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Abstract
A transient hardware faultoccurs when an energetic particle strikes
a transistor, causing it to change state. Although transient faults do
not permanently damage the hardware, they may corrupt computa-
tions by altering stored values and signal transfers. In this paper, we
propose a new scheme for provably safe and reliable computing in
the presence of transient hardware faults. In our scheme, software
computations are replicated to provide redundancy while special
instructions compare the independently computed results to detect
errors before writing critical data. In stark contrast to any previous
efforts in this area, we have analyzed our fault tolerance scheme
from a formal, theoretical perspective. To be specific, first, we pro-
vide an operational semantics for our assembly language, which
includes a precise formal definition of our fault model. Second, we
develop an assembly-level type system designed to detect reliabil-
ity problems in compiled code. Third, we provide a formal specifi-
cation for program fault tolerance under the given fault model and
prove that all well-typed programs are indeed fault tolerant. In ad-
dition to the formal analysis, we evaluate our detection scheme and
show that it only takes 34% longer to execute than the unreliable
version.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; B.8.1 [Performance and
Reliability]: Reliability, Testing, and Fault-Tolerance

General Terms Languages, Reliability, Theory, Verification

Keywords transient hardware faults, soft faults, fault tolerance,
type systems, typed assembly language

1. Introduction
A transient faultor soft error is a temporary hardware failure that
alters a signal transfer, a register value, or some other processor
component. While transient faults are temporary, they corrupt com-
putations and have led to costly failures in high-end systems in re-
cent years. For example, in 2000 there were reports that transient
faults caused crashes at a number of Sun’s major customer sites,
including America Online and eBay [2]. Later, Hewlett Packard
admitted multiple problems in the Los Alamos Labs supercomput-
ers due to transient faults [7]. Finally, Cypress Semiconductor has
confirmed “The wake-up call came in the end of 2001 with a major
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customer reporting havoc at a large telephone company. Techni-
cally, it was found that a single soft fail. . . was causing an inter-
leaved system farm to crash” [28].

Unfortunately, while soft errors can already cause substantial
reliability problems, current trends in hardware design suggest that
fault rates will increase in the future. More specifically, faster
clock rates, increasing transistor density, decreasing voltages and
smaller feature sizes all contribute to increasing fault rates [1, 11,
21]. Due to a combination of these factors, fault rates in modern
processors have been increasing at a rate of approximately 8% per
generation [3].

These trends are well known in the architecture and compiler
communities, and, consequently, many solutions to the threat of
soft errors have been proposed. At a high level, all of these solutions
involve adding redundancy to computations in one way or another,
but the specifics vary substantially. For instance, there are proposals
involving hardware-only solutions such as error-correcting codes,
watchdog co-processors [6] and redundant hardware threads[4, 9,
16, 25] as well as software-only techniques that use both single
and multiple cores [12, 13, 17, 18, 20, 24]. Broadly speaking, if
the technique can scale, hardware-only solutions are more efficient
for a single, fixed reliability policy, but software-only solutions are
more flexible (they may be deployed exactly when, where, and to
the degree needed) and less costly in terms of hardware. In anat-
tempt to gain some of the best of both worlds, researchers have
also recently proposed hybrid software-hardware solutions involv-
ing strong fault tolerance mechanisms implemented in hardware
but controlled by the software running on the processor [19].

Software-only and hybrid hardware-software techniques also
possess at least one further, little-mentioned drawback —they may
not actually work. To be fair, many of these techniques appear ex-
tremely promising. However, as far as we are aware, the published
transient fault-tolerance techniques come with no rigorous proofs
that they guarantee any particular reliability properties. In gen-
eral, researchers satisfy themselves with presenting an algorithm
for fault-tolerance and leave the audience to judge for themselves
whether or not the algorithm is correct. In fact, the literature does
not even precisely define what it might mean for an assembly-level
program to be fault tolerant. This paper tackles this gapinghole in
the existing literature by defining a new hybrid hardware-software
technique for tolerating transient faults, and, unlike anyprevious
work, actually proving it has strong fault-tolerance properties.

The specification and proof of fault tolerance comes in several
stages. First, before proving any particular properties, it is neces-
sary to define a fault model precisely. Most of the current litera-
ture uses theSingle Event Upset (SEU) Model, which states that
only one fault may occur during execution [16, 19, 26]. However,
the details of exactly where and when faults may occur are usually
given in English. We also assume the SEU model, but we specify
exactly where by including faulty transitions as formal rules in the
operational semantics of our assembly language.



Second, it is necessary to state precisely what “fault tolerance”
actually means. Abstractly, a program is fault-tolerant ifno fault
can change the observable behavior of a program. More concretely,
we assume our system operates in the presence of a memory-
mapped output device, and hence a program isnot fault-tolerant
if a fault can cause a deviation in the sequence of values written
to memory. We formalize this property more precisely as a math-
ematical theorem that relates faulty and non-faulty executions of a
program.

Third, it is necessary to provide a technique for actually proving
that specific programs are fault tolerant relative to the fault model.
Our proof technique is presented in the form of a type system.All
well-typed programs satisfy variants of the standard progress and
preservation lemmas, even in the presence of transient faults, as
well as the stronger fault tolerance property mentioned above. In
addition to being theoretically important as a proof technique for
fault tolerance, the type system can be used to debug compilers that
intend to generate reliable code. If the output from these compilers
type check, their code will have strong fault tolerance guarantees.
In the past, researchers have proposed testing compiler outputs
using fault injection techniques that randomly insert errors into
programs. However, using a type checker in this case is a much
better idea. In principle, a conventional testing technique would
need to test all combinations of featuresin conjunction with all
combinations of faults, causing an explosion in the number of
test cases, and yet still failing to achieve perfect fault coverage in
practice. By using the type checker we have designed, one achieves
perfect fault coverage relative to the fault model without needing to
increase the compiler test suite.

The rest of this paper presents the details of our hybrid hardware-
software fault-tolerance technique. Section 2 presents the syntax
and operational semantics of the new, idealized assembly language
we have designed for fault tolerance. It is a RISC-based architecture
with special instructions to facilitate reliable communication with
memory and to detect control-flow faults. Section 3 presentsthe
key principles and formal definitions for the fault-tolerant assem-
bly language type system (TALFT for short). Though the typing
rules are specific to our particular setting, the underlyingprinci-
ples are more general; we believe many of these principles will
apply to reasoning about related fault-tolerant systems. Our inno-
vative combination of a TAL-like type-theory with conceptsfrom
classical Hoare Logics is a particularly general and important tech-
nical contribution. Section 4 describes the key theorems wehave
proven including Progress, Preservation, “No False Positives,” and
Fault Tolerance. Section 5 provides empirical evidence that our
new hybrid solution to fault tolerance is feasible for many appli-
cations by measuring performance results on simulated hardware.
Related work is discussed in more detail in Section 6. Due to space
considerations, some of the technical details and all of theproofs
have been omitted. A companion technical report [15] contains the
complete specification of our system and a relatively detailed proof
outline.

2. The Faulty Hardware
The faulty hardware is based on a simple RISC architecture, ex-
tended with features to support detection of control-flow faults and
safe interaction with memory-mapped output devices. Correct use
of these features makes it possible to detect all faults thatmight
change a program’s observable behavior. Most practical systems
also need a fault recovery mechanism of some kind. However, since
recovery is largely orthogonal to detection, we omit the former, fo-
cusing only on the latter in this paper.

The general strategy of every fault-tolerant program is to main-
tain two redundant and independent threads of computation,a
green (G) computation and ablue (B) computation. The green

computation generally leads slightly, and the blue computation
generally trails, though there is a fair amount of flexibility in how
the instructions in each computation may be interleaved. Prior to
writing data out to a memory-mapped output device, the results of
the two computations are checked for equivalence. If the results
are not equivalent, the machine will signal that a fault has been
detected. The arguments to any control-flow transfer must also be
checked for faults. This methodology has been show in the litera-
ture as an effective implementation of fault tolerance [13,18], and
we expand on this style of implementation by formalizing thefault
model and coverage.

The execution of assembly programs is specified using a small-
step operational semantics that mapsmachine states(Σ) to other
machine states. These machine states are made up of a number of
components. The first component is the machine’sregister bankR,
which is a total function that maps register names to the values
contained therein. The meta variablea ranges over all sorts of
registers, and meta variabler ranges only over general-purpose
registers (r1, r2, ...). In addition to general-purpose registers, there
are two program counter registers (pcG andpcB), which contain the
same value unless there has been the fault. There is one additional
special register, thedestination register, d . Its role in control-flow
checking will be explained later.

To facilitate proofs of certain theorems, the value in each regis-
ter is tagged with the color (either green or blue) of the computation
to which it belongs. However, these tags have no effect on therun-
time behavior of programs.1

In addition to a register bank, the machine state includes a
code memoryC, which we model as a function mapping integer
addressesn to instructions.2 The machine also has avalue memory
M , which maps addresses to integer values. In between the value
memory and the processor is a specialstore queue, Q, which is used
to detect faults before data is written to a memory-mapped output
device. The store queue is a queue of address-value pairs. Wewill
discuss the role of the queue in greater detail later.

Overall, an abstract machine state (Σ) may have the formfault ,
indicating the hardware has detected a transient fault, or the ordi-
nary state(R,C, M, Q, ir), where the first four components are as
discussed above, andir is either an instructioni to be executed,
or “·” indicating the next instruction should be fetched from code
memory. Figure 1 summarizes the syntax of machine states. Here
and elsewhere in the paper, we use overbar notation to indicate a
sequence of objects.

2.1 The Fault Model

The operational semantics is designed both to model proper exe-
cution of machine instructions and to make perfectly explicit, pre-
cise, and transparent all of our assumptions about when and where
faults may occur. The central operational judgment has the form
Σ1 −→s

k Σ2, which expresses a single step transition from stateΣ1

to stateΣ2 while incurringk faults and writing datas to a memory-
mapped output device. We will work under the standard assumption
of a single upset event and hencek will always be either 0 or 1. The
datas is a (possibly empty) sequence of address-value pairs. While
the operational semantics models the internal workings of the ma-
chine, the only externally observable behavior of the machine is
the sequence of writess to the output device or the signaling of a
hardware-detected fault. If faults cause the processor to have dras-
tically different internal behavior, but the externally observable se-
quences is unchanged, we consider the program to have executed
successfully.

1 In contrast, the tags on instruction opcodes, to be introduced momentarily,
do have an effect on evaluation.
2 Address 0 is not considered a valid code address.



colors c ::= G | B
colored values v ::= c n
registers r ::= rn

general regs a ::= r | d | pcc

register file R ::= · | R, a → v
code memory C ::= · | C, n → i
value memory M ::= · | M, n → n

store queue Q ::= (n, n)
ALU ops op ::= add | sub | mul
instructions i ::= op rd, rs, rt | op rd, rs, v

| ldc rd, rs | stc rd, rs | mov rd, v
| bzc rz, rd | jmpc rd

inst register ir ::= i | ·
state Σ ::= (R, C, M, Q, ir) | fault

Figure 1. Syntax of instructions and machine states.

Different fault-tolerance techniques protect different compo-
nents of machines. In the literature, the protected areas are usually
inside theSphere of Replication(SoR) [16]. In our case, we tar-
get faults that may occur in data manipulated within the processor.
We assume that both code memoryC and value memoryM are
fully protected. This is often the case since error-correcting codes
can very efficiently protect memory. To make these assumptions
explicit, the following three operational rules specify exactly how
faults may occur within our system.

R(a) = c n

(R,C, M, Q, ir) −→1 (R[a 7→ c n′], C, M, Q, ir)
(reg-zap)

Q1 = (n1, n′
1), (m1, m

′), (n2, n′
2)

Q2 = (n1, n′
1), (m2, m

′), (n2, n′
2)

(R, C, M, Q1, ir) −→1 (R, C, M, Q2, ir)
(Q-zap1)

Q1 = (n1, n′
1), (m,m′

1), (n2, n′
2)

Q2 = (n1, n′
1), (m,m′

2), (n2, n′
2)

(R, C, M, Q1, ir) −→1 (R, C, M, Q2, ir)
(Q-zap2)

Rulereg-zapnondeterministically introduces a fault into any regis-
ter by replacing the value in that register with some other arbitrary
value. There are no restrictions on how the underlying valuemight
be changed. For instance, code pointers can be changed to arbitrary
integer values; references may no longer be in bounds. However,
the color tag is preserved to facilitate fault-tolerance proofs. Since
the color tag is fictional (has no effect on run-time behavior), this
poses no limitation on the fault model. RulesQ1-zapandQ2-zap
alter the contents of the store queue in similar ways.

Formally, these are the only faults that can occur. However,no-
tice that since the program counters and targets of indirectjumps
are susceptible to thereg-zaprule, we effectively capture many
forms of “control-flow faults” studied previously. Notice also that
we do not explicitly consider faults that occurduring execution of
an instruction. However, many such faults may easily be shown
equivalent to correct execution of an instruction composedwith a
fault either immediately before or afterwards. For example, con-
sider a simple register-to-register add instruction. Any fault within
the adder hardware during execution of the add is equivalentto a
correct add followed by a fault in the destination register.

An important benefit of our formal model is that there is actually
some precise, concrete specification to analyze. Moreover,if a
researcher wants to reason about the consequences of some fault
that lives outside the formal model, this may be done by adding a
new operational rule to the system and studying its semanticeffect.

Instruction Fetch:

Rval(pcG) = Rval(pcB) Rval(pcG) ∈ Dom(C)

(R, C, M, Q, ·) −→0 (R,C, M, Q, C(Rval(pcG)))
(fetch)

Rval(pcG) 6= Rval(pcB)

(R,C, M, Q, ·) −→0 fault
(fetch-fail)

Basic Instructions:

R′ = R++[rd 7→ Rcol(rt) (Rval(rs) op Rval(rt))]

(R, C, M, Q, op rd, rs, rt) −→0 (R′, C, M, Q, ·)
(op2r)

R′ = R++[rd 7→ c (Rval(rs) op n)]

(R, C, M, Q, op rd, rs, c n) −→0 (R′, C, M, Q, ·)
(op1r)

R′ = R++[rd 7→ v]

(R, C, M, Q, mov rd, v) −→0 (R′, C, M, Q, ·)
(mov)

Figure 2. Operational rules for basic instructions.

2.2 Instruction Semantics

The syntax of machine instructions was presented along withthe
rest of the components of our abstract machine in Figure 1. The
semantics is described formally by the inference rules in Figures 2,
3, and 4, and explained informally below. The formal rules use
several notational conventions. For instance, ifR is a register file
thenR(a) is the contents of registera andR[a 7→ v] is the updated
register file with registera mapped tov. R++ is the register file that
results from incrementing bothpcG andpcB by 1. If R(a) is the
colored valuec n, we writeRval(a) to denoten andRcol(a) to
denotec. The functionfind(Q, n) produces the first pair(n, n′)
that appears inQ, or () if no pair (n, n′) appears inQ.

Instruction Fetch. The machine operates by alternatively fetch-
ing an instruction from code memory and executing that instruc-
tion. When there is no current instruction to execute (i.e.ir = ·),
the fetch rule should fire. This rule tests for equality of the two
program counters to check for faults and loads the appropriate in-
struction from code memory. IfpcG and pcB are the same but
Rval(pcG) is not a valid address in code memory, execution “gets
stuck” (no rule fires). Fortunately, however, well-typed programs
never get stuck, even when a single fault occurs. On the otherhand,
a fault can render the two program counters inequivalent. Inthis
case, rulefetch-fail fires and causes a transition to the fault state.
Abstractly, this transition represents hardware detection of a tran-
sient fault. Controlled program termination or perhaps recovery
may follow. Fault recovery is an orthogonal issue to fault detection,
so we leave it unspecified here. The fault model does not allowfor
the instruction itself to be corrupted.

Basic Instructions. The arithmetic and move instructions (rules
op2r, op1r, andmov) are completely standard. The first arithmetic
operationop rd, rs, rt performsop on the values inrs andrt, stor-
ing the result inrd. The second arithmetic operation uses a constant
operandv in addition tors andrd. All constants are annotated with
the color of the computation they belong to. Likewise, themov
instruction loads an annotated constant into a register.

Memory Instructions. Transient faults are problematic only
when they change the results of computations and those results
areobservedby an external user. In our model, the only way a re-
sult can be observed is for a program to write it to memory, where
a memory-mapped output device may read and process it.



Σ −→s
k Σ′

Q′ = ((Rval(rd), Rval(rs)), Q)

(R,C, M, Q, stG rd, rs) −→0 (R++, C, M, Q′, ·)
(stG-queue)

Rval(rd) = nl Rval(rs) = n′
l

(R,C, M, ((n, n′), (nl, n
′
l)), stB rd, rs)

−→
(nl,n

′

l
)

0 (R++, C, M [nl 7→ n′
l], (n, n′), ·)

(stB-mem)

find(Q, Rval(rs)) = (Rval(rs), n)
R′ = R++[rd 7→ G n]

(R,C, M, Q, ldG rd, rs) −→0 (R′, C, M, Q, ·)
(ldG-queue)

find(Q, Rval(rs)) = ()
Rval(rs) ∈ Dom(M)

R′ = R++[rd 7→ G M(Rval(rs))]

(R, C, M, Q, ldG rd, rs) −→0 (R′, C, M, Q, ·)
(ldG-mem)

Rval(rs) ∈ Dom(M)
R′ = R++[rd 7→ B M(Rval(rs))]

(R, C, M, Q, ldB rd, rs) −→0 (R′, C, M, Q, ·)
(ldB-mem)

Figure 3. Selected operational rules for memory instructions.

Without special hardware it appearsimpossibleto guarantee that
storage operations guard access to memory properly. No matter
what sophisticated software checking is performed just before a
conventional store instruction, it will be undone if a faultstrikes
between the check and execution of the store instruction. This is the
conundrum of theTime-Of-Check-Time-Of-Use(TOCTOU) fault.

To avoid TOCTOU faults, our machine possesses a modified
store buffer (the queueQ), which is similar to the store buffer
used in previous hardware [16] and hybrid [19] fault tolerant sys-
tems. In addition, there are two special storage instructions, each
tagged with a color. The green store instructionstG rd, rs places
the address-value pair(Rval(rd), Rval(rs)) on the front of the
queue (rulestG-queue). The blue store instructionstB rd, rs re-
trieves the pair(nl, n

′
l) on the back of the queue, checks that it

equals(Rval(rd), Rval(rs)), and then stores it in memory (rule
stB-mem). If the pairs are different, the hardware signals a fault.
Failure rules appear in Appendix A.1. Since green stores must al-
ways come before blue stores, instruction scheduling is somewhat
constrained. As we will show later in Section 5, we have evaluated
the performance both with and without this scheduling constraint
and show that its performance impact is negligible.

As an example, consider the following straight-line sequence:

1 mov r1, G 5

2 mov r2, G 256

3 stG r2, r1

4 mov r3, B 5

5 mov r4, B 256

6 stB r4, r3

These six instruction have the effect of storing 5 into memory
address 256. Moreover, a fault at any point in execution, to either
blue or green values or addresses, will be caught by the hardware
when the blue store (instruction 6) compares its operands tothose
in the queue. In addition, our instruction set gives a compiler

the freedom to allocate registers however it chooses (e.g., reusing
registers 1 and 2 in instructions 4-6 instead of registers 3 and 4) and
to change the instruction schedule in various ways (e.g., moving
instruction 3 to a position between instructions 5 and 6).

Interestingly, however, not all conventional optimizations are
sound, and, of course, this is why type checking generated code can
be so helpful in detecting compiler errors. For example, common
subexpression elimination might result in the following code:

1 mov r1, G 5

2 mov r2, G 256

3 stG r2, r1

4 stB r2, r1

In this case, a fault inr1 after instruction 1, or a fault inr2 after
instruction 2 will cause both instructions 3 and 4 to manipulate
the same, but incorrect, address-value pair. The result would be to
store an incorrect value at the correct location or a correctvalue at
an incorrect location. Fortunately, theTALFT type system catches
reliability errors like this one.

As mentioned in Section 2.1, many ”intra-instruction” faults can
be modeled by modifying the register file before or after the instruc-
tion. However, this is not the case for a fault that occurs during the
execution of thestB-memrule in between the comparisons and the
store. The hardware designer must implement structures that detect
or mask any faults that occur here. If the hardware designer can-
not meet the specification given by the operational semantics, he
acknowledges there may be a vulnerability.

The load instructions also come in pairs:ldB and ldG. The
only difference in their semantics is thatldG checks for a pending
store in the queue before loading its value from memory, whereas
ldB goes directly to memory, ignoring the queue. This wrinkle
increases the freedom in instruction scheduling by allowing the
green computation to load a value it may have recently stored
before the blue computation has necessarily committed the store.
RulesldG-queue, ldG-mem, andldB-memspecify these behaviors.

Notice that there is no mechanism for verifying the address
used in loads. Hence, a fault can result in an invalid address. In
practice such a load might induce a hardware exception such as a
segmentation fault or might result in loading some arbitrary value.
Failure rules that model both possibilities appear in Appendix A.1.

Control-Flow Instructions. Any change in the control-flow of a
program may cause a different sequence of values to be storedand
observed by an external user. Consequently, the hardware contains
mechanisms to detect faults in addresses that serve as jump targets.
Intuitively, these mechanisms mirror the solution to faults in stored
data in that execution of a control-flow transfer is accomplished
through two instructions. Our solution uses a combination of soft-
ware and hardware control-flow protection that is similar towatch-
dog processors [6], but that makes both versions of the control flow
explicit as in software-only control flow protection [12, 18].

To achieve an unconditional jump, one executes ajmpG instruc-
tion first and a relatedjmpB instruction at some point in the future.
A jmpG r1 moves the destination address fromr1 into the special
destination registerd (rule jmpG). Like the store queue, the desti-
nation register stores a programmer intention, initiated by the green
computation. Later, when the blue computation attempts to commit
the jump by executing ajmpB r2 instruction, the contents ofr2 are
compared to the contents of the destination register and if they are
equal, control jumps to that location (rulejmpB). If the addresses
are different, the hardware detects a fault (see rulejmpB-fail). Sim-
ilar to the constraint for the store queue, forcing green control flow
instructions to be executed before the corresponding blue version
constrains the instruction schedule. Section 5 will show that this
scheduling constraint has only a minimal performance impact.



Σ −→s
k Σ′

Rval(d) = 0 R′ = R++[d 7→ R(rd)]

(R, C, M, Q, jmpG rd) −→0 (R′, C, M, Q, ·)
(jmpG)

Rval(d) 6= 0

(R, C, M, Q, jmpG rd) −→0 fault
(jmpG-fail)

Rval(d) 6= 0 Rval(rd) = Rval(d)
R′ = R[pcG 7→ R(d)][pcB 7→ R(rd)][d 7→ G 0]

(R, C, M, Q, jmpB rd) −→0 (R′, C, M, Q, ·)
(jmpB)

Rval(rd) 6= Rval(d) or Rval(d) = 0

(R, C, M, Q, jmpB rd) −→0 fault
(jmpB-fail)

Rval(d) = 0 Rval(rz) 6= 0

(R,C, M, Q, bzc rz, rd) −→0 (R++, C, M, Q, ·)
(bz-untaken)

Rval(d) = 0 Rval(rz) = 0
R′ = R++[d 7→ R(rd)]

(R, C, M, Q, bzG rz, rd) −→0 (R′, C, M, Q, ·)
(bzG-taken)

Rval(d) 6= 0 Rval(rz) = 0
Rval(rd) = Rval(d)

R′ = R[pcG 7→ R(d)][pcB 7→ R(rd)][d 7→ G 0]

(R, C, M, Q, bzB rz, rd) −→0 (R′, C, M, Q, ·)
(bzB-taken)

Figure 4. Selected operational rules for control flow instructions.

The following code illustrates a typical control-flow transfer.

1 ldG r1, r2

3 ldB r3, r4

2 jmpG r1

4 jmpB r3

Initially, registersr2 and r4 should point to the same memory
location, which contains a code pointer to jump to. The example
illustrates some of the flexibility in scheduling jump instructions.

Conditional jumps are more complex, but follow the same prin-
ciples. The green conditionalbzG rz, rd testsrz and if it is 0, moves
the contents ofrd into destination register d (rulesbz-untakenand
bzG-taken). No control-flow transfer occurs until a blue conditional
bzB r′z, r′d tests the contents of itsr′z register. Ifr′z is 0 thenr′d must
equal the contents ofd, and if so, the control flow transfer occurs
(rule bzB-taken). If r′z is not 0, it is not good enough merely to fall
through — the contents ofr′z might be faulty. To avoid this pos-
sibility, the instruction examines the destination register. If it is 0
(and hence a priorbzG instruction did not store an address), the
fall-through occurs (rulebz-untaken). The rules for the associated
failure cases appear in Appendix A.1. Our metatheory will show
that this mechanism suffices to detect faults either in the green com-
putation (registersrz andrd) or the blue computation (registersr′z
andr′d).

Static Expressions
exp kinds κ ::= κint | κmem

exp contexts ∆ ::= · | ∆, x : κ
exps E ::= x | n | E op E | sel Em En

| emp | upd Em En1
En2

substitutions S ::= · | S, E/x

Types
zap tags Z ::= · | c
basic types b ::= int | Θ → void | b ref

reg types t ::= 〈c, b, E〉 | E′ = 0 ⇒ 〈c, b, E〉
reg file types Γ ::= · | Γ, a → t
result types RT ::= Θ | void

Contexts
heap typing Ψ ::= · | Ψ, n : b

static context Θ ::= ∆; Γ; (Ed, Es); Em

Figure 5. TALFT type syntax.

3. Typing
The primary goal of theTALFT type system is to ensure that well-
typed programs exhibit fail-safe behavior in the presence of tran-
sient faults. In other words, well-typed programs must guarantee
that a memory-mapped output device can never read a corrupt value
and make it visible to a user. We call this property “fault tolerance.”

In the following sections, we explain the intuitions and princi-
ples behind the various elements of the type system. Throughout
the discussion, the reader will notice that our typing rulesare not
syntax-directed. Of course, as with other sorts of typed assembly
language or proof-carrying code, this fact presents no particular dif-
ficulty in practice — it is easy for a compiler to generate sufficient
“typing hints” to make type reconstruction trivial. For thereader’s
reference, the objects used in the type system are presentedin Fig-
ure 5.

3.1 Static Expressions

Our “type system” is actually a combination of two theories,one
being a relatively simple type theory for assembly, inspired by
previous work on TAL [8], and the second being a Hoare Logic,
designed to enforce the more precise invariants required for strong
fault tolerance. The latter component requires we define a language
of static expressionsfor reasoning about values and storage.

For the purposes of this paper, the static expressions are drawn
from the standard theory of arithmetic and arrays used in many
classical Hoare Logics (c.f., Necula’s thesis [10]). These static ex-
pressions are classified as either integers (kindκint) or memo-
ries (kindκmem). The integer expressions include variables, con-
stants, simple arithmetic operations, and values from a memory
(sel Em En is the integer located at addressEn in Em). The mem-
ory expressions include variables, the empty memory (emp), and
memory updates (upd Em En1

En2
is a memoryEm updated so

that addressEn1
stores valueEn2

).
The context∆ is a mapping from variables to kinds, and the

judgment∆ ` E : κ classifies expressionE as having kindκ.
The judgment∆ ` S : ∆′ holds when the substitutionS maps
variables inDom(∆′) to values well-formed in∆ with types in
Rng(∆′). The judgment∆ ` E1 = E2 is valid whenE1 andE2

are equal objects in the standard model. The function[[E]] supplies
the denotation of the closed static expression E as either aninteger
or a memory, depending on its kind. The definitions for[[E]] and
∆ ` E1 = E2 are shown in Appendix A.2, and the remaining
judgments are defined in the companion technical report [15].



Ψ ` n : b

Ψ ` n : int
(int-t)

Ψ ` n : Ψ(n)
(base-t)

Ψ;∆ `Z v : t

Ψ ` n : b ∆ ` E = n

Ψ;∆ `Z c n : 〈c, b, E〉
(val-t)

n 6= 0 Ψ;∆ `Z c n : 〈c, b, E〉 ∆ ` E′ = 0

Ψ;∆ `Z c n : E′ = 0 ⇒ 〈c, b, E〉
(cond-t)

∆ ` E′ 6= 0

Ψ;∆ `Z c 0 : E′ = 0 ⇒ 〈c, b, E〉
(cond-t-n0)

∆ ` E : κint

Ψ;∆ `c c n : 〈c, b, E〉
(val-zap-t)

∆ ` E : κint

Ψ;∆ `c c n : E′ = 0 ⇒ 〈c, b, E〉
(val-zap-cond)

Figure 6. Value Typing.

3.2 Value Typing

Since faults strike values, corrupting their bit patterns in arbitrary
ways, the subtleties of value typing are a key concern. Informally,
the type system maintains three key pieces of information about
every value:

1. A color (green or blue).The type system is organized to ensure
that when a value is known to be green, its contents can only
depend on the contents of other green values not blue ones, and
likewise, blue can only depend upon blue. Hence, while a fault
in a green value can eventually corrupt arbitrarily many other
green values, it cannot corrupt any blue values, and vice versa.

2. A “basic type”. When no fault has occurred in the value’s
color, the value’s basic type describes its shape. Values with
type int may have any bit pattern. Values with typeΘ →
void are pointers to code (continuations). One must satisfy the
preconditionΘ before jumping to them. Values with typeb ref
are pointers to values with typeb.

3. A static expression.When there has been no fault in a value’s
color, the value exactly equals the static expression. Static ex-
pressions are used to guarantee that in the absence of faults, the
green and blue computations produce equal values, and hence,
dynamic fault detection checks always succeed.

To summarize, every value is typed using a triple〈c, b, E〉, where
c is a color,b is a basic type, andE is a static expression. The
presence of the static expression makes this type a kind of singleton
type.

Value Typing Judgment. The value typing judgment has the form
Ψ;∆ `Z v : t, whereΨ maps heap addresses to basic types, and
∆ contains the free expression variables. In the ruleval-t, a colored
valuec n is given the type〈c, b, E〉 when the static expressionE
is equal ton, andΨ ` n : b. The judgmentΨ ` n : b allowsn
to be given either the basic typeint or the type of the addressn in
memory.

The two rulescond-t and cond-t-n0are used to type the con-
ditional type(E′ = 0 ⇒ 〈G, Θ → void , E′

r〉). When the static
expressionE′ is equal to zero, values of this type also have type
〈G, Θ → void , E′

r〉. WhenE′ is not equal to zero, values with this
type must be 0.

The final two rules forΨ;∆ `Z v : t make use of thezap tag
Z, which is either empty or a colorc. If the zap tag is a colorc,
then there may have been a fault affecting data of that color.Data
colored the same as the zap tag can be given any type, as it may
have been arbitrarily corrupted. The static expression used in this
type may not contain any free expression variables.

Value Subtyping. There is also a subtyping relation∆ ` t ≤
t′ that allows all types〈c, b, E1〉 to be subtypes of〈c, int , E2〉
when ∆ ` E1 = E2. This relation is extended to register file
subtyping∆ ` Γ1 ≤ Γ2, by requiring that the type of each general-
purpose register inΓ2 be a supertype of the corresponding register
in Γ1. Note that here is no required relationship between the special
registersd, pcG, andpcB . The rules for these judgments appear in
the companion technical report [15].

3.3 Instruction Typing

While many of the instruction typing rules are quite complex, the
essential principles guiding their construction may be summarized
as follows.

1. In the absence of faults, standard type theoretic principles
should be valid.In order to guarantee basic safety properties,
the type system checks standard properties in much the same
manner as previous typed assembly languages [8]. For exam-
ple, jump targets must have code types, while loads and stores
must operate over values with reference types.

2. Green values only depend on other green values, and blue val-
ues only depend on blue values.When this invariant is main-
tained, a fault in a blue value can never corrupt a green value
and vice versa.

3. Both green and blue computations have equal say in any dan-
gerous actions.Dangerous actions include storing values to
memory-mapped output devices and executing control-flow op-
erations. When both blue and green computations are involved,
a fault in just one color is insufficient to deceive the hardware
fault detection mechanisms.

4. In the absence of faults, green and blue computations must
compute identical values.To be more precise, green and blue
computations must store identical values to identical storage
locations and must issue orders to transfer control to identical
addresses. If not, the hardware will claim to detect faults when
there have been none, or alternatively, might exhibit incorrect
behaviors when there is a fault.

The first three principles are relatively straightforward to en-
force. The fourth principle leads to the most technical challenges as
it requires we check equality constraints between values. Moreover,
since construction of these values depends on storage, the type sys-
tem must maintain a relatively accurate static representation of stor-
age. We accomplish this latter challenge using techniques drawn
from Hoare Logics. The former challenge (testing values forequal-
ity) is achieved through the use of the singleton types described
earlier.

The Instruction Typing Judgment. The judgment for typing in-
structions has the formΨ;Θ ` ir ⇒ RT . Unlike the contextΨ,
which only contains invariant heap typing assumptions,Θ contains
fine-grained context-sensitive information about the current state
of memory and the register file. More specifically,Θ consists of
the following subcontexts: (1)∆, which describes the free expres-



Ψ;Θ ` ir ⇒ RT

Ψ; (∆; Γ; (Ed, Es); Em) ` · ⇒ (∆; Γ; (Ed, Es); Em)
(·-t)

Γ(rs) = 〈c, int , E′
s〉 Γ(rt) = 〈c, int , E′

t〉

Ψ; (∆; Γ; (Ed, Es); Em) ` op rd, rs, rt ⇒ (∆; Γ++[rd 7→ 〈c, int , E′
s op E′

t〉]; (Ed, Es); Em)
(op2r-t)

Γ(rs) = 〈c, int , E′
s〉

Ψ; (∆; Γ; (Ed, Es); Em) ` op rd, rs, c n ⇒ (∆; Γ++[rd 7→ 〈c, int , E′
s op n〉]; (Ed, Es); Em)

(op1r-t)

Ψ;∆ ` v : t

Ψ; (∆; Γ; (Ed, Es); Em) ` mov rd, v ⇒ (∆; Γ++[rd 7→ t]; (Ed, Es); Em)
(mov-t)

Γ(rs) = 〈G, b ref , E′
s〉 E = sel (upd Em (Ed, Es)) E′

s

Ψ; (∆; Γ; (Ed, Es); Em) ` ldG rd rs ⇒ (∆; Γ++[rd 7→ 〈G, b, E〉]; (Ed, Es); Em)
(ldG-t)

Γ(rs) = 〈B, b ref , E′
s〉 E = sel Em E′

s

Ψ; (∆; Γ; (Ed, Es); Em) ` ldB rd rs ⇒ (∆; Γ++[rd 7→ 〈B, b, E〉]; (Ed, Es); Em)
(ldB-t)

Γ(rd) = 〈G, b ref , E′
d〉 Γ(rs) = 〈G, b, E′

s〉

Ψ; (∆; Γ; (Ed, Es); Em) ` stG rd rs ⇒ (∆; Γ++; (E′
d, E′

s), (Ed, Es); Em)
(stG-t)

Γ(rd) = 〈B, b ref , E′′
d 〉 Γ(rs) = 〈B, b, E′′

s 〉
∆ ` E′

d = E′′
d ∆ ` E′

s = E′′
s

Ψ; (∆; Γ; (Ed, Es), (E
′
d, E′

s); Em) ` stB rd rs ⇒ (∆; Γ++; (Ed, Es); upd Em E′
d E′

s)
(stB-t)

Γ(d) = 〈G, int , 0〉 Γ(rz) = 〈G, int , Ez〉

Γ(rd) = 〈G, Θ → void , E′
d〉 Θ = (∆′; Γ′; (E′

d, E′
s); E

′
m) Γ′(d) = 〈G, int , 0〉

Ψ; (∆; Γ; (Ed, Es); Em) ` bzG rz rd ⇒ (∆; Γ++[d 7→ Ez = 0 ⇒ 〈G, Θ → void , E′
d〉]; (Ed, Es); Em)

(bzG-t)

Γ(rd) = 〈G, Θ → void , Erd′〉 Θ = (∆′; Γ′; (E′
d, E

′
s); E

′
m)

Γ(d) = 〈G, int , 0〉 Γ′(d) = 〈G, int , 0〉

Ψ; (∆; Γ; (Ed, Es); Em) ` jmpG rd ⇒ (∆; Γ++[d 7→ 〈G, Θ → void , Erd′〉]; (Ed, Es); Em)
(jmpG-t)

Γ(rz) = 〈B, int , Ez〉

Γ(rd) = 〈B, (∆′; Γ′; (E′
d, E′

s); E
′
m) → void , Er〉

Γ(d) = E′
z = 0 ⇒ 〈G, (∆′; Γ′; (E′

d, E
′
s); E

′
m) → void , E′

r〉
∆ ` Ez = E′

z

∆ ` Er = E′
r

∃S.∆ ` S : ∆′

S(Γ′)(d) = 〈G, int , 0〉
S(Γ′)(pcG) = 〈G, int , E′

r〉
S(Γ′)(pcB) = 〈B, int , Er〉

∆ ` Γ ≤ S(Γ′)

∆ ` (Ed, Es) = S((E′
d, E

′
s))

∆ ` Em = S(E′
m)

Ψ; (∆; Γ; (Ed, Es); Em) ` bzB rz rd ⇒

(∆; Γ++; (Ed, Es); Em)

(bzB-t)

Γ(d) = 〈G, (∆′; Γ′; (E′
d, E′

s); E
′
m) → void , E′

r〉

Γ(rd) = 〈B, (∆′; Γ′; (E′
d, E′

s); E
′
m) → void , Er〉

∆ ` Er = E′
r

∃S.∆ ` S : ∆′

S(Γ′)(d) = 〈G, int , 0〉
S(Γ′)(pcG) = 〈G, int , E′

r〉
S(Γ′)(pcB) = 〈B, int , Er〉

∆ ` Γ ≤ S(Γ′)

∆ ` (Ed, Es) = S((E′
d, E′

s))
∆ ` Em = S(E′

m)

Ψ; (∆; Γ; (Ed, Es); Em) ` jmpB rd ⇒ void
(jmpB-t)

Figure 7. Instruction Typing.



sion variables appearing in the other context-sensitive objects, (2)
Γ, which describes the mapping of register names to types for reg-
ister values, (3)(Ed, Es), which describes the values in the queue,
and (4)Em, which describes memory, as one does in Hoare Logic.

The “result” of checking an instruction is a result typeRT . A
result type may either bevoid , indicating control does not proceed
past the instruction (it is a jump), or a postconditionΘ′, which
describes the state of memory and the register file after execution
of the instruction.

The typing rules are defined using several notational abbrevi-
ations. The notationΓ++ adds one to the static expression asso-
ciated with each program counter register inΓ. The expression
upd Em (Ed, Es) is (upd (...(upd Em Edk

Esk
)...) Ed1

Es1
)

when(Ed, Es) = ((Ed1
, Es1

), ..., (Edk
, Esk

)). Figure 7 presents
the typing rules for instructions, and the following paragraphs ex-
plain the main points of interest.

Typing Basic Instructions. Basic arithmetic operations are not
“dangerous” to execute, so the definitions of their typing rules are
driven by principles 1 and 2, mentioned earlier. Consider, for exam-
ple, ruleop2r-t for an arithmetic operationop. This rule requires
that the operand registers contain integers with the same color c
in accordance with principal 2 (green depends on green, bluede-
pends on blue). The result registerrd has a type coloredc as well.
In accordance with principle 1, the result has integer type.The rule
also states that the static expression describing the result register is
E′

s op E′
t and that the state of the queue and memory are unchanged

by evaluation of the instruction.

Typing Memory Instructions. Store operations are “dangerous”
— they make computed values observable by the outside world —
so we must be particularly careful in the formulation of their typing
rules. In accordance with principle 1, both green and blue store
instructions (rulesstG-t andstB-t) require that the address register
has the basic typeb ref and the value register has the corresponding
basic typeb. Intuitively, the store queue is a green object, and in
accordance with principle 2, the green store instruction may push
an address-value pair onto the front the queue as long as bothvalues
are green. In accordance with principle 4, the rule for the blue store
checks that the address-value pair to be stored is exactly equal to
the address-value pair at the end of the queue. Since the arguments
to the blue store have a blue type and the queue always contains
green objects, both blue and green computations contributeto the
actual storage operation (in accordance with principle 3).

The load operations are somewhat simpler than the store in-
structions since they are not “dangerous” in our model. However,
like the store instructions, the operands of blue loads mustbe blue
and the operands of green loads must be green. Once again, in ac-
cordance with principle 2, the result of a blue load is value with a
blue type and likewise for a green load.

Typing Control-Flow Instructions. While the typing rules for
control-flow instructions have many premises, they continue to
follow the same four principles as the other instructions. Much of
the complexity is inherently due to principle 1, which mandates
checking all the usual constraints associated with jumps inany
typed assembly language.

The simplest rule involves the green unconditional jump. This
instruction is just a move from registerrd to the special destination
registerd. The type of registerd is updated to the type ofrd

(obeying both principles 1 and 2). The rule contains constraints that
d must be equal to0 in bothΓ andΓ′ since the hardware resets the
destination register to0 after a jump.

The blue unconditional jump is a true jump. According to prin-
ciple 1, it checks the standard typing invariants needed to ensure
safety in any typed assembly language, including (1) that the jump

target has code type (see the first two premises), and (2) thatthe
current state, including register file, memory, and queue, matches
the expected state at the jump target, modulo some substitution S
of static expressions for universally quantified variables∆ from the
code type (see the final seven premises).

The typing of the conditional branches is quite similar to that
of unconditional jumps. One difference is that thebzG instruction
is now a conditional move as opposed to an unconditional move.
Hence, to represent the result of the move (unknown at compile
time) the conditional type(E′

z = 0 ⇒ 〈G, Θ → void , E′
r〉) is

used. In addition, since the conditional branch may fall through,
the result of typing thebzG instruction is a proper postcondition as
opposed tovoid , like jmpG.

3.4 Machine State Typing

In order to prove various properties of the type system, we need to
specify the invariants of machine states that are preservedduring
execution. The judgments for typing a machine stateΣ are shown
in Figure 8 and explained below.

Register File Typing. The judgmentΨ `Z R : Γ states that the
register fileR has the register file typeΓ under heap typingΨ and a
zap tagZ. The contents of each register must have the type given to
that register byΓ. Each program counter must have the appropriate
color, and the program counters must compute equal values. (In
the case where one program counter is corrupted, the zap tagZ in
the first premise allows its actual value to differ from the expected
computed value.)

Code Typing. The judgmentΨ ` C states that code memory
C is well-formed with respect to heap typingΨ. The address 0
is not a valid code address. Each address must have a code type,
and the code type must contain the precondition for the instruction
at that address. If the instruction typing results in a postcondition
Θ′ (meaning that control may fall through to the next instruction)
then the subsequent instruction must be well typed usingΘ′ as its
precondition.

Memory Typing. The judgmentΨ ` M : Em states that given
heap typingΨ the value memoryM is well-formed and can be
described by the static expressionEm. The static expressionEm

must have kindκmem, andM must be the denotation ofEm. Each
location in the domain ofM must have a typeb ref and the contents
of that location must have typeb.

Queue Typing. The judgmentΨ `Z Q : (Ed, Es) means that
queueQ can be described by the sequence of static expressions
(Ed, Es) given heap typingΨ and zap tagZ. When the queue is
empty, it is described by the empty sequence. When the zap tagZ
is notG, the first pair(n1, n2) must consist of an addressn1 with
type b ref and a valuen2 with type b. This pair is described by
the static expression pair(Ed, Es) whenEd evaluates ton1 and
Es evaluates ton2. The remainder of the queue must be described
by the remainder of the static expression sequence. All values in
the queue are considered to be green, so when the zap tag isG,
these values may have been arbitrarily corrupted. Accordingly in
this case, the only requirements are that each static expression must
have kindκint and the length of the queue must be the same as the
length of the static expression sequence.

Machine State Typing. The judgment̀ Z Σ states that a machine
stateΣ is well-typed under zap tagZ. This judgment holds whenΣ
is a five-tuple(R, C, M, Q, ir), and these elements are each well-
typed and consistent with each other. Note thatΣ is not well-typed
when it is the fault statefault .



Ψ `Z R : Γ

∀a. Ψ; · `Z R(a) : Γ(a)
· ` Γ(pcG) ≤ 〈G, int, EG〉
· ` Γ(pcB) ≤ 〈B, int, EB〉

· ` EG = EB

Ψ `Z R : Γ
(R-t)

Ψ ` C

0 6∈ Dom(C)
∀n ∈ Dom(C).

Ψ(n) = Θ → void ∧ Ψ;Θ ` C(n) ⇒ RT
∧ (RT = Θ′ implies Ψ(n + 1) = Θ′ → void)

Ψ ` C
(C-t)

Ψ ` M : Em

· ` Em : κmem [[Em]] = M
∀` ∈ Dom(M). Ψ ` ` : b ref ∧ Ψ ` M(`) : b

Ψ ` M : Em

(M-t)

Ψ `Z Q : (Ed, Es)

Ψ `Z () : ()
(Q-emp-t)

Z 6= G
Ψ ` n1 : b ref Ψ ` n2 : b
· ` Ed = n1 · ` Es = n2

Ψ `Z (n′
1, n

′
2) : (E′

d, E′
s)

Ψ `Z (n1, n2), (n′
1, n

′
2) : (Ed, Es), (E′

d, E′
s)

(Q-t)

· ` Ed : κint · ` Es : κint

Ψ `G (n′
1, n

′
2) : (E′

d, E′
s)

Ψ `G (n1, n2), (n′
1, n

′
2) : (Ed, Es), (E′

d, E′
s)

(Q-zap-t)

`Z (R,C, M, Q, ir)

Dom(Ψ) = Dom(C) ∪ Dom(M)
Z 6= G =⇒ Dom(Q) ⊆ Dom(M)

Ψ ` C
∀c 6= Z. ir 6= · =⇒ C(Rval(pcc)) = ir

∀c 6= Z. Ψ(Rval(pcc)) = Θ → void

Θ = (∆;Γ; (Ed, Es); Em)
∃S. · ` S : ∆

Ψ ` M : S(Em)

Ψ `Z Q : S(Ed, Es)
Ψ `Z R : S(Γ)

`Z (R,C, M, Q, ir)
(Σ-t)

Figure 8. Machine State Typing.

4. Formal Results
In order to prove properties of our type system, we extend our
single-step transitionΣ1 −→s

k Σ2 from Section 2 to a sequence
of n transitions containing exactlyk faultsΣ1

n
−−→

s

kΣ2, wheren
is greater than or equal to zero, andk is still either 0 or 1.

4.1 Type Safety

Progress states that well-typed states can take a step. In particular,
a machine state that is well-typed under the empty zap tag cantake
a non-faulty step to another ordinary, non-faulty machine state. A
machine state that is well-typed under a zap tag of colorc can take
a step, but the result of that step may either be another ordinary
machine state or thefault state.

Theorem 1 (Progress)
1. If ` Σ thenΣ −→s

0 Σ′ andΣ′ 6= fault .
2. If `c Σ thenΣ −→s

0 Σ.

According to Preservation, if a machine state is well-typed
under a zap tagZ, and it takes a non-faulty step to another machine
state, then that resulting state will also be well-typed under Z.
Additionally, if a state is well-typed under the empty zap tag, and it
takes a faulty step, then there is some colorc such that the resulting
state is well-typed underc.

Theorem 2 (Preservation)
1. If `Z Σ andΣ −→s

0 Σ′ andΣ′ 6= fault then`Z Σ′.
2. If ` Σ andΣ −→s

1 Σ′ then∃ c. `c Σ′.

Progress and Preservation define the usual notion of type safety.
In addition, part one of Progress, together with part one of Preser-
vation entail the following important corollary: The hardware never
claims to have detected a fault when no fault has occurred during
execution of a well-typed program.

Corollary 3 (No False Positives)
If ` Σ then∀ n. Σ

n
−−→

s

0Σ
′ and ` Σ′.

4.2 Fault Tolerance

A program is fault tolerant when all the faulty executions ofthat
programsimulatefault-free executions of the program. More pre-
cisely, the sequence of outputs from the faulty executions are re-
quired either to be identical to the fault-free execution or, in the
case the hardware detects the fault, a prefix of the fault-free execu-
tion.

In order to reason about pairs of faulty and fault-free executions,
we define similarity relations between values, register files, queues
and machine states. Each of these relations is defined relative to
the zap tagZ. Intuitively, if Z is empty, the related objects must be
identical. IfZ is a colorc, the objects must be identical modulo val-
ues coloredc. In the latter case, values coloredc may be corrupted,
and there is no hope they satisfy any particular relation. The formal
definitions of these relations are shown in Figure 9.

Using the similarity relations, we can state and prove the fault
tolerance theorem for well-typed programs precisely. Assume that
machine stateΣ is well-typed under the empty zap tag, and non-
faulty execution ofΣ for n steps results in a stateΣ′ and outputs
a sequence of value-address pairss. If somewhere during that
execution a single fault is encountered, the faulty execution will
either run forn + 1 steps or terminate in the fault state during
that time. If the faulty execution takesn + 1 steps and reaches
the non-faulty stateΣ′

f , thenΣ′ simulatesΣ′
f and the sequence of

output pairs is identical the original execution. Alternatively, if the
faulty execution reaches the fault state then the output pairs will be
a prefix of the non-faulty output pairs.



v1 simZ v2

C n simZ C n
(sim-val)

C n simC C n′
(sim-val-zap)

R simZ R′

∀a. R(a) simZ R′(a)

R simZ R′
(sim-R)

Q simZ Q′

· simZ ·
(sim-Q-empty)

G n1 simZ G n′
1 G n2 simZ G n′

2 Q simZ Q′

((n1, n2), Q) simZ ((n′
1, n

′
2), Q

′)
(sim-Q)

Σ1 simZ Σ2

R simZ R′ Q simZ Q′

(R,C, M, Q, ir) simZ (R′, C, M, Q′, ir)
(sim-Σ)

Figure 9. Similarity of Machine States.

Theorem 4 (Fault Tolerance)
If ` Σ andΣ

n
−→

s

0Σ
′ then eitherΣ

(n+1)
−−→

s′

1 Σ′
f

or ∃m ≤ (n+1) . Σ
m

−−→
s′

1 fault , and

1. For all derivationsΣ
(n+1)
−−→

s′

1 Σ′
f whereΣ′

f 6= fault .
s′ = s and∃ c. Σ′ simc Σ′

f .

2. For all derivationsΣ m
−−→

s′

1 fault wherem ≤ (n+1).
s′ is a prefix ofs.

5. Performance
To better understand howTALFT can be applied to real world sit-
uations, we simulated theTALFT hardware in the framework of
a current computer architecture, the Intel Itanium 2 ISA. The in-
struction set of the Itanium 2 contains many more types of instruc-
tions than those specified inTALFT. While not an exact represen-
tation of the performance ofTALFT, simulating the performance
of TALFT applied to this architecture will give guidance as to the
feasibility of this system in a real architecture.

To evaluate the performance impact of our techniques, a ver-
sion of the VELOCITY compiler [23] was modified to add the re-
liability techniques ofTALFT and was used to compile the SPEC
CINT2000 and MediaBench benchmark suites. These executions
were compared against binaries generated by the original VELOC-
ITY compiler, which have no fault detection. The reliability trans-
formation was compiled into the low level code immediately before
register allocation and scheduling. To simulate the new hardware
structures ofTALFT, extra instructions were inserted to emulate
the timing and dependences of the hardware structure accesses.

Performance metrics were obtained by running the resulting
binaries with reference inputs on an HP workstation zx6000 with
2 900Mhz Intel Itanium 2 processors running Redhat Advanced
Workstation 2.1 with 4Gb of memory. Theperfmon utility was
used to measure the CPU time.

Figure 10 presents the execution time of the fault-tolerantcode
relative to baseline binaries with no fault detection. Naı̈vely, one
might expect the fault-tolerant code to run twice as slowly as the

fault intolerant code since the number of instructions is essentially
doubled. However, we find that smart instruction schedulingand
efficient allocation of resources reduces the execution time to only
34% more than the fault-intolerant baseline average. Thesesimula-
tions are in line with previously published software-only reliability
performance experiments [18] that show the degradation dueto re-
dundant code to be less than double.

As alluded to in Section 2.2, Figure 10 compares the perfor-
mance degradation both with and without the scheduling constraint
that green memory and control flow instructions must be executed
before the corresponding blue versions. In order to performthe sec-
ond set of experiments, our compiler was modified to produce code
that had more flexibility in the scheduling of the green and blue
versions. We then simulated a more aggressive hardware imple-
mentation that could correlate the original and redundant memory
operations regardless of the executed order. As expected, this ver-
sion has better performance (in most cases) than the unconstrained
code. Comparing both to the unprotected code, the version with-
out the ordering constraint increases execution time by 30%while
the version with the ordering increases execution time by 34%. Al-
though the colored ordering restriction ofTALFT may seem costly,
removing this restriction provides only a small improvement.

6. Related Work
Fault tolerance based on software replication is a well-populated
field with decades of history.TALFT differs from previous ap-
proaches in that it provides a type-theoretic framework forobtain-
ing strong guarantees about the reliability of machine code.

Most closely related toTALFT is our previous work onλzap, a
highly abstract type-theoretic model for studying the basic prin-
ciples of fault tolerance in the lambda calculus [26]. Thereare
two important distinctions betweenTALFT andλzap. First,λzap,
working at the level of the lambda calculus, is very far removed
from real machine code. For instance, it lacks a program counter,
a register file, memory, and load or store instructions. Memory
references in particular constitute a key challenge in the current
technical work. Second, the properties of theλzap type system are
relatively weak compared with the properties of the currenttype
system. The “end-to-end” fault tolerance property proven for λzap

depends not only on the type system but also the nature of the trans-
lation from the ordinary simply-typed lambda calculus. In contrast,
the type system ofTALFT is much stronger, capable of ensuring
a strong fault tolerance property independently of the process that
compiles the code.

Also closely related toTALFT is the original TAL system,
which first applied strong type checking to machine code to guaran-
tee its safety [8]. TAL operates under the assumption of nonfaulty
hardware and therefore ignores the major issues of reliability on
which this paper has focused.

There have been various implementations of software-only,
hardware-only, and hybrid techniques for transient fault mitiga-
tion. Hardware techniques have a long history of using very lo-
calized bit-level techniques like error correcting codes or parity
bits additions. These techniques are efficient for storage structures
like memory, but are costly or impossible to apply to other pro-
cessor elements like pipeline latches or arithmetic units.Higher
level techniques are used when protection is necessary for larger
segments of the processor. These techniques include the duplica-
tion of coarse-grained structures such as functional units, processor
cores [5, 22, 27], or hardware contexts [9, 16, 25].

To provide protection when the hardware costs of these ap-
proaches are prohibitive, software-only approaches have been pro-
posed as alternatives [12, 13, 17, 18, 20, 24]. While software-only
systems are cheaper to deploy and can be configured after deploy-
ment, they cannot achieve the same performance or reliability as
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Figure 10. Performance Normalized to Unprotected Version.

hardware-based techniques, since they have to execute additional
instructions and are unable to examine microarchitecturalstate.
Despite these limitations, software-only techniques haveshown
promise, in the sense that they can significantly improve reliabil-
ity with reasonable performance overhead [12, 13, 18].

TALFT attempts to exploit the benefits of both sorts of systems
by using a hybrid approach to fault tolerance. There have been pre-
vious hybrid approaches to transient fault tolerance, somefocusing
solely on control-flow protection [14] and recently others looking
at full processor protection [19]. This work differs from those pre-
vious approaches because regardless of the type of implementation,
software, hardware, or hybrid, none of those previous approaches
have given rigorous formal proofs of the correctness of their sys-
tems.

7. Conclusions
In conclusion, transient faults are already a significant cause for
concern at major semiconductor manufacturers and threatento be
more so in the coming years and decades. This paper takes one step
forward for the science of fault tolerance by presenting a principled
and practical hybrid software-hardware scheme for detecting tran-
sient faults. More specifically, we identify four general principles
for verifying correctness of fault tolerant systems and capture these
in an assembly language type system. From a theoretical perspec-
tive, the type system acts as a sound proof technique for verifying
reliability properties of programs. From a practical perspective, it
can be used as a debugging aid within a compiler, strictly dominat-
ing any conventional testing technique. Our two main formalresults
show that a single fault affecting observable behavior in a well-
type program will always be detected, and that the system will not
claim to have detected a fault when none has occurred. Despite the
fact that well-typed programs essentially duplicate all computation,
we provide simulation results showing a performance overhead of
1.34x.
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A. Appendix
A.1 Failure Rules

Operational rules omitted from Figures 2, 3, and 4.

find(Q, Rval(rs)) = () Rval(rs) /∈ Dom(M)

(R,C, M, Q, ldG rd, rs) −→0 fault
(ldG-fail)

Rval(rs) /∈ Dom(M)

(R, C, M, Q, ldB rd, rs) −→0 fault
(ldB-fail)

find(Q, Rval(rs)) = ()
Rval(rs) /∈ Dom(M)
R′ = R++[rd 7→ G n]

(R,C, M, Q, ldG rd, rs) −→0 (R′, C, M, Q, ·)
(ldG-rand)

Rval(rs) /∈ Dom(M)
R′ = R++[rd 7→ B n]

(R, C, M, Q, ldB rd, rs) −→0 (R′, C, M, Q, ·)
(ldB-rand)

(R, C, M, ·, stB rd, rs) −→0 fault
(stB-queue-fail)

Q = ((n, n′), (nl, n
′
l))

Rval(rd) 6= nl or Rval(rs) 6= n′
l

(R, C, M, Q, stB rd, rs) −→0 fault
(stB-mem-fail)

Rval(rz) 6= 0 Rval(d) 6= 0

(R, C, M, Q, bzc rz, rd) −→0 fault
(bz-untaken-fail)

Rval(rz) = 0 Rval(d) 6= 0

(R, C, M, Q, bzG rz, rd) −→0 fault
(bzG-taken-fail)

Rval(rz) = 0
Rval(rd) 6= Rval(d) or Rval(d) = 0

(R, C, M, Q, bzB rz, rd) −→0 fault
(bzB-taken-fail)

A.2 Semantics of Static Expressions

[[E]]

[[n]] = n
[[E1 op E2]] = [[E1]] op [[E2]]
[[emp]] = ·
[[sel Em En]] = [[Em]]([[En]])
[[upd Em E1 E2]] = [[Em]][ [[E1]] 7→ [[E2]] ]

∆ ` E1 = E2

∆ ` E1 : κint ∆ ` E2 : κint

∀S. · ` S : ∆ =⇒ [[S(E1)]] = [[S(E2)]]

∆ ` E1 = E2
(E-eq)

∆ ` E1 : κint ∆ ` E2 : κint

∀S. · ` S : ∆ =⇒ [[S(E1)]] 6= [[S(E2)]]

∆ ` E1 6= E2
(E-neq)

∆ ` E1 : κmem ∆ ` E2 : κmem

Dom([[S(E1)]]) = Dom([[S(E2)]])
∀` ∈ Dom([[S(E1)]]). [[S(E1)]](`) = [[S(E2)]](`)

∆ ` E1 = E2
(E-mem-eq)


