
Compiling Path Queries in Software-Defined Networks

Srinivas Narayana, Jennifer Rexford and David Walker
Princeton University

{narayana, jrex, dpw}@cs.princeton.edu

ABSTRACT
Monitoring the flow of traffic along network paths is essen-
tial for SDN programming and troubleshooting. For exam-
ple, traffic engineering requires measuring the ingress-egress
traffic matrix; debugging a congested link requires deter-
mining the set of sources sending traffic through that link;
and locating a faulty device might involve detecting how far
along a path the traffic makes progress. Past path-based
monitoring systems operate by diverting packets to collec-
tors that perform “after-the-fact” analysis, at the expense of
large data-collection overhead. In this paper, we show how
to do more efficient “during-the-fact” analysis. We introduce
a query language that allows each SDN application to specify
queries independently of the forwarding state or the queries
of other applications. The queries use a regular-expression-
based path language that includes SQL-like “groupby” con-
structs for count aggregation. We track the packet trajec-
tory directly on the data plane by converting the regular
expressions into an automaton, and tagging the automaton
state (i.e., the path prefix) in each packet as it progresses
through the network. The SDN policies that implement
the path queries can be combined with arbitrary packet-
forwarding policies supplied by other elements of the SDN
platform. A preliminary evaluation of our prototype shows
that our “during-the-fact” strategy reduces data-collection
overhead over “after-the-fact” strategies.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations

Keywords
Network monitoring; software-defined network; network query

1. INTRODUCTION
Networks are notoriously difficult to measure well. Tools

such as NetFlow, sFlow, and SNMP are effective at mon-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotSDN’14, August 22, 2014, Chicago, IL, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2989-7/14/08 ... $15.00
http://dx.doi.org/10.1145/2620728.2620736 .

itoring flows, packets, or aggregate statistics at individual
links. However, operators often need to reason about the
flow of traffic along paths through the network. Examples
include measuring an ingress-egress traffic matrix [1], de-
tecting the traffic sources and sinks affected by a congested
link [2], catching access-control violations as they occur [3],
or localizing faulty devices on the network using path-level
information (§2).

Answers to such path-based queries can be achieved using
one of two broad approaches. Hoarders record as much infor-
mation as possible, so users can specify a wide range of more
refined queries after the fact. Neat Freaks specify queries
ahead of time, allowing them to collect and store much
less data, but support a narrower range of pre-determined
queries. Of course, almost any practical system contains el-
ements of both the Hoarder and the Neat Freak. In the con-
text of SDN, NetSight [3] is an example towards the Hoarder
end of the spectrum: It creates a postcard for each packet
at each hop in its journey. These postcards, which contain
the packet header, the matching flow entry, and the switch
and output port, are sent to servers that store them for later
analyses, such as backtrace construction.

In contrast, in this paper, we illustrate how to develop
a “tunable” Neat Freak for path queries in SDNs. Our
query language allows users to ask questions about pack-
ets traversing paths specified using regular expressions of
boolean packet predicates. The language also includes an
SQL-like groupby construct for aggregating traffic statistics
by different packet headers, such as source IP address, at
the beginning, middle, or end of paths. Importantly, the
specification is completely modular: It is possible to spec-
ify many different queries, each independent of one another,
and independent of the underlying packet-forwarding policy.
To illustrate the flexibility of our query language, we present
a number of practical example queries (see Table 1).

Our run-time system implements these queries by gen-
erating OpenFlow rules that analyze packets as they flow
through the network’s data plane, to avoid directing every
packet (or postcard) to collectors for analysis. To achieve
this, we record packets’ past trajectories onto bits on the
packets themselves (i.e., tags). The main insight is that the
necessary information is just the packet’s current state on a
Deterministic Finite Automaton (DFA) that represents the
path queries. Our run-time system first converts the path
queries to this abstract DFA, and then generates tag and
capture rules that (in effect) run the transitioning and ac-
cepting rules of the DFA—in a distributed fashion on the
switches. Each packet traverses the DFA with its own in-

pred ::= true | false | match(header=value)

| pred & pred | (pred | pred) | ∼pred
| ingress() | egress()

atom ::= in_atom(pred)

| out_atom(pred)

| in_group(pred, [header])

| out_group(pred, [header])

path ::= atom | path ^ path | (path | path) | path*

Figure 1: Syntax of path queries.

dependent state (encoded as the tag), which is manipulated
by OpenFlow rules to “move” the packet on its (own) DFA.
Finally, the run-time system puts together these tag and
capture rules with the forwarding policy specified by other
components of the SDN platform.

Our run-time system is proactive, generating rules ahead
of time to process traffic within the network, rather than at
the controller. As such, we incur data-collection overheads
only for packets that satisfy the queried paths. In addition,
the system is lightweight, running on top of OpenFlow and
leveraging counters on the data plane to collect statistics,
and standard forwarding actions to redirect packets to a col-
lector. Most importantly, the user gets to decide where to
sit along the “Hoarders vs. Neat Freaks” spectrum, by spec-
ifying queries that collect the measurements that might be
of interest—now and later. Preliminary evaluation of our
prototype (built on top of Pyretic [4]) shows that we can
deliver accurate results with monitoring and collection over-
heads proportional to the traffic volume matching a payload
query. In summary, our contributions are:
• a query interface that allows compositional specifica-

tion of path queries, through a regular expression-based
language with grouping constructs (§2),
• a runtime system that directly observes packet paths

on the data plane, and works with unmodified end
hosts and OpenFlow 1.0 switches (§3), and
• preliminary results showing that our in-network “Neat

Freak” strategy reduces data-collection overhead over
typical “Hoarder” strategies (§4).

2. PATH-QUERY LANGUAGE
A path query is an expression that recognizes sets of pack-

ets that traverse particular paths through a network. Fig. 1
presents the basic syntax of path expressions, and Table 1
shows example applications that can be concisely expressed
using the query language.
Basic Atoms. The simplest path query is one consisting of
just one point in the network; we call such simple paths
atoms. Moreover, every atom contains a predicate, which
helps identify the specific network location of interest and
the set of packets flowing through that location. For exam-
ple, the atom

in_atom(match(srcip=H1) & match(switch=1))

identifies the set of packets with source IP H1 that flow in
to switch 1. In contrast,

out_atom(match(srcip=H1) & match(switch=1))

identifies the set of packets with source IP H1 that flow out of
switch 1. Those two sets of packets might be quite different,
especially if switch 1 drops or rewrites some packets with
source IP H1. Note that we usually abbreviate expressions
such as in_atom(match(f1=v1) & match(f2=v2)) with sim-
ply in_atom(f1=v1, f2=v2). For example, we abbreviate
the in_atom above with in_atom(srcip=H1, switch=1). Two
other useful atoms are in_atom(ingress()), which matches
all packets entering the network, and out_atom(egress()),
which matches all packets leaving the network.
Grouping Atoms. A basic atom identifies just one set of
packets. A grouping atom, on the other hand, identifies
many closely-related sets of packets. For example, the fol-
lowing atom matches all packets entering the network (via
the ingress predicate) and then divides that set in to sub-
sets based on the switch at which they arrive.

in_group(ingress(), [’switch’])

More generally, in_group(pred, [h1, h2, ..., hn]) se-
lects packets coming into a switch that satisfy the predi-
cate pred and then divides that set into subsets where each
packet in the subset shares common values for the headers
h1, h2, ..., hn. Hence the grouping atom

in_group(ingress(), [’srcip’,’dstip’])

would divide the incoming packets into groups based on
source IP-destination IP pairs. The out_group atom is sim-
ilar to the in_group atom, except it identifies packets on
their way out of a switch (like out_atom).
Regular Path Combinators. Given path queries p1, p2, we
can build more complex paths using the usual concatenation
(^), alternation/choice (|) and Kleene star/iteration (∗). For
instance, the path p1 ^ p2 requires that a packet first traverse
the path p1 and then traverse the path p2. If p1 and p2 are
simple atoms, this means that the packet must satisfy the
predicate designated by p1, incur exactly one hop “across
the wire”, and then satisfy the predicate designated by p2.
Table 1 presents several additional example queries.
Using Path Queries to Inspect or Count Packets. A pro-
grammer uses a path query by directing the packets match-
ing the query to a bucket. Intuitively, a bucket is an abstract
“location” in the network that collects packets. There are
two kinds of buckets: packet buckets and counting buckets.

Packet buckets are currently implemented as queues on
the controller that store a set of packets1. Programmers ac-
cess the packets that arrive on these queues by associating a
callback with the bucket. Packet buckets are quite useful for
debugging. For instance, suppose an operator wants to lo-
calize a faulty switch that drops traffic somewhere along the
path S1, S2, ..., S10 in the network. She can designate
a small subset of this traffic as “probe traffic”, and specify
a predicate probe_pred that matches against these probes.
Now, she can easily set up a path query and an associated
packet bucket that determines how far along this path the
probe packets got, before they were dropped. She installs
the query

p = (in_atom(switch=S1 & probe_pred) ^

in_atom(probe_pred)*)

and a packet bucket to go with it:

1These packets can in principle be sent to designated“packet
collector” nodes directly from the network switches.

Example Query code Description

A simple path in_atom(switch=S1) ^ in_atom(switch=S4) All packets going from switch S1 to S4 in the network.

Traffic matrix in_group(ingress(), [’switch’]) ^ (true)* All packets from any ingress point to any egress point,

^ out_group(egress(), [’switch’]) with counts grouped by (ingress, egress) switch pair.

Congested link in_group(ingress(), [’switch’]) ^ (true)* Determine flows (switch sources → IP sinks) utilizing a

diagnosis ^ in_atom(switch=sc,inport=pc) congested link (on switch sc and port pc), to help reroute

^ (true)* ^ out_group(egress(), [’dstip’]) traffic around the congested link.

Faulty switch in_atom(switch=S1 & probe_pred) Localize a faulty switch by observing how far designated

localization ^ in_atom(probe_pred)* probe packets move along a problematic path (see §2).

Middlebox (in_atom(switch=TC) ^ in_atom(switch=IDS)) | Count packets traversing adjacent middleboxes (e.g., trans-

traversal (in_atom(switch=IDS) ^ in_atom(switch=TC)) coder (TC), intrusion detection system (IDS)) in either order.

Waypoint invariant in_atom(ingress()) ^ in_atom(∼switch=FW)* Detect all packets evading a firewall switch FW on the data

violation ^ out_atom(egress()) plane (see §4).

Table 1: Example applications of the path-query language in Figure 1. We abbreviate in_atom(true) to true.

b = PacketBucket() // create bucket b

b.register_callback(last_hop) // record progress

p.set_bucket(b) // associate b with path p

The callback last_hop() records the (topologically) last
switch ID (say k) along the path that reported the probe
packet. Armed with this information, the operator can in-
vestigate further—say, by running tests on switch k+1 that
did not report the probe packets.

Collecting aggregate traffic statistics requires a different
sort of bucket—the counting bucket. Rather than direct-
ing individual packets to the controller, a counting bucket
simply returns the total byte and packet counts across all
packets matching the query. The specification of a count-
ing bucket includes a measurement interval for returning the
count values (e.g., every 30 seconds).

3. PATH QUERY COMPILATION
The main objective of the path query implementation is to

find a way to use existing switch-level primitives (e.g., spec-
ified by the OpenFlow API) to recognize packets directly on
the data plane as they move through trajectories satisfying
the path queries. At the same time, we must avoid cor-
rupting the underlying packet-forwarding policy. If we can
achieve these two goals, we can collect payloads or count the
packets satisfying the queried paths only at the point where
these ‘interesting’ packets complete their trajectory.

Overall, we achieve this goal by compiling the queries into
OpenFlow rules that preserve the underlying forwarding pol-
icy, but add a few bits of state (i.e., a tag) to packets as they
traverse the network. These tags encode the state of the
packets on a Deterministic Finite Automaton (DFA) that
represents the set of input path queries (which are essentially
regular expressions of predicates, hence this intermediate
representation). All data plane packets move through this
“abstract” DFA—which is actually distributed throughout
the network—with state transitioning and accepting actions
at every hop, that determine whether a packet is eventually
counted against a query. We split the query compilation
into the following key steps:

1. conversion of the set of path queries into a Determin-
istic Finite Automaton (DFA) (§3.1),

2. construction of packet-tagging and capturing/counting
policies from the DFA (§3.2), and

3. merging tagging and counting policies with the packet
forwarding policy to form a full policy for the network
(§3.3).

We use Pyretic as an intermediate language to trans-
late the DFA (from step (1)) into independent policies (in
step (2)) that are finally compiled (in step (3)) into Open-
Flow rules, so we briefly review the key primitives that we
use from this language. Our compilation works in princi-
ple with any platform that exposes parallel and sequential
composition primitives for network policies.
Background on Pyretic Primitives (+ and >>). Table 2
summarizes some key elements of Pyretic’s policy language.
Each Pyretic policy should be thought of as a function from
a packet to a set of packets. The network switches will imple-
ment these functions, taking one packet in a port, and pro-
ducing 0 (dropped), 1 (unicast forwarding), or more (multi-
cast forwarding) packets out other ports. For example, the
policy modify(port=2) is a function that moves a packet
from its current port to port 2. Predicates act as policies
that filter packets: they drop any packet that does not match
the predicate and leave any packet that does match it un-
changed.

Programmers create larger policies by combining exist-
ing policies together using parallel (+) and sequential (>>)
composition operators. The sequential composition p >> q

executes the policy p on a packet and then q on the results
of p. For instance,

match(srcip=H1,port=1) >> modify(port=2)

forwards any packet from H1, entering the switch at port
1, out port 2 and drops all other packets. The parallel com-
position p+q combines the outputs of p and q. For example,

match(srcip=H1) + match(srcip=H2)

selects packets from H1 or H2’s source IP address, dropping
all other packets.
Running example. For the remainder of this section, to il-
lustrate our compilation algorithms, we show how to compile
the following example into OpenFlow.

p1 = (in_atom(srcip=H1, switch=1) ^

in_atom(dstip=H3, switch=3))

p2 = in_atom(switch=1) ^ in_atom(switch=3)

Query p1 specifies packets that go from switch 1 to 3, with
H1’s source IP address at switch 1 and H3’s destination IP at
switch 3. The path p2 specifies packets that go from switch
1 to 3.

Concept Example Description

Modification modify(port=2) Rewrites a packet field

Predicate match(switch=2) Filters packets

Parallel monitor + route The union of results

composition from 2 policies.

Sequential balance >> route Pipe the output from

composition the first in to the second

Table 2: Syntax of Key Pyretic Policies.

Predicate String Predicate String

switch=1 & srcip=H1 a switch=1 a|e

switch=1 & ∼srcip=H1 e switch=3 b|f

switch=3 & dstip=H3 b p1 ab

switch=3 & ∼dstip=H3 f p2 (a|e)(b|f)

Figure 2: Strings emitted for the running example
(§3.1). We avoid writing match(...) for brevity.

3.1 From Path Queries to DFA
We first convert the path queries into a Deterministic Fi-

nite Automaton (DFA). To construct the automaton, we
first convert our path queries into standard regular expres-
sions over strings. We use off-the-shelf libraries to convert
regular expressions into DFAs.
Converting path queries to regular expressions. Path queries
are regular expressions over packet predicates. To compile
them, we convert them into regular expressions over strings
of characters. The key step here is assigning specific charac-
ters to predicates. For example, consider the first query p1

in our running example. We assign characters to predicates
as follows.

match(srcip=H1, switch=1): ’a’

match(dstip=H3, switch=3): ’b’

This leads to the regular expression ab for path p1.
Next, we turn to converting the query p2 in to a reg-

ular expression. Here, consider a packet with srcip=H1

and dst=10.0.0.3 entering switch 1. This packet satisfies
two predicates: match(switch=1, srcip=’H1’) from p1 and
match(switch=1) from p2.

If we assign these two predicates different characters, our
packet will wind up being in two different automaton states
at the same time. This is undesirable, because we would
rather only have one DFA state per packet, to make it feasi-
ble to encode and match using a limited number of scratch
bits on the packet. Consequently, we partition the complex

Q0	 Q1	 Q2/p1	
a b Q0	

Q1	

Q2	

Q4/
p1,p2	

Q3/p2	

a

e

b

f	

[bf]	

(a) (b)

Figure 3: Deterministic finite automaton for the reg-
ular expressions from the running example (§3). (a)
DFA only for path p1. (b) DFA for both p1 and p2.

predicates we find in path queries into non-overlapping sub-
parts (i.e., an orthogonal basis for the complete set of predi-
cates) and assign one character to each such non-overlapping
subpart. For example, we construct the representations for
the predicates and the paths p1 and p2 shown in Fig. 2. The
DFA for p1 and p2 together is shown in Fig. 3(b).

3.2 From a DFA to Tagging/Counting Policies
The next step is to translate the DFA into primitive state

transitioning and accepting policies in Pyretic. These poli-
cies will read and write the relevant DFA state into each
packet as it moves from switch to switch.
State Transition Policies. At any given time, each packet
processed by the network is associated with some DFA state.
We implement these states using Pyretic’s virtual header
field mechanism.2 Packets just entering the network are
stamped with the “starting” state of the DFA, and transi-
tions thereafter are implemented on each switch as policies
that check the current state, and write in a new state accord-
ing to the transition rules. For example, consider a transi-
tion from DFA state s to DFA state t on seeing character c.
Assume also that a function pred_of converts c to the asso-
ciated predicate p. In such a case we generate the following
clause.

match(state=s & pred_of(c)) >> modify(state=t)

The tagging policy for an automaton is the parallel compo-
sition of all such transition policies:

tagging = clause_1 + ... + clause_n

For example, the tagging policy for the DFA in Fig. 3(a) is
implemented as follows:

(match(state=Q0) & match(srcip=H1,switch=1)) >>

modify(state=Q1)) +

(match(state=Q1) & match(dstip=H3,switch=3)) >>

modify(state=Q2))

Accepting policies. In addition to encoding the DFA tran-
sitions, we must encode when a packet is accepted by the
automaton. The accepting actions are encoded as Pyretic
policies that recognize the transition into an accepting DFA
state, and direct those packets to the bucket associated with
the accepting query. In general, when the automaton enters
an accepting state t on reading character c from state s,
the following counting policy captures the packets that sat-
isfy the path query.

match(state=s) & pred_of(c) >> p.bucket()

In our running example (Fig. 3(a)), we generate the follow-
ing counting policy for the accepting state.

match(state=Q1) & match(dstip=H3,switch=3) >>

p1.bucket()

3.3 From Tagging/Counting to Pyretic Policy
The final step is merging the policies generated from the

DFA with the global packet forwarding policy generated by
other SDN applications. Our compiler assembles the follow-
ing components: (1) the tagging policy, which implements
DFA transitions on packets that undergo a state change, (2)

2Pyretic’s virtual headers are currently encoded in the
packet’s VLAN header. Other mechanisms are possible.

Priority Match Action
3 srcip=H1, dstip=H1, state=Q0 → fwd(2), state=Q1
3 srcip=H1, dstip=H3, state=Q0 → fwd(1), state=Q1
2 dstip=H1, state=Q0 → fwd(2), state=Q2
2 dstip=H3, state=Q0 → fwd(1), state=Q2
1 dstip=H1 → fwd(2)
1 dstip=H3 → fwd(1)
0 * → drop

Table 3: Openflow rules on S1 after installing the
path queries in running example (§3). The original
forwarding policy only has the last 3 rules shown.

an unaffected policy, which implements the identity func-
tion on those packets that do not undergo a state change, (3)
The fwding policy, which implements the forwarding poli-
cies of other applications, and (4) the counting policy, which
identifies the accepted packets. We put them together as fol-
lows:

((tagging + unaffected) >> fwding) + counting

Intuitively, this policy states that for each packet, we either
tag (initiating a state change) or leave the packet unchanged,
and then forward it. In parallel, we count the packet (or send
it to the controller).

The unaffected policy captures the negation of all matches
in the tagging policy. For our running example DFA in
Fig. 3(a), unaffected is defined as follows.

∼(match(state=Q0) & match(srcip=H1,switch=1)) &

∼(match(state=Q1) & match(dstip=H3,switch=3))

We show a sample of the final OpenFlow 1.0 rules gen-
erated as a result of compiling the path queries for switch
1, in Table 3. The original forwarding policy only had the
last 3 rules shown there, corresponding to destination-based
forwarding for hosts H1 and H3. However, the compilation
has carefully teased apart overlapping predicates and actions
among the queries and the forwarding rules, to generate data
plane rules that work for both forwarding as well as queries.
Summary. We have shown how to take regular path queries,
represent them as regular expressions, convert them to DFAs
and then compile those DFAs to Pyretic policies. Notably,
the translation of multiple simultaneous actions—tagging,
capturing, and forwarding—into OpenFlow rules would have
been rather difficult, if it were not for the ability to put to-
gether independently-constructed policies using parallel and
sequential composition (which are supported by the Frenetic
languages).

Implementation status. Our current prototype fully sup-
ports in_atom with all predicate combinations, and the basic
path operators: concatenation (^), alternation (|), and rep-
etition (*). We have also implemented a special case of the
out_atom to support the network egress() predicate. The
compilation algorithm above has been fully implemented,
but it only supports queries with in_atoms (no group or out
atoms). Currently, Pyretic already supports reactive com-
pilation for groups for single-point queries; we are extending
compilation support for the path-level group atoms. We are
also working on fully supporting out_atoms and additional
path combinators (negation (∼) and intersection (∧)).

4. EVALUATION
We show a preliminary demonstration of the reduction in

data collection overheads while using a query-based system.

H1	

H2	

S4	 S2	

H3	

H4	

S1	

S3	 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
a
ti
o
 o

v
e
rh

e
a
d
/t
o
ta

l

Ratio query-satisfying/total

all packets, every hop
this paper

optimal

(a) (b)

Figure 4: (a) Topology (b) Collection overhead (§4)

We run our experiments in mininet [5], a platform which
uses linux container-based virtualization to emulate a bunch
of network hosts and switches.
Reduction in payload collection overheads. We use the net-
work topology in Fig. 4(a), where S4 is a designated firewall
switch. A network operator wants all traffic (in any direc-
tion) to pass through it. In our experiment, we setup iperf

data transfers between hosts H1 ↔ H2, and H3 ↔ H4. We
set up the routing so that H3 ↔ H4 traffic goes through the
firewall S4, but H1 ↔ H2 traffic goes through S2—violating
the operator’s expectation.

Fortunately, the operator can preemptively install a query
to collect the payloads of all packets whose trajectories imply
just such a violation, by writing the path query that captures
this condition:

in_atom(ingress()) ^ in_atom(∼switch=S4)*
^ out_atom(egress())

This catches all packets entering the network (ingress()
in_atom), following a trajectory that does not pass through
the firewall (i.e., every hop is such that switch 6= S4), and
exiting the network3 (egress() out_atom).

We measure the collection overhead, which we define as
the bytes received at the collector as a fraction of total data
plane traffic, by collecting byte count statistics on the net-
work using tshark. As an independent variable, we vary the
volume of traffic that satisfies (or will eventually satisfy) the
query, as a fraction of total data plane traffic. We achieve
this by adjusting the ratio of the iperf transfer bandwidths
we set for the H1 ↔ H2 flow (which satisfies the query) and
H3 ↔ H4 flow (which does not satisfy the query).

Fig. 4(b) shows the resulting collection overhead measured
against query-satisfying traffic. We compare three strategies
to collect the same set of packets: (1) a näıve strategy that
collects all packets at every hop, (2) our solution which uses
compiled data plane rules to directly track data plane tra-
jectories, and (3) the “optimal” single-point measurement
which collects query-satisfying packets at network egress us-
ing pcap filters4.

We make two observations. First, the overhead of our
system grows linearly on the fraction of query-satisfying

3Note that in this topology, the firewall S4 is never the first
or last hop of a packet’s intended ingress→ egress trajectory.
4It is not, in general, possible to reduce a path measurement
into one or more “single point” measurements without ad-
ditional data plane state to record trajectory information.
However, it is possible in this simple experiment.

traffic—the näıve strategy always collects all packets at ev-
ery hop, and is always at fraction 1 in this curve. Fur-
ther, our system’s data collection overhead (byte volume) is
very close to “optimal”, i.e., only ≈ 1/3rd the volume of the
query-satisfying traffic, as seen from the slope of the graph.
This is because the compiled data plane rules can identify
precisely those packets that complete the queried trajecto-
ries5 using the packet state, without having to collect the
packets at every hop. In particular, even if 100% of data
plane packets (distinguished by location or payload) even-
tually satisfy the query, only ≈ 33% of them will be sent
to the collector, when they egress at S3 after traversing 3
network hops.

For simplicity, each strategy in Fig. 4(b) sends the entire
payload of the packets it collects from switches to the collec-
tor. Optimizing the number of bytes collected per packet,
and building a distributed system to spray packets over mul-
tiple archiving collectors, are orthogonal to optimizing the
set of packets collected in the first place. Our query sys-
tem targets the latter; techniques to tackle the former prob-
lems [2,3] apply equally well to all strategies compared here.
Statistics collection overheads. We set up a network with
five switches (each connected to one host) arranged in a
cycle, and measure the switch ingress-to-egress traffic ma-
trix. Since counting happens efficiently on the OpenFlow
rule counters, applications can just poll switches for vol-
ume statistics instead of estimating them offline from sam-
ples. We vary the polling period from (every) 10s to 30s,
and find that the collection overhead is in the range 5.4–7.2
KB/switch/polling period in all our runs. The exact collec-
tion overhead depends on the forwarding policy used, which
determines the number of rules queried. The numbers we
present are for a static destination-based forwarding policy.
Limitations. Query-based in-data-plane measurement helps
operators “tune” the collection and processing overheads in
the network according to their needs. However, as the queries
increase in number and complexity, so does the correspond-
ing DFA, whose installation in the network is increasingly
constrained by data plane resources—such as switch rule
space and bits to encode state on the packet (e.g., VLAN
header). For example, with our sample queries, we observed
a 2–3x increase in the number of switch rules (installed on
OpenFlow 1.0 switches which have a single rule table). In
ongoing work, we are exploring techniques to evaluate and
reduce these overheads.

5. RELATED WORK
Path-level measurements. Prior works such as trajectory

sampling [2] and NetSight [3] directly observe packets from
the data plane, diverting all or part of the packet to col-
lectors for “after-the-fact” analysis. In contrast, we allow
operators to control how much they want to store for later
use, by only collecting traffic satisfying pre-specified queries,
while flexibly supporting the full generality of queries avail-
able in earlier approaches.

Policy-based debugging. Header Space Analysis [6] and
VeriFlow [7] detect when the current forwarding policy vio-
lates desirable trace properties (e.g., loop freedom). How-
ever, they do not offer a way to collect path-level traffic
measurements in the data plane.

5Other semantics for data collection are possible.

Traffic query languages and systems. Gigascope [8] and
Frenetic [9] support SQL-like queries on packet streams at a
single point in the network. Even combining such measure-
ments from multiple locations is not sufficient to infer packet
trajectories, since packets (i) may enter the network at mul-
tiple locations and (ii) be dropped, modified, or rerouted
in flight. In contrast, we show how to answer queries on
packet paths—i.e., packet observations spread across space
and time.

Forwarding policies based on paths. Merlin [10], FatTire [11],
and FlowTags [12] present contexts where implementing for-
warding policies based on network paths is useful. However,
these works do not address path-based measurement, which
needs to preserve the behavior of an existing forwarding pol-
icy specified separately from the queries themselves.

6. ACKNOWLEDGMENTS
The authors thank Vimal Jeyakumar and Laurent Van-

bever for helpful early discussions, Vimal Jeyakumar, Naga
Praveen Katta, Joshua Reich, Kelvin Zou, Xin Jin, Mojgan
Ghasemi, Divjyot Sethi, Bharath Balasubramanian and Ji-
asi Chen for helpful comments on earlier drafts of this paper,
and Xin Jin for help with writing rule tables in latex. This
work was supported by NSF grant TC-1111520 and DARPA
grant MRC-007692-001.

7. REFERENCES
[1] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg,

“Fast accurate computation of large-scale IP traffic matrices
from link loads,” in Proc. ACM SIGMETRICS, 2003.

[2] N. G. Duffield and M. Grossglauser, “Trajectory sampling
for direct traffic observation,” IEEE/ACM Trans.
Networking, June 2001.

[3] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and
N. McKeown, “I know what your packet did last hop: Using
packet histories to troubleshoot networks,” in Proc.
USENIX NSDI, 2014.

[4] C. Monsanto, J. Reich, N. Foster, J. Rexford, and
D. Walker, “Composing Software-Defined Networks,” in
Proc. USENIX NSDI, 2013.

[5] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown, “Reproducible network experiments using
container-based emulation,” in Proc. ACM CoNEXT, 2012.

[6] P. Kazemian, G. Varghese, and N. McKeown, “Header
space analysis: Static checking for networks,” in Proc.
USENIX NSDI, 2012.

[7] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.
Godfrey, “VeriFlow: Verifying network-wide invariants in
real time,” in Proc. USENIX NSDI, 2013.

[8] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk,
“Gigascope: A stream database for network applications,”
in Proc. ACM SIGMOD, 2003.

[9] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker, “Frenetic: A network
programming language,” in Proc. ACM International
Conference on Functional Programming, 2011.

[10] R. Soulé, S. Basu, R. Kleinberg, E. G. Sirer, and N. Foster,
“Managing the network with Merlin,” in Proc. ACM
Workshop on Hot Topics in Networking, 2013.

[11] M. Reitblatt, M. Canini, A. Guha, and N. Foster, “FatTire:
Declarative Fault Tolerance for Software-defined Networks,”
in Hot Topics in Software Defined Networks, 2013.

[12] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C.
Mogul, “Enforcing Network-Wide Policies in the Presence
of Dynamic Middlebox Actions using FlowTags,” in Proc.
USENIX NSDI, 2014.

	Introduction
	Path-Query Language
	Path Query Compilation
	From Path Queries to DFA
	From a DFA to Tagging/Counting Policies
	From Tagging/Counting to Pyretic Policy

	Evaluation
	Related work
	Acknowledgments
	References

