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Abstract

Certified code is a general mechanism for enforcing security
properties. In this paradigm, untrusted mobile code carries
annotations that allow a host to verify its trustworthiness.
Before running the agent, the host checks the annotations
and proves that they imply the host’s security policy. De-
spite the flexibility of this scheme, so far, compilers that
generate certified code have focused on simple type safety
properties rather than more general security properties.

Security automata can specify an expressive collection
of security policies including access control and resource
bounds. In this paper, we describe how to instrument well-
typed programs with security checks and typing annota-
tions. The resulting programs obey the policies specified
by security automata and can be mechanically checked for
safety. This work provides a foundation for the process of
automatically generating certified code for expressive secu-
rity policies.

1 Introduction

Strong type systems such as those of Java or ML provide
provable guarantees about the run-time behaviour of pro-
grams. If we type check programs before executing them, we
know they “won’t go wrong.” Usually, the notion “won’t go
wrong” implies memory safety (programs only access mem-
ory that has been allocated for them), control flow safety
(programs only jump to and execute valid code), and ab-
straction preservation (programs use abstract data types
only as their interfaces allow). These properties are essential
building blocks for any secure system such as a web browser,
extensible operating system, or server that may download,
check and execute untrusted programs. However, standard
type safety properties alone do not enforce access control
policies or restrict the dissemination of secret information.
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Certified code is a general framework for verifying secu-
rity properties in untrusted code. To use this security archi-
tecture, programmers and compilers must attach a collection
of annotations to the code they produce. These annotations
can be proofs, types, or annotations from some other kind
of formal system. Regardless, there must be some way of
reconstructing a proof that the code obeys a certain secu-
rity policy, for upon receiving annotated code, an untrust-
ing web browser or operating system will use a mechanical
checker to verify that the program is safe before execut-
ing it. For example, Necula and Lee’s proof-carrying code
(PCC) implementation [20, 19] uses a first-order logic and
they have shown that they can check many interesting prop-
erties of hand-coded assembly language programs including
access control and resource bound policies [22].

In order to make certified code a practical technology,
it must be possible to generate code and certificate auto-
matically. However, so far, the compilers that emit certified
code have focused on a limited set of properties. For ex-
ample, the main focus of Necula and Lee’s proof-generating
compiler Touchstone [21] is the generation of efficient code;
the security policy it enforces is the standard type and mem-
ory safety. Other frameworks for producing certified code,
including Kozen’s efficient code certification (ECC) [8] and
Morrisett et al.’s [18, 16] Typed Assembly Language (TAL),
concentrate exclusively on standard type safety properties.

The main reason that certified code has been used in this
restricted fashion is that automated theorem provers are not
powerful enough to infer properties of arbitrary programs
and constructing proofs by hand is prohibitively expensive.
Unable to prove security properties statically, real world se-
curity systems such as the Java Virtual Machine [12] (JVM)
have fallen back on run-time checking. Run-time security
checks are scattered throughout the Java libraries and are
intended to ensure that applets do not access protected re-
sources inappropriately. However, this situation is unsatis-
fying for a number of reasons:

e The security checks and therefore the security policy
is distributed throughout library code instead of being
specified declaratively in a centralized location. This
can make the policy difficult to understand or change.

e There is no way to verify that checks have not been
forgotten or misplaced.

e There is no way to optimize away redundant checks
and certify that the resulting code is safe.

Figure 1 presents a practical alternative for producing
certified code. First, we give a formal specification of a secu-



rity policy. When we compile a program, we use the security
policy to dictate when we need to insert run-time checks to
make the program secure. For example, the security policy
might state that programs cannot use the network after they
have read any local files. In this case, the compiler places
run-time checks around every call to a network operation to
ensure the program does not use the network after reading
a file. Next, we optimize the program, removing run-time
checks whereever we can deduce that it is safe to do so.
However, when we remove a check from the program, we
must leave behind enough information to be able to verify
that calling the function is still safe.

When compilation has been completed, we will verify
that the resulting code is safe and then link together the
application program with the rest of the system. In order to
ensure the security policy is obeyed, we will obviously have
to use the formal policy specification. We can either do this
directly or, as shown in Figure 1, we can use the specifica-
tion to annotate the system interface and then compile the
interface and annotations into the low-level language. For
example, if the high-level system inteface contains a net-
work API and we would like to enforce the security policy
described above, we might annotate all the network func-
tions with a pre-condition requiring that we have not yet
read a file. We could then associate this pre-condition with
the code that results from compiling the high-level system
interface into low-level code.

This framework has a number of advantages over other
security architectures. First, by defining the security policy
independently of the rest of the system, it may be simpler
for the implementer of the security system to write or change
the policy, and easier for the applications programmers to
understand it. The fact that the security policy can be de-
fined in terms of a high-level system interface rather than
its low-level implementation will also make the policy easier
to understand.

Second, for a large class of security properties, we can use
run-time checks to ensure that any program can be automat-
ically rewritten so that it is provably secure. This mecha-
nism relieves the programmer of the burden of constructing
proofs that his or her programs obey the security policy.
In fact, although programmers need to be aware of and to
follow the security policy (otherwise their programs will be
terminated), the programming model need not change at all.

Third, there is clear separation between the trusted and
untrusted components of the system. More precisely, we
must trust that:

e The formal security policy specification implies the de-
sired semantic properties.

e The low-level system interface is correct and the code
that performs run-time checks is correct.

e The verification software is correct.

However, because verification is independent of the instru-
mentation algorithm, we do not have to trust the application
program or its compiler. Untrusted parties can write their
own application-specific instrumentation and optimization
transformations. In fact, programmers do not even have to
use the same source language. They can write programs in
different languages and then compile them into a common
intermediate form or even write low-level code by hand, if
they choose. Regardless of the source of the application
code, it can be verified when it is linked into the extensible
system.
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Figure 1: Architecture of a Certifying Compiler

2 Overview

In this paper, we explore one particular instance of the gen-
eral framework:

e Our source language is type-safe. Type safety enforces
many essential safety properties statically without hav-
ing to resort to run-time checking. Moreover, the liter-
ature on type-directed compilation outlines many tech-
niques for preserving typing invariants from high-level
languages all the way through compilation, down to
level of machine language. We will use type safety
to ensure that malicious programs cannot circumvent
run-time checks that will be inserted into the program
to enforce more sophisticated security policies.

e Our formal security policies are specified using security
automata [24, 27]. We have chosen security automata
because they are very expressive, able to encode any
safety property [24]. Moreover, security automaton
specifications can always be enforced by inserting run-
time checks. Using this mechanism, we can guarantee
that we can automatically rewrite any source language
program so that it is provably secure.

e Our target language is dependently-typed. In this ar-
chitecture, we encode the security automaton defini-
tion in the types of the security-sensitive operations.
Type-checking is sufficient to enforce the security pol-
icy. The type system that we will define is powerful
enough to enforce any security automaton specifica-
tion and yet is flexible enough to allow a number of
optimizations.

Why use a type system? There are other frameworks
for static verification. For example, Necula and Lee use a
verification-condition generator that emits proof obligations
in the form of first-order logic formulae with some exten-
sions. Such a framework has clear advantages: First-order
logic is extremely expressive and yet has simple proof rules.
One advantage of type theory is that it handles higher-order



features such as first-class functions and continuations nat-
urally. This fact is particularly important when handling
low-level languages because even the results of compiling
procedural languages without function pointers are natu-
rally higher-order: When a piece of machine code “calls” or
jumps to a procedure, it passes the return address explic-
itly to the code it jumps to and therefore every machine-
language code fragment can be thought of as a higher-order
function. Our experience with low-level type systems also
reveals that higher-order type constructors are extremely
useful. In low-level languages, it is necessary to represent
many more well-formedness invariants explicitly in the type
or proof system; higher-order type constructors can help
compress redundant information and are used extensively
in TAL to speed type checking [15].

In practice, there are ways to work around some of these
difficulties and stay within a simpler first-order system. For
example, Necula and Lee fix the calling convention in their
PCC implementation so they do not have to treat return ad-
dresses as first-class functions. However, this decision pre-
vents them from performing some optimizations such as tail-
call elimination. In order to keep proof-sizes small, Necula
and Lee have extended conventional first-order logic with
high-level language-specific axioms. Of course, each new
axiom that is added should be proven consistent with the
other axioms in the system, a difficult task.

Perhaps the most compelling reason for using a type sys-
tem is to be able to draw upon the vast literature on type-
directed compilation. Researchers already know how to pre-
serve many kinds of typing invariants from top to bottom,
through the compilation of (higher-order) modules [5, 10],
closure conversion [13] and code generation [18]. It is less
clear how to preserve proofs represented in other formalisms
through these transformations. Therefore, by encoding se-
curity in a type system, we can immediately take advan-
tage of existing implementation techniques and theoretical
results. These well-understood techniques are what has lead
researchers to focus on certifying compilers for type-safety
properties in the first place. Of course, using a type sys-
tem throughout compilation does not prevent implementers
from encoding the final low-level results in another logic or
logical framework, if they choose to do so.

The remaining sections of this paper describe our ap-
proach to security in more detail. First, in Section 3, we
present security automata, our mechanism for specifying se-
curity policies. Our presentation is derived from work by
Ulfar Erlingsson and Fred Schneider [24, 27]. Next, in Sec-
tion 4, we define a generic typed target language, A4, for our
compiler. This language is a dependently-typed lambda cal-
culus that can encode any security automaton specification.
The formulation of the language is the main technical con-
tribution of the paper: It is flexible enough to allow a num-
ber of interesting optimizations and yet prevents malicious
programs from circumventing security checks. After defin-
ing the generic language, we explain how to automatically
construct a typed interface that will specialize the language
so that it enforces the policy of a particular automaton.
Finally, in Section 5, we show how to automatically instru-
ment programs written in a high-level language (the simply-
typed lambda calculus) and discuss possible optimizations
to the procedure. The last section discusses additional re-
lated work.
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Figure 2: Security Automaton for a File System Policy

3 Security Automata

Security policies will be specified independently of any par-
ticular programming language using security automata [24].
These automata are defined similarly to other automata [7]:
They possess a set of states and rules for making transitions
from one state to the next. The author of the security policy
determines the set of states and the transition relation. One
of these states is designated as the bad state and entry into
this state is defined to be a violation of the security policy.

Security automata enforce safety properties by monitor-
ing programs as they execute. Before an untrusted program
is allowed to execute a security-sensitive or protected opera-
tion, the security automaton checks to see if the operation
will cause a transition to the bad state. If so, the automa-
ton terminates the program. If not, the program is allowed
to execute the operation and the security automaton makes
a transition to a new state. For example, a web browser
might allow applets to open and read files, and send bits
on the network. However, assuming the web browser wants
to ensure some level of privacy, the open, read, and send
operations will be designated protected operations. Before
an untrusted applet can execute one of these functions, the
browser will check the security automaton definition to en-
sure the operation is allowed in the current state.

By monitoring programs in this way, security automata
are sufficiently powerful that they can restrict access to pri-
vate files or bound the use of resources. They can also en-
force the safety properties typically implied by type systems
such as memory safety and control-flow safety. In fact, secu-
rity automata can enforce any safety property [24]. However,
some interesting security policies including information flow,
resource availability, and general liveness properties are not
safety properties and cannot be enforced by this mechanism.
Nevertheless, Schneider [24] points out that some of these
applications can still use a security automaton: The au-
tomaton must simply enforce a stronger property than is
required. For example, the policy that admits any program
that allocates a finite amount of memory cannot be enforced
by a security automaton. However, security automata can
enforce the policy that prevents a program from allocating
more than an a priori fixed amount (such as 1 MB) of mem-
ory. The latter policy reduces the number of legal programs
that can be written (a program that allocates 1.1 MB will be
prematurely terminated), but it may be effective in practice.

Figure 2 depicts a security automaton that enforces the
simple policy that programs must not perform a send on the
network after reading a file. The security automaton actu-
ally has three states: the start state, the has_read state, and
the bad state, which is not shown in the diagram. For the
purpose of this example, there are only two protected oper-
ations: the send operation and the read operation. Each of
the arcs in the graph is labeled with one of these operations
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Q a finite or countably infinite set of states
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Figure 4: Elements of a Security Automaton

and indicates the state transition that occurs when the op-
eration is invoked. If there is no outgoing arc from a certain
state labeled with the appropriate operation, the automaton
makes a transition to the bad state. For example, there is no
send arc emanating from the has_read state. Consequently,
if a program tries to use the network in the has_read state,
it will be terminated.

Figure 3 shows a second security automaton that re-
stricts the amount of heap memory that a program can al-
locate. The states are indexed by the natural numbers 0
through N and the protected operation alloc(I) causes an
automaton transition from state S to state S + I, provided
S + I is less than or equal to N.

3.1 Formal Definitions

For our purposes, a security automaton (.4) is a 6-tuple
containing the fields summarized in Figure 4. Like other
automata, a security automaton has a set of states Q (ei-
ther finite or a countably infinite), and a distinguished ini-
tial state go. The automaton also has a single bad state
(bad). Entrance into the bad state indicates that the secu-
rity policy has been violated. All other states are consid-
ered “good” or “accepting” states. The automaton’s inputs
correspond to the application of a function symbol f to ar-
guments a1, ..., 6, where f is taken from the set F (the set
of protected operations) and ai,..., a, are taken from A.
A security automaton defines allowable behaviour by spec-
ifying a transition function §. Formally, § is a deterministic,
total function with a signature F — (Q % K) — Q where A
denotes the set of lists ai,...,an. Upon receiving an in-
put f(a1,..., a,), an automaton makes a transition from its
current state to the next state as dictated by this transition
function. If the security policy permits the operation f on
arguments ai,..., a, in the current state g then the next
state, (f)(q, a1,...,an), will be one of the “good” ones.
On the other hand, if the security policy disallows the oper-
ation then 0(f)(q, a1,-...,an) will equal bad. Furthermore,
once the automaton enters the bad state, it stays there. For-
mally, for all f and a1, ..., an, 6(f)(bad, a1, .., a,) = bad.
The transition function § must also be computable. More-
over, the implementor of the security policy must supply
code for a family of functions &5 such that d¢(q1, a1,..., an)
equals 0(f)(q1, a1,. .., an). In the following sections, we will

use these functions to instrument untrusted code with secu-
rity checks.

The language accepted by the automaton A, written
L(A), is a set of strings where a string is a finite sequence
of symbols s1,...,8, and each symbol s; is of the form
f(ai,..., am). The string s1,..., s, belongs to L(A) if the
predicate Accept(qo, $1,...,5) holds where Accept is the
least predicate such that:

Definition 1 (String Acceptance) For all states q and
(possibly empty) sequences of symbols s1,. .., Sy,
Accept(q, $1,. .., 5n) if ¢ # bad and:

1. 81,...,5, is the empty sequence or

2. s1 = f(ar,...,am) and 6(f)(q, a1,...
Accept(q', 82,-- -, 5n)

yam) = ¢ and

3.2 The File System Policy

We can now define the file system policy described in the
previous section. Infomally, the policy states that no net-
work send is allowed after any file is read. For the sake of
future examples, we extend this policy slightly by restrict-
ing access to some files; in order to determine whether or
not the applet has access to the file a, we will have to in-
voke the function read?(a), which has been provided by the
implementor of the file system.

The corresponding security automaton has three states:
start, the initial state; has_read, the state we enter after
any file read; and, of course, the bad state. The protected
operations, F, are send and read and the constants, A, in-
clude all files and the integers. The transition function 4,
written in pseudo-code, is the following:

6send(q) =
if ¢ = startthen
start
else

bad

6read (qa a) =
if g = start Aread?(a) then
has_read
else if ¢ = has_read A read?(a) then
has_read
else
bad

3.3 Enforcing Security Automaton Policies

We can enforce the policies specified by security automata
by instrumenting programs with run-time security checks.
For example, according to the file system policy from the
previous section, we must be in the start state in order for
the send to be safe. A program instrumentation tool could
enforce this policy by wrapping the code invoking send with
security checks:

let next = dsend(current) in
if next = bad then halt
else send()

The first statement invokes the security automaton to deter-
mine the next state given that a send operation is invoked
in the current state. The second statement tests the next
state to make sure it is not the bad one. If it is bad, then
program execution is terminated using the halt instruction.



After performing the initial transformation that wraps
all protected operations with run-time security checks, a
program optimizer might attempt to eliminate redundant
checks by performing standard program optimizations such
as loop-invariant removal and common subexpression elim-
ination. An optimizer might also use its knowledge of the
special structure of a security automaton to eliminate more
checks than would otherwise be possible.

An implementation developed by Erlingsson and Schnei-
der [27] attests to the fact that security automata can en-
force a broad, practical set of security policies. Their tool,
SASI, automatically instruments untrusted code with checks
dictated by a security automaton specification and optimizes
the output code to eliminate checks that can be proven un-
necessary. SASI is both flexible and efficient and they have
implemented a variety of security policies from the litera-
ture. For example, using SASI for the Intel Pentium ar-
chitecture, they have specified the memory and control-flow
safety policy enforced by Software Fault Isolation (SFI) [28].
The SASI-instrumented code is only slightly slower than
the code produced by the special-purpose, hand-coded MiS-
FIT tool for SFI [25]. As another example, using SASI for
the Java Virtual Machine, they have been able to reimple-
ment the security manager for Sun’s Java 1.1. The SASI-
instrumented code is equally as efficient as the Java security
manager in some cases and more efficient in others. Be-
cause the SASI security policy is specified separately from
the rest of the Java system, it is simpler to modify than in
the current system.

4 A Secure Typed Target Language

Previous implementations of security automaton enforce-
ment mechanisms could enforce mobile code security by down-
loading applet source code, instrumenting the code with se-
curity checks and then optimizing away redundant run-time
checks. As discussed in the introduction, these schemes suf-
fer from the fact that the entire compiler and optimizer,
complicated pieces of code, become part of the trusted com-
puting base. Moreover, unless some form of cryptography
is used, compilation must be performed on-line at the host
site.

In this section, we explain the design of a dependently-
typed target language that is powerful enough to encode
policies described by security automata. Because the type
system alone is sufficient to enforce the security policy, the
compiler and optimizer are not part of the trusted comput-
ing base. Moreover, provided the security policy is pub-
lished, unknown and untrusted principals can compile and
optimize their programs off-line. The host computer can
later download the resulting low-level programs and check
them for safety automatically.

The type system that we will present is relatively compli-
cated, so a reasonable question to ask is how much this com-
plexity will impact the trusted computing base. Fortunately,
little of the type system is specialized to encode security au-
tomata in particular. For example, the basic building blocks
of the language are polymorphism, singleton types, and exis-
tential types. Strongly-typed languages for optimizing data
representations like TAL or Dependent ML [33] already con-
tain these type constructors so that they can safely solve
other data representation problems. For example, singleton
types are useful for representing arrays and performing array
bounds check elimination [32] as well as representing tagged
unions. The TIL(T) and FLINT compilers use existential
types to encode closures [13] and Java classes [9], respec-

tively. Polymorphism is ubiquitous. Therefore, there can
be significant reuse of many of the type constructors in our
language. This fact eases the implementation burden and
makes the trusted computing base more manageable. It also
reduces the proof obligations by presenting a uniform frame-
work for reasoning about code, data, and security; later in
this section, we will prove a single soundness result that im-
plies both the normal type safety properties and that the
policy specified by a security automaton is enforced.

On the other hand, in order to represent security au-
tomaton state and transition function, the typing rules for
the language manipulate a state component and a collection
of predicates, which are less standard features for a type
system. Still, these features do appear elsewhere in type
systems for low-level language. For instance, TAL contains
a state component for reasoning about aliasing and stateful
operations such as object deallocation [26]. Both Dependent
ML and TAL contain a collection of predicates for reason-
ing about arithmetic so that programs can eliminate array
bounds checks.

4.1 An Informal Introduction

In order to ensure protected operations are used safely, each
operation is given a type that contains a collection of predi-
cates. These predicates specify a function precondition and
they must be proven before the function can be called. For
example, in order to enforce our file system policy, the type
of the send operation could include these predicates:

Py : dseng(current, next)
P; : next # bad

These predicates state that executing the send operation
causes a transition from the state current to the state next,
and moreover, that the nezt is not bad so the security policy
will not be violated. Upon return, the type of the send
operation will indicate that the automaton is in state next

Each time send or another protected function is invoked,
the type checker must be able to prove that the calling
context satisfies the precondition. If it can do so, the pro-
gram satisfies the security policy. However, in general, given
an arbitrary program, a theorem prover will not be able
to prove all preconditions are satisfied in all cases. Con-
sequently, programs will have to contain run-time security
checks. These security checks will be given types that ex-
press post-conditions containing information about the au-
tomaton transition function. The post-conditions make prov-
ing the preconditions on the protected operations easy.

The following example demonstrates how we can verify
that the wrapper code for the send operation is safe:

let next = dsend(current) in
Pi:  dsend(current, next)

if next = bad then ---
else

Ps: next # bad
send()

Predicate P; is the post-condition for the dsenq function and
predicate P> can be inferred given the test in the conditional
statement. The predicates P1 and P», together with the in-
formation that the automaton is in the state current, are
sufficient to prove that the precondition on the send opera-
tion has been satisfied.

In order to ensure the last condition is met (i.e. that the
automaton is in the state described by the data structure



current), the type system cannot trust the programmer to
manipulate the state data structures properly. For instance,
the type system must prevent a malicious programmer from
substituting some unrelated state current’ for the proper
state current in the code above. The type system prevents
such behaviour by statically keeping track of the current
state itself. Below, the comments state : X indicate what
the type checker knows about the current state. We start
out assuming the type checker knows that the state is equal
to current. Notice that the type checker trusts that the
protected function send has been given an accurate type and
therefore after calling that function, it believes the state is
next:

state : current (%)
let next = Jsend(current) in  (x*)
state : current

if next = bad then halt state : current

else send() state : next

So far during this informal explanation, we have been a lit-
tle sloppy. On line (xx) above, current is value variable
that is used at run-time, but on line (*), current is part of a
compile-time expression (and similarly for current, next and
dsend in the previous code fragment). In order to avoid pass-
ing around values that are only used to make code type check
(thereby incurring unnecessary run-time costs), we need to
have a clear distinction between run-time and compile-time
objects. From now on, we will use hat notation to distin-
guish between compile-time (£) and run-time objects (x)
whenever there might be ambiguity.

Despite this necessary separation, we must still be able to
reflect information gained by run-time tests into the static
type system, as we did in the example above. Singleton
types are one of the mechanisms that will help us towards
this goal. For example, if a variable z has type S(start), then
we not only know that x represents a state, but also that x
represents the particular state start. The singleton type re-
flects very precise information (information that could have
been obtained via a run-time test) into the type system.

Unfortunately, when used in isolation, singleton types
are actually too precise for most situations. In the example
above, the reason that we are performing a dynamic test
is because we do not know exactly which state we are in!
Perhaps we have passed a join point in the code or returned
from an unknown function. In these cases, it is impossible
to give a value a precise type such as S(start).

Our solution to this problem is standard: Add polymor-
phism. When we reach a join in the code, we may not know
the exact state statically, but we can arrange to know that
we are in some some state o (where g is a type variable).
We can also arrange to thread a value through the compu-
tation, say current, that represents the unknown state. We
give that value the singleton type S(g). To recover precise
information about the current state and to propagate that
information into the type system, we will perform a dynamic
test on current.

Once we have added singleton types for automaton states,
it is straight-forward to add singleton types for other values
as well. We will need these singletons if we would like to
encode policies that depend upon values other than just the
current state. For example, in our simple file system policy,
the right to read a file depends upon exactly which file is
requested for reading. In the memory bounds policy, the
right to allocate memory depends upon exactly how much
more memory has been requested.

The last type constructor we will use is the existential
type. In order to allow values with singleton types to be
stored in data structures, such as arrays or lists, without
again making the type of the array or list too precise, we
use existential types. More generally, escaping singletons
with type S(P) can be encapsulated using an existential type
Jp:State.S(p), and used generically. For example, the type
Jo:Val.int(p) can be used as an unspecific, ordinary inte-
ger throughout the “security-insensitive” code (such as the
math library, for instance), but when the appropriate time
comes (the code invokes a security-sensitive operation), the
existential can be opened up and the necessary dependen-
cies created. We use this property to simplify the formal
instrumentation procedure.

4.2 Formal Definitions

Formally, the target language contains three main parts: the
predicates P, the types 7, and the term level constructs.
We will explain each of these parts in succession. Figure 5
presents the syntax of the entire language.

Predicates Predicates, P, may be variables p or g, indices
(constant predicates) ¢, or functions of a number of argu-
ments ¢(P1,...,Py). All of these predicates are compile-
time only objects. Predicates are further divided into three
distinct kinds:

e Predicates that correspond to values of base type.! For
each value a of base type, there is a corresponding in-
dex & of kind Val. By convention, we use p for vari-
ables of kind Val.

e Predicates that correspond to security automaton states.
For each automaton state g, there is a corresponding
index ¢ of kind State. By convention, we use ¢ for
variables of kind State.

e Predicates that describe relations between values and /or
states. These predicates have kind (k1,...,6,) = B
where B is the boolean kind.

The last kind of predicate serves two purposes. Pred-
icates of the form dseng(Py,, Pg,) describe the automaton
transition function; they may be read as “in state Py, , exe-
cuting the send operation causes a transition to state Pg,.”
A special predicate # (-,-) of kind (State, State) — B will
be used to denote the fact that some state ¢ is not equal to
the bad state and consequently that it is safe to execute an
operation that causes a transition into g.

We specify the well-formedness of predicates using the
judgement ® - P : k where ® is a type-checking context
containing three components: a predicate context A, a fi-
nite map I' from value variables to types, and another pred-
icate P’ indicating the current state of the automaton. The
latter two components are not used for specifying the well-
formedness of predicates (they will be used for type-checking
terms). The signature Z assigns kinds to the indices. Kinds
for variables are determined by the predicate context A.
The kind of a function symbol must agree with the kinds of
the predicates to which it is applied. Due to space consider-
ations, the formal rules have been omitted (see the technical
report [29] for details).

1In order to simplify the presentation, we only consider policies
that depend upon values of base type here. See Section 4.5 for further
explanation.
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Figure 5: Syntax of As

Figure 6 gives the rules for proving predicates. The
judgement ® + P indicates that the boolean-valued pred-
icate P is true, and the judgement ® - P in_state indicates
that the program is currently executing in the automaton
state P.

Aside from the special predicate # (-, ), our predicates
are completely uninterpreted. This decision makes it trivial
to show the decidability of the type system. However, some
optimizations may not be possible without a stronger logic.
To remedy this situation, implementers may add axioms to
the type system provided they also supply a decision proce-
dure for the richer logic. In Section 5.2, we show how to add
security policy-specific axioms that allow many unnecessary
security checks to be eliminated.

Types As discussed in the previous section, we reflect val-

ues into the type structure using the singleton types b(P)
(where b is a base type and P has kind Val) and S(P) (where
P has kind State).

The second main type constructor is a polymorphic func-
tion type V[A].(P,T1,...,Tn) = 0. The predicate context A
abstracts a series of predicate variables and requires that a
sequence of boolean-valued predicates be satisfied before the
function can be invoked. The predicate P in the first argu-
ment position is not a run-time argument to the function.
Rather, it is another precondition requiring that the func-
tion be called in the state associated with P. The actual
function arguments must have types 71 through 7,.

The notation “—0” at the end of each function type
is intended to indicate that functions in our language do
not “return” the way high-level language functions normally
do. All functions are written in continuation-passing style
(CPS) so they are passed their return address (another func-
tion) explicitly and “return” by calling that function. We
have chosen to present the language in CPS for two rea-
sons. First, CPS linearizes the code and makes the flow of
control evident; this is convenient for the type system be-
cause it must thread the static state component along the
control-flow path. Second, CPS makes all run-time control
transfers and compile-time information transfers occur using
the same mechanism. In the latter case, this means that we
can control how information is propagated at all join points
in the code (function returns, if statements) using the same
uniform mechanism: polymorphic instantiation. If we did
not use CPS then we would need some special syntax to ac-
complish these joins on if statements and upon return from

functions. Still, it may be useful in an implementation to
add such special cases.

As mentioned above, the language also includes existen-
tial types of the form Jp:k.7.

We specify the well-formedness of types using the judge-
ment ® F 7. In general, a type is well-formed if A contains
the free variables of the type. Function types of the form
V[A].(P,71,...,Tn) — 0 also require that P has kind State
and that the predicates occuring in A have kind B. The for-
mal rules may be found in the technical report [29]. Because
predicates are uninterpreted, we can use standard syntactic
equality of types up to a-conversion of bound variables.

Values and Expressions The typing rules for values have

the form ® + v : 7 and state that the value v has type 7
in the given context. The judgement ® I e states that the
expression e is well-formed. Recall that CPS expressions
do not return values, and hence the latter judgement is not
annotated with a return type. Figure 6 presents the formal
rules. In these judgements, we use the notation @, p:x to
denote a new context in which the binding p:x has been
appended to the list of assumptions in ®. The operation
is undefined if p appears in ®. The notations ®, P and
®, x:7 and the extension to ®, A are similar, although P
may already appear in ®.

The values include variables and constants. The treat-
ment of variables is standard, and a signature C gives types
to the constants.

The value v[P] is the instantiation of the polymorphic
value v with the predicate P. We consider this instantiation
a value because predicates are used only for type-checking
purposes; they have no run-time significance. The value v[]
is somewhat similar: If v has type V[P, A].(---) = 0 and we
can prove the predicate P is valid in the current context, we
give v[-] the type V[A].(---) — 0. Again, the notation [-] is
used only to specify that the type-checker should attempt
to prove the precondition; it will not influence the execution
of programs. In a system with a more sophisticated logic
than the one presented in this paper, we might not want
to trust the correctness of complex decision procedures for
the logic. In this case, we would replace [-] with a proof
of the precondition and replace the type checker’s decision
procedure with a much simpler proof-checker.

Target language function values specify a list of precon-
ditions using the predicate context A. Every function also
expresses a state precondition P. The function can only
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Figure 6: Static Semantics

be called in the state denoted by P. Static semantics rule
(10) contains the the judgement ® F P in_state, which en-
sures this invariant is maintained. This rule also enforces
the standard constraints that argument types must match
the types of the formal parameters. Finally, because the
predicate context is empty, any preconditions the function
might have specified must have already been proven valid.

Rule (6) states that we type check the body of a func-
tion assuming its preconditions hold. In this rule, we use
the notation ® < P to denote a context ®' in which the
state component of ® has been replaced by P. For exam-
ple, suppose a function g is defined in the context A’;T'; P’.
The type checker can use any of the predicates in A’ to help
prove g is well-formed but it cannot assume that g will be
called in the state P'. The function g is defined here, but
may not be used until much later in the computation when
the state is different (P” perhaps).

It is tempting to define a predicate “in_state(P)” and
to include this predicate in the list of function precondi-
tions A. Using this mechanism, it may appear as though we
could eliminate the special-purpose state component of the
type-checking context. Unfortunately, this simplification is
unsound. Consider the following informal example:

% Assume current state = start

let g:V[in_state(start)].(t1,...,7) = 0="--+ in
% Prove precondition:

let ¢:V[].(T1,...,7n) > 0 =g[]in

% Change the state to ¢' where ¢’ # start:
let_=o0p()in

% g is not called in the start state!
g’(vlv RN 'Un)

On the last line, the function g is invoked in a state ¢’ when
the function definition assumed it would be invoked in the
start state. The example highlights the main difference be-
tween the state predicates and the others: The validity of
the predicates in A is invariant throughout the execution of
the program whereas the validity of a state predicate varies
during execution because it depends implicitly on the cur-
rent state of the machine.

Existential values are handled in standard fashion [14].
The value pack[P, v] as Jp:x.7 creates an existential package
that hides P in 7 using p. The corresponding elimination
form, let p,x = unpackv’ ine unpacks the existential o',
substituting v for  and P for p into the remaining expres-
sion e. As with polymorphic types, we assume a type-erasure
interpretation of existentials.

Finally, the conditional if v (g—e1 | -—>e2) tests an au-
tomaton state v to determine whether v is the state ¢q or not.
If so, the program executes e; (see rule (13)) and if not, the
program executes ez. A variant of Harper and Morrisett’s
typecase [6] operator, if also performs type refinement. If v
has type S(p) then it refines the type-checking context with
the information that p = ¢ by substituting ¢ for p. On the
other hand, if v is not ¢, the second branch is taken and the
context is refined with the information # (p,§). Programs
can use this mechanism to dynamically check whether or not
they are about to enter the bad state and prevent it.

There is no need to use the if v construct if we know
which state a value v represents. For example, we know
the expression if g(q¢ — e1 | - — e2) will reduce to e; and
therefore es is dead code and the test is wasted computation.
However, during the proof of soundness of the type system,
such configurations arise and cause difficulties. To avoid
these difficulties, we follow the strategy of Crary et al. [1]
and add the trivialization rules (14) and (15) which deal
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with these redundant cases. Each rule type checks only the
branch of the if statement that will be taken.

Operational Semantics The operational semantics for the
language is given by the relation e —, €' (see Figure 7).
The symbol s is either empty (-) or it is a protected function

symbol applied to some number of arguments (f (a1, ..., an)).

Most operations, and, in fact, all of the operations shown
in Figure 7, emit the empty symbol. However, this figure
does not show the operation of the protected functions. In
the next section, we will explain the operational semantics
of the protected functions f in the context of a signature for
a particular security automaton.

We have given a typed operational semantics to facili-
tate the proof of soundness of the system. However, inspec-
tion of the rules will reveal that evaluation does not depend
upon types or predicates, provided the expressions are well-
formed. Therefore we can type-check a program and then
erase the types before executing it.

4.3 The Secure System Interface

In order to specialize the generic language, we construct a
typed interface or signature for the constants in the lan-
guage. This is the system interface that untrusted code will
link against. Recall from the introduction that application
programmers follow their regular routine of programmming
in a high-level language against a high-level system inter-
face. We need to obtain the secure target language interface
from this high-level interface and the security automaton
definition.

We assume that the high-level interface for constants a
and protected operations f is given by a signature Csource
where Csource(a) is some base type b and Csource(f) is some
function type taking a single continuation (b1, ..., by, (b) =
0) — 0. Now, we can choose a security automaton A to
define which operations f(a1, ..., a,) are allowed (the con-
tinuation does not influence this decision). Together then,
the automaton A and signature Csource are use to define
the target language interface. This definition is presented
in Figure 8 and has three parts: the type signature Z, the
value signature C, and the operational signature.

The type signature gives each constant & and automa-
ton state § kinds Val and State respectively. Furthermore,
for each protected function f, the type signature specifies a
predicate d;. The invariant the type system ensures is that
for all g1, g2, @1, - - - , 4n, we will be able to prove the predicate
d¢(g1, 4>, G1, ..., an) only if the corresponding automaton

transition holds. In other words, only if §(f)(q1, a1, .. .
q2

The value signature specifies that objects a and states
q are given the correct singleton types. For each protected
function f in the source language, the target language con-
tains two functions. The function d; is supplied by the im-
plementer of the security policy; it is used to dynamically
determine the automaton state transition function given the
program executes the function f in the state g1 with ar-
guments identified by p1,...,0n. When §; has computed
the transition, it calls its continuation, passing it the next
state g2 so the continuation can test this state to determine
whether it is bad. The continuation assumes the predicate
d¢ (01, 02, p1,- - -, pn). Before calling the function f itself, we
require that the type-checker be able to prove that f will
make a transition to some state other than the bad state.
Hence the precondition on f states that we must know the
automaton transition that will occur (§¢(01, 02, p1,---,pn))
and moreover that the new state g2 is not equal to bad.

Now that we have fully defined the target language and
specialized it for a particular security automaton, we can
prove that the type system satisfies a number of properties.
In the next section, we show the target language type syste
is sound and enforces the security policy.

aan):

4.4 Properties of \ 4

A predicate P is valid with respect to an automaton A,
written A |= P, if:

o Pis#(4,¢)and g # ¢, or

o P is d¢(q1, g2, a1,.-.,a,) and
§(f)qr, a1,...,an) = q2

We say that an expression e is secure with respect to a
security automaton A in state g, written A;q F e, if

1. q # bad

and there exist predicates P, ..., P, such that:
2. AEP,for1<i<mn
3. P1,...,Pp;5qtke

If we can prove that an expression e is secure in our de-
ductive system then the expression should not violate the
security policy when it executes. The soundness theorem
below formalizes this notion. The first part of the theorem,
Type Soundness, ensures that programs obey a basic level of
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V[Q2:State76f(01a925p1, . ,p")](gh ( 2)) — O) =0
if Csource(f) = (b1, .-, bn, (b) +0) =0

C(f) = Vei:State,ps:State, p1:Val,..., pp:Val, # (02, bad), 6f(gl, 02,P1,-- - Pn)l-
(01, b1(p1), - -, bu(pn), VIl (02, Fp:Val.b(p)) — 0) —
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Figure 8: Target Language Interface
control-flow safety. More specifically, it ensures that expres- 1. if s = then A;q €
sions do not get stuck during the course of evaluation. An )
expression e is stuck if e is not halt and there does not exist 2. and if s = f(a1,..., an) the” L
an e’ such that e —, e’. Hence, Type Soundness implies a where 0(f)(q, a1, - .., a,n) =4

program will only halt when it executes the halt instruction
and not because we have applied a function to too few or
the wrong types of arguments. The second part of the the-
orem, Security, ensures programs obey the policy specified
by the security automaton A. In other words, the sequence
of protected operations executed by the program must form
a string in the language L£(A). In this second statement,
we use the notation |si,...,sn| to denote the subsequence
of the symbols s1, ..., s, with all occurences of - removed.

Theorem 1 (Soundness)

If A;qo Fe1 then

1. (Type Soundness) For all evaluation sequences eq —s,
€y g ' s, €ni1, the expression e,i41 s not
stuck.

2. (Security) If e1 —5, €2 >,
[s1,82,-..,8n] € L(A)

- s, €ent1 then

n

Soundness can be proven syntactically in the style of
Wright and Felleisen [30] using the following two lemmas.
The proof appears in a companion technical report [29].

Lemma 2 (Progress) If A;qt e then either:
1.er—, ¢ or
2. e = halt

Lemma 3 (Subject Reduction) If A;q F e and e —,
e’ then

10

Finally, inspection of the typing rules will reveal that
for any expression or value, there is exactly one typing rule
that applies and that the preconditions for the rules only
depend upon subcomponents of the terms or values (with
possibly a predicate substitution). Judgements for the well-
formedness of types and predicates are also well-founded so
the type system is decidable:

Proposition 4 It is decidable whether or not ® |- e.

4.5 Language Extensions

If security policies depend upon higher-order functions or
immutable data structures such as tuples and records, we
will have to track the values of these data structures in the
type system using singleton types as we did with values of
base type. The simplest way to handle this extension is to
use an allocation semantics (See, for example, [17]). In this
setting, when a function closure fix g[A](- - -).e is allocated,
it is bound to a new address (£). Instead of substituting the
closure through the rest of the code as we do now, we would
substitute the address (¢) through the code and give it the
singleton type 7(f) where 7 is V[A](---) — 0. All the other
mechanisms remain unchanged. For the sake of simplicity,
we decided not to present this style of semantics.

There are a number of possibilities for handling muta-
ble data structures. The main principle is that if security-
sensitive operations depend upon mutable data then the
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let p1,z} = unpack z; in
let pn, T, = unpack Z, in
let 92:6f(913 02,P15 - - - ,pn); Loy = 6f[91][p1] e [pn][](x()’x'li s 53:;’1-) in
if 2 (
bad — halt
| -—=letz = floilez]lp1] - - - [onl[][](2Y, - -, 27) in
xﬂ+1[g2][ Lo, T
if Csource(f) = (b1,..., bn, (b)) = 0) =0
|UO(U17--'7UH)|P‘U = |UO|[P][](U: |’U1|,...,|’Un|)
|halt |p,, = halt
Figure 9: Program Instrumentation
and we naturally express this fact as a precondition to ev-
types T ou= b|(r,..., ™) 20 ery function call. Hence the translation of (71,...,7,)—0is
constants a € A V[o:State, # (o, bad)].(0,S(0), |71l - - -, |Ta|) = 0. In general,
protected ops f € F we may not know the current state statically so we quantify
values von= w| alfl over all states g, provided ¢ # bad. In order to determine
) fixg(zym, ..., TniTa) € state transfers do not go wrong, we will also have to thread a
eTpressions e u= wvo(v1,...,vn) | halt representation of the state (S(o)) through the computation.

Figure 10: Source Language Syntax

state of that data must be encoded in the state of the au-
tomaton. The assignment operator must be designated as a
protected operation that changes the state.

5 Program Instrumentation

It is easy to design a translation that instruments a safe
source language program with security checks now that we
have set up the appropriate type-theoretic machinery in the
target language. For the purposes of this paper, we will in-
strument programs written in a continuation-passing style
simply-typed lambda calculus. The syntax of the language
can be found in Figure 10. We will assume a static seman-
tics given by judgements I' Fgource v 1 7 and I' Fgource €
where T is a finite map from value variables to types. Con-
stants a and f are given types by the source signature Csource
described in the previous section. Other than this, the se-
mantics are entirely standard and have been omitted. Fig-
ure 9 gives the instrumentation algorithm in two parts: a
type translation and a term translation. Here and in later
section, we will use the abbreviation:

let A, z1,...,Zn = v(V1,...,0p)ine =
v(vi, ..., Un, fix _[Al(z1:71,...,ZniTn).€)

In the translation in Figure 9, we assume predicate and value
variables bound by let are fresh.

The interesting portion of the type translation involves
the translation of function types. The static semantics main-
tains the invariant that programs never enter the bad state
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Every value of base type b is packed up as the existential
Jp:Val.b(p) so that it can be used generically in the normal
case. In other words, wherever we used an integer in the
source language, we will be able to use the target language
type Jp:Val.b(p). However, when we come to the transla-
tion of a protected operation, these generic values will be
unpacked so the type system can maintain precise informa-
tion about them. In fact, examining Figure 9, we can see
that the first step in the translation of protected operations
f is to unpack its arguments. Next, we use the function &
to determine the state transition that will occur if we ex-
ecute f on these arguments. After checking to ensure we
do not enter the bad state, we execute f itself passing it a
continuation that executes in state ga.

Instrumented programs type check and thus they are se-
cure in the sense made precise in the last section:

Proposition 5 If Fsource € then A;qo & |e]gy.q0-

This property can be proven using a straightforward in-
duction on the typing derivation of the source term.

5.1 An Example: The Taxation Applet

In order to demonstrate the translation, we have written
a simple “taxation applet” in the source language. When
invoked, this applet sends a request out for tax forms. After
sending the request, the applet reads a private file containing
the customer salary before computing the taxes owed. We
will assume files (file) and integers (int) are available as
base types; send and read are the two protected operations:

fix (secret:file, Teont:(int) — 0).
let = send() in % send for tax forms
let salary = read(secret)in % read salary



let taxes = salaryin
Zcont(tazxes)

% compute taxes!!

The code below shows the results of instrumentating the
taxation applet with checks from the simple file system se-
curity automaton of Section 3. We have simplified the out-
put of the formal translation slightly to make it more read-
able. In particular, we have inlined the functions that the
translation wraps around each protected operation. When
reading the code calling send or read, notice that the in-
stantiation of predicate variables indicates the state transi-
tion that occurs. For example, execution of the expression
send[o1][e2]['][[]() causes the automaton to make a transi-
tion from g1 to g2. When reading the checking functions,
for example, dsena01][-](xo,), notice that we are checking
the validity of the operation in the state indicated by the
arguments (01 and z,, ) and that the result is the next state.

fix [p1:State, # (01, bad)]
(01, %0,:8(01), secret:Ip:Val. file(p),
ZcontTcont)-
let 02, 0sena(01, 02); Toy = dsenalo1][](zo, ) in
if g, (
bad — halt
| —
Lot = sendfo][o2][][]() in
let p, secret’ = unpack secret in
let 03,0rcad (02, 03, p), Tos =
dread|02][](zoz, secret’) in
if zgy (
bad — halt
| —
let salary = read[o2][os][-][-](secret’) in
let tazes = salaryin
Teont[03][](@ o5, tawes)))

where Tcont =

V[Qcont, 7é (Qcont, bad)]
(0cont, S(Qcont), E|p':Va1.int(p')) -0

The translation does not assume that the taxation applet
is invoked in the initial automaton state and consequently
the resulting function abstracts the input state g1. Also, as
specified by the translation, objects of base type, like the file
secret become existentials. The main point of interest in this
example is that before each of the protected operations send
and read, the corresponding automaton function determines
the next state. Then the if construct checks that these
states are not bad. In the successful branch, the type checker
introduces information into the context that allows it to infer
that executing the read and send operations is safe.

5.2 Optimization

Many security automata exhibit special structure that al-
lows us to optimize secure programs by eliminating checks
that are inserted by the naive program instrumentation pro-
cedure [27]. One common case is an operation f that always
succeeds in a given state ¢ and transfers control to a new
state ¢ regardless of its arguments. In this situation, we
can make the following axiom available to the type checker:

(for all Py,...,Pyp)

‘bl_éf(Q:ql,Pla---aPn)

If we know we are in state ¢, we can use the axiom above
and the fact that q # bad to satisfy the precondition on f;
there is no need to perform a run-time check.
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The send operation in the security automaton in Sec-
tion 3 has this property. When invoked in the initial state,
send always succeeds and execution continues in the initial
state. Therefore, we can safely add the axiom:

D & dsena(start, start)

Now, if we know our taxation function is only invoked in
the start state, we can rewrite it, eliminating one of the
run-time checks:

% Optimization 1:
fix [](start, Tsiars:S(start), secret:Ip:Val. file(p),

Zcont:Tcont)-

let _ = send[start][start][-][]() in

The type checker can prove send is executed in the start
state and that the predicate dsenq(start, start) and the pred-
icate # (start,bad) are valid. Therefore, the optimized ap-
plet continues to type-check.

A second important way to optimize A4 programs is
to perform a control-flow analysis that propagates prov-
able predicates statically through the program text. Us-
ing this technique, we can further optimize the taxation
applet. Assume the calling context can prove the predi-
cate dreqd(start, has_read, p) (perhaps a run-time check was
performed at some earlier time) where p is the value predi-
cate corresponding to the file secret. In this case, the caller
can invoke a tax applet with a stronger precondition that
includes the predicate d,cqq(start, has_read, p). Moreover,
with this additional information, an optimizer can eliminate
the redundant check surrounding the file read operation:

% Optimization 2:
fix [p:Val, dreqa(start, has_read, p)](start,
secret: file(p),
Zeont:V[]-(has_read,3p:Val.int(p)) — 0).
let _ = send[start][start][-][-]() in
let salary = read[start][has_read][][-](secret) in
let taxzes = salaryin
Zeont(tazes)

In the code above, the optimizer rewrites the applet pre-
condition with the necessary information. The caller is now
obligated to prove the additional precondition before the ap-
plet can be invoked. The caller also unpacks the secret file
before making the call so that the type checker can make
the connection between the arguments to the d,¢qq predi-
cate and this particular file. Finally, because the automa-
ton state transitions are statically known throughout this
program, we do not need to thread the state representa-
tion through the program. We assumed an optimizer was
able to detect this unused argument and eliminate it. After
performing all these optimizations, the resulting code is op-
erationally equivalent to the original taxation applet from
section 5.1, but provably secure.

The flexibility in the type system is particularly useful
when a program repeatedly performs the same restricted
operations. A more sophisticated tax applet might need
to make a series of reads from the secret file (for charita-
ble donations, number of dependents, etc.). If we assume
the recursive function read_a_lot performs these additional
reads, we need no additional security checks:

fixread_a_lot
[o:State, p:Val, dreaa(0, has_read, p), # (o, bad)]



(o, secret: file(p),

Zeont:V[](has_read, Ip:Val.int(p)) — 0).
% In unknown state p
let info = read|p][has_read][-][]() in
% In known state has_read

% Must prove d(has_read, has_read,p)
read_alot[has_read][p][-]['](secret, Tcont)

The read_a_lot function can be invoked in a good state g
(é.e. either start or has_read) when we can prove the pred-
icate dreqa(0, has-read, p). Using the d,cqq predicate in the
function precondition, the type checker infers that the read
operation transfers control from the g state to the has_read
state. Before the recursive call, the type checker has the
obligation to prove dreqq(has_read, has_read, p) but it can-
not do so because it only knows that d,cqd(0, has_read, p)!
Fortunately, we can remedy this problem by adding another
policy-specific rule to the type-checker:

® +# (P, bad)
® F dread(P, hasread, Py)

@ & bread( P, has_read, Py)

(for all P, P', Py)

This rule states that if we can read a file Py in one state
(P), then we can read it in any state (except the bad one)
and we always move to the has_read state. This condition
is easily decidable.

In practice, Erlingsson and Schneider’s untyped opti-
mizer analyzes security automaton structure and performs
optimizations similar to the ones discussed above. Once the
optimizer has obtained the information necessary for a par-
ticular transformation, this information can also be used to
automatically generate the policy-specific axioms that we
have discussed.

6 Related Work

The design of A\ 4 was inspired by Xi and Pfenning’s Depen-
dent ML (DML) [33, 31]. As in DML, we track the identity
of values using dependent refinement types and singleton
types. However, rather than applying the technology to ar-
ray bounds check elimination and dead-code elimination, we
have applied it to the problem of expressing security policies.
Because their domain is different, Xi and Pfenning have not
considered dependencies on the current state that are nec-
essary here. On the other hand, they do consider existential
dependent types of the form J[p:Val, P(p)].7(p), which can
be read “there exists a value p such that P(p) and that p
has type 7.” Such existentials could be useful in a security
setting. For example, they would allow users to manipulate
collections of files that all have the property that they are
readable or writeable. However, in order to take advantage
of such types, a compiler would require very sophisticated
type inference techniques or require application writers to
annotate their code. Unlike Xi and Pfenning, one of the de-
sign goals of this work was to free application writers from
the burden of having to write down additional information
to prove properties of their programs. Therefore, because
existentials of this form were not immediately necessary, we
omitted them from the formalism.

Leroy and Rouaix [11] also consider security in the con-
text of strongly-typed languages. Their main concern is
proving that standard strongly-typed languages provide cer-
tain security properties. For example, they show that a pro-
gram written in a typed lambda calculus augmented with
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references cannot modify unreachable (in the sense of trac-
ing garbage collection) locations. They did not investigate
mechanisms for mechanically checking that instrumented
programs are safe, nor did they study the broader range
of security policies that can be specified using security au-
tomata.

Several other systems use code instrumentation or other
techniques to enforce safety properties. For instance, Evans
and Twyman [2] have developed the Naccio system for speci-
fying security policies. Like SASI, Naccio allows users to add
security state to untrusted programs and to define opera-
tions that perform security checks. Sandholm and Schwartz-
bach [23] have developed a system for instrumenting con-
current programs to detect race conditions and violations of
other safety properties. They take specifications in a second-
order modal logic and compile them into a distributed secu-
rity automaton. Godefroid [4] has a tool (VeriSoft) that de-
tects violations of safety properties in concurrent programs
using an extended model-checking technique. Fickas and
Feather [3] have developed software that monitors proper-
ties of the environment that a process inhabits so that this
information can be later used to help evolve the system.
However, none of these other systems produce certified code
and therefore they do not gain the benefits of redundant
checking of their software; users must trust their compilers
to do the right thing.
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