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ABSTRACT out-of-date, or completely non-existent. Such data fratjyeon-

tain errors for a variety of reasons, including malfunctr@nequip-

ment, non-standard representations of missing valuesahwrror

in entering dataetc. Handling such errors is challenging because

of the variety of errors and because the appropriate regpens
O|application-dependent. Some applications require tha ttabe

error free and need to halt processing if any errors are thtec

Others can simply discard erroneous values, while stikrthvant

to study the errors in detail. All of these challenges areeraated

by the fact that ad hoc data sources often have high volume. Fo

example, AT&T’s Altair project accumulates billing dataatate

of 250-300GB/day, with occasional spurts of 750GBs/day.

Finally, someone has to write a parser for a new format before

anyone can use the data. People tend to usee@( Por PYTHON

for this task. This approach is tedious and error-pronepimated

by the lack of documentation, convoluted encodings desigone

The goal of thePADS project, which started in 2001, is to make
it easier for data analysts to extract useful informatiamfrad hoc
data files. This paper does not report new results, but rgites an
overview of the project and how it helps bridge the gap betvibe
unmanaged world of ad hoc data and the managed world of type
programming languages and databases. In particular, fher pe-
views the design ofADS data description languages, describes the
generated parsing tools and discusses the importance afdaéd.

It also sketches the formal semantics, discusses usefisl aoal
how can they can be generated automatically froxns descrip-
tions, and describes an inferencing system that can leafulus
PADS descriptions from positive examples of the data format.

Categories and Subject Descriptors

D.3.m [Programming languages]: Miscellaneous save space, the need to produce efficient code, and the nkad-to
dle errors robustly to avoid corrupting down-stream dataoréA
General Terms over, the parser writers’ hard-won understanding of the detds

up embedded in parsing code, making long-term maintenaiffce d
cult for the original writers and sharing the knowledge wathers
nearly impossible.
K eywor ds The PADS project started with the observation that an appropri-
Data description languages, ad hoc data, domain-specificéges ately designed, declarative data-description languagsdcieelp
bridge the gap between thmmanaged world of ad hoc data and
1. WHY PADS the managed world of strongly typed programming languages and
databases and thereby help alleviate many of the concerns me
tioned above. To this end, the language we have designedtperm
analysts to describe ad hoc dasat is, not how one might want it
to be. The descriptions are concise enough to serve as doeume
tation and flexible enough to describe most of the data famwat
have seen in practice, including ASCII, binary, Cobol, arded
data formats. From these descriptions, a compiler can gedata
structure declarations for representing the data in thelboguage
of the data description language as well as parsing andmyirau-
tines. Because the compiler is generating software atsifaged to
manipulate the data, analysts have to keep the data déseript
to date, ensuring it can serve as living documentation.

The declarative nature #ADs descriptions facilitates the inser-
tion of error handling code. The generated parsing codekshait
possible error cases. Because these checks appear onlgén ge
ated code, they do not clutter the high-level declarativsedption

Languages, Algorithms

Traditional databases andvL-based systems provide rich in-
frastructure for managing well-behaved data, but proviitle kup-
port for ad hoc formats, which we define to be any semi-structured
data format for which parsing, querying, analysis, or tfamsa-
tion tools are not readily available. Vast amounts of usdéih are
stored and processed in such ad hoc formats, despite thereeas
of standard formats for semi-structured data. Examplesdrom
a myriad of domains, including finance, health care, trartation,
telecommunications, and the sciences [11].

For a number of reasons, processing ad hoc data is chalgngin
Ad hoc data typically arrives “as is”: analysts are lucky &t the
data at all and have little chance of getting suppliers todsed-
ize its format. Documentation for the format is often incdete,

Permission to make digital or hard copies of all or part o thiork for of the data source. The result of a parse is a pair consisfirg o
personal or classroom use is granted without fee providatidbpies are canonical in-memory representation of the data and a pasig-
not made or distributed for profit or commercial advantage tiat copies tor. The parse descriptor precisely characterizes botlsyheactic
bear this notice and the full citation on the first page. Toycoiherwise, to and the semantic errors that occurred during parsing. Thistsire

republish, to post on servers or to redistribute to listquiees prior specific . L
permission and/or a fee. allows analysts to choose how to respond to errors in agfica

ICDT 2011 Uppsala, Sweden specific ways.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.



171.64.78.97 -
quant um com

kfisher [31/Cct/2010: 23:55:36 -0700]
[ 31/ Cct/2010: 24: 55: 36 -0700]

"CET /padsproj.org HTTP/ 1. 1" 200 982
"CET /padsproj.org/logo.png HTTP/ 1. 1" 200 2326

Figure 1: A fragment of data in Apache Common L og Format.

Finally, aPADS description gives enough information about the
structure of the data that it is possible to generate autocaibt a
wide variety of useful tools customized to the particulamiat.
Examples of such tools include statistical analyses, foooavert-
ers, data adaptors to connect to query engines like XQuérat@l
visualizers. Using generic programming techniques [8, 28,
third party developers can design tools that will work foy &abs
description.

This paper does not describe new research, but rather tollec
and summarizes the work done in theDs project. The interested
reader is invited to read more about individual aspectseptioject
in the original papers. The project is the work of many peapler
a long period of time; all contributors are listed in the amki
edgements section of the paper.

The rest of the paper is organized as follows. Section 2 ex-
plains what @ADsdata description language looks like by working
through a simple example. Section 3 describes the outputeba
compiler. Section 4 describes a formal semantics for degarge
tion languages, which serves as a specification for haws data
description languages should behave, regardless of theldmes
guage in which they are embedded. Section 5 describes ths kin
of tools we can generate fromaDs descriptions as well as how
generic programming makes third-party tool generationsitubs.
Section 6 describes how we can leverage large quantitiestaftd
learn PADS descriptions rather than having to write them entirely
by hand. Section 7 briefly reviews related work and Sectioor8 c
cludes.

2. WHAT YOU SAY

In this section, we briefly describe wharaps data description
language looks like by working through a simple exampleuFedL

[ pads|
type CLF_t = [Line Entry_t]
data Entry_t =
{ host Source_t,
' ', identdl D ID t,
"', httplD ID t,
, time Ti meSt anp_t,
"', request Request _t,
, response Response_t,
' ', contentlLen :: ContentlLength_t
}
data Source_t = IP IP_t | Host Host_t
data IDt = Mssing '-" | Id (Pstring ' ")
dat a Request _t =
{ """, nethod Met hod_t,
Y, ourl : Pstring ' 7,
', version :: Version_t,
"}
data Version_t =
{"HTTP/", major :: Pint, '.’, mnor Pint }
data Method_t = GET | PUT | POST | HEAD
| DELETE | LINK | UNLINK
type Response_t = constrainr :: Pint

where <| 100 <=r && r < 600 |>

data ContentlLength_t = NotAvailable '-’
| ContentlLength Pint

Figure2: PADS/HASKELL description of CLF data.

gives a small fragment of a web access log in Apache Common Log expressions in the host language to describe semanticriespef

Format (CLF) [5]. Each time an Apache web server receives a re
quest, it writes such an entry to its access log. The first fleltbtes
the IP address or host name of the client making the requést. T
next two columns denote the identity of the client user, trst fis
determined by thé dent d function on the client machine and the
second as determined by HTTP authentication. If the inftiona
is not available, the server writes-ainstead. The next field is the
time stamp of the request, in brackets. It is followed by #euest
itself in double quotes. The request has three pieces: thEPHT
method used by the client, the requested url, and the version
HTTP used for the transaction. The format ends with two ieteg
the first of which is the three-digit response code sent badke
client and the second is the number of bytes returned. If iesby
were returned, this last number will be a dash instead.

the data, such as the range of integer values or correlabietmgeen
data items.

The PADS/HASKELL description in Figure 2 describes the CLF
data format. We embedADSs in Haskell using Haskell's quasi-
quoting mechanism [20]. All of the code inside the quasitgao
[ pads|...|] isPADS/HASKELL;the identifierpads tells the
Haskell parser which quasi-quoter to use to process thesed!
code. Any code written outside of the quasi-quotes is orglina
Haskell. Moreover, Haskell declarations written prior tizk quotes
are in scope and available in tlreDS/HASKELL code. At com-
pile time, the Haskell compiler calls tiaDs quasi-quoter to con-
vert thePADS/HASKELL code to plain Haskell declarations, which
are spliced into the source code at the point of the quadiatjoa.
These declarations are subsequently in scope for any Hasid

PADS uses a type metaphor to describe ad hoc data. Base typeghat follows. This mechanism enables us to completely cbttte

describe atomic pieces of data and type constructors theslaw
to build compound descriptions from simpler ones. Eaalbs

syntax of our data description language while still intpemting
with the host language. Indeed, the ability to alternatek

type plays two roles: it defines a grammar for parsing the data forth at will betweenpADS and Haskell declarations provides a

and a format-specific data structure in which to store the resfult
the parse. We have developed versionsabs for C [11] and
ML [21], both of which are available for download on the web with
an open-source license [23]. We are currently developingra v
sion for Haskell, which we will use as the example languagéim
paper. For each language binding, we re-use the types ofote h
language in the data description languagedsalso uses predicate

smooth, flexible and pleasing programming experience —ioe t
languages act as one.

The first line of the description declares the tyfie-_t , which
describes the entirety of an access log. It says that such & lo
a list of lines of typeEntry_t . The next line declares the type
Ent ry_t, which is a record describing a single entry in the log. It
says that an entry is a sequence of seven fields; each fielkis gi



newtype CLF_t = CLF_t [Entry_t]

data Entry_t = Entry_t
{ host ;1 Source_t,

i dentdl D IDt,

httpl D IDt,

tinme Ti meSt anp_t,

request Request _t,

response Response_t,

contentLen :: ContentlLength_t}
data Source_t = IP IP_t | Host Host_t
data IDt = Mssing | Id Pstring

newt ype Response_t = Response_t Pint

Figure 3: Generated representation types.

name and an associated type. For examplehttst field has type
Sour ce_t , which is also declared in the figure. In addition to the
named fields, there are literal characters in the recordadatbn,
which correspond to literals in the data. For example, betwée
host andi dent dI Dfields, there is a space character {).

The Sour ce_t type is an interesting example of a datatype:
a value of this type i®ither an IP addres$ P_t or aHost _t,
wherel P_t andHost _t arePADS base types describing IP ad-
dresses and host names, respectively. The branches oftgpeata
are attempted in order; the parser greedily selects thelfiesich
that matches. The labelsP and Host tag the parsed value as
belonging to the first or second branch, respectively. Typet
is another datatype. In this case, the first branch correlsptma
data format with the literdl - ' . The typeMet hod_t is a datatype
where the branch labels correspond to the data, and so theang
type to the branch label is omitted.

type CLF_t_nd = (Base_nd, [Entry_t_nd]),
type Entry_t_nmd = (Base_nd, Entry_t_inner_nd),
data Entry_t_inner_nd = Entry_t_inner_nd
{host _nd :: Source_t_nd,
i dentdl D_nd ID t_nmd,
htt pl D_nd ID_t_nd,
tinme_nd Ti meStanp_t _nd,
request _md Request _t _nd,
response_nd ;. Response_t_nd,
contentLen_md :: ContentlLength_t_nd}
type Source_t_nd = (Base_nd, Source_t_inner_nd)

data Source_t_inner_nd
= IP_md IP_t_nd | Host_nd Host_t_nd
IDt = Mssing | Id Pstring
ID t_inner_nd
= M ssing_nd Base_nd
| Id_nd (Base_nd, Base_nd)

dat a

data n
s

newt ype Response_t = Response_t Pint

Figure 4: Generated meta-data types.

data Base_nd = Base_nd

{ nunErrors :: Int,

errinfo Maybe Errlnfo }
data Errinfo = Errinfo
{ nsg Err Msg,
position :: Maybe Position }

Each generated meta-data type pairs a geBarfe_md with a
type-specific meta-data structure. TBese_nd type summarizes
the errors that occurred within the corresponding struectwhile
the type-specific meta-data localizes error informatiohisBtruc-
ture allows analysts to handle errors in application-dpegiays.

Base types describe atomic pieces of data. Examples of baseBy checking the top-leveBase_nd value, analysts can determine

types include integer$?{ nt ) and floats Pf | oat ), single charac-
ters Pchar) and stringsPstring ' '), IP addressed P_t)
and host namesHpst _t ), dates Dat e_t ), and many others.
The typePstring ' ' is an example of @arameterized type.

In general, a string could go on forever. The parameter §ipsci
when the string should stop, in this case, when the parseuenc
ters a space. To account for more general stopping condjtion
PADS/HASKELL provides the base tygest r i ngME, which takes

a regular expression as a parameter. This type matchesrthedb
string that matches the argument regular expression.

Finally, the typeResponse_t is an example of @onstrained
type. It specifies that &sponse_t is aPi nt between 100 and
599, inclusive. In the declaration, the variables bound to the
result of parsing the input as Ri nt, after which the predicate
given in thewher e clause is evaluated. The type matches if the
predicate evaluates fir ue. The bracket| . . . | > indicate that
the enclosed code is pure Haskell code.

3. WHAT YOU GET

From aPADS specification, the compiler generates a pair of data
structures: one for the in-memory representation of thegzhdata
and an isomorphic structure for meta-data such as the nuantker
type of errors. The form of the generated representatioa tygpre-
sponds to the form of the type in tiraDs description:PADS lists
compile to Haskell lists, records to records, and data typemta
types. Constrained types map to the representation of therun
lying type. Figure 3 gives a selection of the representatymes
generated for the CLF description.

The meta-data types, shown in Figure 3, have a similar streict
These declarations make use of the ti3aese_nd to describe the
number and type of errors detected during parsing:

whether there were any errors during parsing. If the erram¢o
is zero, they know the data parsed without any errors anchall t
semantic predicates held. If the error count is non-zerey ttan
traverse the meta-data structure to determine precisegrevthe
errors occurred and what caused them, allowing the anatysts-
cide whether to discard, repair, or study the errors. Thigiealso
means that the representation is not cluttered with optipes in-
dicating that each value could be absent because of an emiogd
parsing. If an error occurs while parsing a base type, the-com
piler fills in an appropriate default value and marks the nukta
accordingly.

Finally, the compiler generates a function that parsesputt ifile
into a pair of a representation and a meta-data structutdaskell
terms, each generated representatioap), meta-datartd) pair
belongs to thePads type class and provide a definition for the
par seFi | e method:

parseFile :: Pads rep nd =>

FilePath -> 1O (rep, nd)

The return type Q( r ep, nmd) indicates that the function produces
avalue of typd r ep, nd) while causing side-effects such as open-
ing and closing file handles. A particular instance of thisdiion
parses values for the tyfig F_t :

parseFile :: FilePath -> 1O (CLF_t, CLF_t_nd)

The generated parser is a simple recursive-descent pardes
parsing strategy makes it easy for values early in the parsd-t
fect down-stream choices, for example, to read an integerdé-
termines the length of an upcoming list or a tag that predidtat
form the body of a record will take. While generally satigtay,

recursive descent parsers cannot parse left-recursivergaas and



can require exponential time (if there is a lot of backtragli De-
veloping always-efficient parsers suitable for powerabs-like
grammars is currently an active research question [17].

Although not yet implemented iPADS/HASKELL, PADS/C and
PADS/ML both also generate a pretty printing function that takes a
pair of a representation and meta-data structure and igesahe
representation to a file. In Haskell, this function will hate sig-
nature:
printFile :: Pads rep md =>
(rep, md) -> FilePath -> 10 ()

4. WHAT IT MEANS

The close correspondence betweasps descriptions and the
type structure of the host language makes the meanirepapf
descriptions relatively intuitive, but it does not sufficefrecisely
define their semantics. To address this deficiency, we degdla
formal calculus, calledDc{ based on dependent type theory [13].

We defined a denotational semantics favc® that interprets
each term in multiple ways. In the first interpretation, eadt®
term 7 is mapped to a type that we call its “representation” type,

can generate a number of such tools fully automatically feom
description. We describe a few of the most useful tools below

Accumulator.

With large data sets, it can be difficult to get a “bird’s eyé&&w
of the data, which requires developing a sense of what the dat
“usually” looks like, what fields have a lot of variation, witthe
representations for missing values ate, The accumulator tool is
designed to help with this problem. It runs over large volaroé
data with the designated format, accumulating a varietyftérent
statistics for each part of the structure. When all the @ievata
has been processed, the accumulator generates an infoerate
tistical report. For base types, the accumulator repoftgimation
relevant to that type. For example, for integers, the topbres the
minimum, maximum, and average values, as well as a histogram
of the most commonly seen values, precisely tracking alleslup
to a customizable limit. For strings, the accumulator répéine
observed lengths of the strings and a histogram of obseiees.
For structured types, the accumulator tool reports sunesafi the
components of the types. For lists, it reports the variongtles of
the list observed in the input. For datatypes, it reportsréhative

Trep- This type describes the data structure that stores the host frequencies of the various branches.

language representation of the parsed value. In the sected i
pretation, eaclbpc® term 7 is mapped to a type that we call its
“meta-data” types..q4. This type describes the data structure that
stores the host-language representation of the meta-datzaged
during parsing. In the third interpretation, eabbc® term 7 is
mapped to a parsing function. This parsing function takea@st

a string to be parsed and returns a pair with type,, 7mq)-

We precisely characterized tleanonical relationship between a
representation value and a meta-data value for the two todaam
ingfully paired. This canonical relation enforces the pp that
the meta-data structure captures the errors in the repeggam We
then showed that for everypc® termr, the generated parser re-
turns a representation and a meta-data value that are delate
the canonical relation, guaranteeing that the meta-daietste re-
turned by the parser precisely captures the errors detetadg
parsing.

In addition, we showed how to translateDs declarations into
terms ofbbc® to document precisely the semantics of those decla-
rations. This process allowed us to find several bugs irPtpes/c
implementation and guided the design of later versiorsaafsin-
cludingPADS/ML andPADS/HASKELL. Moreover, theoDc® calcu-
lus is general enough that it also allowed us to define forermles-
tics for interesting elements of other data descriptiorgleges,
including PACKETTYPES[22] andDATASCRIPT[4].

We eventually extendenlbc® to add a fourth semantic function,
corresponding to a printing function. We explored under txduen-
ditions parsing followed by printing or printing followed/parsing
is the identity function [12]. This question is non-triviaécause
various parsing functions throw away information from theut,
such as the number of white space characters between twesvalu
This loss makes it impossible to precisely regenerate thygubin
all cases. Of course, it would always be possible to change th
parser to retain enough information to ensure round-triggaws
for parsing and printing, but it is unclear whether the piadtprice
is worth the theoretical gain.

5. WHAT ELSE YOU GET

A key insight behind the@ADSs project is that once someone has
written a description, it is possible to generate a wideetgrof
additional tools besides a parser and a printer becausestweip-
tion tells the computer a lot about the data. Each versiopaafs

A common use of the accumulator tool is in writirgDSs de-
scriptions. It is typical to write an initial descriptionahcovers a
representative sample of the data source, using stringtippss to
specify poorly-understood portions of the data. From tkeisadip-
tion, the analyst generates and runs the accumulator tdothw
reports both the records in the input that do not match therges
tion and distributions on the place-holder strings. Botbcps of
information allow the analyst to refine the description atedate.
This process helps in developing descriptions where the filatis
large and has variation throughout the file, making it imfmegor
human beings to see all the variation without automatedi@ssie.

A demo of aPADS accumulator is available from the website
http://ww. padsproj . org/l earni ng- deno. cgi .

XML Converter.

PADSdescriptions typically describe semi-structured datdctvh
makes it natural to represent the same information in XML: Be
cause XML is a standard representation for semi-structdegd,
there are many tools available to manage XML data. To lewerag
this infrastructure, we developed a tool to convert @aps de-
scription into a corresponding, format-specific XML Scheamal
any data matching theapsdescription into XML that matches the
generated Schema. Thabswebsite also has a demo of this tool.

Relational Converter.

Although not allPADSsdescriptions describe essentially relational
data, some do, and for such descriptions, it can be usefalrtoect
the raw data into a “cleaned-up” form suitable for loadintpia
relational database. The common log format we saw in Segtion
is an example of such a data source. Its raw form is difficult to
include via a typical database import function because etttira-
neous punctuation, but conceptually it is a simple tablee FADS
relational converter tool maps the raw data into a delimitetd
umn form, where the user can specify the delimiter. We haeel us
this tool at AT&T to import data into the Daytona databaseeys
Again, therADSwebsite has a demo of this tool.

XQuery Integration.
An obviously useful tool for ad hoc data sources is the abil-
ity to query the data. Inventing an entirely new query larggua



for what is essentially semi-structured data seemed likeeating
the wheel. Instead, we decided to develop a tool that wolbsval
analysts to query any data source witlP&DS description using

XQUERY [18]. An obvious approach to this integration would be

to use the XML converter to translate the original data intdLX

and then run an XQuery implementation on the resulting desim
However, the large amount of extra space required to reptrése

data in XML, typically a factor of eight, led to unacceptalpler-

formance with this approach. Instead, we were able to Igectiae

abstract data model provided by the Galax [10] implemeoratif

XQUERY to enable Galax to quemADS data directly. The origi-
nal implementation of this tool [9] only allowed query resuo be

returned in XML, but a subsequent extension allowed resolbe

mapped back into the original form [8].

Harmony integration.
The Harmony synchronization framework [24] allows two repl

cas of a document to be synchronized with each other. Irtgrna

Harmony works on unordered trees. Synchronizing partiaidda
formats requires writing viewers to map between the on-cégke-
sentation and Harmony's tree model. To avoid having to vatiteh
viewers by hand, we wrote a tool to automatically convert daa

with a PADS description into the required format and back. To-
gether,PADS and Harmony allow effective, semantics-preserving

synchronization of arbitrary ad hoc data sets.

5.1 Implementing tools

The best way to implement these description-specific toats h

been the subject of on-going research. In the original imgle-

tation of PADS, the compiler generated these tools. This approach

gives a lot of flexibility and is fairly straightforward to iplement,
but it means that only compiler writers can add new toolsgaifi
icant limitation.

To address this problem, tlr@aDs/ML compiler generates generic

“traversal functions” [8, 21] in addition to the standargéydecla-
rations and parsing functions. Using this infrastructtingd-party
developers can write tools without having to change the dlemp

However, the downside is that the interface to the set of ene

functions is extremely complex. The complexities in theiface
arose because the host languageAebs/mML, OCAML, does hot
provide direct support for generic programming, In ordeokbdain
the generic programming facilities we required, we wereéakrto
implement sophisticated type-directed algorithms in tiectures
and functors supplied by OGaL’s powerful module system. The

result was a system that is expressive enough to accomplésh t

desired tasks, but useable only by extreme experts.

One of the motivations for building a version eADsin Haskell
is that Haskell does provide a lot of support for generic prog
ming [19, 25]. We anticipate that writing third party tools the
PADS/HASKELL framework will be significantly easier.

6. SOMETHING FOR FREE

The time and expertise required to writeabs description from

scratch can be a significant impediment to using the systees. D

pending on the complexity of a data source, it can take houtays
to produce a comprehensivabsdescription. To shorten this pro-
cess, we have developed a system that automatically infexea
description from multiple positive examples of the datarfat [14].
This learning process can be connected torthes tool infrastruc-
ture to automatically produce tools to generate accumutafmrts

or XML representations of ad hoc data sources without any hu-

man intervention. A demo of this capability is available ba web
http://ww. padsproj.org/l earni ng- deno. cgi .

The inference system works in a series of stages. In the first
stage, the input data is broken into chunks, each of whiclp@sa
tive instance of the data format to be learned. We requiresieeto
tell us how to do this division. Typical examples includedkiag
a file on newline boundaries or treating each file in a coltectf
files as an instance.

In the second stage, we convert each chunk into a sequence of
tokens, where the collection of possible tokens is specifi&@dg
regular expressions. By default, the system provides ®HKen
integers, floats, various kinds of strings, white space,@mttua-
tion. It also provides domain-specific tokens for systeiks-tlata,
such as IP addresses, MAC addresses, email addresses adates
times. The intuition is that this collection should inclug®mic
pieces of data that a human would glance at and know what nsnea
with 100% confidence. The system is parameterized so usars ca
provide their own set of regular expressions.

In the third stage, the system computes a histogram for each t
ken, counting the number of records in which the token apgpear
zero times, one time, two timesfc. Tokens with similar his-
tograms are clustered, based on a similarity metric. Thetetu
that “best describes” the data is selected, using a heatisdi re-
wards high coverage, meaning the cluster appears in almest e
record, and narrowness, meaning that the tokens in theeclapt
pear with the same frequency in almost all records. For exanfp
every record had exactly one comma and two quotation clersact
then the comma and two quotation tokens would be clusterdd an
that cluster would be selected. The system next partitioa$riput
based on the selected cluster, with one partition for easlenvid
order for the cluster tokens and an extra partition for theords
that do not contain all the tokens in the cluster. This caibecof
partitions will correspond to a datatype in the eventuatdpton,
with one branch for each non-empty partition. (In the casereh
there is only one partition, this datatype is omitted fromitiferred
description.) Within a partition, all records have all tlokens in
the cluster in the same order. Each such partition will gpoad to
a record type declaration in the generated descriptions fedord
type contains each of the tokens in the appropriate orderin-To
fer the description for the data between these tokens, thiersy
divides each input record into the tokens before the firstteiuto-
ken, between the first and second cluster toletn, Each of these
groups is then recursively analysed to produce a desaniptiat is
slotted into the top-level record declaration.

In the fourth stage, we greedily search for the best possible
scription in the nearby area. This search is executed byesucc
sively applying rewriting rules to the inferred descriptiand scor-
ing the results of the rewrites. The search continues unisl mo
longer possible to rewrite the description in such a way asiko
tain a new description with a superior score. The scoringtion
itself uses an information-theoretic measure called thaitfim
Description Length (MDL) [16] to evaluate the quality of adg-
scription. This measure counts the complexity of the deson
and the complexity of the data given the description, themd
nalizing both simplistic descriptions (likst r i ng) that cover the
data without adding any information as well as overly corrple-
scriptions, such as the description that specifies eaclactearin
order.

6.1 Learning tokenizations

The learning algorithm is very sensitive to how the inpubis-t
enized. For certain basic types, like filepaths, the regedpression
that defines legal file paths is very general. Almost eveingtof
characters is a file path, but that does not meanlikéy that ev-
ery string of characters is a file path. It is fairly easy foman



beings to look at a data set and identify the filepaths. Weoeggl
whether machine-learning techniques could help us de\elog-
enizer that could capture this concept effectively [26].e Thsult
of this study was that the learning system required a lot tf dad
the inference process was slower, but the quality of theriefe
descriptions improved. Still, more research in this arey mall

improve the quality of descriptions relative to the timeuggd to
learn them.

6.2 Incremental Inference

The original inferencing algorithm produces a descripte®a
clusively from a relatively small, single input data set. fohtu-
nately, this original design made it impossible to use ieffiee to
improve an existing description, to process streaming datto
process large data sets. To address these weaknesses,iwthare
process of developing an incremental version of the legrsirs-
tem [28]. In this version, the learning system optionalles an
existing description as input in addition to the data. Thgotof
the system is a new description that covers all the new daiie wh
diverging from the original description as little as po$sib

This architecture allows us to scale to larger data setsogting
the inference process. We can either start with a suppliedrige
tion or use the original learning algorithm to produce a dsion
from a subset of the supplied data. We then divide the remgini
data into groups of appropriate size and iteratively apipdyitcre-
mental algorithm to these groups, eventually returningszcdption
that covers the entirety of the original data set. We are énpito-
cess of evaluating the effectiveness of this approach andwedl
it scales.

6.3 Putting humansin the loop

Even if format inference were perfect, we would still need hu
man involvement to produce the high-quality descriptioAsthe
very least, it is not possible for the computer to infer megni
ful labels for fields in records. For example, the computemcd
tell if a given IP address is a source or a destination. In tits e
it is likely that the best system for inferring descriptionsl use a
combination of machine learning techniques and a high-poser
interface that lets humans explore the data and edit déiscripef-
fectively.

One kind of human-friendly interface we have explored iradet
is a new sort ofnarkup language for raw text [27]. This markup
language, calledNNE, helps users interactively genersebsde-
scriptions with human-readable names and the exact steude+
sired. Given a new ad hoc data source pamE programmer edits
the document to add annotations that are somewhat akin to XML
tags, yet contain bits of grammatical information that sevspec-
ify the syntactic structure of the document. These anrmiatin-
clude elements that specify constants, optional datasnaliiges,
enumerations, sequences, tabular data, and recursiegrzmatihe

ANNE system uses a combination of user annotations, smart de-

faults, and the raw data itself to extracaps description from
the document. Thi®ADS description can then be used to parse
the data and transform it into an XML parse tree, which may be
viewed through a browser for analysis or debugging purposks
description can also be saved as documentation or used &r-gen
ate any of the othepADStools. Like other languages in tlaDs
family, ANNE has a formal semantics. This time, the semantics is
based on concepts drawn from Relevance Logic [2] as oppased t
type theory. We used the semantics to prove a number of inter-
esting properties concerning the expressivenessNofe and the
conditions under which it is able to extract a desired cantee
grammar from a document.

One of the inspirations foRNNE was an earlier system called
LAUNCHPADS [6]. This tool used a graphical user interface to
help human beings write descriptions. The tool presents wgih
sample input and provided a tool palette for introducingictire
such as lists, datatypes, and records. An integration ofaaVi
tool like LAUNCHPADS or a text-based annotation language like
ANNE and the incremental inferencing algorithm is likely thetbes
approach to producing high-quality descriptions quickly.

7. WHAT OTHERSHAVE DONE

There is a vast literature on parsing, so here we only briefly r
view related work on data description languages. Our pagfind
ing the semantics afADS contains a detailed discussion of a large
body of related work [13]. The interested reader is invitedon-
sult that paper for a more detailed discussion. In additeach
of the PADS papers mentioned here discusses the relevant related
work. For more information on particular aspects of theds
project, consult the relevant paper.

There are many data description languages for designirg dat
formats, including ASN.1 [7] and ASDL [1], or, more recently
Google Protobufs [15] and Apache Avro [3]. These declaedtw-
guages allow programmers to describeliggcal representation of
data and then automatically generatehgsical representation and
functions to map between the two representations. Althaisgtul
for many purposes, such tools are of little use when the physi
representation is already fixed, which is the domain eaais tar-
gets.

Traditional parsing systems such as YACC generate pansers f
declarative specifications; however, they are not paditylwell
suited for writing data descriptions. In particular, sugtstems
generally require users to write a separate lexer and agrtsin-
memory data structures by hand. They typically only work on
ASCII data and do not allow data-dependent parsing.

The languages and systems that are most closely related®
are PACKETTYPES[22] and DATASCRIPT [4]. Each of these sys-
tems allow declarative descriptions of physical data, vadéid re-
spectively by the goals of parsing TCP/IP packets asdh jar-
files. As with PADS, these languages all use a type-directed ap-
proach to describing physical data formats and permit tlee s
specify semantic constraints in a host language. Thesersgsiif-
fer from PADS in focusing only on binary data and assuming that
the data is error free, halting if an error is detected. Initmia
these systems focus on the parsing problem, rather tharpedso
viding a body of auxiliary tools. None of these systems aptein
infer descriptions from raw data.

8. WHERE WE GO FROM HERE

Various problems remain open. Developing new tools isdifHl
ficult. We anticipate that working in the context of Haskelhich
has an active research community in generic and type-edilgmio-
gramming, will help in this area. Format inferencing is i@aably
successful, but we believe the inferencing process can thieefu
improved by incorporating more advanced machine-leartecy-
nigues and by including the user in strategic decisionsalpjirto
get widespread adoption of the technology, it is likely reseey
to integrate a version afADS more tightly into standard tools for
manipulating data.
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