
PADS: An End-to-end System for Processing Ad Hoc Data

Mark Daly
Princeton University

mdaly@princeton.edu

Yitzhak Mandelbaum and
David Walker

Princeton University

yitzhakm@cs.princeton.edu
dpw@cs.princeton.edu

Mary Fernández and
Kathleen Fisher

AT&T Labs Research

mff@research.att.com
kfisher@research.att.com

1. INTRODUCTION
Although enormous amounts of data exist in “well-behaved” for-

mats such as relational tables and XML, massive amounts also ex-
ist in non-standard or ad hoc data formats. Ad hoc formats arise
in diverse domains such as telecommunications, bioinformations,
and finance. Ad hoc data comes in many forms: ASCII, binary,
EBCDIC, and mixed formats. It can be fixed-width, fixed-column,
variable-width, or even tree-structured. It is often quite large, in-
cluding some data sources that generate over a gigabit per sec-
ond [3]. It frequently comes with incomplete or out-of-date doc-
umentation, and there are almost always errors in the data. Some-
times these errors are the most interesting aspect of the data, e.g.,
in log files where errors indicate that something is going wrong in
the associated system.

The lack of standard tools for processing ad hoc data forces ana-
lysts to roll their own tools, leading to scenarios such as the follow-
ing. An analyst receives a new ad hoc data source containing poten-
tially interesting information and a list of pressing questions about
that data. Could she please provide the answers to the questions
as quickly as possible? The accompanying documentation is out-
dated and incomplete, so she first has to experiment with the data
to discover its structure. Eventually, she understands the data well
enough to hand-code a parser, usually in C or PERL. Pressed for
time, she interleaves code to compute the answers to the supplied
questions with the parser. As soon as the answers are computed,
she gets a new data source and a new set of questions to answer.

Through her heroic efforts, the data analyst answered the nec-
essary questions, but the approach is deficient in many respects.
The analyst’s hard-won understanding of the data is embedded in a
hand-written parser, where it is difficult for others to benefit from
her understanding. The parser is likely to be brittle with respect to
changes in the input sources. Consider, for example, how tricky it
is to figure out which $3’s should be $4’s in a PERL parser when
a new column appears in the data. Errors in the data also pose
a significant challenge in hand-coded parsers. If the data analyst
thoroughly checks for errors, then the error checking code dom-
inates the parser, making it even more difficult to understand the
semantics of the data format. If she is not thorough, then erro-
neous data can escape undetected, potentially corrupting down-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2006, June 27–29, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-256-9/06/0006 ...$5.00.

stream data processing. Finally, in answering the specified ques-
tions, the analyst had to code how to compute the questions rather
than expressing the queries in a declarative fashion. Many of these
pitfalls can be avoided with careful design and sufficient time, but
an analyst rarely has such luxuries. However, with the appropriate
tool support, many aspects of this process can be greatly simplified.

The PADS system [5] allows analysts to describe ad hoc data
sources declaratively. The descriptions take the form of types, based
on a dependent type theory [6]. PADS base types describe simple
objects such as strings, numbers, dates, and IP addresses. Records
and arrays specify sequences of elements in a data source, and
unions and enums specify alternatives. Any of these structured
types may be parameterized, and users may write arbitrary seman-
tic constraints as well. The PADS language is both expressive and
concise. For example, 92 pages of the OPRA standard for options-
market transactions is captured by a 450-line PADS description.

The PADS compiler produces a customizable library for parsing
a given ad hoc data source. A suite of tools built around this library
includes statistical data-profiling tools, such as histograms [?], ac-
cummulators and clustering algorithms [8]. Also included is an
instance of the Galax query engine [1] that permits ad hoc sources
described in PADS to be viewed as XML and to be queried with
XQuery [4]. Lastly, an interactive front-end helps users produce
PADS descriptions and invoke tools without having to learn the de-
tails of the PADS language or tool interfaces. An open-source
implementation of PADS is available for download [2].

2. USING PADS
In our demonstration, we will present the following scenario, in

which an AT&T data analyst interactively creates a PADS descrip-
tion for a new data source, uses PADS tools to learn about the dis-
tribution of values and errors in her data, and writes and executes
simple queries to perform basic analysis tasks. We will also have
available other PADS applications from other application domains.

Our analyst’s task is to process provisioning data. In the telecom-
munications industry, provisioning refers to the complex process
of converting an order for phone service into the actual service. In
practice, AT&T’s Sirius project discovers provisioning problems
proactively by compiling weekly summaries of the state of phone
service orders. These summaries, which are stored in flat ASCII
text files, can contain more than 2.2GB of data per week. Figure 1
contains sample Sirius data.

Provisioning summaries store the processing date and one record
per order. Each order record contains a header followed by a nested
sequence of events. The header has 13 pipe separated fields: the or-
der number, AT&T’s internal order number, the order version, four
different telephone numbers associated with the order, the zip code,
a billing identifier, the order type, a measure of the complexity of

0|15/Oct/2004:18:46:51
9152|9152|1|9735551212|0||9085551212|07988|no_ii152272|EDTF_6|0|APRL1|DUO|10|16/Oct/2004:10:02:10
9153|9153|1|0|0|0|0||152268|LOC_6|0|FRDW1|DUO|LOC_CRTE|1001476800|LOC_OS_10|17/Oct/2004:08:14:21

Figure 1: Tiny example of Sirius provisioning data.

Figure 2: LAUNCHPADS Interactive User Interface.

the order, an unused field, and the source of the order data. Many
of these fields are optional, in which case nothing appears between
the pipe characters. The billing identifier may not be available at
the time of processing, in which case the system generates a unique
identifier prefixed with the string “no ii” to indicate the number was
generated. The event sequence represents the subset of 400 possi-
ble states a service order goes through; it is represented as a new-
line terminated, pipe separated list of state, timestamp pairs. It may
be apparent from this description that English is a poor language
for describing data formats!

The analyst’s first task is to write a parser for the Sirius data
format. Like many ad hoc data sources, Sirius data may contain
unexpected or corrupted values, so the parser must handle errors
robustly to avoid corrupting the results of analyses. With PADS,
the analyst writes a declarative data description of the physical lay-
out of her data. If the analyst is new to PADS, she can use the
LAUNCHPADS interactive interface shown in Figure 2 to help her
create a PADS description. She begins by loading her sample data
into the dataview (top-right frame) and then selects a fragment of
data to describe in the gridview (middle frame). In the gridview,
the analyst iteratively refines the description of the selected data.
In this example, she has selected the header part of an order record
and is defining its composite structure, which includes three phone-
number fields. This refinement step terminates when the analyst
has associated a base type, such as string, phone number, date, etc.,
with every value in the sample data. Once all selected values have
an associated base type, LAUNCHPADS generates the treeview (left-
hand frame). The treeview depicts the abstract syntax of a PADS

description. In this view, the analyst can refine the description by
creating, removing, and renaming the generated types. She may
also add semantic constraints that specify relations between one
part of the data and another, for example that one field in a type is
some function of another field in a different type.

When the analyst is satisfied with the description in the treeview,
she can test her description on a larger fragment of sample data. To
do this, LAUNCHPADS generates syntactically correct PADS code,
which is shown in Figure 4 and invokes the PADS compiler to pro-
duce a parsing library from the generated description. Description-
independent tools are linked with the description-dependent library
and made available to the analyst through menus in the LAUNCH-
PADS interface.

The analyst can test her description by applying the accummula-
tor tool to a larger sample of data. For each type in a PADS descrip-
tion, accumulators report the number of good values, the number
of bad values, and the distribution of legal values. In the LAUNCH-
PADS interface, records identified by the accumulator as containing
errors are displayed in the data view. The analyst can then deter-
mine whether the errors are due to genuine errors in the data or due
to incomplete or out-of-date documentation, in which case she can
refine the description to improve its coverage.

This phase helps the analyst learn the layout and the meaning
of the data, determine the completeness of the format’s documen-
tation, identify different representations for “data not available”,
and learn the distribution of values for particular fields, etc. When
finished with this phase, the analyst may be ready to ask some ba-
sic queries such as “Select all orders starting within a certain time
window,” and “What is the average time required to go from a par-
ticular event state to another particular event state”. Such queries
are useful for rapid information discovery and for vetting errors
and anomalies in data before the data proceeds to a down-stream
process or is loaded into a database.

With PADS, the analyst uses XQuery to query her ad hoc data
source. Because XQuery is designed for semi-structured data, its
expressiveness matches ad hoc data sources well. For example, the
analyst can write the expression below to produce all orders that
started in October, 2004.

$pads/Psource/orders/elt[events/elt[1]
[tstamp/rep >= xs:date("2004-10-01")

and tstamp/rep < xs:date("2004-11-01")]]

Existing PADS tools may not solve all the analysts problems, in
which case, she may write her own PADS applications that call di-
rectly the PADS-generated parsing or tool libraries. Most impor-
tantly, her effort has produced a reusable description that she can
share with other analysts. The fact that useful software artifacts
are generated from the descriptions provides strong incentive for
keeping the descriptions current.

3. ARCHITECTURE
The PADS system, depicted in Figure 3, consists of its description

language, compiler, run-time system, and pre-defined tool suite.
From a description, the compiler generates a library of description-
dependent parsing functions. The generated library is linked with
a core run-time library and description-independent tool programs.
Currently, the statistical profiling tool provides accumulator func-
tions and functions that employ randomized and approximate tech-
niques to create histogram, wavelet [7], and quantile [8] summaries.
The XML tool produces a canonical XML view of a PADS source [4]
and implements the data model required by the Galax XQuery en-
gine (not shown here). The format template allows the user to pretty
print the data into a delimited format suitable for loading in a re-
lational database. The format program allows users to override
how elements of each type are displayed and to omit certain fields
entirely from the data source. Lastly, a user may write a custom
application in C to implement their own analyses.

We describe a few key language features to illustrate the lan-
guage’s expressiveness and completeness. The language provides a
type-based model: basic types specify atomic data, while structured

Figure 3: PADS Architecture

types describe compound data built from simpler pieces. Figure 4
contains the PADS description for the Sirius data format. Types are
declared before they are used, so the type that describes the entire
data source (summary_t) appears last in the description.

The PADS library provides a large collection of useful base types
such as 8-bit signed integers, 32-bit unsigned integers, IP addresses,
dates, and strings, which may be physically coded in e.g. ASCII,
EBCDIC, or binary. To describe more complex data, PADS pro-
vides a collection of structured types loosely based on C’s type
structure. A Pstruct describes an ordered sequence of data with
unrelated types. In Figure 4, the type declaration for the Pstruct
order_t (Lines 35–38) contains an order header followed by the
literal character ’|’, followed by an event sequence. PADS sup-
ports character, string, and regular expression literals. A Punion
describes alternatives in the data format (Lines 9–12), and a Popt
type specifies optional data (Lines 17–21). A Parray describes
varying-length sequences of data all with the same type. The type
on Lines 32–34 contains the sequence of order events and indicates
that each element in the sequence has type event_t. It also spec-
ifies that the elements are separated by vertical bars, and that the
sequence is terminated by an end-of-record marker. PADS provides
a rich collection of array-termination conditions: reaching a maxi-
mum size, finding a terminating literal, or satisfying a predicate.

From a description, the PADS compiler generates a C library
for parsing and manipulating the associated data source. From
each type in a PADS description, the compiler generates (1) an in-
memory representation of the type, (2) parsing and printing func-
tions, and (3) a parse descriptor, which records the state of the
parse, the number of detected errors, and the code and location of
the first error detected in a value of that type. Because a distinct
parsing function is generated for each type in a PADS description,
PADS supports multiple-entry point parsing, which accommodates
efficient processing of very large-scale data [5]. Parse descriptors
enable error-aware processing of a data source. Depending upon
the nature of the errors and the desired application, users can take
the appropriate action: halt the program, discard parts of the data,
or repair the errors. This flexibility makes it possible to continue
processing of very large sources even when errors are encountered.

The PADS system solves important data-management tasks: it
supports declarative description of ad hoc data formats, its descrip-
tions serve as living documentation, and it permits exploration of

1. Precord Pstruct summary_header_t {
2. "0|";
3. Punixtime tstamp;
4. };
5. Pstruct no_ramp_t {
6. "no_ii";
7. Puint64 id;
8. };
9. Punion dib_ramp_t {

10. Pint64 ramp;
11. no_ramp_t genRamp;
12. };
13. Pstruct order_header_t {
14. Puint32 order_num;
15. ’|’; Puint32 att_order_num;
16. ’|’; Puint32 ord_version;
17. ’|’; Popt pn_t service_tn;
18. ’|’; Popt pn_t billing_tn;
19. ’|’; Popt pn_t nlp_service_tn;
20. ’|’; Popt pn_t nlp_billing_tn;
21. ’|’; Popt Pzip zip_code;
22. ’|’; dib_ramp_t ramp;
23. ’|’; Pstring(:’|’:) order_type;
24. ’|’; Puint32 order_details;
25. ’|’; Pstring(:’|’:) unused;
26. ’|’; Pstring(:’|’:) stream;
27. };
28. Pstruct event_t {
29. Pstring(:’|’:) state;
30. ’|’; Punixtime tstamp;
31. };
32. Parray event_seq_t {
33. event_t[] : Psep(’|’) && Pterm(Peor);
34. };
35. Precord Pstruct order_t {
36. order_header_t order_header;
37. ’|’; event_seq_t events;
38. };
39. Parray orders_t {
40. order_t[];
41. };
42. Psource Pstruct summary_t{
43. summary_header_t summary_header;
44. orders_t orders;
45. };

Figure 4: PADS description for Sirius provisioning data.

ad hoc data and vetting of erroneous data using a standard query
language. The resulting PADS descriptions and queries are robust
to changes that may occur in the data format, making it possible
for more than one person to profitably use and understand a PADS

description and related queries.
Additional Authors. Robert Gruber (gruber@google.com), Google,
while at AT&T Labs. Xuan Zheng (xuanzh@eecs.umich.edu),
Univ. of Michigan, supported by AT&T Labs and NSF DMS 0354600.

4. REFERENCES
[1] Galax user manual. http://www.galaxquery.org.
[2] PADS user manual. http://www.padsproj.org/.
[3] C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, and O. Spatscheck.

Gigascope: High performance network monitoring with an SQL
interface. In SIGMOD. ACM, 2002.

[4] M. Fernández, K. Fisher, R. Gruber, and Y. Mandelbaum. PADX:
Querying large-scale ad hoc data with XQuery. In PLAN-X, 2006.

[5] K. Fisher and R. Gruber. PADS: A domain-specific language for
processing ad hoc data. In PLDI, 2005.

[6] K. Fisher, Y. Mandelbaum, and D. Walker. The next 700 data
description languages. In POPL, 2006.

[7] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Fast, small-space algorithms for approximate histogram
maintenance. In STOC, 2002.

[8] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. How to
summarize the universe: Dynamic maintenance of quantiles. In
VLDB, 2002.

