
A Survey of the Practice of Computational Science

Prakash Prabhu Thomas B. Jablin Arun Raman Yun Zhang Jialu Huang
Hanjun Kim Nick P. Johnson Feng Liu Soumyadeep Ghosh Stephen Beard
Taewook Oh Matthew Zoufaly David Walker David I. August

Princeton University
{pprabhu,tjablin,rarun,yunzhang,jialuh}@princeton.edu

{hanjunk,npjohnso,fengliu,soumyade,sbeard}@princeton.edu
{twoh,mzoufaly,dpw,august}@princeton.edu

ABSTRACT
Computing plays an indispensable role in scientific research.
Presently, researchers in science have different problems,
needs, and beliefs about computation than professional pro-
grammers. In order to accelerate the progress of science,
computer scientists must understand these problems, needs,
and beliefs. To this end, this paper presents a survey of
scientists from diverse disciplines, practicing computational
science at a doctoral-granting university with very high re-
search activity. The survey covers many things, among
them, prevalent programming practices within this scien-
tific community, the importance of computational power in
different fields, use of tools to enhance performance and soft-
ware productivity, computational resources leveraged, and
prevalence of parallel computation. The results reveal sev-
eral patterns that suggest interesting avenues to bridge the
gap between scientific researchers and programming tools
developers.

1. INTRODUCTION
Computational science [53], a multidisciplinary field en-

compassing various aspects of science, engineering, and com-
putational mathematics is increasingly being seen as the
“third approach” [23], after theory and experiment, to an-
swering fundamental scientific questions. Researchers prac-
ticing computational science typically face two concerns com-
peting for their time. Primarily, they must concentrate on
their scientific problem by forming hypotheses, developing
and evaluating models, performing experiments and collect-
ing data. At the same time, they also have to spend con-
siderable time converting their models into programs and
testing, debugging, and optimizing those programs.

In the past two decades, there has been an exponential
increase in the amount of data generated and computation
performed within many scientific disciplines [53, 55], signi-
fying an increasing need for high performance computing.
Writing correct and high performance programs is difficult

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright is held by the author/owner(s).
SC’11, November 12–18, 2011, Seattle, Washington, USA.
ACM 978-1-4503-0771-0/11/11.

even for computer scientists [33]. Given this background,
this paper seeks to answer the question: How are scientists
coping with the growing computing demands?

Recently, an online survey conducted a broad study of the
programming practices of a wide range of researchers, re-
vealing many potential problems encountered in correctly
writing scientific programs [30, 43]. Continuing in the same
spirit, this paper presents an in-depth study of the practice of
computational science at Princeton University, a RU/VH 1

institution. This study is conducted through a survey of
researchers from diverse scientific disciplines. This survey
covers important aspects of computational science including
programming practices commonly employed by researchers,
the importance of computational power, and performance
enhancing strategies in use. The results are presented in the
context of the university’s prevailing computational environ-
ment, providing insights into diverse computational prac-
tices followed within the institution.

The analysis of survey results reveals several patterns that
suggest various areas of improvement. In contrast to the
popular view that scientists use only numerical algorithms
written in MATLAB and FORTRAN, the survey discov-
ered that C, C++, and Python were popular among many
scientists and there is a growing need for non-numerical al-
gorithms. Despite the availability of clusters and large-scale
shared memory systems within the University and a general
desire for higher performance through parallel computation,
a substantial portion of scientific computation still takes
place on scientists’ personal computers. Although many sci-
entists use shared-memory multicore desktops and not clus-
ters for scientific computation, knowledge of shared-memory
parallelization techniques in the scientific community is vir-
tually non-existent. Furthermore, the survey determined
that scientists frequently do not leverage performance anal-
ysis tools to track down the causes of poor performance and
consequently “optimize” cold-code while ignoring a compu-
tation’s real bottlenecks. The contributions of this paper
are:

• An in-depth survey of the practice of computational sci-
ence at a RU/VH institution. The survey is conducted
through personal interviews with 114 researchers ran-
domly selected from diverse fields of natural sciences, en-
gineering, interdisciplinary sciences, and social sciences.

1RU/VH stands for “very high research activity doctoral-
granting university”, as classified by the Carnegie Founda-
tion [11].

1

Field Discipline Count
Natural Astrophysics 3
Sciences Atmospheric and Oceanic Sciences 2

Chemistry 5
Ecology and Evolutionary Biology 5
Physics 5
Geosciences 6
Molecular Biology 4
Plasma Physics 2

Engineering Chemical 7
Civil and Environmental 5
Mechanical and Aerospace 11
Electrical 12
Operations Research and Financial 5

Interdisciplinary Music 4
Sciences Applied and Computational Math 2

Computational Biology 4
Neuroscience/Psychology 13

Social Economics 10
Sciences Sociology 5

Politics 4
Total 114

Table 1: Subject population distribution

• An analysis of survey results that suggests several ar-
eas of improvement, both in terms of practices employed
by scientific researchers and future research directions for
programming tools developers

2. SURVEY METHODOLOGY
The survey covers a set of 114 randomly selected researchers

from diverse fields of science and engineering at Prince-
ton University. The pool of survey candidates includes all
graduate students, post doctoral associates, and research
staff in various scientific disciplines at Princeton University.
An email soliciting participation in the survey was initially
sent to randomly selected candidates from the university
database. The email mentioned “use of computation in re-
search” as a criterion for participation. After a candidate
replied indicating interest in the survey, an interview was
conducted by at least two of the authors, exploring, in depth,
the various aspects of scientific computing related to the can-
didate’s research.

Table 1 shows the distribution of subjects across different
scientific fields. In this paper, the word “scientist” is used
in a broad sense, to cover researchers from natural sciences,
engineering, interdisciplinary sciences, and social sciences.
A total of 20 disciplines were represented. Of the 114 sub-
jects, 32 were from the natural sciences, 40 from engineer-
ing, 19 from interdisciplinary sciences and 19 from the social
sciences. Most of the interviewees were graduate students
in different stages of their research. Six interviewees were
postdoctoral researchers and research staff. Barring two in-
stances, researchers from the same discipline were from dif-
ferent research groups.

The survey was conducted through personal interviews,
in order to allow for a deeper understanding of the differ-
ent computing scenarios and situations unique to each sub-
ject. Each interview conducted was in the form of a discus-
sion that lasted for about 45 minutes. All the interviews
were conducted over a period of 8 months. The survey cov-
ered three major themes central to scientific computing: (a)
programming practices (b) computational time and resource
use, and (c) performance enhancing methods.

3. RESULTS
This section presents the results of the survey. To be-

gin with, the scientific computing environment at Princeton

University is characterized. With this as the background,
the results of the survey are presented suitably categorized
into the three themes mentioned above. Each theme is intro-
duced by posing a broad set of questions, and then answering
these questions through a general set of patterns observed
during the survey along with data to substantiate each ob-
servation. To highlight these key patterns, and other central
ideas or conclusions that appear later in the paper, we set
them apart from the main text as an italicized comment.

3.1 Computing Environment
Researchers at Princeton University are heavily supported

in terms of computational resources and expertise. The
Princeton Institute for Computational Science and Engi-
neering (PICSciE) [13] aims to foster the computational sci-
ences by providing computational resources as well as the
experience necessary to capitalize on those resources. At
the time of writing, these resources include the larger cluster
hardware available through the Terascale Infrastructure for
Groundbreaking Research in Engineering and Science (TI-
GRESS) [10]. TIGRESS is a high performance computing
center that is an outcome of collaboration between PICSciE,
various research centers [9, 8, 12, 14], and a number of aca-
demic departments and faculty members.

TIGRESS offers four Beowulf clusters (with 768, 768,
1024, and 3584 processors), and a 192 processor NUMA
machine with shared memory and 1 petabyte of network
attached storage. These clusters serve the computational
needs of 192 researchers. Administrators at TIGRESS esti-
mate that their systems are at 80% utilization. Addition-
ally, PICSciE offers courses, seminars and colloquia to aid
the computational sciences. Since 2003, PICSciE has offered
mini-courses on data visualization, scientific programming in
Python, FORTRAN, MATLAB, Maple, Perl and other lan-
guages, technologies for parallel computing (including MPI
and OpenMP), as well as courses on optimization and debug-
ging parallel programs. Recently, PICSciE began offering a
course on scientific computing. PICSciE also offers program-
ming support for troubleshooting malfunctioning programs,
parallelizing existing serial codes, and tuning software for
maximum performance.

3.2 Programming Practices
Representative questions concerning this theme included:

What kind of programming paradigms, languages and tools
do scientists use to perform scientific computation? Do sci-
entists employ effective testing methods to certify the results
of their programs? What fraction of research time do scien-
tists spend in programming or developing software?

Scientists commonly interface a diverse combination of
numerical, general purpose, and scripting languages.
One common perception is that scientific computation is
dominated by heavy array-based computation in languages
that are specially tuned for numeric computation like FOR-
TRAN and MATLAB [44, 51]. Contrary to this perception,
our survey indicates that scientists commonly interface a di-
verse combination of numerical, general purpose and script-
ing languages in an ad-hoc manner. Around 65% of sci-
entists use at least one combination of numerical/scripting
language and a general purpose language.

The distribution of multiple-language use-case scenarios
is shown in Figure 1a. Close to one-fourth of scientists used

2

 0%

 5%

 10%

 15%

 20%

 25%

 30%

 35%

 40%

M
ultiple�Projects

External�Interface

D
ata�Processing

Prototype

N
one

P
er

ce
n

ta
g

e
o

f
T

o
ta

l
S

u
b

je
ct

 C
o

u
n

t

(a) Multiple Language Use-Case Scenarios

 0%

 10%

 20%

 30%

 40%

 50%

 60%

M
A

TLA
B

FO
R
TR

A
N

Stata
R C C

++
python

shell

O
thers

P
er

ce
n

ta
g

e
o

f
T

o
ta

l
S

u
b

je
ct

 C
o

u
n

t

(b) Programming Language Use Distribution†

 0%

 10%

 20%

 30%

 40%

 50%

C
ode�Inspection

D
ebugger

C
onsole�Prints

O
thers

N
one

P
er

ce
n

ta
g

e
o

f
T

o
ta

l
S

u
b

je
ct

 C
o

u
n

t

(c) Debugging techniques employed

 0%

 10%

 20%

 30%

 40%

 50%

0−25%

25−50%

50−75%

75−100%

P
er

ce
n

ta
g

e
o

f
T

o
ta

l
S

u
b

je
ct

 C
o

u
n

t

(d) Programming time, as percentage of research time

 0%

 5%

 10%

 15%

 20%

 25%

 30%

0−60M
inutes

1−12hours

12−24hours

D
ays

W
eeks

M
onths

P
er

ce
n

ta
g

e
o

f
T

o
ta

l
S

u
b

je
ct

 C
o

u
n

t

(e) Program Execution Time Distribution

 0%

 10%

 20%

 30%

 40%

 50%

 60%

C
luster

D
esktop

Server

G
PU

P
er

ce
n

ta
g

e
o

f
T

o
ta

l
S

u
b

je
ct

 C
o

u
n

t

(f) Computational Resource Use†

 0%

 10%

 20%

 30%

 40%

 50%

A
lgorithm

ic�C
hanges

D
ata�Structure�O

ptis

Specialized�Library

Loop�O
ptim

izations

O
thers

C
om

piler�Flags

N
one

P
er

ce
n

ta
g

e
o

f
T

o
ta

l
S

u
b

je
ct

 C
o

u
n

t

(g) Distribution of Performance enhancing strategies†

 0%

 10%

 20%

 30%

 40%

 50%

Job
M

essage�Passing

Threading

G
PU

�based�Parallelism

Loop�Parallelism

O
thers

N
one

P
er

ce
n

ta
g

e
o

f
T

o
ta

l
S

u
b

je
ct

 C
o

u
n

t

(h) Use of Parallelism†
Figure 1: Survey Data. The categories in the graphs marked † are not mutually exclusive and do not sum to 100%

3

numerical computing/scripting languages only for pre- and
post- processing of simulation data, while writing all of the
heavy duty computation code in general purpose languages
like C and C++ for performance.

18% of scientists leveraged external interface functionality
provided by languages like MATLAB to call into libraries
pre-written in C/C++. Interfacing of this kind often in-
volved writing wrappers to emulate the native programming
model. For instance, researchers in Ecology and Evolution-
ary Biology, wrote a“call by reference”emulation framework
in MATLAB when interfacing pointer-based data acquisi-
tion code written in C.

Nearly 9% of researchers used scripting/numerical lan-
guages for fast prototyping. They wrote their programs
first in MATLAB/Python-like languages and tested their
algorithms on small data sets. Once tested, these programs
were re-written in C and C++ for bigger data sets. Around
13% of researchers used both numerical and general purpose
languages for different projects, typically influenced by the
perceived productivity versus performance trade-offs for the
given problem at hand.

The distribution of different kinds of programming lan-
guages employed by scientists in the survey is shown in Fig-
ures 1b and 2. As Figure 2 shows, there is considerable
overlap between the use of general purpose, scripting and
numerical languages. The most dominant numerical com-
puting language in use was MATLAB – more than half the
researchers programmed with it. This is followed by FOR-
TRAN, which was used by around 27% of researchers. Re-
searchers using FORTRAN were influenced by the availabil-
ity of legacy code, typically written by their advisors during
the early nineties. More than 40% of surveyees relied on a
general purpose language to deliver on computational per-
formance. Two specific languages, C and C++ dominated
in equal measure. An interesting point was the discipline-
wise stratification of researchers using C/C++ and FOR-
TRAN code. Researchers working in emerging interdisci-
plinary fields like Psychology, Neuroscience, and Compu-
tational Biology wrote programs in C/C++. By contrast,
most of the FORTRAN use was restricted to established
scientific fields in natural sciences like Astrophysics, Chem-
istry, and Geosciences. The dominant scripting language
in use was Python. Around one-fourth of interviewees used
Python, with shell scripts as the second favorite. Apart from
normal string and data parsing and processing, researchers
leveraged several scientific packages written in Python like
SciPy [34], NumPy [47], and Biopython [22].

Scientists spend substantial amount of research time
programming.
On average, scientists estimate that 35% of their research
time is spent in programming/developing software. The
distribution is shown in Figure 1d. While initially some
time is spent on writing code afresh, a considerable por-
tion of time is spent in many tedious activities. For ex-
ample, researchers in Politics and Sociology who used R/S-
tata had to do considerable programming to retrofit census
data into formats that individual packages in R/Stata un-
derstood. Some researchers in Chemical Engineering had to
reverse engineer undocumented legacy code that performed
flame simulation, long after the original authors had grad-
uated, in order to adapt the code to newer fuels. Many
researchers also re-wrote code for performing similar tasks

rather than templatize and re-use code. Quite often, this
was done via a copy, paste and modify procedure which is
highly error prone. None of these activities were well tested.
Despite this, a vast majority of these researchers felt that
they “spend more time programming than they should,” and
that research time was better spent in focusing on scientific
theories or on experiments (“more concerned about physics,”
said one researcher).

Scientists do not rigorously test their programs.
Given that the computational method has taken over as
the method of first choice in many scientific fields [55], one
would expect scientists to rigorously test their programs us-
ing state-of-the-art software testing techniques. However,
our survey results point to the contrary. Although researchers
spend 57% of their programming time on finding and fixing
errors in their programs, the debugging and testing meth-
ods employed were primitive. Only one researcher consid-
ered the use of assertions at all in her code. Only three
researchers wrote unit tests. Not many researchers were
aware of version control systems, given their utility in de-
tecting sources of regressions.

More than half of the researchers did not use any debugger
(Figure 1c) to detect and correct errors in their code. 18%
of researchers never tested their programs once they were
written, either because they thought it was “too simple” or
relied on code written by others, which was assumed to be
“well tested.” 11% of researchers relied on “trial and error”
to detect bugs, which typically involved checking subsections
of code for correctness by commenting out the rest of code.
Given the inherent combinatorial space of code changes that
are possible, this process itself was error-prone and slow. A
small minority of researchers relied on the expertise of their
more knowledgeable peers to fix errors (“call up people who
have experience,” said one researcher).

A few scientific programs conform to best software en-
gineering practices and have high standards of repro-
ducibility.
A recent article that appeared in Nature News [43] cast a
rather bleak picture of scientific programming practices, cit-
ing complete absence of known software engineering meth-
ods, testing, and validation procedures in most scientific
computing projects. While our survey results do agree in
large part with those results, we also found many survey
interviewees leveraged a small set of open source scientific
programs that stood out both in terms of best software en-
gineering practices and high standards of reproducibility.
Typically, each discipline had a few open source programs
developed by scientific teams world-wide that were popular
and were utilized by many others in their field. In our sub-
ject population, around 48% of interviewees used or modified
these open source software at some stage of their research.

Table 2 lists some of the representative open source pro-
grams in each field that are in this category. Most of these
programs are results of projects characterized by sophisti-
cated software engineering practices and evolved with goals
of reproducibility, validation, and extensibility. These pro-
grams were written by researchers in science rather than
professional programmers. These projects are distinguished
from the various scientific programs developed in-house by
the following critical features:

4

Python/Perl/Shell(53)

FORTRAN(32)
C/C++/Java(51)

14

22

17

12

5

7
8

33

22

15

15

9

12

4

MATLAB/R/STATA (85)

Python/Perl/Shell(53) C/C++/Java (51)

Figure 2: Proportional representation of two classes of numerical languages, intersecting with general purpose and scripting
languages

• Focus on Extensibility. Most of these open source
programs had extensibility and interoperability as a first
order design concern. This often meant that the codes
were modular and portable. For instance, AFNI [21] has
a plug-in based architecture. AFNI users can write their
own plug-ins for analysis and visualization of MRI data.
GEANT4 [15] developers specifically adopted object ori-
ented paradigms to allow for customized implementation
of several generic interfaces. JAGS [50], although written
in C++, has well defined R interfaces. The developers of
LAMMPS [49] chose portability over optimality by opting
not to use vendor specific APIs for message passing.

• Long History of Software Development. The level
of sophistication achieved by these programs is the result
of years of dedicated programming effort. Often, these
programs were in development since the 1990s and un-
derwent significant changes that often made the newer
versions more general and portable than the earlier de-
signs. In many cases, the open source program was an
outgrowth of collaboration between scientists across dif-
ferent institutions. For instance, SPECFEM3d [38] was
initially prototyped for the Thinking Machine using High
Performance FORTRAN, and later redesigned using MPI
to make it portable to run on different clusters. JAGS was
written to achieve a platform independent implementa-
tion of an existing Bayesian analyzer. GEANT4, Quan-
tum Espresso [27] and SPECFEM3d were designed and
developed over many years by international teams with
common interests, and with an experience of having de-
veloped similar programs in the past.

• Performance and “Separation of Concerns.” The
current set of open source programs adopt diverse per-
formance optimization techniques. At the same time, the
sections of the program that included machine specific op-
timizations were carefully separated from the machine in-
dependent portions of code using modularized interfaces.
Many of these programs provide an interface to the user
to choose accuracy-performance tradeoffs, often as a com-
pile time or a run time option. Developers of these pro-
grams did not make any compromises on performance for
providing flexible interfaces. For instance, fftw [26] pro-
vides a module called the “planner” that is responsible

for choosing the best optimization plan for a given ar-
chitecture without requiring any additional code changes
from the user. SPECFEM3d’s flexibility has given rise
to versions that are being used across 150 different aca-
demic institutions and at the same time has also won the
Gordon Bell prize [39, 3] for scalable performance.

• Extensive testing and validation. The programs listed
in Table 2 have a large user base. These programs had ex-
tensive testing and validation methods in place. Very of-
ten, these open source projects had robust testing frame-
works and used version control systems. These programs
were accompanied by considerable documentation in the
form of tutorials and user guides that made it easier to
detect discrepancies in the program behavior. An active
user community around the software existed that regu-
larly reported bugs which were quickly fixed. Some of
the projects even had a bug tracking system.

3.3 Computational Time and Resource Use
Representative questions concerning this theme included:

How long do scientists wait for a computer to complete
project runs? What kind of computational resources do
scientists typically use to meet their computational needs?
How would their research change with faster computation?

Programs run by scientists take on the order of days to
complete.
Scientists spend a significant amount of time waiting for
programs to run to completion. The distribution of wait-
ing times is shown in Figure 1e. Nearly half of the re-
searchers who participated in the survey spend more than a
few days waiting for program completion. Of this, around
15% of researchers wait on the order of months. While the
researchers who ran programs for days and weeks were ran-
domly distributed across different scientific disciplines, the
researchers who waited for months were from three distinct
departments: Chemistry, Geosciences, and Chemical En-
gineering. The corresponding programs in Chemistry and
Chemical Engineering involved various forms of molecular
dynamics simulations, although in each case different scien-
tific theories were leveraged. The program from Geosciences
performed ocean modeling.

Around a third of the researchers wait on the order of a

5

Scientific Application Software Engineeering Programming Model/ Typical Execution Scenario
Discipline Ver Mail Doc Bug EI Language Run time Architecture(s)
Astrophysics Athena [56] X - Extensive X - MPI + FORTRAN/C 20 hours Cluster with 192

nodes, 2 cores per
node

Neuroscience /
Psychology

AFNI [21] - X Moderate X X OpenMP + C 15 hours Cluster with 52
nodes, 8 cores per
node

Chemical
Engineering

LAMMPS [49] X X Moderate X X MPI + C 3 days Cluster with 4 nodes,
4 cores each

Chemistry Quantum
Espresso [27]

X X Moderate - - MPI + FORTRAN/C 1 month Cluster with 384
nodes, 2/4 cores per
node

Civil and
Environmental
Engineering

VIC [41] - X Moderate - - Sequential + C 1.5 weeks Cluster with 384
nodes, 2.4 cores per
node

Computational
Biology

Sleipnir [31] X - Extensive - X Pthreads + C++ 1 day Cluster with 58
nodes, 8 cores per
node

Economics Dynare [35] - - Extensive X X Sequential +
MATLAB/C++

12 hours Desktop with 2 cores
2 cores

Electrical
Engineering

fftw [26] - - Moderate - X MPI/Pthreads + C 30 mins Desktop and GPU

Geosciences SPECFEM3D
[38]

X X Extensive X - MPI/Pthreads +
FORTRAN/C

30mins to
9hrs

Cluster with 384
nodes, 8 cores per
node

Molecular
Biology

HMMER [24] - - Moderate - X Pthreads + C/C++ 1 week Cluster with 58
nodes, 8 cores per
node

Physics GEANT4 [15] - - Extensive X X Sequential + C 1 week Cluster with 70
nodes, 2 cores per
node

Politics JAGS [50] X - Moderate X X Sequential + C++ 4 days Desktop with 2 cores

Table 2: Open source compute-intensive scientific applications collected during the survey, along with typical execution
scenarios for many interviewees. Software Engineering category notes the use of Version control systems, Mailing Lists,
Documentation, Bug tracking, and Extensible Interfaces.

few hours for program completion while one-fifth waited on
the order of minutes. Almost all the people who waited only
for a few minutes used numerical computing environments
like MATLAB to run their programs. A vast majority of
these researchers were primarily experimentalists/theorists
and employed computation to either validate theories or do
data analysis. In the latter case, the analysis programs dealt
with small data sets and were written by the researchers
themselves. On the other hand, researchers who waited for
days used an even mix of programs written in numerical
computing languages and programs written in general pur-
pose programming languages like C, C++ and FORTRAN
and performed analysis over larger data sets along with other
computational tasks like simulation and optimization.

Despite enormous wait times, many scientists run their
programs only on desktops.
Traditionally, large scale scientific computing problems have
been solved by relying on powerful supercomputers, mas-
sively parallel computers, and compute clusters [37]. In
practice, do scientists take advantage of these powerful com-
puting resources when they are available and easily accessi-
ble?

While researchers use a wide variety of computational re-
sources, a substantial portion (40%) of them only use desk-
tops for their computation. This is despite the fact that the
computational tasks performed take more than a few hours
for completion, for more than half of these researchers. Al-
though more than three-fourths of these desktops have mul-
tiple cores (most commonly two), almost all of them run
only single threaded code. Furthermore, surveying the al-
gorithms and computational techniques employed in these
programs reveals that several of these are amenable to par-
allelization.

Around half of the interviewees use clusters, with about
one-fifth leveraging both desktops and clusters in their re-
search. Use of multiple clusters with varying architecture
types was common in this group as well. Typically the same
code was run unaltered on multiple machines. Only a small
proportion of researchers used GPUs and shared-memory
compute servers in their research. Servers offer a unified
memory address space as opposed to a divided address space
in the case of clusters. The servers were further character-
ized by the lack of a job submission system, whereas clus-
ters usually had a job submission system for batch process-
ing. The distribution of computational resources employed
is shown in Figures 1f and 3.

A vast majority of subjects continually trade-off speed
for accuracy of computation. However, even while doing
so, scientists very rarely tune their applications to perform
optimally on each specific cluster that it is run on. Fre-
quently seen patterns include increasing the error thresholds
to allow for faster convergence of optimization solvers, per-
forming fewer simulation runs which made the results more
susceptible to outliers, coarse-grained scientific models that
are greater approximations of the physical reality, and ana-
lyzing fewer data points to do hypothesis testing. Most of
these choices were guided by the execution time witnessed
on the first machine on which these programs were run.
Some researchers while testing their initial implementations
on their desktops wanted the runs to complete overnight.
Often, these programs were run unaltered after an initial
implementation on multiple machines with widely varying
architectures.

3.4 Performance Enhancing Methods
Representative questions concerning this theme included:

Do researchers care enough about performance to optimize

6

Desktop(71)

Cluster(60)

Others(17)

46

2036

1

9

4

3

Figure 3: Proportional distribution of Computational Re-
source Usage. Others include Servers and GPUs

their code? What tools and techniques are used to opti-
mize for performance? Do researchers target the most time
consuming portions of their code? Are researchers aware of
parallelism and do they make use of different parallelization
paradigms to deliver performance in their code?

Scientists do not optimize for the common case.
Compiler writers and computer architects are well acquainted
with the adage “90% of the execution time is spent in 10%
of the code.” Therefore, the general belief is, by optimizing
hot code, greater performance gains can be expected per
unit of effort put in. The survey results indicate that sci-
entists have hypotheses on which portions of their code are
hot, but more often than not do not test these hypotheses.
Consequently, scientists may not be targeting the impor-
tant sections of their program. A little more than half of
the interviewees manually optimized code for performance.
However, only 18% of researchers who optimize code lever-
aged profiling tools to inform their optimization plans. More
than one-third of researchers were not aware of any profiling
tools and did not time different portions of their code, while
nearly one-fourth of researchers had heard about profiling
but did not take advantage of them.

The most common reasons given for not using profilers
were “not a first order concern,” “not heard of them,” “will
not help,”“I know where time is spent.” As a result, quite a
few scientists misjudged the portions of code that were the
most time consuming and ended up optimizing code that
did not contribute much to overall runtime. For example,
one researcher performing biophysics simulations mistook
MPI communication in his code for a performance bottle-
neck, even though it contributed to only 10% of the execu-
tion time. Profiling the application revealed that the real
bottleneck was in a sorting algorithm, which accounted for
more than 40% of execution time. Replacing the sorting
algorithm with a faster one gave greater improvements in
performance than optimizing for communication. Of the
people who leveraged profiling information, close to three-
fourths used a standard profiling tool like gprof and MATLAB

profiler, while the remaining wrote custom timers (for ex-
ample, function call counts rather time spent in certain func-
tions) in specific portions of code to profile for execution
time.

Researchers employed a wide variety of performance en-

hancing strategies in their code, as shown in Figure 1g.
These strategies can be grouped into two categories. High
level optimizations (done by 28% of researchers) included al-
gorithmic changes, choice of better data structures, and use
of specialized libraries. Typical examples for these include
better heuristics for optimization problems, choice of a con-
current data structure over sequential one, use of special-
ized digital signal processing engines and built-in libraries
in MATLAB. Low level optimizations (done by 26% re-
searchers) included manual loop optimizations and use of
compilation flags. The most popular of loop optimizations
was manual loop vectorization. Of the people doing high
level optimizations, only around half actually profiled their
code. Of the people doing loop optimizations, only a third
ever profiled their code. A little less than 10% of researchers
use compiler optimization flags (e.g, -O3). Many researchers
were either unaware of command line compiler optimization
flags or thought of compiler optimizations as too low-level
to actually make a significant difference in performance.

Scientists are unaware of parallelization paradigms.
Very few researchers were aware of or took complete advan-
tage of different parallelization paradigms like message pass-
ing and shared memory parallelism directly in their code.
Less than one-third of researchers had heard about different
forms of parallelism (data, task/functional, and pipeline)
that could potentially be applicable to improve the perfor-
mance of their code. About a third of researchers did not
use any form of parallelism in their research at all. Half the
researchers relied heavily on batch processing. Researchers
who leveraged parallelization paradigms in their programs
can be categorized as follows (Figure 1h):

• Message Passing based Parallelization.

Around 22% of researchers exploited message passing
based parallelism in their research. Except for one re-
searcher who used UNIX sockets directly, the rest of the
researchers used MPI [29]. The vast majority of these
people did not actually write MPI code themselves, but
rather ran open source programs based on MPI. Many of
them modified only the sequential portions of these pro-
grams, and lacked knowledge about MPI concepts. Many
researchers wanted to learn more about MPI via peer
training and academic courses. Some of them had at-
tended various two-day mini-courses offered by PicSCiE
on MPI. However, they still had many complaints like
“it is hard,” “looks complex,” “big learning curve,” and
“implementation time is too high.”

Of the few researchers who wrote MPI code, a signifi-
cant fraction faced enormous problems debugging. Their
experience using debuggers like gdb and TotalView was
not good. All of them uniformly complained about the
complexity of understanding and using such “unintuitive”
tools on clusters. Researchers had significant difficulty
exploiting parallel I/O on clusters. Quite often, they re-
sorted to using a single process to do all the prints, even
when it increased communication costs.

• Thread based CPU Parallelization. Despite the fact
that most desktops today have at least two cores and
almost all nodes in a cluster have multiple processors op-
erating on a shared memory address space, only 7% of re-
searchers leveraged any form of thread based shared mem-

7

ory CPU parallelism. A total of only eight researchers ad-
mitted any knowledge of threads or had any experience
using explicit thread based parallelism in their research.

• GPU based parallelism. Around 9% of researchers
leveraged GPUs. Of these, there was one expert per re-
search group who wrote the GPU based parallel code
and the rest of the researchers were users of this code.
For instance, research staff studying collective animal be-
havior in ecology and evolutionary biology included post-
doctoral researchers with relevant computer science back-
ground who wrote the initial version of the code. Other
researchers used GPU based open source versions of well
known programs (for example, hoomd [17]).

• Loop Based Parallelism. Only 11% of researchers uti-
lized loop based parallelism, where programmer written
annotations enable a parallelizing system to execute a
loop in parallel. The most common form of loop based
parallelism was the use of parfor construct in MATLAB,
which enables execution of multiple iterations of a loop
in parallel and requires that the iterations access/update
disjoint memory locations.

Only one researcher exploited pipeline parallelism, even
though pipeline parallelism is a natural way of extracting
performance for many “simulate, then analyze” kind of ap-
plications. In these applications, a simulation run outputs
a lot of data (typically on the order of gigabytes), which is
then analyzed by another piece of code after the simulation
ends. Instead of sequentializing the simulation and analysis
codes, by pipelining the data to the analysis code as and
when it is available, significant overlap between the simula-
tion and analysis can achieved. This in turn would reduce
the feedback cycle time drastically.

4. ANALYSIS OF RESULTS
This section presents the conclusions from analyzing the

survey results, together with suggestions for future direc-
tions for improving the state of scientific computing ecosys-
tems.

Scientists need software tools that are easy to use and
require little training.
The gap between the theory and practice of computational
science is wide, but education can bridge the gap. Offer-
ing formal training courses on software engineering basics
as part of the science curriculum at the graduate and un-
dergraduate levels might be one possible option. However,
given the current outlook of scientists on software and pro-
gramming in general (“scientists are not interested in soft-
ware as a first order concern,” as noted by one researcher),
education by itself might not be a very effective solution.

A more promising approach is to develop solutions that
are customized to the requirements of scientists. Scientists
spent considerable time in trying to reinvent existing tech-
nologies. For example, several researchers implement ma-
trix multiplication algorithms. These implementations are
cache-näıve, sequential, and are not formally tested. There
are numerous free Basic Linear Algebra Systems available
to scientific programmers [1, 4, 26, 61]. These implemen-
tations are cache-optimized, parallel, and well-tested. Since
for many researchers, it is often a case of “What is limiting

us is not processor speeds but knowledge about program-
ming the machines,” it might be well worth the trouble to
hire professional programmers to create reusable software
solutions even if it works against the economics in the short
term.

In the fields of sociology, politics, music, and astrophysics,
the use of domain specific languages (DSLs) was nearly uni-
versal. DSL programmers report higher productivity and
satisfaction compared to scientists who primarily use gen-
eral purpose, numerical, or scripting languages. They also
learned programming skills more easily. Domain specific
languages are usually simple to learn due to their goal of
targeting specific tasks within each scientific discipline. Al-
though DSLs are not as general as other programming solu-
tions, their higher level specialized programming constructs
are best suited for tasks that are repeated sufficiently often
within each scientific domain. Interactive Data Language
(IDL) [6] is an example of a DSL that is hugely popular
amongst astrophysicists. BUGS [50], a DSL for describing
graphical models, is almost the de facto standard amongst
researchers studying politics. Chuck [59] and Max/MSP [7]
are DSLs that are heavily used by researchers in Music for
audio and video processing. The true challenge for tools de-
velopers is to design and implement DSLs that are not only
user friendly and have a support system in form of testing
and validation tools, but also are able to achieve perfor-
mance parity with general purpose language implementa-
tions.

Many scientists write programs to solve infrastructure
problems unrelated to their research. Some scientists had to
write utilities to translate between file-formats expected by
different tools. For example, many geophysics applications
each use a different data format for representing the model
of the earth, making them difficult to interact with each
other. Adopting uniform standards for data formats maybe
one solution, but might impose restrictions on the flexibil-
ity of scientific software developed by scientists from wide
variety of backgrounds. Tools for automatic data conver-
sion, and automatic generation of documentation [2] based
on programmer comments can go a long way in promoting
the development of software that is easily reusable.

Most scientific programmers deal with several program-
ming languages. Unfortunately, dealing with many languages
forces programmers to tediously write and maintain wrap-
per code. In well-designed programs, interfaces are sta-
ble and change very infrequently. However, many scientific
programs are built in an ad-hoc manner with frequently
changing interfaces. Tools [19] for automatically generat-
ing wrapper code between MATLAB, FORTRAN, C, C++,
and many other languages exist, but none of the researchers
interviewed were aware of this resource. We suggest promi-
nently integrating such tools into IDEs. Ideally, such tools
should be an invisible part of the build process, hiding un-
necessary technical details from programmers and allowing
them to focus on the underlying science. Additionally, multi-
language testing and validation frameworks [36, 57] can be
employed to guarantee safety properties at external interface
sites.

Scientists should release code to their peers.
The survey reveals that very few scientists release code to
their peers. Publicly releasing source code has numerous
benefits for scientists and should be encouraged. Publish-

8

ing source code allows other scientists to reproduce prior
work and compare new contributions on an equal footing.
Released source code benefits from additional peer review.
Other scientists have the opportunity to review the code,
fix bugs, improve portability and performance, and extend
functionality. Furthermore, the scientific community bene-
fits when source code is freely available for re-use and each
scientist does not have to spend time rewriting the same
software.

Survey responses indicate that software frameworks for
scientific computation allow researchers who are just get-
ting started on research to get up to speed faster. Scientists
surveyed used frameworks such as Sleipnir [31], AFNI [21],
Quantum Espresso [27], and Dynare [35]. These domain spe-
cific scientific coding frameworks provide a variety of builtin
features that enable easier implementation and testing of
new ideas. However, care has to be taken to ensure frame-
works are as close as possible to what scientists actually do,
to prevent disuse due to “software bloat.” [42]

Releasing scientific code that performs well, is portable,
and extensible takes a lot of programming effort. It took
many years for the programs listed in Table 2 to reach the
level of portability and performance they are at today. Given
the interdisciplinary expertise needed for writing robust sci-
entific code, it is desirable to have many theses focused on
scientific tools. Unfortunately, scientists are not rewarded
for developing and releasing robust scientific software. As
noted by two prominent scientists during the survey, faculty
generally believe that development of software tools “does
not make for a scientific contribution.” Similar sentiments
echoed included “If you are not going to get tenure for writ-
ing software, why do it?” Alarmingly, even“funding agencies
think software development is free,” and regard development
of robust scientific code as “second class” compared to other
scientific achievements.

Scientists can benefit immensely from faster computa-
tion.
Currently, the research conducted by 85% of researchers
would profoundly change with faster computation. Nothing
evoked stronger reactions during the interviews than ques-
tions regarding impact of faster computation. Responses
included “more papers, more quickly,” “I’ll graduate in 3
years instead of 5,” “can get you out of school earlier,” “if
it is 2x faster, life will be five times better.” Several pat-
terns regarding the potential areas of research improvement
emerged during the survey, which can be concretely catego-
rized as follows.

• Accurate scientific modeling. Across several disci-
plines, researchers approximate scientific models to re-
duce running-times. Faster computation enables accurate
scientific modeling within time scales previously thought
unattainable. Across disciplines, an order of magnitude
performance improvement was cited as a requirement for
significant changes in research quality. For instance, re-
searchers simulating precipitation/evaporation of earth
science processes (Civil and Environmental Engineering),
can adopt the use of finer resolution models which are
currently avoided due to prohibitive communication costs
between fine-grained cells and consequent increased time
for convergence. A similar pattern holds for molecular
dynamics simulations (Chemical Engineering), where in-
creasing computation speed would not require researchers

to relax error thresholds/step sizes to allow for faster con-
vergence. The survey data reveals that 34% of the inter-
viewees would directly benefit from accurate models.

• Speeding up the scientific feedback loop. Scientific
computation is typically not performed in isolation, but
as part of a three step feedback loop: (a) Evolve scien-
tific models (b) Perform computation using models (c)
Revise models based on computational results. For 30%
of researchers, slower computation in Step (b) leads to
an overall slow feedback loop. An example instance ob-
served was in Computational Biology, where different ma-
chine learning techniques are iterated over genome/pro-
tein data to predict gene interactions/protein structure.
Faster computation shortens this feedback loop which in
turn results in faster availability of prediction data to the
larger scientific community.

• Wider exploration of parameter space. Currently,
many researchers fit their scientific models to only a sub-
set of available parameters for faster program runs. For
instance, psychologists studying human decision making
build models that fit only a sparse subset of parameters,
despite the potential of obtaining accurate information
about human subject by choosing a larger set of param-
eters. Other cases included the use of a faster but more
approximate heuristic for determining shortest path prob-
lems in a stochastic network (Operations Research and
Financial Engineering). Around 23% of researchers fall
into this category. For these researchers, faster compu-
tation translates into better heuristics and in eventual
broadening of research scope to be more general and re-
alistic.

• Others. For 12% of researchers, faster computation leads
to better sensitivity analysis to data (lower normalized er-
rors with repeated runs in parallel), faster post-processing
of huge amount of experimental data, and reduced effects
of queuing time on simulation runs.

Over the past few decades, generations of newer parallel
hardware have met the need of faster computation for sci-
entific applications [28]. The continuing doubling of tran-
sistors as per Moore’s Law [45], even in the presence of
power and thermal walls for uniprocessor design, has meant
that parallel hardware is now ubiquitous. Faster hardware
will no doubt enable accurate scientific modeling and wider
parameter space exploration for free in many applications.
However, for an increasing number of applications, it is soft-
ware and not hardware that is on the critical path of perfor-
mance [62]. Rethinking current software solutions to sustain
scalable performance over successive generations of parallel
architectures in a cost-effective way remains vital to the suc-
cess of computational science.

Scientists need tools for managing accuracy-performance
tradeoffs in order to create performance portable ap-
plications.
Nearly all scientist-programmers in the survey make accuracy-
performance tradeoffs. However, researchers often fix the
choice of flexible thresholds like error bounds, radius of in-
fluence in a simulation algorithm [49], search subspaces,
and so on, statically once in their program. Often, these
static choices lead to programs without performance porta-
bility, i.e., programs whose performance is worse when run

9

on newer parallel architectures, while retaining the same
quality of approximation.

Rewriting code manually by taking advantage of the specifics
of each parallel architecture is one way to create programs
that perform optimally on each architecture. However, the
amount of programmer effort involved for scientists in learn-
ing new parallel programming paradigms is enormous. As
was observed in the survey, very few scientists had knowl-
edge of various parallelization paradigms (Section 3.4) and
most admitted a steep learning curve for adopting parallel
programming. This situation is further compounded by the
emergence of heterogeneous parallel architectures that pre-
suppose knowledge of the underlying hardware [60] on the
programmer’s part to deliver optimal performance. Conse-
quently, computer scientists should focus on creating tools
that provide performance portability without requiring ex-
pert programmer involvement.

Recent work [18, 52] within the programming languages
and compiler community addresses the accuracy-performance
tradeoff problem by stipulating it as a first order language
concern. Within this framework, programmers declaratively
specify various parameters and customized policies involved
in the accuracy-performance tradeoff. These specifications
are provided by means of a few annotations to existing se-
quential programming languages, and do not require pro-
grammers to learn a completely new language. The declar-
ative specification gives sufficient freedom for the compiler
and runtime to synthesize a performance portable program,
with decisions regarding choice of a performance strategy
conforming to a required quality of service/approximation
delayed until late in a program’s life cycle. Typically, these
decisions are not taken until complete details of a target
parallel architecture and the environment are available.

Scientists need performance analysis and enhancement
tools that are an integral part of the software develop-
ment and build process.
Performance optimizations should focus on parts of code
that are most time consuming. Unfortunately, even very ex-
perienced programmers may not be able to identify perfor-
mance bottlenecks without profiling. In the survey, 18% of
scientists profile their code. To encourage profiling, perfor-
mance analysis tools should be interactive, integrated with
the IDE, and be made a part of the build process. For in-
stance, profiling should execute automatically after compila-
tion within an IDE and suggestions for optimization offered
to the programmer. The design of intuitive graphical user
interfaces for visualizations of these suggestions, with cross-
references to source code, could go a long way in making
programmers use tools as well.

Overall, scientists’ approaches to performance and opti-
mization is extremely puzzling. Although 85% of scientists
say increasing the performance is important, nearly half of
the scientists surveyed never attempt optimization. Only
about 10% compile with a non-default optimization level
and consequently do not benefit from high-benefit low-cost
compiler optimizations. Presently, programming tools are
designed for professional programmers, and need to be care-
fully tailored to meet the needs of scientists.

Even though researchers understand the importance of
parallelism in accelerating their research, the predominant
perception of parallel programming is that of black art (“heard
it is notoriously hard to write” on MPI, “scared of it” on

shared memory parallelism). The emerging heterogeneity
in parallel architectures and explicit programming models
is not helping either. Even though researchers seem excited
at the potential of newer parallel architectures, they seem
overwhelmed by current programming techniques for these
machines (“GPUs can give 25x instantly instead of waiting
for generations of Moore’s Law, but I don’t know how to
program them,” said a prominent scientist). The parallel
computing landscape seems too complex for any single so-
lution to be a panacea. Parallel libraries [16, 40], domain
specific languages [58], parallel computing toolboxes [46, 54],
implicit and interactive parallelization [32, 5], and automatic
parallelization [25] are some promising directions that can
might be easily adoptable by scientists due to higher level
abstractions provided.

5. RELATED WORK
Hannay et al. [30, 43] conducted an online survey of 2000

scientists with a goal of studying the software engineering as-
pects of scientific computation, from a correctness and pro-
gram development perspective. The survey was carried out
anonymously and conclusions drawn without knowledge of
the subject’s computing environment. Cook et al. [20, 48],
present a survey to exclusively understand the programming
practices and concerns of potential parallel programmers.
The subjects involved in this survey were attendees of su-
percomputing conference (SC 1994), and the majority of
subjects were computer scientists. By contrast, the survey
presented in this paper involved scientists working in diverse
fields, and was conducted within the framework of a known
(university) scientific computing ecosystem. This survey was
carried out in the form of a detailed interview between two
of the authors and the subjects. While covering the cor-
rectness and software engineering aspects of computational
science, the survey presented in this paper also addressed
the need for computational performance, and the practices
followed by researchers in enhancing performance in their
research.

6. CONCLUSION
Overall, the survey reveals that current programming sys-

tems and tools do not meet the needs of computational sci-
entists. Most tools assume the programmer will invest time
and energy to master a particular system. By contrast, sci-
entists tend to want results immediately. Nevertheless, the
survey discovered that virtually all scientists understand the
importance of scientific computing, and many spend enor-
mous time and effort programming. Despite this effort,
most scientists are unsatisfied with the speed of their pro-
grams and believe that performance improvements will sig-
nificantly improve their research. In many cases, scientists
said that increased performance would not just improve ac-
curacy and allow for larger experiments, but would enable
fundamentally new research avenues. Overall, we believe
the needs of computational scientists are underserved. New
tools and techniques are urgently needed to unlock the po-
tential of high-performance computing and accelerate the
pace of scientific advance.

10

Acknowledgements
We thank the anonymous reviewers for their insightful com-
ments. This material is based on work supported by Na-
tional Science Foundation Grants 1047879, 0964328, and
0627650, and United States Air Force Contract FA8650-09-
C-7918.

7. REFERENCES
[1] AMD Accelerated Parallel Processing Math Libraries.

http://developer.amd.com/gpu/appmathlibs/

pages/default.aspx.

[2] Doxygen. http://www.stack.nl/~dimitri/doxygen/.

[3] Gordon Bell Prize for Peak Performance 2003. http://
www.sc-conference.org/sc2003/tech_awards.html.

[4] Intel Math Kernel Library. http:
//software.intel.com/en-us/articles/intel-mkl/.

[5] Intel Parallel Advisor. http://software.intel.com/
en-us/blogs/tag/intel-parallel-advisor/.

[6] Interactive Data Language Online Help. http://
idlastro.gsfc.nasa.gov/idl_html_help/home.html.

[7] Max/MSP: An interactive graphical dataflow
programming environment for audio, video and
graphical processing. http://www.cycling74.com.

[8] Princeton Plasma Physics Laboratory.
http://www.pppl.gov/.

[9] School of Engineering and Applied Science (SEAS).
http://www.princeton.edu/engineering/.

[10] Terascale Infrastructure for Groundbreaking Research
in Engineering and Science.
http://tigress.princeton.edu/.

[11] The Carnegie Classification of Institutions of Higher
Education.
http://classifications.carnegiefoundation.org/.

[12] The Lewis-Sigler Institute for Integrative Genomics.
http://www.princeton.edu/genomics/.

[13] The Princeton Institute for Computational Science
and Engineering.
http://www.picscie.princeton.edu/.

[14] The Princeton Institute for Science and Technology of
Materials (PRISM).
http://www.princeton.edu/prism/.

[15] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis,
H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee,
G. Barrand, et al. Geant4-a simulation toolkit.
Nuclear Instruments and Methods in Physics
Research-Section A Only, 506(3):250–303, 2003.
http://www.geant4.org/.

[16] P. An, A. Jula, S. Rus, S. Saunders, T. Smith,
G. Tanase, N. Thomas, N. Amato, and
L. Rauchwerger. STAPL: A standard template
adaptive parallel C++ library. International
Workshop on Advanced Compiler Technology for High
Performance and Embedded Processors, 10, 2001.

[17] J. Anderson, A. Keys, C. Phillips, T. Dac Nguyen,
and S. Glotzer. HOOMD-blue, general-purpose
many-body dynamics on the GPU. Bulletin of the
American Physical Society, 55, 2010.

[18] W. Baek and T. M. Chilimbi. Green: A framework for
supporting energy-conscious programming using
controlled approximation. In PLDI, pages 198–209,
2010.

[19] D. Beazley and P. Lomdahl. Feeding a large-scale
physics application to Python. In Proceedings of the
6th International Python Conference, volume 6.
Citeseer, 1997.

[20] C. R. Cook, C. M. Pancake, and R. A. Walpole. Are
expectations for parallelism too high? a survey of
potential parallel users. In SC, pages 126–133, 1994.

[21] R. W. Cox. AFNI: Software for analysis and
visualization of functional MRI. Computers and
Biomedical Research, 29:162–173, 1996.
http://afni.nimh.nih.gov/afni.

[22] M. de Hoon, B. Chapman, and I. Friedberg.
Bioinformatics and computational biology with
Biopython. Genome Informatics Series, pages
298–299, 2003.

[23] P. J. Denning. Computer science. In Encyclopedia of
Computer Science, pages 405–419. John Wiley and
Sons Ltd., Chichester, UK.

[24] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison.
Biological Sequence Analysis: Probabilistic Models of
Proteins and Nucleic Acids. Cambridge University
Press, July 1999. http://hmmer.janelia.org/.

[25] R. Eigenmann, J. Hoeflinger, Z. Li, and D. Padua.
Experience in the automatic parallelization of four
Perfect-Benchmark programs. Languages and
Compilers for Parallel Computing, pages 65–83, 1992.

[26] M. Frigo and S. Johnson. The Design and
Implementation of FFTW3. Proceedings of the IEEE,
93(2):216 –231, 2005. http://www.fftw.org/.

[27] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra,
R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti,
M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli,
S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann,
C. Gougoussis, A. Kokalj, M. Lazzeri,
L. Martin-Samos, N. Marzari, F. Mauri,
R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto,
C. Sbraccia, S. Scandolo, G. Sclauzero, A. P.
Seitsonen, A. Smogunov, P. Umari, and R. M.
Wentzcovitch. QUANTUM ESPRESSO: a modular
and open-source software project for quantum
simulations of materials. Journal of Physics:
Condensed Matter, 21(39):395502 (19pp), 2009.
http://www.quantum-espresso.org.

[28] S. Graham, M. Snir, and C. Patterson. Getting up to
speed: The future of supercomputing. National
Academy Press, 2005.

[29] W. Gropp, E. Lusk, and A. Skjellum. Using
MPI-Portable Parallel Programming with the
Message-Passing Interface. Sci. Program., 5:275–276,
August 1996.

[30] J. E. Hannay, C. MacLeod, J. Singer, H. P.
Langtangen, D. Pfahl, and G. Wilson. How do
scientists develop and use scientific software? Software
Engineering for Computational Science and
Engineering, ICSE Workshop on, 0:1–8, 2009.

[31] C. Huttenhower, M. Schroeder, M. D. Chikina, and
O. G. Troyanskaya. The Sleipnir library for
computational functional genomics. Bioinformatics,
24(13):1559–1561, July 2008.
http://huttenhower.sph.harvard.edu/sleipnir/.

[32] W.-m. Hwu, S. Ryoo, S.-Z. Ueng, J. H. Kelm,
I. Gelado, S. S. Stone, R. E. Kidd, S. S. Baghsorkhi,

11

A. A. Mahesri, S. C. Tsao, N. Navarro, S. S. Lumetta,
M. I. Frank, and S. J. Patel. Implicitly parallel
programming models for thousand-core
microprocessors. In Proceedings of the 44th annual
Design Automation Conference, DAC ’07, pages
754–759, New York, NY, USA, 2007. ACM.

[33] C. Jones, P. O’Hearn, and J. Woodcock. Verified
software: A grand challenge. Computer, 39(4):93–95,
2006.

[34] E. Jones, T. Oliphant, and P. Peterson. SciPy: Open
source scientific tools for Python. 2001.
http://www.scipy.org/.

[35] M. Julliard. Dynare: A Program for the Resolution
and Simulation of Dynamic Models with Forward
Looking Variables Through The Use of Relaxation
Algorithm. CEPREMAP, 2005.
http://www.dynare.org/.

[36] V. Karakoidas and D. Spinellis. J%: Integrating
domain-specific languages with java. In Panhellenic
Conference on Informatics, pages 109–113, 2009.

[37] W. J. Kaufmann and L. L. Smarr. Supercomputing
and the Transformation of Science. W. H. Freeman &
Co., New York, NY, USA, 1992.

[38] D. Komatitsch, J. Labarta, and D. Michéa. A
simulation of seismic wave propagation at high
resolution in the inner core of the Earth on 2166
processors of MareNostrum. High Performance
Computing for Computational Science-VECPAR 2008,
pages 364–377, 2008. http:
//www.geodynamics.org/cig/software/specfem3d.

[39] D. Komatitsch, S. Tsuboi, C. Ji, and J. Tromp. A 14.6
billion degrees of freedom, 5 teraflops, 2.5 terabyte
earthquake simulation on the earth simulator. In
Proceedings of the 2003 ACM/IEEE conference on
Supercomputing, SC ’03, pages 4–, New York, NY,
USA, 2003. ACM.

[40] D. Leijen, W. Schulte, and S. Burckhardt. The design
of a task parallel library. In Proceeding of the 24th
ACM SIGPLAN conference on Object oriented
programming systems languages and applications,
OOPSLA ’09, pages 227–242, New York, NY, USA,
2009. ACM.

[41] X. Liang, D. P. Lettennmaier, E. F. Wood, and S. J.
Burges. A simple hydrologically based model of land
surface water and energy fluxes for general circulation
models. 99:14415–14428, July 1994. http://www.
hydro.washington.edu/Lettenmaier/Models/VIC/.

[42] J. McGrenere. Bloat: the objective and subject
dimensions. In CHI’00 extended abstracts on Human
factors in computing systems, pages 337–338. ACM,
2000.

[43] Z. Merali. Why scientific programming does not
compute. Nature News, 467, 2010.

[44] C. Moler. Numerical computing with MATLAB.
Society for Industrial Mathematics, 2004.

[45] G. E. Moore. Readings in computer architecture.
chapter Cramming more components onto integrated
circuits, pages 56–59. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2000.

[46] J. Mullen, N. Bliss, R. Bond, J. Kepner, H. Kim, and
A. Reuther. High-productivity software development
with pmatlab. Computing in Science Engineering,

11(1):75 –79, jan.-feb. 2009.

[47] T. Oliphant. A Guide to NumPy, volume 1. Trelgol
Publishing, 2006. http://numpy.scipy.org/.

[48] C. Pancake and C. Cook. What users need in parallel
tool support: Survey results and analysis. In Scalable
High-Performance Computing Conference, 1994.,
Proceedings of the, pages 40–47. IEEE, 2002.

[49] S. Plimpton. Fast Parallel Algorithms for Short-Range
Molecular Dynamics. Journal of Computational
Physics, (1):1–19, March.
http://lammps.sandia.gov/.

[50] M. Plummer. JAGS: Just Another Gibbs Sampler.
http://www-ice.iarc.fr/~martyn/software/jags/,
2011.

[51] W. Press, S. Teukolsky, W. Vetterling, and
B. Flannery. Numerical recipes in Fortran: the art of
scientific computing. Cambridge university press, 1993.

[52] M. Rinard. Probabilistic accuracy bounds for
perforated programs: a new foundation for program
analysis and transformation. In Proceedings of the
20th ACM SIGPLAN workshop on Partial evaluation
and program manipulation, PEPM ’11, pages 79–80,
New York, NY, USA, 2011. ACM.

[53] A. Sameh, G. Cybenko, M. Kalos, K. Neves, J. Rice,
D. Sorensen, and F. Sullivan. Computational science
and engineering. ACM Comput. Surv., 28:810–817,
December 1996.

[54] G. Sharma and J. Martin. MATLAB R©: a language
for parallel computing. International Journal of
Parallel Programming, 37(1):3–36, 2009.

[55] D. E. Stevenson. Science, computational science, and
computer science: at a crossroads. In Proceedings of
the 1993 ACM conference on Computer science, CSC
’93, pages 7–14, New York, NY, USA, 1993. ACM.

[56] J. Stone, T. Gardiner, and P. Teuben. Athena MHD
code project. http://trac.princeton.edu/Athena/.

[57] G. Tan and G. Morrisett. Ilea: inter-language analysis
across java and c. In Conference on Object-Oriented
Programming Systems, Languages, and Applications,
pages 39–56, 2007.

[58] A. van Deursen, P. Klint, and J. Visser.
Domain-specific languages: an annotated bibliography.
SIGPLAN Not., 35:26–36, June 2000.

[59] G. Wang, P. Cook, et al. ChucK: A concurrent,
on-the-fly audio programming language. In
Proceedings of International Computer Music
Conference, pages 219–226. Citeseer, 2003.

[60] P. H. Wang, J. D. Collins, G. N. Chinya, H. Jiang,
X. Tian, M. Girkar, N. Y. Yang, G.-Y. Lueh, and
H. Wang. Exochi: architecture and programming
environment for a heterogeneous multi-core
multithreaded system. In Proceedings of the 2007
ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’07, pages 156–166,
New York, NY, USA, 2007. ACM.

[61] R. C. Whaley and J. J. Dongarra. Automatically
tuned linear algebra software. SC Conference, 0:38,
1998.

[62] N. Wirth. A plea for lean software. Computer,
28(2):64–68, 1995.

12

