering constraint increases execution time by @0fe
the version with the ordering increases execution time 9¢.34l-
though the colored ordering restrictionBALrT may seem costly,
removing this restriction provides only a small improvernen

6. Related Work

Fault tolerance based on software replication is a weldfaipd
field with decades of historyTALgr differs from previous ap-
proaches in that it provides a type-theoretic frameworkotatain-
ing strong guarantees about the reliability of machine code

Most closely related t&’ALwr is our previous work on\,,p, a
highly abstract type-theoretic model for studying the bgsin-
ciples of fault tolerance in the lambda calculus [26]. Thare
two important distinctions betwe€RA Lrr and \,.p. First, Azap,
working at the level of the lambda calculus, is very far regtv
from real machine code. For instance, it lacks a programteoun
a register file, memory, and load or store instructions. Mgmo
references in particular constitute a key challenge in tireeat
technical work. Second, the properties of thg,, type system are
relatively weak compared with the properties of the curtgpe
system. The “end-to-end” fault tolerance property provam,.,
depends not only on the type system but also the nature afths-t
lation from the ordinary simply-typed lambda calculus. émtrast,
the type system o’ALpr is much stronger, capable of ensuring
a strong fault tolerance property independently of the gsedhat
compiles the code.

Also closely related tér'ALpr is the original TAL system,
which first applied strong type checking to machine code g+
tee its safety [8]. TAL operates under the assumption of audbyf
hardware and therefore ignores the major issues of retialoih
which this paper has focused.

There have been various implementations of software-only,
hardware-only, and hybrid techniques for transient fauliga-
tion. Hardware techniques have a long history of using very |
calized bhit-level techniques like error correcting codesparity
bits additions. These techniques are efficient for stortyetsires
like memory, but are costly or impossible to apply to othes-pr
cessor elements like pipeline latches or arithmetic umdigher
level techniques are used when protection is necessanarfgen
segments of the processor. These techniques include thieadup
tion of coarse-grained structures such as functional ymitgessor
cores [5, 22, 27], or hardware contexts [9, 16, 25].

To provide protection when the hardware costs of these ap-
proaches are prohibitive, software-only approaches haea pro-
posed as alternatives [12, 13, 17, 18, 20, 24]. While so&veenly
systems are cheaper to deploy and can be configured afteyeepl
ment, they cannot achieve the same performance or retiabgi
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Figure 10. Performance Normalized to Unprotected Version.

hardware-based techniques, since they have to executgoaddi
instructions and are unable to examine microarchitectstate.
Despite these limitations, software-only techniques hsivewn
promise, in the sense that they can significantly improvialvi
ity with reasonable performance overhead [12, 13, 18].

TALprr attempts to exploit the benefits of both sorts of systems
by using a hybrid approach to fault tolerance. There hava pes
vious hybrid approaches to transient fault tolerance, soagsing
solely on control-flow protection [14] and recently othessking
at full processor protection [19]. This work differs fronoe pre-
vious approaches because regardless of the type of implatizen
software, hardware, or hybrid, none of those previous aures
have given rigorous formal proofs of the correctness ofrthgs-
tems.

7. Conclusions

In conclusion, transient faults are already a significaniseafor
concern at major semiconductor manufacturers and threatea
more so in the coming years and decades. This paper takesepne s
forward for the science of fault tolerance by presentingiagipled
and practical hybrid software-hardware scheme for detgdtan-
sient faults. More specifically, we identify four generaingiples
for verifying correctness of fault tolerant systems andeagpthese
in an assembly language type system. From a theoreticgdgeers
tive, the type system acts as a sound proof technique fdiyiregi
reliability properties of programs. From a practical pexjve, it
can be used as a debugging aid within a compiler, strictlyidatn
ing any conventional testing technique. Our two main forrealllts
show that a single fault affecting observable behavior inedl-w
type program will always be detected, and that the systetmuil
claim to have detected a fault when none has occurred. et
fact that well-typed programs essentially duplicate athpatation,
we provide simulation results showing a performance o\settedf
1.34x.

Acknowledgments

This research is funded in part by NSF awards CNS-0627650,

CNS-0615250, and CCF 0633268. Any opinions, findings, and
conclusions or recommendations expressed in this matarél
those of the author(s) and do not necessarily reflect thesvigw
the NSF.

References

[20]

[1] R. C. Baumann. Soft errors in advanced semiconductoicdsspart
I: the three radiation sourcedEEE Transactions on Device and
Materials Reliability 1(1):17—22, March 2001.

[2] R. C.Baumann. Soft errors in commercial semicondu@&ohnmology:
Overview and scaling trends. IEEE 2002 Reliability Physics Tu-
torial Notes, Reliability Fundamentalpages 12101.1 — 12101.14,
April 2002.

[3] S. Borkar. Designing reliable systems from unreliabdenponents:
the challenges of transistor variability and degradatidn.|[EEE
Micro, volume 25, pages 10-16, December 2005.

[4] M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and |. Pomeran
Transient-fault recovery for chip multiprocessors.Froceedings of
the 30th annual international symposium on Computer agctitre
pages 98-109. ACM Press, 2003.

[5] R. W. Horst, R. L. Harris, and R. L. Jardine. Multiple ingttion
issue in the NonStop Cyclone processorPhoceedings of the 17th
International Symposium on Computer Architectyrages 216—-226,
May 1990.

[6] A. Mahmood and E. J. McCluskey. Concurrent error detectising
watchdog processors-a survefeEE Transactions on Computers
37(2):160-174, 1988.

S. E. Michalak, K. W. Harris, N. W. Hengartner, B. E. Takahnd

S. A. Wender. Predicting the number of fatal soft errors irs Lo
Alamos National Labratory's ASC Q computdEEE Transactions
on Device and Materials Reliabilifyp(3):329-335, September 2005.

G. Morrisett, D. Walker, K. Crary, and N. Glew. From Systd~
to Typed Assembly LanguagéACM Transactions on Programming
Languages and Systen®21):528-569, May 1999.

[9] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailedign and
evaluation of redundant multithreading alternativesPioceedings of
the 29th Annual International Symposium on Computer Agchiire
pages 99-110. IEEE Computer Society, 2002.

G. C. Necula.Compiling with Proofs PhD thesis, Carnegie Mellon
University, 1998.

(7]

(8]

[11] T.J. O’'Gorman, J. M. Ross, A. H. Taber, J. F. Ziegler, HVBhlfeld,

I. C. J. Montrose, H. W. Curtis, and J. L. Walsh. Field testiog
cosmic ray soft errors in semiconductor memoriesIBi Journal
of Research and Developmeptages 41-49, January 1996.

[12] N. Oh, P. P. Shirvani, and E. J. McCluskey. Control-fldwecking by

software signatures. IEEEE Transactions on Reliabilifyvolume 51,
pages 111-122, March 2002.

[13] N. Oh, P. P. Shirvani, and E. J. McCluskey. Error detecti

[14] J. Ohlsson and M. Rimen.

by duplicated instructions in super-scalar processors.|[EEE
Transactions on Reliabilityvolume 51, pages 63-75, March 2002.

Implicit signature checkingn |
International Conference on Fault-Tolerant Computidgne 1995.



[15] F. Perry, L. Mackey, G. A. Reis, J. Ligatti, D. |. Auguahd D. Walker.

Fault-tolerant typed assembly language. Technical REpR#T76- ind _
07, Princeton University, 2007. Jind(Q, Ryar(rs)) = ()
Ryai(rs) ¢ Dom(M)

[16] S K. Reinhardt an_d S. S._ Mukherjee. Transient faulediédn via R = Rt+[ry — G ]

simultaneous multithreading. IRroceedings of the 27th Annual v (ldg-rand)

International Symposium on Computer Architectysages 25-36. (R,C,M,Q,ldg Ta,rs) —o (R',C,M,Q,-)

ACM Press, 2000.
[17] G. A. Reis, J. Chang, and D. I. August. Automatic instiac

level software-only recovery methods. IBEE Micro Top Picks %fal_(rélf[ D:méM])

volume 27, January 2007. - Td n (Id-rand)
[18] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and Bugjust. (R,C,M,Q,ldp Ta,7s) —0 (R/7 C,M,Q,-)

SWIFT: Software implemented fault tolerance.Rroceedings of the
3rd International Symposium on Code Generation and Opéititig,

March 2005. (R,C,M,-,stg Ta,7s) —¢ fault
[19] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. lgusi, and

S. S. Mukherjee. Design and evaluation of hybrid fault-ciie

systems. IrProceedings of the 32th Annual International Symposium Q = ((n,n), (n,n}))

on Computer Architecturgpages 148—159, June 2005. Ryai(1d) # nyor Ryai(rs) # ny

[20] P. P. Shirvani, N. Saxena, and E. J. McCluskey. Software
implemented EDAC protection against SEUs.IBEEE Transactions
on Reliability, volume 49, pages 273-284, 2000.

(stz-queue-fai)

stg-mem-fai
(R7 C7 M7Q78tB Td77's) —0 fault ( B )

[21] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, andAlvisi. Ryai(r:) # 0 Ryai(d) # 0
Modeling the effect of technology trends on the soft errde raf (bz-untaken-fail
combinational logic. InProceedings of the 2002 International (R,C,M,Q,bzc 12,74) —0 fault
Conference on Dependable Systems and Netwpdges 389-399,
June 2002.
. . Rval(rz) =0 ual( ) # 0 .
[22] T. J. Slegel, R. M. Averill Ill, M. A. Check, B. C. GiameB. W. (bzi-taken-fail
Krumm, C. A. Krygowski, W. H. Li, J. S. Liptay, J. D. MacDougal (R,C,M,Q,bzg 12,7a) —¢ fault

T. J. McPherson, J. A. Navarro, E. M. Schwarz, K. Shum, and.C. F
Webb. IBM's S/390 G5 Microprocessor design. IBEE Micro,

volume 19, pages 12—23, March 1999. Ryai(r:) =0
[23] S. Triantafyllis, M. J. Bridges, E. Raman, G. Ottonigddd. I. August. Roa(ra) # Ruoar(d) or Ruar(d) =0 (bzs-taken-fail
A framework for unrestricted whole-program optimizatidn. ACM (R,C,M,Q,bzp 7:,74) —o fault B

SIGPLAN 2006 Conference on Programming Language Design and
Implementationpages 61-71, June 2006.

[24] R. Venkatasubramanian, J. P. Hayes, and B. T. Murrayw-taost A.2 Semanticsof Static Expressions
on-line fault detection using control flow assertions.Pimceedings )
of the 9th IEEE International On-Line Testing Symposiypages IE]

137-143, July 2003.

[25] T. N. Vijaykumar, |. Pomeranz, and K. Cheng. Transitniit [n] =

recovery using simultaneous multithreading. Rroceedings of [E1 op E-] = [[E1]] op [E2]
the 29th Annual International Symposium on Computer Agchite [emp] =
[
[

pages 87-98. IEEE Computer Society, 2002. sel En, En] = [[Em]]([[

n])
[26] D. Walker, L. Mackey, J. Ligatti, G. Reis, and D. I. AugusStatic upd Em Er E2] = [En][[E1] — [E2]]
typing for a faulty lambda calculus. 'RCM International Conference
on Functional ProgrammingPortland, Oregon, Sept. 2006.

[27] Y. Yeh. Triple-triple redundant 777 primary flight conter. In At Ei = Es
Proceedings of the 1996 IEEE Aerospace Applications Center
volume 1, pages 293-307, February 1996. AF Ei: Kint AF Es: Kint
[28] J. F. Ziegler and H. Puchne8ER - History, Trends, and Challenges: VS F St A = [S(E1)] = [S(£2)] E
A Guide for Designing with Memory IC2004. AF Ei= FEs (E-eq
A. Appendix AFEi: ke AF B2 King
A.l FailureRules VS HS: A = [S(E1)] # [S(E2)] (E-neq
Operational rules omitted from Figures 2, 3, and 4. AR By # B
find(Q, Ruar(rs)) = () Ruai(rs) ¢ Dom(M) . AP By fmem A F B : fimem
RO M O1d ; (Ida-fail) Dom([S(E1)]) = Dom([S(E-2)])
(R, G, M, Q,ldg 74,7s) =0 foult Ve € Dom([S(E]). [SEN](E) = [S(E=)](0)
(E-mem-ey
AF Ey=E,

Ryai(rs) ¢ Dom(M)
(R7 07 M7 Q: ldB Td, 7'5) —0 fault

(Id 5-fail)



