
LearnPADS: Automatic Tool Generation from Ad Hoc Data

Kathleen Fisher
AT&T Labs Research

kfisher@research.att.com

David Walker
Princeton University

dpw@cs.princeton.edu

Kenny Zhu
Princeton University

kzhu@cs.princeton.edu

ABSTRACT
In this demonstration, we will present LEARNPADS, a fully auto-
matic system for generating ad hoc data processing tools. When
presented with a collection of ad hoc data, the system (1) ana-
lyzes the data, (2) infers aPADS [4, 5] description, (3) generates
parser, printer, validation and traversal libraries and (4) links these
libraries with format-independent tool suites to form stand-alone
applications. These applications provide statistical analysis, XML

conversion, CSV conversion, the ability to query with the Galax
XQuery engine [3], and the ability to graph selected data elements,
all directly from ASCII ad hoc data without human intervention.
SIGMOD attendees will see both the user experience with LEARN-
PADS and the internals of the multi-phase inference algorithm
which lies at the heart of the system.

1. INTRODUCTION
An ad hoc data source is any semistructured data source for

which useful data analysis and transformation tools are notwidely
available. XML, HTML and CSV arenot ad hoc data sources as
there are numerous programming libraries, query languages, man-
uals and other resources dedicated to helping analysts manipulate
data in these formats. Despite the existence of these standard for-
mats, ad hoc data arises often in many fields ranging from compu-
tational biology to finance to networking.

The goal of thePADS project [8] is to improve the productivity
of data analysts who must regularly cope with new and evolving
ad hoc data sources. Our core technology is a domain-specificlan-
guage in which programmers can specify the structure and expected
properties of ad hoc data sources, whether they be ASCII, binary,
Cobol or a mixture of formats [4, 5]. These specifications, which
resemble extended type declarations from conventional program-
ming languages, are compiled into a suite of programming libraries,
such as parsers and printers, and end-to-end data processing tools
including a query engine and several format translators [2,3, 7].

Unfortunately, it often takes substantial time and expertise to
write a PADS description for a new ad hoc data source – days or
even weeks for complex sources. To address this problem, we
have developed a multi-phase algorithm that automaticallyinfers
the structure of ASCII data sources and producesPADS descrip-

tions. From these descriptions, LEARNPADS generates libraries
and the set of tools supported by thePADS system. Analysts can
simply use these tools or write their own programs to processthe
data using the generated parser and printer. The technical details of
the inference system appear in our recent paper [6]. The web page
http://www.padsproj.org/learning-demo.htmlhas
a live demo, which would constitute a portion of our demonstration

Space precludes a discussion of related work here; however,our
recent paper [6] contains an overview of related work in informa-
tion extraction, regular expression inference, and schemainduction.

2. USER EXPERIENCE
Individual network administrators, systems researchers and large

corporations like AT&T must constantly monitor the performance,
reliability and security of their systems. In the process, they often
have to ingest new kinds of data as new kinds of machines with
new log file formats come online. This ingestion process requires
understanding the physical layout of the data source and properties
of the data such as value ranges and correlations. In this paper, we
use a tiny web server log fileai.3000 as a simple example of
the kinds of data sources such analysts must develop tools for. A
sample record has the form:

www.proxy.aol.com - - [16/Oct/1997:08:20:45 -0700]
"GET /tk/pan.gif HTTP/1.0" 200 15944

To process this data with our system, the user would enter

kzhu@myhost> learn data/ai.3000

This command analyzes the web server data and generates a col-
lection of useful artifacts including each of the following.

• A completePADS description that analysts can examine for
syntactic information about their data source. This descrip-
tion can be edited, if desired, and used to regenerate any of
the tools listed below or to generate a collection of C lan-
guage libraries for parsing, printing,etc.

• An accumulator tool that produces a statistical report about
the data source. This tool may be run on any data sharing the
format of the original data. It catalogs the number of errors
and the distribution of values in all fields of the data. Figure
1 shows the result of applying this program toai.3000.

• A formatting program that converts the ad hoc data into a
tabular form with user-defined delimiters such as commas or
vertical bars for loading the data into a relational database.

• An XML translator to convert raw data in the original format
into a canonical XML representation.

1

<top> : struct Struct_149

good vals: 3000 bad vals: 0 pcnt-bad: 0.000

[Describing each field of <top>]
... OMMITTED ...
+++
<top>.var_70 : enum Enum_70
+++
good vals: 3000 bad vals: 0 pcnt-bad: 0.000

Characterizing enum Enum_70 values: min POST (0) max GET (1)
=> distribution of top 2 values out of 2 distinct values:

val: GET (1) count: 2999 pcnt-of-good-vals: 99.967
val: POST (0) count: 1 pcnt-of-good-vals: 0.033

. .
SUMMING count: 3000 pcnt-of-good-vals: 100.000

Figure 1: A Fragment of the Accumulator Report

• A graphing tool that allows analysts to extract and plot fields
of the raw data using GNUPlot. Figure 2 presents a graph of
web transaction volume during some time periods in a day,
computed from theai.3000 data.

In the demo, we will run the format inferencing engine on a variety
of data formats. We will show the resulting PADS descriptions and
the output of these generated programs when run on data similar to
the training data.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00

B
T

y_
67

BTy_25

ai.3000

Figure 2: A graph generated from ai.3000

3. HOW IT WORKS
After showing the experience of using our tool, we will demon-

strate how it works by walking through the steps of the algorithm
on the following simple data file:

:123, 14:
:721, Harry:
:574, Hermione:
:9378, 56:
:12, Hogwarts:
:112, Ron:

Figure 3 gives an overview of the architecture of the system.The
input data, or “training set,” is first partitioned into chunks; each
chunk is a piece of recurrent data such as a line, a paragraph,or
a file (if the input consists of multiple files). The user specifies
this unit of repetition when invoking the tool. Each chunk isthen
divided into a series of tokens. Each token can be a punctuation

Refinement

Printer
IR to PADS

Chunked
Data

Compiler
PADS

XML Converter

Accumulator

Raw Data

XML

Report
Analysis

Description
PADS

Tokenization

Structure
Discovery

Scoring
Function

Format

Figure 3: Architecture of LearnPADS

symbol, a number, a date, a time, or a number of other basic types.
Our learning system has a tokenization scheme skewed towardsys-
tems data, but users may specify a different scheme for theirown
domain through a configuration file. For example, computational
biologists may want to specify new base types for DNA stringsor
gene names. When applied to our sample file, this phase produces
the following output, in which each line is a chunk and each se-
quence within brackets is a token:

[:] [Int] [,] [White] [Int] [:]
[:] [Int] [,] [White] [String] [:]
[:] [Int] [,] [White] [String] [:]
[:] [Int] [,] [White] [Int] [:]
[:] [Int] [,] [White] [String] [:]
[:] [Int] [,] [White] [String] [:]

In the structure discovery phase, we use a top-down, divide-and-
conquer scheme inspired in part by the work of Arasu and Garcia-
Molina on information extraction from web pages [1]. This scheme
calculates frequency distributions for tokens within chunks. It uses
this information to decide the top-level structure for the chunks,
either aPstruct, a Parray, or a Punion, corresponding to
a tuple, a variable-length sequence, or an alternation in the data.
The system then partitions the data accordingly and the algorithm
recursively analyzes subchunks.

For example, when applied to our sample data file, the first iter-
ation of this process determines that the tokens [White], [:], and [,]

2

 0

 20

 40

 60

 80

 100

 120

[white] [,] [:] [string] [int]

0 times
1 time

2 times

 0

 20

 40

 60

 80

 100

 120

[int]

0 times
1 time

2 times

 0

 20

 40

 60

 80

 100

 120

[string] [int]

0 times
1 time

2 times

Figure 4: Histograms calculuated from sample data file (fromleft to right): (a) first iteration, (b) second iteration (context 1) and (c)
second iteration (context 2)

have similar frequency distributions (histograms with 100% cover-
age in one single spike) as shown in Figure 4(a). Hence we group
these tokens into a cluster and identify them as aPstruct. The
system then partitions the initial chunks into:

[:] <context 1> [,] [White] <context 2> [:]

where[:], [,] [White] and[:] delimit the subchunks.
In the second iteration, we compute histograms of the tokens

in context 1 and context 2, shown in Figure 4(b) and Figure 4(c)
respectively. We can infer context 1 is a simple integer as the token
[Int] has 100% coverage. In context 2, the histograms for [String]
and [Int] do not show strong struct characteristics, so the algorithm
introduces aPunion.

We represent the structure inferred by this recursive process in an
intermediate representation (IR) that has expressive power similar
to the PADS language [5]. We annotate each node in this repre-
sentation with metadata comprising a unique id, the coverage of
the node, and an information-theoretic score labelled “raw” that
characterizes how well that part of the description characterizes the
data. The IR computed for our example file follows.

Pstruct(Id = BTy_20 6, raw: 432.183b)
[Other](:) (Id = BTy_1 6, raw: 50.372b);
Pstruct(Id = BTy_5 6, raw: 70.883b)

[Pint] (Id = BTy_3 6, raw: 65.839b);
End Pstruct;
[Other](,) (Id = BTy_6 6, raw: 50.372b);
[White] (Id = BTy_8 6, raw: 17.044b);
Punion(Id = BTy_13 6, raw: 185.510b)

Pstruct(Id = BTy_12 4, raw: 154.089b)
[String] (Id = BTy_10 4, raw: 149.044b);

End Pstruct;
Pstruct(Id = BTy_17 2, raw: 24.377b)
[Pint] (Id = BTy_15 2, raw: 19.332b);

End Pstruct;
End Punion;
[Other](:) (Id = BTy_18 6, raw: 50.372b);

End Pstruct

The format refinement phase analyzes the IR produced by struc-
ture discovery and repeatedly applies value-independent and value-
dependent rewriting rules. The value-independent rules examine
the inferred description to merge or otherwise rearrange compo-
nents to improve the description. Value-dependent rules introduce
constants and enumerations by analyzing the inferred description
and the underlying training data looking for fields with little or no
variation. The value-dependent rules also infer inter-field depen-
dency information. At any point in the refinement process, many
rewriting rules may apply; our algorithm chooses the rule that opti-
mizes an information-theoretic scoring function based on the min-
imum description length principle. The process stops when no fur-
ther refinements are possible. The result of this process on our
running example is the following refined IR:

Pstruct(Id = BTy_20 6, raw: 287.759b)
[StringConst] ":" (Id = BTy_1 6, raw: 11.044b);
[Pint] (Id = BTy_3 6, raw: 65.839b);
[StringConst] ", " (Id = BTy_6 6, raw: 17.044b);
Punion(Id = BTy_13 6, raw: 175.421b)

[Pint] (Id = BTy_15 2, raw: 19.332b);
[String] (Id = BTy_10 4, raw: 149.044b);

End Punion;
[StringConst] ":" (Id = BTy_18 6, raw: 11.044b);

End Pstruct

Finally, a pretty printer translates the final IR into a legalPADS
specification, which the PADS compiler uses to generate a suite
of useful tools (Only the XML converter and the accumulator are
included in Fig. 3). The PADS description inferred for our sample
data source follows:

Punion Union_13 {
Pint64 var_15;
PPstring var_10;

};
Precord Pstruct Struct_20 {

’:’;
Pint64 var_3;
", ";
Union_13 var_13;
’:’;

};
Psource Parray entries_t {

Struct_20[];
};

4. REFERENCES
[1] A. Arasu and H. Garcia-Molina. Extracting structured data

from web pages. InSIGMOD, pages 337–348, 2003.
[2] M. F. Fernández, K. Fisher, J. N. Foster, M. Greenberg, and

Y. Mandelbaum. A generic programming toolkit for
PADS/ML: First-class upgrades for third-party developers. In
PADL, Jan. 2008.

[3] M. F. Fernández, K. Fisher, R. Gruber, and Y. Mandelbaum.
PADX: Querying large-scale ad hoc data with XQuery. In
PLAN-X, Jan. 2006.

[4] K. Fisher and R. Gruber. PADS: A domain specific language
for processing ad hoc data. InPLDI, pages 295–304, June
2005.

[5] K. Fisher, Y. Mandelbaum, and D. Walker. The next 700 data
description languages. InPOPL, Jan. 2006.

[6] K. Fisher, D. Walker, K. Zhu, and P. White. From dirt to
shovels: Fully automatic tool generation from ad hoc data. In
POPL, Jan. 2008.

[7] Y. Mandelbaum, K. Fisher, D. Walker, M. Fernández, and
A. Gleyzer. PADS/ML: A functional data description
language. InPOPL, Jan. 2007.

[8] PADS project.http://www.padsproj.org, 2007.

3

