
Enforcing Resource Usage Protocols via Scoped Methods∗

Gang Tan Xinming Ou David Walker
Princeton University

{gtan, xou, dpw}@cs.princeton.edu

Abstract

Traditional modularity mechanisms such as Java’s
classes and packages or ML’s structures and func-
tors restrict the set of functions that may be applied
to an object, but are unable to restrict the timing of
these function applications effectively. We propose
a new language construct, the scoped method, which
allows the implementer of a class to specify a tem-
poral resource usage protocol. This protocol limits
the sequence of methods that may be applied to an
object. For example, a protocol for file access might
specify that the file must be opened, read or written
some number of times, and then closed. We present a
type-based analysis to enforce the protocol and prove
its correctness.

1 Introduction

One of the fundamental ideas of modern program-
ming languages is to provide support for data ab-
straction. In object-oriented programming languages
such as Java and C++, classes and packages pro-
vide protection mechanisms that allow programmers
to hide data representations, and in functional lan-
guages like ML, opaque signatures serve a similar pur-

∗This paper is a revised version of Gang Tan and Xinming
Ou’s final project in David Walker’s course on Foundations
of Language-based Security at Princeton University, Spring
2002. The opinions and conclusions contained in this paper
are the authors’ alone. We would like to thank Princeton
University for helping support Gang and Xinming’s travel to
FOOL 10. We would also like to thank Microsoft research for
a generous gift, DARPA for award F30602-99-1-0519 and NSF
Trusted Computing Program for grant CCR-0208601, all of
which helped support this research.

pose. By hiding data representations, implementers
can establish and maintain many of the invariants
necessary for a correct implementation of the module.
In particular, it is possible to provide guarantees that
data with an abstract type has just the right struc-
ture to satisfy the requirements of a given function
or method declared in the same interface. However,
while conventional abstraction mechanisms provide
excellent support for controlling data structure, they
offer little to help implementors control the order or
timing of methods or function calls.

A computational resource is an object that must be
used according to some well-defined protocol. In other
words, correct usage of the object demands a certain
pattern of method calls be applied to the object. For
example, a file needs to be opened before being read.
A memory cell cannot be accessed after deallocation.
A socket needs to be bound to a local port before it
can receive data and should be closed when it is no
longer needed. The correctness of software depends
on faithfully following these protocols, but traditional
modularity mechanisms are unable to enforce them.

The main contribution of this paper is to propose a
new abstraction mechanism, called a scoped method,
for encapsulating resource usage protocols. We also
design a type system to check whether a program
obeys such protocols and we prove that any well-
typed program will not violate the protocol.

1.1 Scoped Methods

The role of a scoped method is to encapsulate a re-
source usage protocol. Definition and invocation of
scoped methods is best explained by an example. Fig-
ure 1 defines a class for manipulating files in a Java-

1

class ROFile {
private void open(String path);
private void close();
Byte read();
void readOnly(String path){

enter {this.open(path);}
finally {this.close();}

}
}

Figure 1: Read Only Files

void readTenBytes(fn) {
File f = new File ();
scope f.readOnly(fn) {

Byte b;
int i = 0;
while (i<10) {
i++;
b = f.read();
...
// do something with the input

}
}

}

Figure 2: A client of ROFile

like syntax. It includes methods for opening, closing
and reading files. We omit the implementation de-
tails.

The readOnly method is one of our special scoped
methods. When f is a file object, the readOnly
method may be invoked as follows.

scope f.readOnly (path) {
...

}

Operationally, the code in the enter clause of the
scoped method is executed as the new scope is en-
tered (before the ellipsis in the example above) and
the code in the finally clause of scoped method is ex-
ecuted as the new scope is exited. Figure 2 presents
a more elaborate use of a scoped method.

The readOnly method in Figure 1 encapsulates a
portion of the protocol that a client must follow in

order to use read-only files correctly: every time a
read-only file is opened, it must be paired with a cor-
responding close. The client need not remember to
match up open and close method calls when using
the readOnly method, the implementer has done it
for them. Moreover, the client is unable to call open
and close methods at inappropriate points since they
are declared private. Still, there is another element
to correct usage of read-only files. The read method
should only be called within the scope of the corre-
sponding readOnly method.

1.2 Effects

Figure 3 presents a revised version of the read-only
file class that enforces the constraint that the read
method is only called within the scope of the corre-
sponding readOnly method. The main additions are
the effect declaration and the annotations on both
the read method and the scoped readOnly method.

First, the declaration effect r; declares a new
sort of effect under the control of the implementer of
the current class. Next, the implementer may assert
that this effect occurs when methods in the current
class are invoked. For example, in this case, we decide
that the read method incurs the effect r. Finally,
the class implementer may decide to permit certain
effects within the scope of a scoped method. Here, we
decide that within the scope of the readOnlymethod,
we will allow the r effect.

The annotation on the readOnly method is actu-
ally a regular expression that can describe a sequence
of effects that are allowed to occur. Here, we use
the annotation permit r∗ to indicate that any se-
quence of zero or more read effects are allowed. If we
wanted to ensure that exactly one read effect occurs
within the scope of a readOnly method, we would
have rewritten this declaration as permit r. Given
the annotations in Figure 3, our type checker prevents
reads from occurring outside the scope of a readOnly
method.

The standard protocol for using sockets is a little
more involved than our file reader. The code appears
in figure 4. This example uses two effects, ac to mark
the occurrence of an accept action and rv to mark
the occurrence of a receive. There are two scoped

2

class ROFile {
effect r;
private void open(String path);
private void close();
Byte read() assert r;
void readOnly(String path) permit r∗ {

enter {this.open(path);}
finally {this.close();}

}
}

Figure 3: Read Only Files, Version 2

methods, one for the server and one for the receiver.

1.3 Singleton Types

Resource usage protocols often need to be enforced
on every instantiation of the resource. For example,
the type system should not allow clients to open a
readOnly scope on f1 but call the read method of
f2 instead, as the following code shows.

scope f1.readOnly(fn) {
f2.read();

}

In order to prevent these sorts of errors, the type
system must be able to tell different objects apart and
trace them individually. Following the approach used
by other groups [22, 5, 4], we use singleton types to
differentiate between different objects with the same
static class. A singleton type has the form C l, where
C is the class name of the object and l is the static
key that is used to track object identity.

1.4 Synthesized Effects

In our file reader example, the implementer of the
ROFile class annotated the read method with the
effect r. We call such an annotation an asserted ef-
fect. Asserted effects may only appear on methods
in the class where such effects are declared. Meth-
ods can also be annotated with synthesized effects,
reflecting the fact that such methods emit effects by
calling other effect-producing methods. For example,
consider the readLine method defined below.

Socket implementation:

class Socket {
effects ac, rv;
Socket ();
private void bind (int localport);
private void listen (int backlog);
private void close();
private void
connect (InetAddress address, int port);

void accept assert ac ();
Bool receive assert rv (Buffer bf);
void server (int localport, int backlog)
permit ac · (rv)∗ {

enter {bind(localport); listen(backlog);}
finally {close();}

}
void client (InetAddress address, int port)
permit (rv)∗ {

enter {connect(address, port);}
finally {close();}

}
}

Client code:

let s=new Socket() in
scope s.server(0xCAFE, 5) {
s.accept();
Bool flag = True;
while (flag) {

Buffer bf(1024);
flag = s.receive(bf);
...

}
}

Figure 4: UNIX Sockets

3

〈l〉 String readLine(ROFilel f) ⇒{l : r·r∗} {
String result = "";
Byte b = f.read();
while (b != ’\n’){

result += b;
b = f.read();

}
return result;

}

This method must be annotated with the effect
{l : r·r∗}, because it calls the read method of object
l several times: once at the beginning of the method
and zero or more times in the while loop.

The class implementer must annotate all methods
with their proper synthesized effects. These annota-
tions are checked for correctness by the type checker.
A mechanism for type inference might relieve much
of the annotation burden from programmers, but we
leave an investigation of more sophisticated type in-
ference techniques to future work.

The readLine example also demonstrates the use
of key polymorphism. The notation 〈l〉 prior to
method declaration introduces a polymorphic param-
eter that may appear in argument or result types.
This key polymorphism enables the method to accept
argument that corresponds to the ROFile class.

In the rest of the paper, we provide a more for-
mal explanation of the concepts we have introduced
above. Keep in mind that it is not our goal to produce
the most expressive possible resource usage analy-
sis. Rather, we seek to explain our key new ideas
in a simple context and focus on the interaction be-
tween scoped methods and regular expression effects.
Hence, when given a choice between an extra ounce
of expressiveness and a spoonful of simplicity, we will
normally choose simplicity.

Section 2 introduces the syntax of our language,
which is a variant of Classic Java [6]. Section 3 gives
a type system for statically checking correct usage of
resources. Section 4 gives the operational semantics
of the language by describing a virtual machine that
monitors resource usage. Section 5 formulates type
soundness theorems, which mean any well-typed pro-
gram will not violate resource usage protocol. In sec-
tion 6, we suggest a number of possible extensions to
our work that will make it more practical. Finally,

τ ::= bool | C | C l
P ::= defn e

defn ::= class C extends C
{τ f ; effs; cons; meth; smeth}

effs ::= effects p
cons ::= C (τ x) {e}
meth ::= τ m (τ x) assert p {e}

| 〈l〉 τ m (τthis this, τ x) ⇒ Π {e}
smeth ::= τ m (τ x) permit r

{enter {e} finally {e}}
e ::= x | true | false| null | e.f | e.f = e
| let x = e in e
| let x = new C(e) in e
| if e then e else e | while (e) {e}
| e.m(e) | scope e.m(e) {e}

r ::= ε | p | r · r | r ∪ r | r∗

Figure 5: Syntax

we discuss related work in section 7 and conclude in
section 8.

2 Syntax

The syntax of our language is presented in Fig-
ure 5. We use C,D, . . . as class names. We use
x as a shorthand for x1, x2, · · · , xn and x y for
x1 y1, x2 y2, · · · , xn yn.

A type τ is either bool, a class name C, or a sin-
gleton type C l. A program P is a sequence of class
definitions followed by an expression. A class defini-
tion defn consists of five parts: a series of field defini-
tions, a set of asserted effects managed by the class,
a constructor definition, and finally a set of ordinary
method and scoped method definitions.

A method m with asserted effect p has the form

τ m (τ x) assert p {e}

and its type is written as τ p→ τ .
A method m with synthesized effect is of the form

〈l〉 τ m (τthis this, τ x) ⇒ Π {e}

The type of the method is written as ∀l.τthis, τ Π→ τ .
The universally quantified l is a set of keys that can

4

be used in the argument and return types, which are
of the form C or C l, where l is one of the l. Since
this is an implicit argument in Java, it may also be
associated with a key. The syntax shows its type
explicitly as τthis. The latent effect of the method is
given by Π, which is a mapping from keys to a regular
expressions.

A scoped method m is defined as

τ m (τ x) permit r {enter {e1} finally {e2}}
where r is a regular expression describing the allowed
resource usage protocol. The type of the scoped
method is τ → τ .

Most aspects of the expression syntax are standard.
We have let expression for introducing a local vari-
able. A newly created object must be bound to a
local variable to be used. We use e1; e2 as an abbre-
viation for let x = e1 in e2 if x is not free in e2. We
also have if and while expressions.

A scope expression is used to call a scoped
method. It has the form scope e0.m(e) {e1}, where
e1 is the scope body.

3 Type System

3.1 Notation

Before continuing with a description of our type sys-
tem, we must introduce a number of notational con-
ventions. If X is a finite partial map, we write
dom(X) for the domain of X . We write X, l : v for
the extension of X that maps l to v. If l already
appears in X then X, l : v is undefined. We use the
notation X [l 7→ v] to update the map X (and allow
X to be defined on l).

We use the metavariable Π to range over total map-
pings from keys to regular expressions. We lift opera-
tions on regular expressions (including concatenation,
union and Kleene closure) to mappings as defined in
Figure 6. We write {l 7→ r} as the map that asso-
ciates l with r and associates all other keys with ε.

3.2 Subtype Relation

Our type system makes use of the subtyping relation
defined in Figure 7. The only interesting point differ-

Π1 · Π2 = λl. (Π1(l) · Π2(l))
Π1 ∪ Π2 = λl. (Π1(l) ∪ Π2(l))
Π∗ = λl. (Π(l)∗)
·Π = Π1 · Π2 · . . . ·Πn

∀l. Π1(l) ⊆ Π2(l)
Π1 ⊆ Π2

Figure 6: Operations on Π

class D extends C
D ≤ C Cl ≤ C

D ≤ C
Dl ≤ Cl

τ ≤ τ
τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

Figure 7: subtype relation

ent from the ordinary Java subtyping relation is that
the singleton type C l is a subtype of C.

3.3 Expression Typing

The typing judgment for expressions has the form

Λ; Γ `e e : τ ⇒ Π

Λ is an environment that maps a key l to a pair
(C, o), where C is the class of the object and o is
the in-scope bit. When o is >, the expression being
checked is inside a scoped method for object l, other-
wise o is ⊥. Γ is an environment that maps a variable
to its type. The mapping Π is the synthesized effect
of the expression e.

To enforce correct resource usage, the typing rules
ensure two invariants:

1. An effectful method can only be called inside the
appropriate scope;

2. The effect a scope body emits is consistent with
the effect permitted by the scoped method body.

Some auxiliary definitions are shown in Table 1.
The complete typing rules for expressions are in Fig-
ure 8. We highlight some important ones below.

5

Key Creation In the new rule, an object of class
C is created with a fresh key. The initial in-scope bit
is set to ⊥. The rule requires Λ `t τ , which specifies
that τ is well-formed in the environment Λ:

∀C, l. τ = C l implies l ∈ dom(Λ)
Λ `t τ

This condition ensures that the key of the newly
created object does not escape the let expression.

If Expression The if rule shows how the effect of
an expression is synthesized. Since expressions e0, e1
and e2 produce effects Π0,Π1 and Π2 respectively, the
synthesized effect of expression if e0 then e1 else e2
is Π0 · (Π1 ∪ Π2).

Scoped Method Call In the scope rule, a scoped
method is called on object l0. The synthesized effect
of the scope body is checked against the specifica-
tion (Π1(l0) ⊆ r), making sure the resource repre-
sented by l0 is used correctly. The effect on l0 that
the scope expression exhibits to the outside world
is empty because all the effects inside the scope are
already checked and shouldn’t be exposed.

The scope rule also checks that the original in-scope
bit of l0 is ⊥. This is to rule out nested scopes on
the same object, which will cause problems. Since
the inner scope exhibits zero effect on the object, the
outer-scope cannot capture the effect behaviour of
the inner scope, violating the principle that all the
effects in a scope body should be checked against the
specification. On the other hand, nested scopes on
different objects are OK. For example we can have a
write-only scope for File 2 nested in a read-only scope
for File 1 and copy File 1 to File 2.

The grant rule type checks the grant expression,
which is not part of the static programming language,
but instead is generated during evaluation of a scope
expression.

Asserted-effect Method Call In this rule, the
asserted effect {l 7→ p} is recorded in the synthesized
effect. The rule requires that l’s in-scope bit is >,
which means the method call must happen inside a
scope body.

Synthesized-effect Method Call This rule
makes use of the compatibility relation between Λ and
Π. It is defined with respect to a set of keys l:

∀l ∈ l. Λ(l) = (,⊥) iff Π(l) = ε.
∀l 6∈ l. Π(l) = ε.

Λ l∼ Π

In the synthesized-effect method call rule, we first
find a set of distinct keys l

′
to instantiate the uni-

versally bound keys l in the method definition. l
′

is substituted into the types and effects(Π) of the
method.

The requirement Λ l
′

∼ Π[l
′
/l] makes sure that

whenever a key’s synthesized effect is non-empty, the
in-scope bit of the key is >, and whenever a key’s
synthesized effect is empty, the in-scope bit of the
key is ⊥. The rationale for this is:

1. if the object produces nonzero effect in the
method, it must be called inside a scope.

2. if it produces zero effect, the only reason the
method needs the key is to call a scoped method.
Since nested scope is not allowed, the in-scope
bit before entering the method must be ⊥.

Location Typing The loc rule is to type check a
memory location l, which is generated during evalua-
tion when a new object is allocated and constructed.
This location serves as the key for the object.

Polymorphic Method Typing The typing rules
for synthesized-effect method definition is shown in
Figure 9. The method body e is checked under Λ,
which ranges over the universally quantified keys l.
Λ is compatible with Π and all the types should be
well-formed under Λ. Since τthis is the implicit this
argument, the rule also requires that it is either C or
Cl. The synthesized effect Π′ of e is checked against
the annotation Π.

Regular Expression Matching Our typing rules
need an algorithm to decide whether a synthesized
effect matches a specification. Since effects are made

6

Λ; Γ `e x : Γ(x)⇒ {} var
Λ(l) = (C,)

Λ; Γ `e l : Cl ⇒ {} loc
Λ; Γ `e null : C ⇒ {} null

Λ; Γ `e true : bool⇒ {} true
Λ; Γ `e false : bool⇒ {} false

Λ; Γ `e e : τ ⇒ Π fieldty(τ, f) = τf

Λ; Γ `e e.f : τf ⇒ Π
get

Λ; Γ `e e0 : τ0 ⇒ Π0 fieldty(τ0, f) = τf
Λ; Γ `e e1 : τ1 ⇒ Π1 τ1 ≤ τf
Λ; Γ `e e0.f = e1 : τ1 ⇒ Π0 · Π1

set

Λ; Γ `e e0 : τ0 ⇒ Π0 Λ; Γ, x : τ0 `e e1 : τ1 ⇒ Π1

Λ; Γ `e let x = e0 in e1 : τ1 ⇒ Π0 ·Π1
let

ctype(C) = τ Λ; Γ `e e : τ ′ ⇒ Π τ ′ ≤ τ
Λ, l : (C,⊥); Γ, x : C l `e e : τ ′ ⇒ Π τ ′ ≤ τ Λ `t τ

Λ; Γ `e let x = new C(e) in e : τ ⇒ (·Π) · Π
new

Λ; Γ `e e0 : bool⇒ Π0 Λ; Γ `e e1 : τ1 ⇒ Π1 Λ; Γ `e e2 : τ2 ⇒ Π2 τ1 ≤ τ τ2 ≤ τ
Λ; Γ `e if e0 then e1 else e2 : τ ⇒ Π0 · (Π1 ∪ Π2)

if

Λ; Γ `e e0 : bool⇒ Π0 Λ; Γ `e e1 : τ ⇒ Π1

Λ; Γ `e while (e0) {e1} : void⇒ Π0 · (Π1 · Π0)∗ while

Λ; Γ `e e : Cl ⇒ Π Λ(l) = (C,>)
mtype(C,m) = τ

p→ τ Λ; Γ `e e : τ ′ ⇒ Π τ ′ ≤ τ
Λ; Γ `e e.m(e) : τ ⇒ Π · (·Π) · {l 7→ p}

asserted-effect method call

Λ; Γ `e e0 : τ0 ⇒ Π0 Λ; Γ `e e : τ ′ ⇒ Π mtype(τ0,m) = ∀l.τthis, τ Π→ τ

∃distinct l
′ ∈ dom(Λ). τ0, τ ′ ≤ (τthis, τ)[l

′
/l] and Λ l

′

∼ Π[l
′
/l]

Λ; Γ `e e0.m(e) : τ [l
′
/l]⇒ Π0 · (·Π) · (Π[l

′
/l])

synthesized-effect
method call

Λ; Γ `e e0 : C0
l0 ⇒ Π0 Λ(l0) = (C0,⊥)

stype(C0,m) = τ → τ Λ; Γ `e e : τ ′ ⇒ Π τ ′ ≤ τ
Λ[l0 7→ (C0,>)]; Γ `e e1 : τ1 ⇒ Π1 permit(C0,m) = r Π1(l0) ⊆ r Π2 = Π1[l0 7→ ε]

Λ; Γ `e scope e0.m(e) {e1} : τ ⇒ Π0 · (·Π) · Π2

scope

Λ(l) = (C,⊥) Λ[l 7→ (C,>)]; Γ `e e : τ ⇒ Π Π(l) ⊆ r
Λ; Γ `e grant l.r in e : τ ⇒ Π[l 7→ ε]

grant

Figure 8: Expression Typing

7

fieldty(τ , f), τ = C l or C The type of field f of class C
effects (τ) All the effects of class C as defined in the

effects declaration
ctype(τ) Type of constructor of class C
cbody(τ) Body of constructor of class C
mtype(τ ,m) Type of normal method m in class C
mbody(τ ,m) Body of normal method m in class C
emit(τ ,m) Effect that method m of class C emits as defined

in the emit annotation (“none” if no annotation).
stype(τ ,m) Type of scope method m in class C
sbody(τ ,m) Body of scope method m in class C
permit(τ ,m) Allowable effect in the body of scope method m

of class C as defined in the permit annotation.

Table 1: Auxiliary Definitions

`c defn {}; {} `e e : τ ⇒ {}
`p defn e : τ

Program typing

{} `t τ `ct cons `Cm meth `Cs smeth

`c class C extends D {τ f ; effs; cons meth smeth}
Class typing

{}; x : τ , this : C `e e : τ ⇒ {}
`ct C (τ x) {e} Constructor typing

{}; x : τ , this : C `e e : τ ′ ⇒ {} τ ′ ≤ τ
{} `t τ, τ p ∈ effects(C)

`Cm τ m (τ x) assert p {e}
Asserted-effect method typing

dom(Λ) = l Λ l∼ Π Λ `t τ, τthis, τ τthis = C or C l

Λ; this : τthis, x : τ `e e : τ ′ ⇒ Π′ τ ′ ≤ τ Π′ ⊆ Π

`Cm 〈l〉 τ m (τthis this, τ x) ⇒ Π {e}
Synthesized-effect method typing

{}; x : τ , this : C `e e1 : τ1 ⇒ {}
{}; x : τ , this : C `e e2 : τ ′ ⇒ {} τ ′ ≤ τ

`Cs τ m (τ x) permit r {enter {e1} finally {e2}}
Scoped-method typing

Figure 9: Typing Rules (except for expressions).

8

state = (X,M,S, e)
X = {l 7→ r}
M = {l 7→ (C,F, o)} o = ⊥ or >
S = • | E . S | check l.r at S
e = . . . | l | grant l.r in e
E =

�
.f | �

.f = e | v.f =
�

| let x = new C (v
�
e) in e

| let x =
�

in e
| if

�
then e1 else e2

| �
.m(e) | v.m(v

�
e)

| scope
�
.m(e) {e}

| scope v.m(v
�
e) {e}

v = l | true | false | null

Figure 10: Machine state

up of regular expressions the problem reduces to de-
ciding whether one regular expression is a subset of
another, which is P-SPACE complete in the worst
case [9]. There exist many implementations of regu-
lar expression operations 1.

Our type system is capable of checking that, for
each object in the program, any effect that a scope
body emits on the object satisfies the annotation of
the scoped method, and all effectful methods are
called within a scope body. So if a program type
checks, it must use the resource according to the pre-
scribed protocols. This is formalized as type safety
theorems in section 5. Before discussing type safety,
we first describe the virtual machine that serves as
our evaluation model for the language.

4 Virtual Machine

Machine State A machine state is a quadruple
(X,M,S, e), as shown in Figure 10. e is the cur-
rent expression to be evaluated; S is the continuation
stack; M is the memory containing all the created ob-
jects and X is the effect tracer.

The expression syntax is extended with a memory
location l and a grant expression. We use memory
locations as keys of objects. The expression grant l.r
in e means “allow effect r on object l in evaluating

1One can be found at http://www.brics.dk/automaton/

expression e”. This expression does not appear in the
surface syntax and is only generated when evaluating
a scope expression.

The continuation stack is either an empty stack, a
stack with E as the top frame, or a check stack in the
form of check l.r at S. The check stack serves as a
mark where the effect on object l should be checked
against specification r.

The memory maps a location l to a triple (C,F, o).
C is the class of the object stored at this location;
F contains all the fields of the object and o is the
in-scope bit.

The effect tracer X is a mapping from an object
l to a string r, which records the effects that have
already happened on object l.

Dynamic Semantics We write e[v/x] as the sub-
stitution of v for x in e. The complete evaluation
rules are listed in Figure 11.

In the new rule, an object is created, a new mem-
ory location is allocated and all its fields are initial-
ized to null. The initial in-scope bit is ⊥.

A method call with asserted effect can only proceed
if the current evaluation is in a scope. This is why the
in-scope bit is checked in the Asserted-effect method
call rule. The effect p is appended to the effect tracer
X .

The evaluation rule for the synthesized-effect
method call is a simple substitution. If the method
has nonzero effect, its body will eventually evaluate
to a point where some asserted-effect method is called
and then the necessary check can be performed. Also
note that the polymorphism of a method does not
introduce any run-time behaviour. It is only used in
type checking the program.

The evaluation of a scope expression yields a se-
quence of three expressions: an enter expression, a
grant expression wrapping the scope body, and a fi-
nally expression.

The grant rule requires that the in-scope bit is ⊥.
This condition detects and rejects nested scopes on
the same object. Then the object’s in-scope bit is
changed to > and a “check” mark is made on the
continuation stack. The purpose of this mark is that
when the scope body finishes its evaluation and the

9

(X,M,S,E[e]) ↪→ (X,M,E . S, e) [push]

(X,M,E . S, v) ↪→ (X,M,S,E[v]) [pop]

(X,M,S, l.f) ↪→ (X,M,S, v) [get]
where M(l) = (, F,), F (f) = v,

(X,M,S, l.f = v) ↪→ (X,M [l 7→ (C,F [f 7→ v], o)], S, v) [set]
where M(l) = (C,F, o)

(X,M,S, let x = new C(v) in e) ↪→ (X,M ′, S, e0[l/this, v/x]; e[l/x]) [new]
where cbody(C) = C (τ x) {e0},

M ′ = M, l : (C, {f 7→ null},⊥)

(X,M,S, if true then e1 else e2) ↪→ (X,M,S, e1) [if true]

(X,M,S, if false then e1 else e2) ↪→ (X,M,S, e2) [if false]

(X,M,S, while e {e1}) ↪→ (X,M,S, e′) [while]
where e′ = if e then {e1; while e {e1}} else null

(X,M,S, let x = v in e) ↪→ (X,M,S, e[v/x]) [let]

(X,M,S, l.m(v)) ↪→ (X ′,M, S, e[l/this, v/x]) [asserted-effect
where M(l) = (C, ,>), mbody(C,m) = τ m (τ x) assert p {e}, method call]

X(l) = r, X ′(l) = X [l 7→ r · p]

(X,M,S, l.m(v)) ↪→ (X,M,S, e[l/this, v/x]) [synthesized-effect
where M(l) = (C, ,), method call]

mbody(C,m) = 〈l〉 τ m (τthis this, τ x)⇒ Π {e}

(X,M,S, scope l.m(v) {e}) ↪→ (X,M,S, e′) [scope]
where M(l) = (C, ,),

sbody(C,m) = τ m (τ x) permit r {enter {e0} finally {e1}},
e′ = e0[l/this, v/x]; grant l.r in e; e1[l/this, v/x]

(X,M,S, grant l.r in e) ↪→ (X,M ′, check l.r at S, e) [grant]
where M(l) = (C,F,⊥), M ′ = M [l 7→ (C,F,>)]

(X,M, check l.r at S, v) ↪→ (X ′,M ′, S, v) [check]
where X(l) = r′, r′ ⊆ r, X ′ = X [l 7→ ε],

M(l) = (C,F,>), M ′ = M [l 7→ (C,F,⊥)]

Figure 11: Dynamic Semantics

10

stack returns to the mark, the effect that has hap-
pened on object l as recorded in X can be checked
against specification r, which is shown in the check
rule. The check rule also changes the object’s in-
scope bit back to ⊥ because the control is about to
leave the scope. The X(l) is reset to empty, reflecting
the fact that a scope expression shows zero effect to
the outside world.

So far we have described a simple virtual machine
that monitors effects and enforces that resources are
used according to predefined protocols. The purpose
of our type system is to statically enforce these pro-
tocols. In other words, a well-typed program should
never get stuck dynamically when it runs on the vir-
tual machine. In the following section we formalize
this as type safety theorems.

5 Type Safety

Well-formed Machine States To formalize the
well-formedness of a machine state we first define the
well-formedness of memory, effect-tracer and contin-
uation stack, as shown in Figure 12.

A memory M is well-formed with respect to a key
environment Λ if each object’s class and in-scope bit
stored in M matches those in Λ, and all the fields are
of appropriate types.

An effect-tracer X is well-formed with respect to
Λ if whenever an object’s in-scope bit is ⊥, the out-
standing effect of the object recorded in X should be
empty.

The well-formedness judgment for continuation
stacks has the following form.

Λ; Π ` S : τ1 → τ2

Π is a mapping from keys l to regular expressions
r, which describe the effect that has accumulated on
object l before control jumps to S. For the stack
(check l.r at S) to be well-formed, the effect that
has accumulated on l must satisfy the specification r.

A machine state (X,M,S, e) is well-formed if there
exists Λ such that both X and M are well-formed
under Λ, the expression e type checks and produces

effect Π, and the stack S is well-formed with respect
to effect X ·Π: when control jumps to S, e will have
already been fully evaluated, so its effect should be
appended to X to check stack S.

Final States In order to express our type safety
result, we need to define the sensible final states of
our virtual machine. For any X , M , S, v, m, or f ,
the following states are final.

1. (X,M, •, v)

2. (X,M,S, null.f), (X,M,S, null.f = v)

3. (X,M,S, null.m(v))

Preservation and Progress The safety of our vir-
tual machine is expressed through the following stan-
dard Preservation and Progress theorems. The proofs
are straightforward due to careful organization of the
operational semantics of our virtual machine.

Theorem 1 (Preservation) If ` (X,M,S, e) wf
and (X,M,S, e) ↪→ (X ′,M ′, S′, e′), then
` (X ′,M ′, S′, e′) wf

Theorem 2 (Progress) If ` (X,M,S, e) wf
then either (X,M,S, e) is a final state
or there exists (X ′,M ′, S′, e′) such that
(X,M,S, e) ↪→ (X ′,M ′, S′, e′).

6 Extensions

In this report, we have laid out the basic structure
and soundness of scoped methods. However, integra-
tion of this programming construct into a realistic
language will require a number of extensions to the
basic theory. We discuss a few of them below.

Exceptions Exceptions are a heavily-used fea-
ture of object-oriented languages such as Java, and
they cause problems for almost any static analysis.
When an exception is raised in the middle of a scoped
method, we would like to ensure that the appropriate
protocol is completed. We plan to explore extensions
to the finally clause in our scope methods, and more
generally, the catch and finally clauses of Java, that

11

dom(Λ) = dom(M) ∀l.M(l) = (C,F, o) implies Λ(l) = (C, o) and
∀f ∈ dom(F). (Λ; {} `e F (f) : τ ′ ⇒ {} and fieldty(C, f) = τ) implies τ ′ ≤ τ

` M : Λ

∀l.Λ(l) = (,⊥) implies X(l) = ε

` X : Λ

Λ; {} ` • : τ → τ

Λ; x : τ1 `e E[x] : τ2 ⇒ Π2 Λ; Π · Π2 ` S : τ2 → τ3
Λ; Π ` E . S : τ1 → τ3

Π(l) ⊆ r Λ(l) = (C,>) Λ[l 7→ (C,⊥)]; Π[l 7→ ε] ` S : τ1 → τ2
Λ; Π ` check l.r at S : τ1 → τ2

` X : Λ ` M : Λ Λ; {} `e e : τ1 ⇒ Π Λ; X ·Π ` S : τ1 → τ2

` (X,M,S, e) wf

Figure 12: Well-formed machine states

allow us to specify program behavior in the case that
exceptions cause protocols to be aborted early.

Concurrency Concurrency primitives are an-
other common object-oriented programming feature
that cause difficulties for static analysis. We must
prevent concurrent threads from interfering with each
other’s protocols. It seems likely that we will need
to use dynamic mechanisms to prevent such interfer-
ence.

Extended anti-aliasing constraints We use a
simple form of syntactic control of interference [15,
16] to rule out aliasing of keys. Such a simplistic
scheme is unlikely to work effectively in practice, but
we believe we will be able to use previous research to
lift these restrictions.

For example, we could easily extend our anti-
aliasing constraints by moving to a more flexible lin-
ear or quasi-linear type system [20, 13, 17, 23, 4]. We
chose to use the simplest anti-aliasing scheme possible
since the aliasing problem is essentially orthogonal to
the main concerns of the paper.

Existential types over keys There are two
limitations of our system that can be solved if we

had existential types over keys: keys cannot escape
the let expression, which further prohibits its escape
over function boundaries; a class field cannot track
the identity, key, of its value. However, in order to
add a general form of existential types, we would also
need to add linear types to control the copying of ex-
istentials. See Walker and Morrisett [23] and Deline
and Fahndrich [4] for examples of how these two fea-
tures interact.

Extended specification languages There are
plenty of protocols that cannot be expressed accu-
rately using our regular expression effects. For exam-
ple, regular expressions cannot specify that resources
be used in a stack-like fashion. Our effects are also
not powerful enough to express binary, or more gen-
erally, n-ary relations between resources. However,
more expressive grammars also make it more difficult
to test inclusion of the languages that they generate.

7 Related work

This research continues the study of type and ef-
fect systems which started in the mid-’80s and early

12

’90s with the foundational work of Gifford and Lu-
cassen [7] and later Jouvelot, Talpin, Tofte and oth-
ers [12, 19]. More recently, we have seen simple sets
of effects evolve into more sophisticated effect speci-
fications. For example, Igarashi and Kobayashi [11]
use complex effects to specify the protocol for using
a resource.

There are several differences between Igarashi and
Kobayashi’s resource usage analysis and our own.
First, in their system, values have types that contain
resource usage specifications directly whereas we as-
sociate resource usage specifications indirectly with
values using the combination of singleton types and
regular expression effects. This level of indirection
provides a convenient, precise, and relatively simple
way to track identity and local aliasing of values. Sec-
ond, since usages are associated directly with types
and type declarations, their analysis propagates in-
formation top-down rather than synthesizing it bot-
tom up via effects. Third, they give a very abstract
characterization of the actual language for specify-
ing usages whereas we have made our resource usage
language concrete (we use regular expressions).

There have been a number of other research efforts
on effect systems for object-oriented languages. For
example, Greenhouse and Boyland [8] describe an ef-
fect system for Java that allows subclasses to extend
the effects of their superclass. They show how to
apply their effect system to aliasing problems rather
than enforcement of object protocols. The ownership
types of Clark, Potter and Noble [2] are another sort
of effect system. Ownership types help prevent an ob-
ject from revealing the implementation of its internal
data structures by ensuring that internal pointers are
not passed out to clients.

Another closely related project is Deline and
Fähndrich’s Vault language [4]. Vault’s type sys-
tem is built on top of the capability calculus [22].
Both use a similar sort of “key” to track the identity
of resources, and the state of a resource determines
which operations can be performed next. One differ-
ence between Vault and our scoped-method approach
lies in the specification of usage protocols. In Vault,
the annotations of all functions in an interface col-
lectively define a resource protocol whereas we have
centralized protocol specification at the definition of

a scoped method. The advantage of centralized spec-
ification is easy maintenance and extension. It is less
likely that non-obvious errors in the annotation break
the whole protocol. To add a new usage protocol,
one only needs to add a new scoped method instead
of changing annotations of every method in the class.

Extended Static Checking (ESC) [14] addresses a
broad range of programming errors from array in-
dex bounds errors to locking protocol violations to
null pointer dereferences. By focusing on the prob-
lem of resource usage protocols, we hope to develop a
specification language that allows simple, concise and
comprehensible specifications in this domain. If we
succeed, our simple sublanguage might be added to
a more general program checking tool such as ESC.

8 Conclusions and Future
Work

We have proposed a new language construct, the
scoped method, which encapsulate resource usage pro-
tocols inside a resource module. We have also de-
signed a type system to statically enforce such proto-
cols and have proven the soundness of the type sys-
tem.

We have modeled some simple resource protocols
involving files, locks and sockets using scoped meth-
ods to validate our approach. The next step in this
research involves tackling some of the more advanced
features of Java and developing an implementation
to test our results.

Acknowledgments

We would like to thank the FOOL 10 reviewers for
their insightful comments on a previous version of
this paper.

References
[1] Ken Arnold, James Gosling, and David Holmes. The

Java Programming Language, Third Edition. Addi-
son Wesley, 2000.

13

[2] David G. Clarke, John M. Potter, and James No-
ble. Ownership types for flexible alias protection. In
OOPSLA, pages 48–64, Kyoto, April 1998.

[3] Karl Crary, David Walker, and Greg Morrisett.
Typed memory management in a calculus of capa-
bilities. In POPL’ 99: The 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, pages 262–275. ACM Press, January
1999.

[4] Robert Deline and Manuel Fähndrich. Enforcing
high-level protocols in low-level software. In Proceed-
ings of ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’01),
pages 59–69, June 2001.

[5] Cormac Flanagan and Martin Abadi. Types for safe
locking. In European Symposium on Programming,
pages 91–108, 1999.

[6] Matthew Flatt, Shriram Krishnamurthi, and
Matthias Felleisen. Classes and mixins. In POPL’
98: The 25th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 171–
183. ACM Press, January 1998.

[7] D. K. Gifford and J. M. Lucassen. Integrating func-
tional and imperative programming. In ACM Con-
ference on Lisp and Functional Programming, Cam-
bridge, Massachusetts, August 1986.

[8] Aaron Greenhouse and John Boyland. An object-
oriented effect system. In ECOOP, number 1628 in
LNCS, pages 205–229. Springer-Verlag, 1999.

[9] John E. Hopcroft and Jeffrey D. Ullman. Introduc-
tion to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, 1979.

[10] Atshushi Igarashi, Benjamin Pierce, and Philip
Wadler. Featherweight java: A minimal core calcu-
lus for Java and GJ. In Proceedings of the 1999 ACM
SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages & Applications (OOP-
SLA‘99), volume 34(10), pages 132–146, 1999.

[11] Atsushi Igarashi and Naoki Kobayashi. Re-
source usage analysis. In POPL ’02: The 29th
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 331–342. ACM
Press, January 2002.

[12] Pierre Jouvelot and D. K. Gifford. Algebraic re-
construction of types and effects. In Eighteen-
thACM Symposium on Principles of Programming
Languages, pages 303–310, January 1991.

[13] Naoki Kobayashi. Quasi-linear types. In Twenty-
SixthACM Symposium on Principles of Program-
ming Languages, pages 29–42, San Antonio, January
1999.

[14] K. Rustan M. Leino. Extended static checking: A
ten-year perspective. In Proceedings of the Schloss
Dagstuhl tenth-anniversary conference, volume 2000
of Springer LNCS, 2001.

[15] John C. Reynolds. Syntactic control of interference.
In FifthACM Symposium on Principles of Program-
ming Languages, pages 39–46, Tucson, 1978.

[16] John C. Reynolds. Syntactic control of interference,
part 2. In Sixteenth International Colloquium on Au-
tomata, Languages, and Programming, July 1989.

[17] Frederick Smith, David Walker, and Greg Morrisett.
Alias types. In European Symposium on Program-
ming, pages 366–381, Berlin, March 2000.

[18] Bjarne Stroustrup. What is “object-oriented pro-
gramming”? In ECOOP ’87: European Conference
on Object-Oriented Programming, Paris (France),
1987. Springer-Verlag, Lecture Notes in Computer
Science no. 276.

[19] Mads Tofte and Jean-Pierre Talpin. Region-based
memory management. Information and Computa-
tion, 132(2):109–176, 1997.

[20] Philip Wadler. Linear types can change the world!
In M. Broy and C. Jones, editors, Progarmming Con-
cepts and Methods, Sea of Galilee, Israel, April 1990.
North Holland. IFIP TC 2 Working Conference.

[21] Philip Wadler. Is there a use for linear
logic? In ACM Conference on Partial Evaluation
and Semantics-Based Program Manipulation, New
Haven, Connecticut, June 1991.

[22] David Walker, Karl Crary, and Greg Morrisett.
Typed memory management in a calculus of capabil-
ities. ACM Transactions on Programming Languages
and Systems, 22(4):701–771, May 2000.

[23] David Walker and Greg Morrisett. Alias types for
recursive data structures. In Robert Harper, editor,
Workshop on Types in Compilation, number 2071 in
LNCS, Montreal, March 2001.

[24] David Walker and Kevin Watkins. On regions
and linear types. In ACM SIGPLAN International
Conference on Functional Programming (ICFP ’01),
2001.

14

[25] Hongwei Xi and Frank Pfenning. Dependent types in
practical programming. In Twenty-Sixth ACM Sym-
posium on Principles of Programming Languages,
pages 214–227, San Antonio, TX, January 1999.

15

