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Abstract

This paper presents the design, theory and implementation o
GLoVES!, a domain-specific language that allows users to specify
the provenance (the derivation history starting from thigios),
syntax and semantic properties of collections of distedutiata
sources. In particular, G®VES specifications indicatevhere to
locate desired dathpwto obtain it,whento get it or to give up try-
ing, andwhat format it will be in on arrival. The GOVES system
compiles such specification into a suite of data-procedsiolg in-
cluding an archiver, a provenance tracking system, a dagdload-
ing tool, an alert system, an RSS feed generator and a defguggi
tool. In addition, the system generates description-$igditiraries

so that developers can create their own applicationVEs also
provides a generic infrastructure so that advanced userbuaiid
new tools applicable to any data source with ROBES descrip-
tion. We show how GovES may be used to specify data sources
from two domains: CoMon, a monitoring system for Planetkab’
800+ nodes, and Arrakis, a monitoring system for an AT&T web
hosting service. We show experimentally that our systenscafe

to distributed systems the size of CoMon. Finally, we prevadde-
notational semantics for ®VES and use this semantics to prove
two important theorems. The first shows that our denotatisea
mantics respects the typing rules for the language, whilsétond
demonstrates that our system correctly maintains the penee.

1. Introduction

One of the primary tasks in developing a distributed systekeép-

ing it running smoothly over long periods of time. Consedlyen
well-designed distributed systems include a subsysteipores-
ble for monitoring the health, security and performancet®tbn-
stituent parts. CoMon [24], designed to monitor Planetl28],[is

an illustrative example. CoMon operates by attempting tiheya

a log file from each of 800+ PlanetLab nodes every five minutes.
When all is well (which it never is) each node responds with an
ASCII data file in mail-header format containing the nodess-k
nel version, its uptime, its memory usage, the ID of the usén w
the greatest CPU utilizatioetc.CoMon archives this data in com-
pressed form and processes the information for display aod?}
Lab users. CoMon also tracks various networking problenanm
tains lists of “problem nodes” and supports on-going timeexed
queries on the data. These features make CoMon an invaltexble
source for users who need to monitor the health and perfaman
of their PlanetLab applications or experiments.

Almost all distributed systems should have similar moriitgr
infrastructure. However, the implementors of each newritisted
system currently have to build “one-off” monitoring toolshich
takes an enormous amount of time and expertise to do wellbA su
stantial part of the difficulty comes from the diversity, tjtya and
quantity of data these systems must handle. In additiorgimgn-
tors cannot ignore errors: they must properly handle netwarors,
partial disconnects and corrupted data. They also cannotéger-

1We call the system GoVES because it helps users get their hands on

things that are difficult to handle.
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[ NameUse | Properties |
CoMon [24] Multiple data sets
PlanetLab host Archiving every 5 minutes
monitoring From evolving set of 800+ nodes|

CoralCDN [13]
Log files from
CDN monitoring

Single Format
Periodic archiving
From evolving set of 250+ hosts

AT&T Arrakis Execute programs remotely to
Website host collect data
monitoring Varied fetch frequencies

AT&T Regulus
Network monitoring

Diverse data sources
Archiving for future analysis
Per minute, hour, and day fetche

u

AT&T Altair Thousands of data sources
Billing auditing Archiving and error analysis
GO DB [1] Multiple Formats
Gene function info. | Uploads daily, weekly, monthly
BioGrid [27] XML and Tab-separated Formats

Curated gene and
protein data

multiple data setsc= 50MB each
Monthly data releases

Figure 1. Example distributed ad hoc data sources.

formance issues: data must be fetched before it vanishes e
mote sites and it must be archived efficiently in ways that db n
burn out hard drives by causing them to overheat. Last bueast,
new monitoring systems must interact with legacy devicegaty
software and legacy data, often preventing implementers fus-
ing robust off-the-shelf data management tools built fandtard
formats like XML and RSS.

Systems researchers are not alone in their struggles wsth di
tributed collections of ad hoc data sources. Similar pnolslappear
in the natural and social sciences, including biology, pds/and
economics. For example, systems such as BioPixie [21]nG20]
and Golem [26], built by computational biologists at Pritoee
routinely obtain data from a number of sources scatteredsacr
the net. Often, the data is archived and later analyzed oednin
for information about gene structure and regulation. Féglisum-
marizes selected distributed ad hoc data sources usedsie #mel
other applications.

We have developed a new domain-specific language and system
called Q.ovEsto facilitate the creation, maintenance and evolution
of tools for processing ad hoc data from distributed sourtée
language allows developers to describe the provenancessnd
semantics of data sources they wish to monitor, including:

e Where the data is located. The data may be in a file on the
current machine (perhaps written by another process),raeso
remote location, or at a collection of locations.

e Whento get the data. The data may need to be fetched just once
(right now!) or according to some repeating schedule.

e How to obtain it. The data may be accessible through standard
protocols such akttp orftp orit may be created via a local
or remote computation.



e What preprocessingthe system should do when the data ar-

rives. The data may be compressed or encrypted. Privacy con-

siderations may require the data be anonymized.

e What format the data source arrives in. The data may be in
ASCII, binary, or EBCDIC. It may be tab- or comma-separated
or it may be in XML. It may be in the kind of non-standard
format thatPADS[12, 16] was designed to describe or for which
the user has a well-typed parser.

The GLoVES system compiles these high-level specifications
into a collection of programming libraries and end-to-endl$ for
distributed systems monitoring. Our current tool suiteludes a
number of useful artifacts, inspired by the needs we haverobd
in a variety of ad hoc monitoring systems including an arehiv
provenance tracking system, database loader and others.

The GLovEssystem can generate all of these tools from declar-
ative descriptions and tool configuration specificationsud for
common tasks, users can manage distributed data sourcply sim
by writing high-level declarative specifications. There elatively
few concepts to learn, no complex interfaces and no trickiebo
plate to master to initialize the system or thread togethetl li-
braries. Because there is so little “programming” involye@ re-
fer to the act of writing simple specifications and using gedined
tools as theff-the-shelinode of use.

To provide extensibility, GOVES supports two other modes of
use. The second mode is for thimgle-minded implementewho
needs to build a new application forspecificcollection of dis-
tributed data sources. Such users need more than the m#ti
of tools. To meet this need, the system provides supportréate
ing new tools by generating libraries for fetching data, farsing
and printing, for performing type-safe data traversal, fmngtream
processing using classic functional programming paradigoch
asmap, fold anditerate . These generated libraries make it
straightforward to create custom tools specific to particulata
sources. The cost of this flexibility is a steeper learning/ebe-
cause the programmer must learn a variety of interface<ctiaumnal
programmers may find these interfaces intuitive, but cowrtparial
scientists may prefer to stick with off-the-shelf uses.

The third mode is for theeneric programmerGeneric pro-
grammers may observe that they (or their colleagues) nepdrto
form some task over and over again on different data sethieRat
than writing a program specific to a particular data set, they
a separate set of interfaces supplied by theo@s system to
write a single generic program to complete the task. For exam
ple, the Round Robin Database (RRD) loader is generic becaus
it is possible to load data from any specified source into tROR
tool [22] without additional “programming.” The genericqgram-
ming mode is the most difficult to use as it involves learning a
relatively complex set of interfaces for encoding Genegali Al-
gebraic Datatypes (GADTS) [32] and Higher-Order Abstragh-S
tax (HOAS). These complexities are required to encode tpere
dent features of GoVvEs and to compensate for the lack of built-
in generic programming support in Q@L. Still, the reward for
building generic tools is high: as more and more such to@#aiit,
the life of the off-the-shelf user becomes easier and easfeused
this infrastructure to build the off-the-shelf tools debed earlier.

To guide the design and implementation of &/ES, we have
developed an idealized, first-order calculus and assatigpe sys-
tem to model its core elements. We have equipped this calevith
a denotational semantics that specifies for each data sdesceip-
tion the set of (meta-data, data) pairs that it should prediite
semantics allows users to calculate and reason about thefdst
they should be receiving. We have proven the type systemdsoun
with respect to the semantics. Moreover, we have used tharsem
tics to provedependency correctnesa key theorem inspired by

earlier work on provenance in databases by Chestey. [8]. This
theorem guarantees the correct provenance meta-dataisassl
with every data item.

In addition to being of theoretical interest, the calculad its
meta-theory have served as a guide for our implementatioasin
tructure. In particular, the compilation strategy for ourface-level
language was influenced by observations about how highet-le
constructs could be compiled into combinators from our Wale.
We also reorganized the way earlier versions of our systesa pr
cessed and propagated provenance meta-data in order tdrabey
principle of dependency correctness.

Contributions. The paper makes the following contributions:

¢ |t describes the design of a domain-specific language farispe
fying provenance, syntax and semantic properties of Oisted
ad hoc data sources.

e |t provides a formal denotational semantics for our languag
and proves the key properties of Type Soundness and Depen-
dency Correctness.

o |t describes the architecture of the system and how it esable
multiple modes of use.

¢ |t demonstrates the practicality of our architecture asdrit-
plementation by showing the infrastructure will scale tadiie
systems the size of PlanetLab.

Outline. Inthe rest of the paper, we describe the examples we will
use throughout the paper (Section 2), show how to describeth
data sources in GVES (Section 3), describe the generated tool in-
frastructure and its modes of use (Section 4), define a deoadh
semantics and prove our key correctness properties (®eg}tjalis-
cuss the implementation and evaluate its performance i(®eg},
describe related work (Section 7) and conclude (Section 8).

2. Running Examples

The CoMon [24] system, developed at Princeton, monitors the
health and status of PlanetLab [25] by attempting to fet¢a ftam
each of PlanetLab’s 800+ nodes every 5 minutes. This dagesan
from the node uptime to memory usage to kernel version. CoMon
displays the data to users in tabular form and allows thenete p
form a number of simple queries to find, for instance, ligihtigded
nodes, nodes with drifting clocks or nodes with little remag disk
space. CoMon also monitors nodes for various problems amerge
ates reports of deviant machines or user programs. Fir@adliyjon
archives the data so PlanetLab users can perform custorysasal
of historical data.

AT&T provides a web hosting service. The infrastructure for
this service includes a variety of hardware components s@sch
routers, firewalls, load balancing machines, actual welvessr
and databases, replicated and geographically distribidedce,

a given web site may be distributed across a variety of mashin
running a variety of operating systems in a variety of |omasi
When a customer signs up for AT&T's hosting service, part of
the contract specifies what kinds of monitoring AT&T will pide
for the site. The Arrakis infrastructure provides this ntoring ser-
vice. It tracks a variety of resources using a wide array chsoees,
including network bandwidth, packet loss, cpu utilizatidisk uti-
lization, memory usage, load averagets, For each machine in the
hosting service and for each such resource, the monitoxisigs
archives the values at regular intervals and issues aldrenihe
values exceed resource- and contract-specific levels. ithéva is
used to track long-term behavior of the service, allowingireers
to determine when more resources need to be provisioneéxfor
ample, adding cpus, memory or disk space. It also allowsergs
to understand the “normal” behavior for a particular sitecktmay
include daily or seasonal cycles.



| et sites =

"http://pll.csl.utoronto.ca:3121";

"http://plab1-c703.uibk.ac.at:3121";

"http://planet-labl.cs.princeton.edu:3121"
]

f eed simple_comon

base {|
sources = all sites;
schedul e = every 5 min, starting now,
timeout 60.0 sec;
f or mat = Comon_format.Source;
[}

Figure 2. Simple CoMon feedgimple _comon.fml

feed comon_1 =

base {|
sources = any sites;
schedul e = every 5 min, lasting 2 hours;
f or mat = Comon_format.Source;

[}

Figure 3. Description fragment for data from one of many sites
(sites.fml ).

3. GLOVES: An Informal Introduction

The GLovEslanguage allows users to describe streams of data and
meta-data that we refer to &eds To introduce the central features

of the language, we work through a series of examples dragwm fr
the CoMon and Arrakis monitoring systems.

3.1 CoMon Feeds

Figure 2 presents a simple CoMon statistics feed. This gegnr
specifies thasimple_comon feed using thdas e feed construc-
tor. Thesour cesfield indicates that data for the feed comes from
al | of the locations listed isites . Theschedul efield speci-
fies that relevant data is available from each source evezynfin-
utes, starting immediately. When trying to fetch such didua sys-
tem may occasionally fail, either because a remote machigewn
or because of network problems. To manage such errors, tieelsc
ule specifies that the system should try to collect the data fach
source for 60 seconds. If the data does not arrive withinwhat
dow, the system should give up.

The last field in a base feed constructor is frer mat field,
which specifies the syntax of the fetched data by supplying a
parser for it. In this caseComon_format.Source is actu-
ally a parser generated from maDs/ML [16] specification file
(comon_format.pml ), which we have omitted because of space
constraints. While it is not strictly necessary for @/es program-
mers to usePADS/ML specifications in their descriptions, and the
key ideas in this paper can be understood without a deep knowl
edge ofPADS/ML, the two languages have been designed to fit
together elegantly. Moreover, several of our generatels &xmploit
the common underlying infrastructure to enable useful datly-
ses and transformations over feeds whose formats are ggebifi
PADS/ML descriptions.

A simple variation of our first description appears in Fig8rén
contrast tosimple_comon , which returns data frorall sites per
time slice,comon_1 returns data from justnesite per time slice.
This difference between the two is specified using dlmg con-
structor instead of thal | . This feature is particularly useful when
monitoring the behavior of replicated systems, such asethuss
ing state machine replication, consensus protocols, ar lesely-
coupled ones such as Distributed Hash Tables (DHTSs) [Shdae

(* Ocaml helper values and functions
| et config_locations
["http://summer.cs.princeton.edu/status/ \

tabulator.cgi?table=slices/ \
table_princeton_comon&format=nameonly"]

*)

*)

(* Feed of nodes to query

f eed nodes =
base {|
sources = all config_locations;
schedul e = every 5 min;
f or mat = Nodelist.Source;
[}

| et makeURL (Nodelist.Data x) =
“http://* = x © ":3121"

| et old_locs = ref []
| et current list_opt =
mat ch list_opt with
Some | -> old_locs = I; |
| None  -> lold_locs
(* Dependent CoMon feed of node statistics *)
feed comon =
f or each nodelist i n nodes
create
base {|
sources = all (List.map makeURL
(List.filter Nodelist.is_node
(current (value nodelist))));
schedul e = once, timeout 60.0 sec;
f or mat = Comon_format.Source;
[}
Figure 4. Node location feed drives data collection
(comon.fml ).
pt ype nodeitem =
Comment of '#  * pstring_SE(peor)
| Data of pstring_SE(peor)
| et is_node item =
mat ch item with
Data _ -> true
| _ -> false
ptype source =
nodeitem precord plist (No_sep, No_term)
Figure 5. pPADS/ML description fiodelist.pml ) for CoMon

configuration files, which contain one host name per non-
commented line.

systems, the same data will be available from any of the fonet

ing nodes, so receiving results from the first available riedeiffi-
cient. The schedule fmomon_1 indicates the system should fetch
data every five minutes for two hours, using tlasting field

to indicate the duration of the feed. It omits therting and
timeout specifications, causing the system to use default settings
for the start time and the timeout window.

So far, our examples have hard-coded the set of locations fro
which to gather data. In reality, however, the CoMon systesidn
Internet-addressable configuration file that containg afisosts to
be queried, one per non-comment line. This list is peridtjiagp-
dated to reflect the set of active nodes in PlanetLab. Figsmed-
ifies a version of theomon feed that depends upon this configu-
ration information. To do so, the description includes axilaary
feed callechodes that describes the configuration information: it
is available from theconfig_location , it should be fetched



every five minutes, and its format is described by phe s/ML de-
scriptionsource given in the filenodelist.pmi , which ap-
pears in Figure 5.

The pPADS/ML description in Figure 5 specifies thaburce
is a list plist ) of new-line terminated recordpiecord ) each
containing anodeitem . In turn, anodeitem is either a'#
character followed by a comment string, which should be ¢dgg
with the Comment constructor, or a host name, which should be
tagged asData . The description also defines a helper function
is_node , which returns true if the data item in question is a
host name rather than a comment. Given this specificatian, th
nodes feed logically yields a list of host names and comments
every five minutes. In fact, because of the possibility obesrthe
feed actually delivers hst optionevery five minutesSomeif the
list is populated with datd\one if the data was unavailable at the
given time-slice. Furthermore, to record provenance imiation,
each element in the feed is actually a pair of meta-data amd th
payload value.

Given thenodes specification, we can define tkemon feed
using the notatiorf or each nodelist i n nodes create

. In this declaration, each elementrafdes is bound in turn to
the variablenodelist  for use in generating the new feed declared
in*“ " The final result of the or eachis the union of all such
newly generated feeds. Both the payload datdthe provenance
meta-data ohodelist may be used in creating the dependent
feed. In this example, we use the functiealue to select only
the payload portion, ignoring the meta-data. The compleangn
functionmeta provides access to the provenance information.

To complete the construction of theomon feed, a small
amount of functional programming allows the user to manage e
rors and strip out comment fields. Any such simple transfoiona
may be written directly in O@mL, the host language into which
we have embeddedI®VES. In particular, thecurrent  function
checks if thenodelist  value isSome |, in which case it caches
| before returning it as a result. Otherwise, if thadelist ~ value
isNone (indicating an error), the most recently cached list of de
is used instead. The rest of te@ur ces specification filters out
comment fields and converts the host names to URLs with the re-
quired port using the auxiliary functiomakeURL

With this specification, we expect to get data from all thévact
machines listed in the configuration file every five minutee W
further expect the system to notices changes in the configora
file within five minutes.

The previous examples all showcased feeds containing &esing
type of data. GOVES also provides a datatype mechanism so we
may construct compound feeds containing data of differertss
As an example of where such a construct is useful, the CoMon
system includes a number of administrative data sources sOch
source is a collection of node profiles, collecting the donmame,

IP address, physical locatioetc, for each node in the cluster.
A second such source is a list of authentication informafimn
logging into the machines. These two data sources havedtiffe
formats, locations, and update schedules, but system &lirators
want to keep a combined archive of the administrative infitiom
present in these sources.sifes_mime is a feed description of
the profile information andites_keyscan_mime  is a feed of
authentication information, then the declaration

f eed sites =
Locale of sites_mime
| Keyscan of sites_keyscan_mime

creates a feed with elements drawn from each of the two feeds.
The constructord.ocale and Keyscan tag each item in the
compound feed to indicate its source.

3.2 Arrakis Example

We now shift to an example drawn from AT&T’s Arrakis project.
Like the earlier CoMon example, thetats feed in Figure 6
monitors a collection of machines described in a configarefile.
Before we discuss thetats feed itself, we first explain some
auxiliary feeds that we use in its definition.

The raw_hostLists description has the same form as the
nodes feed we saw earlier, except it draws the data from a local
file once a day. We usefaed comprehensiao define a clean ver-
sion of the feedhost_lists . In the comprehension, the built-in
predicateéis_good verifies that no errors occurred in fetching the
current list of machinesl , as would be expected for a local file.
The functionget_hosts  takeshl and uses the built-in function
get_good to extract the payload data from the provenance and
error infrastructure, an operation that is guaranteed toeed be-
cause of thés_good guard. The functiomget_hosts then se-
lects the non-comment entries and unwraps them to produise a |
of unadorned host names.

We next define a feed generatgen_stats that yields an
integrated feed of performance statistics for each sugiest.
When given a hosh, gen_stats  creates an every-five-minute
schedule lasting twenty-four hours with a one minute tintetiu
uses this schedule to describe a compound feed that pairtsase
feeds: the first uses the Unix commapithg to collect network
statistics about the route towhile the second performs a remote
shell invocation usingsh to gather statistics about how long the
machine has been up. Both of these feeds uspttioe constructor
in the sour ces field to compute the data on the fly, rather than
reading it from a file. The argument tpr oc is a string that
the system executes in a freshly constructed shell. Thengair
constructor for feeds takes a pair of feeds and returns adigeairs,
with elements sharing the same scheduled fetch-time beiimgg
This semantics produces a compound feed that for each tiostse
a pair of its ping and uptime statistics, conveniently giagpthe
information for each host. Of course, the full Arrakis mamibg
application uses many more tools than jpstg anduptime to
probe remote machines so the full feed description has maumg m
components than this simplified version.

Finally, we define the feedtats . The most interesting piece
of this declaration is théist feed comprehensipmiven in square
brackets, that we use to generate a feed of lists. Given alisbst
elementhl , the right-hand side of the comprehension uses the
value function to extract the payload from the meta-data and then
considers each hoktfrom the resulting list in turn. The left-hand
side of the comprehension uses gen_stats feed generator to
construct a feed of the statistics for The list feed comprehension
then takes this collection of statistics feeds and conthem into
a single feed, where each entry is a list of the statisticsttier
machines irhl at a particular scheduled fetch-time. We call each
such entry asnapshotof the system. The resulting feed makes
it easy for down-stream users to perform actions over sra@psh
relieving them of the burden of having to implement their own
multi-way synchronization. Given the list feed compreliensthe
f oreach. .. creat econstruct generates a feed of snapshots
from the feed of host lists.

4. Working with Feeds
4.1 The “Off the Shelf” User

The GLOVES system provides a suite of “off-the-shelf” tools to
help users cope with standard data administration neediss. Wfit-

ing a GLovESsdescription, users can customize these tools by writ-
ing simpleconfiguration filessuch as shown in Figure 7. Each con-
figuration file includes a feed declaration header and a seguef
tool specifications. The header specifies the path to the deed



| et config_locations = f eed comon.fml/comon
[(*file:///arrakis/config/machine_list")];
t ool provtrack

f eed raw_hostLists = {
base {| minalert = true; maxalert = true;
sources = all config_locations; lesssig = 3 moresig = 3;
schedul e = every 24 hours; slicesize = 10;
f or mat = Hosts.Source; |} slicefile = "slice.acc";
totalfile = "total.acc";
| et get_host (Hosts.Data h) = h }
| et get _hosts hl =
List.map get_host tool rss
(List.filter Hosts.is_node hl) {
title = "CoMon Memory RSS";
f eed host_lists = link = "http://www.comon.org/memory-rss.xml";
{| get_hosts (get_good hl) | desc = "CoMon Memory Usage Information";
hl <- raw_hostLists, is_good hl |} path = "<top>.[?].Mem_info";
}

f eed gen_stats (string h) =
l et s = every 5 mins,
timeout 1 min,

Figure 7. Example tool configuration filecbmon.tc ).

lasting 24 hours in L
Summary of network transmission errors
base {| ===
sources = proc ("ping -c 1 " " h); ErrCode: 1 ErrMsg: Misc HTTP error Count: 12
f or mat = Ping.Source; ErrCode: 5 ErrMsg: Bad message Count: 27
schedul e = s; [}, ErrCode: 6 ErrMsg: No reply Count: 2
base {|
sources = proc ("'ssh "~ h = " uptime"); - - ===
f or mat = Uptime.Source; Top 10 locations with most network errors
schedule = s; |} Loc: http://planetlab01.cnds.unibe.ch:3121 Count: 2
) Loc: http://pepper.planetlab.cs.umd.edu:3121 Count: 2
.. omitted ...
feed stats = -
foreach hl in host lists create Figure 8. Fragment of provenance tracker outpcihon.acc ).

[ gen_stats (h) | h <- value hl ]

allows users to continuously monitor feeds and compare tuei
Figure 6. Simplified version of Arrakis feedagrakis.fml ). rent behavior with historical statistics. The tracker catpoit either
plain text or XML. Figure 8 shows portions of provenance kexc
output for the CoMon example.

Alerter. The alerter allows users to register boolean functions
which generate notifications when they evaluate to falseeaa f
items. The tool appends these notifications to a file, whichbm
piped into other tools. The system provides a library of canm
alerters such as exceeding max/min thresholds or devidtimg
the norm {.e., trigger an alert when a selected value strays more
than k standard deviations from its historical value). Users can
supply their own conditions by giving arbitrary Q@L predicates
in the configuration file.

Database loaderThis tool allows users to load numerical data
from a feed into an RRD. Users specify a function to transform
feed items into numeric values and RRD parameters such as dat
source type and sampling rate. RRD indexes the data by larriva

scription file comon.fml ) and the name of the feed to be created
(comon). Each tool specification starts with the keywood! fol-
lowed by the name of the took(g, provtrack  andrss ). The
body of each tool specification lists name-value pairs, ehei-
ues are O@ML expressions. Some attributes are optional, and the
compiler fills in a default value for every omitted attribu& oves
compiles a configuration file into an O®L program that creates
and archives the specified feed, configures the specified, tant
applies them to the feed in parallel. In the following paeggrs, we
describe some of the tools we have implemented.

Archiver. The archiver saves the data fetched by a feed in
the local file system, organizing it according to the struetaf
the feed, with one directory per base feed. It places a aatalo

each directory documenting the source of the data, its stéed > N .
arrival time and the actual arrival time. The archiver wittimnally time. It periodically discards old data to make space for.riEe
compress files. tool supports time-indexed queries and displays histbdata as

Profiler. The profiler monitors performance, reporting through-  9raphs.
put, average network latency and average system lateneégsao RSS feed generatothe RSS feed generator converts a0V ES
period of time. Users can specify in the configuration wheprte feed to an RSS feed. Users specify the title, link (sourcescdp-

file and for how long. We used this tool to produce some of the on, update schedule and contents of the RSS feed. Corgectt s
experimental results in Section 6. fications are written in the path expression language.

Provenance trackerThe provenance tracker maintains statisti-
cal profiles for feeds. These include error rates, most comare
rors and their source locations and times. For numeric dag, In addition to the off-the-shelf tools, ®VES includes an API for
tracker keeps aggregates such as averages, max/min valdes a manipulating generated feeds. The API provides users wigkee
standard deviations. For other datag, strings, URLs and IP ad-  abstraction representing a potentially infinite series lefrents.
dresses), it keeps the frequency of the ddpnost common values.  This abstraction is related to that of a lazy list, but exgeitdvith
The user can configure the tracker to profile entire feeds e¢,on  support for provenance information. Therefore, we modelftred
or incrementally. The latter is useful for infinite feedschase it API on the list APIs of functional languages but provide twedls

4.2 The Single-Minded Implementer



| et (sample, ) Feed. split_every 600. comon in
| et select_load = function
Some {Comon_format.Source.
loads = (_, load::_)} -> Some load
| None -> None in
| et loads Feed. map select_load sample in
| et load_thl = Feed. f ol d update empty_tbl loads

in print_top 10 load_tbl

Figure 9. Code fragment finding least loaded PlanetLab nodes.

| et update_m tbl adata
| et meta = Feed.get_meta adata
| et data = Feed.get_contents adata
mat ch meta, data with
(h, Some basemeta), Some load ->
| et location = Meta.get_link basemeta
update tbl (location, data)
| _ -> thl (* no change to tbhl *) in
| et load_thl = Feed. f ol d_m update_m empty_tbl loads
i n print_top_with_loc 10 load_tbl

in
in

Figure 10. Revised code fragment with provenance meta-data.

of abstraction. One level allows users to manipulate feddsany
lazy list of data elements (ignoring where they come front)ilev
the other exposes the meta-data as well.

For example, consider PlanetLab users looking for a ddsirab
set of nodes on which to run their experiments. They can use th
API generated from the CoMon description to monitor PlaaétL
for a few minutes to find the least loaded nodes. Figure 9 shows
an OGamL code fragment that collects the nodes with the low-
est average loads over 10 minutes and then prints them. We omi
the details for maintaining the table of top values, as itrthago-
nal to our discussion. First, we ubeed.split_every to split

tions. To support their development, we provide a framework
writing feed interpreters.

Two core examples of feed interpretation are the feed cre-
ator and the provenance tracker. The behavior of these tmls
pends essentially on the structure of the feed. Functioke i
these require as input a runtime representation of the feau;
plete with the details of the feed description that they eepr
sent. The obvious choice for representing feed description
OCAML is a datatype. However, standard & datatypes are
not sufficiently typeful to express the types of many genézexd
functions. For example, the feed creation function has yipe:t
feed_create : 'a prefeed ->'a feed where the type
'a prefeed is an AST of a feed description and feed ele-
ments have typ& . This limitation of datatypes has been widely
discussed in the literature, and various solutions have lpze-
posed [11, 31, 32]. We have chosen to represent our AST using
a variant of the Mogensen-Scott encoding [18, 30] which ex-
ploits higher-order abstract syntax to encode variablelibo in
feed descriptions. This implementation strategy exploiGAML’s
module system to type the encodingsAp. Our earlier work on
PADS/ML [11] exploited a similar strategy, but there we only sought
to encode the O@wmL type of the data, not the entiraDS/ML de-
scription, which is where higher-order abstract syntaxobees
useful.

The result of our work is that developers can interpret feed-
description representations by case analysis on theictsiney
while still achieving the desired static guarantees. Meggowe
have successfully used this framework to devedtipof the tools
presented in this paper, including the feed creator. Thepidlem
only infers appropriate type declarations from feed desicis
and compiles the feed syntax into our representations. Merve
as one might expect, interfaces using higher-order alistyartax
and Mogensen-Scott encodings are one step more complex than
those involving the more familiar maps and folds. Consetjyen

the feed when 600 seconds (10 minutes) have elapsed. Then, wdhe learning curve for the generic programmer is one stegpste

useFeed.map to project the load data from the CoMon elements.
Finally, we useFeed.fold  to collect the data into a table. Func-
tion update adds an entry to the table, aedhpty_tbl is the
initially empty table. After filling the tableprint_top 10 pro-
cesses each node’s loads and prints the ten lowest avesdge lo
However, if we want a report of the names of the nodes that

have the lowest average loads, the above solution is not good

enough because the CoMon data format does not include tle nod
location in the data. In such situations, provenance mata-$
essential. We therefore replace the last two lines of Figundth

the code in Figure 10 that exploits the meta-data. First, ive g
theupdate_m (update with meta) function that uses meta-data to
associate a location with every load in the table. It reliastiee
Meta module, which GOVES provides to facilitate management
of meta-data. Next, we show a call to the meta-awareffaitd m ,
which passes the payload and its meta-data to the foldingitum
Last, the callprint_top_with_loc 10 prints the ten lowest
average loads and their locations.

It should be clear from these examples that the single-ndinde
implementer has a number of new interfaces to master relsoiv
the off-the-shelf user, but gains a correspondingly higlegree of
flexibility and can still write relatively concise programs

4.3 The Generic Programmer

Occasionally, users might want to develop functions thatroa-
nipulateany feed. Often, such functions can be written parametri-
cally in the type of the feed element, much like the feed lpra
functions discussed above. However, the behavior of maeg fe
functions depends on the structure of the feed and its elesnen
Such functions can be viewed agerpretationsof feed descrip-

than the curve for the single-minded implementor, and two (o
perhaps ten) steps steeper than the curve for the off-tbiéwser.

5. GLOVES Semantics

Developing a formal semantics forlt@VES has been an integral
part of our language design process. We have used the semanti
to communicate our ideas precisely and to explore the nisaoice
design decisions. Furthermore, the semantics provides usth a
tool to reason about the feeds resulting froma® e s descriptions,
including subtleties related to synchronization, timspatrors and
provenance.

To express locations, times, schedules and constraimts$eéu
calculus depends upontest languagewhich we take to be the
simply-typed lambda calculus. Figure 11 presents its synthich
includes a collection of constants to simplify the semanttrings
(w), times ¢) and locations ). We assume times may be added
and compared and we leb represent a time later than all others.
We assume that the set of locations includes the constaikre,
indicating the associated data was computed rather thahefet
We treat schedules as sets of times and use the notation to
refer to a timet drawn from the set. We use a similar notation to
refer to elements of a list. The host language also inclutewlard
structured types such as options, pairs, sums, lists anctifuns.
We omit the typing annotations from lambda expressions viten
can be reconstructed from the context and we use patterrhmgtc
where conveniente(g.,\(x, y).e is a function over pairs).

5.1 Feed Syntax and Typing

The abstract syntax for our feed calculus and its typingsrafgear
in Figures 12 and 13, respectively. The feed typing judgnierst



(host-language base types)
b ::= bool | string | time | loc

(host-language types)
T = b|Toption| kT2 | T+ 12| Tlist| Tset| 1 — T2

(host-language values)
v o=

false | true booleans

| wlt]e strings, times, locations
| None | Some v optional values

| (v1,v2) pairs

| inlw|inrov sum values

| [o1,...,v0] list values

| {v1,...,vn}  setvalues

| Az:Tee function values

(host-language expressions)
e =
x variables
| v data values
| None | Some e option expressions
[ more typed lambda expressions

Figure 11. Host Language Syntax.

(feed payload types)

o =T | Toption|o1x02]| 01+ 02] 0 list

(core feeds)

{src =ey; source specification
sched = eo; schedule specification
win = es3; time-out window specification
PP = €4; pre-processor
format = e5; } format specification

(feeds)
F =

all C all sources

any C one of multiple sources

0 empty feed

One(ew, €¢) singleton feed

SchedF(e) schedule to feed

FiUF union feed

Fi+ F» sum feed

(F1, F») pair feed

[F |z« € list comprehension feed

{|F2 | z — F1|}  feed comprehension

filter F'withe filter feed

| letz=einF letfeed

Figure 12. Feed Language Syntax.

the formI’ + F' : o feed, which means that in the contekt
mapping variables to host language type#’ is a feed ofr values.
The core typing judgment, which has the foim- C : o core,
conveys the same information for core feeds.

Intuitively, a feed carrying values of typeis a sequence of pay-
load values of typer. However, to record provenance information,
we pair each payload value with meta-data, so a feed is &ctual
sequence of (meta-data, payload) pairs. At the top-levelardata
consists of a triple of the scheduled time for the payloadepen-

that contributed to the payload, and a nested meta-datarftelde
form depends upon the type of the payload.

Formally, we letm range over top-level meta-datds range
over dependency sets, andange over “nested” meta-data:

m == (t,ds,n) top-level meta-data

ds == {(t1,1),...,(tn,¢n)} dependency set

n = (t,¢,None) base meta-data (timeout)
| (¢,¢,Some t) base meta-data (success)
| (n1,n2) pair meta-data
| inln sum meta-data
| inrn sum meta-data
| [, k] list meta-data

Given meta-datan, we writem.t, m.ds andm.nest for the first,
second and third projections (respectively)yof Base meta-data is
a triple of the scheduled time, the location of origin and ptianal
arrival time whereéNone indicates the data did not arrive in a timely
fashion.

As shown in Figure 12, we define the feed payload typ@
terms of host language types, stratified to facilitate th@opof
semantic soundness. We use the functiosta(o) to define the
type of meta-data associated with payload of type

meta(o) = time x ds * nest(o)
ds = (time x loc) set
nest(r) time * loc * (time option)

time * loc * (time option)
nest(o1) * nest(o2)
nest(o1) + nest(o2)
nest(o) list

(
nest(7 option)
nest(o * 02)
nest(o1 + o02)
nest(o list)

Feed typing depends upon a standard judgment for typingdamb
calculus expression§: - e : 7.

Having covered these preliminaries, we can now discuss the
syntax and typing for each of the feed constructs in Figure 12
Core feeds express the structure of base feeds, descrimndpta
sources £rc), schedule §ched), window (win), preprocessing
function (pp) and file format format). The source field describes
the set of locations from which to fetch data. It may contaauxlo-
locations that model thproc form found in the implementation.
Instead of having timeouts specified as part of scheduleseaid
in the surface language, the calculus separates these tweuts
into distinct fields, which simplifies the semantics. If aanit spec-
ified to arrive at timet by schedulee, fails to arrive within the
window egs, the feed pretends it received the valNene. Other-
wise, it wraps the received data string in an option. As altethe
preprocessoes, maps astring option to astring option, where a
result of None indicates either a network or preprocessing error.
Finally, the formatting functiors parses the output of the prepro-
cessor to produce a value of typeption, where aNone result in-
dicates a network, preprocessing or formatting error. (Rersake
of simplicity, we do not model the variety of error codes ttta
implementation supports.)

The feedall C selects all the data from the core fe€d The
feedany C selects for each time in the schedule fdrthe first
good value to arrive from any location. It returN®ne paired with
appropriate meta-data if no such good value exists.

The empty feed{() contains no elements and may be ascribed
any feed type. The singleton fe@de(e., ;) constructs a feed
containing a single value, at a single timee,. The schedule
feedSchedF(e) builds a feed whose elements are the times in the

dency sethat records the origin and scheduled time of any data schedulee. The union feed merges two feeds with the same type



I'kFep:loclist T'kes:timeset I'kF es:time
I' - e4 : string option — string option
I' F e5 : string option — 7 option

(t-core)
'+ {src =e1; sched =e2; win =eg3;
pp =eu; format =es; } : T option core
I'EC: o core
(t-all)
I'Fall C: o feed
I'C: o core
(t-any)
I'Fany C : o feed
——  (t-empt
T'0: o feed ( Py
I'kFey:T 'k e : time (t-0n8)
I' - One(ey, er) : T feed
I'ke:time .set (t-schedulg
T' - SchedF(e) : time feed
I'HF :0feed TF Fy: o feed (t-union)
'\ UF; : o feed
FFFl L 01 feed FFFg:Ugfeed
't Fy + Fs : 01 + 09 feed (t-summ
'+ F1 L 01 feed T'F F2 102 feed (t-pair)
Tk (F1, F2) : 01 % 02 feed
I'te:7list I'xz:tH F : o feed .
- (t-list)
LkH[F |z« ¢]: o list feed
T'k Fy:01feed T',x:meta(o1)* o1 Fa: oo feed
(t-comp
I'+ {|F2 | xXr «— F1|} 102 feed
I'F:ofeed T'Fe:(meta(o)*o)— bool !
(t-filter)

I'F filter F with e : o feed

I'te:7 Itk F : 0 feed
I'Hlet x =ein F : o feed

(t-let)

Figure 13. Feed Language Typing.

into a single feed. In contrast, the sum feed takes two feetts w
(possibly) different types and injects the elements of daet into

a sum before merging the results into a single feed. The pai,f
written (F1, F»), combines the elements of the two nested feeds
synchronously, matching elements that have the sscheduled
time, regardless of when those elements actualtve. The list
feed[F' | © < ¢], in contrast, providesi-way synchronization,
wheren is the length of the input list. Each element; in e defines
afeedF; = F[z — e;]. For each time with a valuev; in each
feed F;, the list feed returns the ligt1, . .., v,] (and appropriate
meta-data). Note that if the; feeds share a scheduethen each
feed will have a value for every time in the schedsjeven in the

presence of errors, so the synchronization will succeedcit 8me
in the scheduls.

The feed comprehensicfiF: | = <+ Fi|} creates a feed with
elements: [z — v] whenv is an element of; . Note that the entry
v is a pair of meta-data (with typeeta(c)) and payload data (with
typeo). The feedfilter F with e eliminates elementsfrom F’
whene v is false. Finally, let feedslet © = ¢ in F provide a
convenient mechanism for binding intermediate values.

Several of the surface language constructs presented in Sec
tion 3 may be modeled as derived constructs in the calculos. F
instance, f{or each z in Fi creat e F3) can be modeled as a
{|F2 | * < Fil|}. Likewise, the surface language comprehension
{le2 | * < Fi, ei1|} can be modeled a§0ne(es, z.1.t) |  «—
filter F; with e1|}. Whene, is a schedule anek is a function
over times, purely artificial “computed” feeds may be modeds
{|One(es z.1.t,z.1.t) | x < SchedF(es)|}.

5.2 Feed Semantics

We give a denotational semantics for our formal feed languag
in Figure 14. The principal semantic functions &fC7,,,, and
F[F] . defining core feeds and feeds, respectively. In these
definitions,E is anenvironmentmapping variables to values abd

is auniversemapping pairs of schedule time and location to arrival
time and a string option representing the actual data. tinély,
the universe models the network. WheTfts, £) = (tq,Some w),
the interpretation is that if the run-time system requests: drom
location ¢ at time ¢, then string datav will be returned at time
tq. The time¢, must be no earlier than,. When U (ts,£) =
(00, None), networking errors have made locatiémnreachable.

The semantic definitions fof and F use conventional set-
theoretic notations. They depend upon a semantics for thplygi
typed host language, writtef{e] ,, whose definition we omit. We
assume that given environmeht with type I and expressior
withtyperinT, E[e], =vand-v: 7.

The meaning of core feed' is the set of (meta-data, payload)
pairs for the feed. To construct this set, we first computeligte
of source locationd., the set of times in the scheduteand the
length of the windowlV. Thetimeout function checks whether
the item arrival timez,; is within the windowWW of the sched-
uled timez, returningNone if not. Otherwisetimeout returns
its data argument,, which may beNone because of other net-
working errors. Similarly, thearrival function returns the ar-
rival time Some z,; if the item arrived within the window and
None otherwise. The functiometa uses therrival  function
to construct the meta-data for the item, consisting of theede
uled timet, the dependency set containing the scheduled time and
source locatior{ (¢, £) }, and the nested meta-data, which includes
the scheduled time, the source locatiod, and the actual arrival
timearrival (¢, U(t,£)). (This apparent redundancy goes away
with non-core feeds.) Using thtemeout function, we define an
alternate univers®&’ that retrieves data from the outside world us-
ing the original universé’/, checks for a timeout, and applies the
preprocessoi[e,;] ;). To compute the payload, tival function
applies the formatting functiofifes] ,, to the value returned by the
alternative universé/’ at timet for location/. Finally, the result
is the set of all pairs of meta-data and payload produceddoh e
location/ in the list L and timet in the schedule.

The semantics of thell C feed is simply the semantics of the
underlying core feed. The semantics of they C feed selects for
each timet in the schedules' of the core feed” the earliest good
payload value from any location if one exists,Mone otherwise.

It returns the set of all such values, paired with the appropriate
meta-data. To compute this set, the function first compthtes t
meaning A of the core feed”. It extracts the schedul§ from

the meta-data iM. For each time in the schedule, it computes



Cl[{src =esrc; =

sched =€sched; where

Win =€yin; L =¢&lesrc]
PP =€pp; S = gﬂesched]]E
format =ey; } pys W = Elewin] 5

{(meta(t,?),payload(t,¥)) | £ € L andt € S}

timeout = A(z¢, (Tat, Xs)).if Tar < ¢ + W then s else None
(

arrival = \

Zt, (Tat, Ts)).if Tar < x4 + W then Some x4: else None

meta = A(¢, £). t {(t,0)}, (t,¢,arrival(t,U(t,£))))
U = A, Sﬂepp]]E (tlmeout (t,U(t,2)))
payload = A(t,£).Elef], (U' (¢, 0))
Fla11 Cl gy, = C[Clzy
Flany Clg ¢ = {((t, DS¢,nesty),ve) | t € S}
where A = C[Cl sy
S = {m.t](m,v) € A}
Ay = {(m,v) | (m,v) € Aandm.t = t}
DS, :Umu)eAtmds
Gy = {(m,Some v) | (m, Some v) € A:+}
m.nest,v) where(m,v) = earliest(G;) if |G¢ >0
(nests, v.) { (t,nowhere, None), None) if |Gt =0
.7-'[[@]]EU = {1

FlOne(ew, e)]z =

{((Eleed g L 1 (Eleel o

nowhere, Some S[[et]] ), g[[ev]]E)}

F[SchedF(e)] ;¢ = {((t,{}, (t,nowhere, Some t)),t) | t € E[e] 5}

]]EU U}—[[Fﬂ]EU

FIFL U F] gy = [
FlF + F2] gy = }(émt m.ds,inl m.nest), inl v)

JT'

| (m,v) € FIF] gy} U
((m.t,m.ds, inr m.nest), inr v) | (m,v) € F[F2]g
FI(F, Fo)l gy = {((m1.t,m1.ds Uma.ds, (mi.nest,ma.nest)), (vi,vz2)) |

(m1,v1) € F[F1] p and(ma,v2) € F[F2] z; andmy.t = ma.t}

{((t,U;—q. 1 mi-ds, [mi.nest,...,mp.nest]),[v1,...,vx]) |

FlIF |z —ellgy =
Vi:l...k.(mivi) € FIF] g, .. v andmit =t}

where [z1,..., 2] = E[e]

Fi{IF: |z = Fil} gy

Flfilter F with €],

Fllet z =ein Fl = f[[F]](E,zHg[[e]]E)U

{((ma2.t,m1.ds U ma.ds, ma.nest), va

{(m,v) [ (m,v) € F[F] gy and&fe (m,v)] g

) | (mhvl) S "T[[Fl]]EU and(TTLQ,'Uz) S f[[FQ]](Eﬁ;c»—»(ml,vl))U}

= true}

Figure 14. Feed Language Semantics.

the setA; of (meta-data, payload) pairs fetched at titn€or each
such set, it computes the dependency38t, which collects the
dependencies of all the items fetched at tim&he setG:; collects

all the good items fromA,. If this set is non-empty, we use the
function earliest to choose the (meta-data, payload) p@it, v)
with the earliest arrival time fronG;. (We assume that there is
always one such earliest item.) In this case, we set thechewtéa-
datanest: to be the nested meta-datasef and the payload value
v t0 bew. If the set of good values is empty, then we set the
nested meta-data to indicate that at timeve created (location =
nowhere) a payload value that had no actual arrival time. In this
case, the payload valug is justNone.

uled time is the meaning et, the dependency set is empty, the data
came fromnowhere (a dummy location indicating the value was
generated internally), and the arrival time matched thedaled
time. A schedule fee@chedF(e) yields a feed with one payload
value for eacht in the meaning of the schedule The correspond-
ing meta-data follows the same pattern as for the singleted.f
The union feed is the set-theoretic union of its constitiferts.
The sum feed injects the elements of its constituent feetsan
sum and likewise takes their union. It constructs compouerthm
data from the meta-data of the constituent feeds in the obwiay.
The pair feed F1, F3) is formed by finding for each timeall
elements off} at a timet (including erroneous elements) and all

The meaning of the empty feed is the empty set. The meaning of elements off: at timet (again including erroneous elements) and

the singleton feedne(e., e:) is a single pair, the payload portion
of which is the meaning of,,. The meta-data indicates the sched-

generating their Cartesian product. Notice that if the dakess do
not intersect, the pair feed will empty. The meta-data isstocted



by combining the meta-data for the paired feeds. The senwoti
the listfeed F' | = < e] is similar to that of the pair feed except the
synchronization isi-way instead of pairwise, whereis the length
of the liste.

The feed comprehensiofiF> | = «— Fi|} contains payload
valueswv, taken from the meaning of feefl, whenz is mapped
to (meta-data, payload) pairs drawn from the meaning of féed
The dependency set for the feed comprehension includesethe d
pendency sets dfoth £, and F». The filter feedfilter F with e
selects those (meta-data, payload) pairs from the meafhifgtat
satisfy the predicate. Finally, the letfeedet © = e in F returns
the meaning of feed” whenz is mapped to the meaning of

5.3 Feed Properties

We have used our semantics to prove two key properties ofaiur ¢
culus. The first propertyType Soundnesserves as an important
check on the basic structure of our definitions: Do the setsabf
ues given by the denotational semantics have the typedaddy
our typing rules? The second properBependency Correctness
guarantees the semantics adequately maintains provenagtee
data. To be more specific, it demonstrates that a feed iterendisp
exclusively on the locations and times mentioned in its ddpacy
set. This theorem is crucial for users who need to track dowh-p
lems in their distributed system — when they find their incagni
data is bad, they need to know exactly where (and when) tottmok
find malfunctioning equipment or software.

Type Soundness. The type soundness theorem states that values
contained in the semantics of each feed are (meta-datapguyl
pairs with the appropriate type. More specifically, if thedeyping
rules give feed typeo feed, then its data has typeand its meta-
data has typeneta(o). A similar statement is true of core feeds.

Theorem 1 (Type Soundness)

o [fT F C : o core and for allz in dom(I"), - E(x) : I'(x)
andt U : time x loc — time x (string option) then for all
(m,v) € C[C] gy b (m,v) : meta(o) * 0.

o [fT F F : o feed and for allz in dom(I"), - E(x) : I'(x)
andt U : time x loc — time x (string option) then for all
(m,v) € F[F] gy, F (m,v) : meta(o) * 0.

We have proven the theorem by induction on the structureeaffe

Dependency Correctness.In order to make the principle of De-
pendency Correctness precise, we must define what it means fo
two universes to be equal relative to a dependencyisetntu-
itively, this definition simply states that the universes agual at

the times and locations i#s and unconstrained elsewhere.

Definition 2 (Equal Universes Relative to a Dependency Set)
Ui =a4s Uz ifand only if for all (t, €) € ds, Ui (t,£) = Ua(t, £).

Now, we need a similar definition of feed equality. In the daling
definitions, letS;, S2 range over denotations of core feeds and
feeds.

Definition 3 (Feed Subset Relative to a Dependency Set)
S1 Cas S2 ifand only if for all (m, v) € S1 such thain.ds C ds,
(m, 1)) € So.

Definition 4 (Feed Equality Relative to a Dependency Set)
S1 =4s Sz ifand only if S1 Cas S2 andSsz Cgs St

Finally, Dependency Correctnestates that if two universe§;
and U are identical at locations and times dis (but arbitrarily
different elsewhere) then the elements of any féethat depend

upon the locations and times ity do not change whe#' is inter-
preted in universé/; as opposed to iV2. We prove Dependency
Correctness by induction on the structure of feeds.

Theorem 5 (Dependency Correctness)
o IfU; =as Uz thenC[[C’]]E U, —ds C[[C]]EUQ

° IfU1 =45 Uz then]-'[[F]]EUl =ds f[[F]]EUQ.

6. GLOVES Implementation and Evaluation

The GLovEs implementation has three parts: the compiler, the
runtime system, and the built-in tools library. We describese
parts in turn and then evaluate the overall system perfoceand
design.

The Compiler. The GLovEs compiler consists ofcc , the tool
configuration compiler for .tc files, arfchlc , the compiler for feed
declarations (.fml files). Both compilers convert their sm@s into
OCaAML code, which is then compiled and linked to the runtime
libraries. We implemented both tools wiamlp4, the OC\ML
preprocessor.

The fmlc compiler performs code generation in two steps.
First, the code generator emits the type declarations fcin ézed.
Second, it generates representations for each feed désariphe
compiler constructs these representations by extractiegents
from the concurrently generatedb</ML libraries and using poly-
morphic combinators to build structured descriptions.

The Runtime System. We implement each Govesfeed as a lazy
list of feed items. Following the semantics in Section 5,adfdem
is a (meta-data, payload) pair, although the implementdtas a
more refined notion of meta-data that includes more detaiteat
information.

The GLOVES runtime system is a multi-threaded concurrent
system that follows the master-worker implementationtsgy
Each worker thread either fetches data from a specified itotat
and parses the data into an internal representation répe or
synthesizes its data by calling a generator function. Usirigr
conditions, location, scheduled time and arrival time, Warker
generates the appropriate meta-data, pairs it with thenepashes
the feed item onto a queue. The master thread pops the ferd ite
from the queue on demande., when the user program requests
the data. The worker threadésger which guarantees that all data
will be fetched and archived, but the master threathzy, which
allows application programs to process only relevant data.

We used thé@dcamlnet 2 library [28] to implement the fetch-
ing engine. It batches concurrent fetch requests into grofi200,

a size which balances maximizing throughput with avoidiagre
whelming the operating system with too many open sockets.

Tools Library. As explained in Section 4, we implemented the
GLovVESs off-the-shelf tool suite using our generic tool framework.
Some tools depend upon auxiliary tools. For instance, tbd fe-
lector calls a data selector built using theDs/ML generic tool
framework [11] for base feeds. Other tools depend upon eatdir
braries. For instance, tHeed2rrd  tool requires the RRD round-
robin database [22] and thHieed2rss tool uses the XML-Light
package [19] for parsing and printing XML.

Experiments. To assess performance, we measure the average
time to fetch a data item (termauetwork latenc), the average
time to prepare the data item for consumption after fetchtifrpm
the network (termedsystem latengy and thethroughputof the
system for the CoMon feed description in Figure 4. The thiqug
measures the average number of items fetched and processed p
second.

All the experiments were conducted on a Mac Powerbook G4
computer with a 1.67GHz CPU and 2GB memory running Mac OS
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X 10.4. In each experiment, we randomly selected 16 subdets o
PlanetLab nodes, with increasing size from 50 to 800 in imenets

of 50. For each set, we applied the profiler tool for the CoMon
feed twice, once without archiving and once with it, to measu
the throughput and latencies as the system fetched frora trezte
lists. We repeated the experiment ten times and calculdted t
average values.

ing this issue, the best alternative we have devised that mioteuse
compiler support is to require that programmers write tispicifi-
cation code inside of functors parameterized in the apjatgway.
These functors can then be passed off to other functors meie
ing appropriate tool interfaces. However this functor pesgming
style is extremely hard to learn, to use and to explain. Awmjd
these complications by creating a language-level interfseems
to be a good, practical solution to the problem. For moreginisi
into the precise issues at hand, we recommend readingdetaid
on the construction of theabs/ML infrastructure [11] as well as
Hinze’s work [15] on generic programming.

Two secondary issues influencing our choice of language over
library are that (1) we could choose a pleasing and concigse sy
tax for both our feed and tool specifications and (2) this appin
allows smooth integration withADS/ML, which itself is a success-
ful language extension. On the latter point, developingsiesy in
which data locality, temporal availability, format and pesties are
all specified in one place and in one seemlessly integratetdusy
was an important goal. We believe it improves the user progra
ming experience significantly.

7. Related Work

Because of space constraints, we survey only the most glosel
related work.

Provenance. GLOVES meta-data can be seen as an instance
of provenance information, a topic of increasing interestthe
database community. Cheney al [8] showed how the program-
ming language idea of dependency analysis leads to a fonmayt

for tracking provenance. Indeed, our Dependency Corrsstiiae-
orem reuses the definition of dependency correctness gmatio
their work. Our system differs from theirs in several wayewh
ever. They treat provenance abstractly, as a collectioolofs; we
treat it concretely, as attestation of time, source locasind error-

Figure 15 shows the average throughput and the average net-freeness. They track provenance at the level of individuples in

work and system latencies. The throughput is maximized when

fetching from 200 nodes because the system supports up to 200

concurrent fetches. Archiving adds to the overhead of tistesy
and hence reduces the throughput and increases networkyand s
tem latencies. Note that while network latency increaseh ttie
number of nodes, system latency remains almost constane&nd
atively low, showing that the GOVES runtime system adds little
overhead to the inevitable network fetching cost. Desphiterain-
dom network delays in these experiments, the network Igténc
generally linear in the number of nodes. The system, which we
have not tried to optimize, was able to fetch data from 800esod

a relational calculus; we track it at the level of files, leagio re-
duced overhead. They simply track the provenance infoonatie
permit programmer code to view and respond to such infolrmati

Stream Processing. There has been a large body of work in data
stream processing and work flow management [14]. For instanc
languages such as Lustre [7], SIGNAL [4] and Functional Reac
tive Programming (FRP) [9, 29] are designed to implement syn
chronous systems that react to continuous or discretelsightzese

signals are time-indexed values that can be composed ondeco
posed using various combinators. Our work ondSES is com-

and archive the results in under 70 seconds, well under the 5 plementary to these efforts in that the primary purpose pb@s

minute turnaround time currently supported by CoMon. Talen
gether, these results suggest thato8Es is capable of supporting
PlanetLab-scale monitoring.

Language or Library. A natural question that frequently arises
for domain-specific languages is whether the system ishiette
plemented as a library or as a language extension. The ssbng
reason for us to implement our system as a language exteission
that O’Caml (and C, and SML, and, in fact, most functional and
imperative languages) have poor support for generic, thipssted
programming. Unfortunately, many of our key tools, inclugliour
parsers, printers, database loaders, selectors, etceasgig pro-
grams defined over the types of the feeds that our specifitatio
generate. By defining a language extension, we are free tkeénv
a compiler to assemble the code fragments comprising theexdee
applications in a type-correct way.

Now, in theory, the compiler is not 100% essential to the gene
ation of our generic programs, but in practice, it is an ermrsnad-
vantage to the average programmer. After spending montialy-st

is to bridge between such systems and the messy, outsidd.worl
GLOVESprovides a way to robustly internalize external, distréuit
data while tracking error conditions and maintaining provece

in a comprehensive manner so that programmers can subsbquen
use, for example, the elegant abstractions of events, mkand
signals from FRP.

Web Mashups. Web Mashup languages such as MashMaker [10]
and Yahoo Pipes [33] allow web programmers to extract data fr
web sites and RSS feeds and recombine them, often using con-
ventional functional programming paradigms such as mapfiand
ter. The focus is on end-user programming with relativelyabm
amounts of data that can be displayed to a user in a web browser
Errors are generally ignored as completeness or absolutecto
ness of information is not critical in the domains of inteérénlike
GLOVES, which allows users to write rich descriptions expressing
the location, format, schedule and access mode of the data, Y
hoo Pipes, for instance, acquires data through a fixed ¢ateof
black boxes. For this reason,LGVES and mashup languages also



have the potential to be complementary, withd¥es descriptions
serving to define new ad hoc data sources for mashups. Irtti&t,
idea motivated the design and implementation of theo&s ad
hoc-to-RSS conversion tool.

Systems monitoring. One early and widely-used protocol for sys-
tem monitoring is SNMP, the simple network management proto
col [6], which is supported by commercial tools such as HRis®
View [2] and free tools such as MRTG [23]. It provides an open
protocol format, where vendors supply management infaonat
bases (MIBs) that provide a hierarchical description of liaed-
ware’s monitoring information. By separating the data dpsion
into the MIB, SNMP can be more concise than XML, but it has
poor support for ad hoc data, and it is more difficult to update
with new data types or even changes to the data format. For Gri
or cluster environments, two popular monitoring tools ar@nG
glia [17] and Nagios [3]. Ganglia uses raw data in XDR for its
native fields and XML-encapsulated fields for extensiongyidb&a
has no standard data format, but instead gathers all datarindp
cally executing user-specified commands described in agumafi
tion file. The commands use standardized return values t@sp
status and are typically restricted to no more than 4KB of iboon
ing data. What distinguishesL@GVES from systems like SNMP or
Ganglia is the ability to automatically parse and monitatually
any kind of ad hoc data, from node-level information likettbal-
lected by Ganglia or SNMP, all the way down to applicatiovele

or even protocol-level data. These areas are the ones atoar
well served by today’s general-purpose monitoring systévitse-
over, the ability to use the same data description to auticalt
build parsers, in situ tools, and monitoring systems diyeitom
declarative descriptions represents an ease of use ndalaeain
other systems.

8. Conclusions

The explosive growth of the Internet has made monitoringraad-
aging data systems distributed across wide-area netwockeds-
ingly important. The possibility of partial failure and timeed to
synchronize makes such code tedious and difficult to write co
rectly, particularly for data experts whose skills are imdons
other than networking. In this paper, we describe the@s sys-
tem, which allows users to declaratively specify their datstems
and then generate a wide-variety of tools for manipulathegdata:
from stand-alone tools, to simple libraries for writing ithewn
analyses, to generic libraries for building new genericsodVe
precisely specify the meaning of our language via a soundtden
tional semantics and show that this semantics is dependamey
rect. Finally, we demonstrate experimentally that the eyshas
acceptable performance overheads.
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