
Ad Hoc Data and the Token Ambiguity Problem

Qian Xi1, Kathleen Fisher2, David Walker1, and Kenny Q. Zhu1

1 Princeton University
2 AT&T Research

Abstract. PADS is a declarative language used to describe the syntax and seman-
tic properties ofad hoc data sourcessuch as financial transactions, server logs and
scientific data sets. ThePADS compiler reads these descriptions and generates a
suite of useful data processing tools such as format translators, parsers, printers
and even a query engine, all customized to the ad hoc data format in question. Re-
cently, however, to further improve the productivity of programmers that manage
ad hoc data sources, we have turned to usingPADS as anintermediate language
in a system that first infers aPADS description directly from example data and
then passes that description to the original compiler for tool generation. A key
subproblem in the inference engine is thetoken ambiguity problem— the prob-
lem of determining which substrings in the example data correspond to complex
tokens such as dates, URLs, or comments. In order to solve thetoken ambiguity
problem, the paper studies the relative effectiveness of three different statistical
models for tokenizing ad hoc data. It also shows how to incorporate these mod-
els into a general and effective format inference algorithm. In addition to using
a declarative language (PADS) as a key intermediate form, we have implemented
the system as a whole inML .

1 Introduction

An ad hoc data formatis any data format for which useful data processing tools do
not exist. Examples of ad hoc data formats include web serverlogs, genomic data sets,
astronomical readings, financial transaction reports, agricultural data and more.

PADS [FG05,PAD07] is a declarative language that describes the syntax and se-
mantics of ad hoc data formats. ThePADS compiler, developed inML , reads these
declarative descriptions and produces a series of programming libraries (parser, printer,
validator and visitor) and end-to-end tools (XML translator, query engine, reformatter,
error monitor,etc.). Consequently,PADS can dramatically improve the productivity of
data analysts who work with ad hoc data. However,PADS is not (yet) a silver bullet.
It takes time for new users to learn the language syntax and even experienced users
can take hours or days to develop descriptions for complex formats. Hence, to further
improve programmer productivity, we have developed a system called LEARNPADS

that automatically generates end-to-end data processing tools directly from example
data [FWZW08,FWZ08]. It uses machine learning techniques to infer aPADS descrip-
tion and then it passes that description on to thePADS compiler. The compiler will in
turn produce its suite of custom data processing tools. Hence PADS now serves as a
declarative intermediate language in the tool generation process.

Our past experiments have shown that LEARNPADS is highly effective when the
set of tokens it uses matches the tokens used in the unknown data set. For instance,
when the unknown data set contains URLs, dates and messages the inference system
will work very well when its tokenizer contains the correct corresponding definitions
for URLs, dates and messages used in the file. If the tokenizerdoes not contain these
elements, inference is still possible, but the inferred descriptions are generally much
more complex than they would be otherwise.

The challenge then is to develop a general-purpose tokenizer containing a wide vari-
ety of abstractions like URLs, dates, messages, phone numbers, file paths and more. The
key problem is that when using the conventional approach to building a tokenizer (i.e.,
regular expressions), as we did in our previous work, the definitions of basic tokens
overlap tremendously. For example, “January 24, 2008” includes a word made
up of letters, a couple of numbers, some spaces and English-like punctuation such as
the “,”. Does that mean this string should be treated as an arbitrary text fragment or is
it a date? Perhaps “January” an element of an string-based enumeration unconnected
to integers24 and2008? Perhaps the entire phrase should be merged with surround-
ing characters rather than treated in isolation? Doing a good job of format inference
involves identifying that the string of charactersJ-a-n-...-0-8 should be treated
as an indivisible token and that it is in fact a date. More generally, an effective format
inference engine for ad hoc data solves theToken Ambiguity Problem– the problem of
determining which substrings of a data file correspond to which token definitions in the
presence of syntactic ambiguity.

In this paper, we describe our attempts to solve the token ambiguity problem. In
particular, we make the following contributions:

– We redesign our format inference algorithm [FWZW08] to takeadvantage of in-
formation generated from an arbitrary statistical token model. This advance allows
the algorithm to process a set of ambiguous parses, selecting the most likely parses
that match global criteria.

– We instantiate the arbitrary statistical token model with Hidden Markov Models
(HMMs), Hierarchical Maximum Entropy Models (HMEMs) and Support Vector
Machines (SVMs) and evaluate their relative effectivenessempirically. We also
compare the effectiveness of these models to our previous approach, which used
regular expressions and conventional prioritized, longest match for disambiguation.

– We augment our algorithm with an additional phase to analyzethe complexity of
inferred descriptions and to simplify them when description complexity exceeds a
threshold relative to the underlying data complexity.

Related Work.Statistical methods have been used in many grammar induction prob-
lems, includingXML schema inference [BNST06], information extraction from the
web [Hon02,AGM03] and natural language understanding [Che95]. These areas do not
typically suffer from the token ambiguity problem that we see in ad hoc data, however:
tags cleanly divideXML and web-based data, while spaces and known punctuation sym-
bols separate natural language words. In contrast, the separators and token types found
in ad hoc data sources such as web logs and financial records are far more variable and
ambiguous. We contribute to the literature on statistical data processing by analyzing

Penum action {
install Pfrom("Installed");
update Pfrom("Updated");
erase Pfrom("Erased");

};
Pstruct version_hdr {
Pint major; ’:’;

}
Pstruct sp_version {
’ ’;
Popt version_hdr h_opt;
Pid version;

}

Precord Pstruct entry_t {
Pdate date;

’ ’; Ptime time;
’ ’; action m;
": "; Pid package;

Popt sp_version sv;
};
Psource Parray yum {

entry_t[];
};

Fig. 1. IdealPADS description ofyum.txt format.

the effectiveness of statistical models in a new application area, that of ad hoc data,
which contains markedly different characteristics from the most frequently studied data
processing domains.

The algorithm we present here is a variant of the algorithm described in our earlier
paper [FWZW08]. We have made substantial modifications, however, to incorporate
probabilistic parsing information into the tokenization and structure discovery phases.
We have also added a new phase to the algorithm that simplifiesoverly complex de-
scriptions. Our earlier paper contains an extensive comparison of our basic grammar
induction algorithm to others that have appeared in the literature.

2 The Token Ambiguity Problem

Consider the log files generated byyum, a common software package manager. These
log files consist of a series of lines, each of which is broken into several distinct fields:
date, time, action taken, package name and version. Single spaces separate the fields.
For instance:

May 02 06:19:57 Updated: openssl.i686 0.9.7a-43.8
Jul 16 12:37:13 Erased: dhcp-devel
Dec 10 04:07:51 Updated: openldap.x86_64 2.2.13-4
...

Figure 1 shows anideal PADS description ofyum.txt written by a human expert.
The description is structured as a series of C-like type declarations. There arebase types
like Pdate (a date),Ptime (a time) andPint (an integer). There are alsostructured
typessuch asPenum (one of several strings),Pstruct (a sequence of items with dif-
ferent types, separated by punctuation symbols),Popt (a optional type) andParray
(a sequence of items with the same type).PADSdescriptions are often easiest read from
bottom to top, so the best place to start examining the figure is the last declaration in the
right-hand column. There, the declaration says that the entire source file (as indicated
by thePsource annotation) is an array type calledyum. The elements of the array

are items with typeentry_t. Next, we can examine the typeentry_t and observe
that it is a new-line terminated record (as indicated by thePrecord annotation) and
it contains a series of fields including a date, followed by a space, followed by a time,
followed by an action (which is another user-defined type), followed by a colon and a
space,etc.We leave the reader to peruse the rest of the figure.

Unfortunately, when we ran our original format inference algorithm [FWZW08]
on this data source, rather than inferring a compact 23-linedescription, our algorithm
returned a verbose 179-line description that was difficult to understand and even harder
to work with. After investigation, we discovered the problem. The data can be tokenized
in many ways, and the inference system was using a set of regular expressions to do the
tokenization that was a poor match for this data set. More concretely, consider the string
“2.2.13-4.” This string may be parsed by any of the following token sequences:

Option 1: [int] [.] [int] [.] [int] [-] [int]
Option 2: [float] [.] [int] [-] [int]
Option 3: [int] [.] [float] [-] [int]
Option 4: [id]

The best choice for this format is Option 4,id, becauseid can be used to parse
the data found at this point in all lines of theyum format. Unfortunately, the simplistic
disambiguation rules for the original system chose Option 2. Moreover, other lines are
tokenized in different ways. For instance,dhcp-devel, which also could have been
anid is tokenized as[word] and0.9.7a-43.8 is tokenized as[float] [.]
[int] [char] [-] [float]. As each distinct tokenization of similar data re-
gions is introduced, the inference engine attempts to find common patterns and unify
them. However, in this case, unification was unsuccessful and the result was an overly
complex format.

The original inference algorithm disambiguates between overlapping tokens by us-
ing the same strategy as common lexer-generators: It tries each token in a predefined
order and picks the first, longest token that matches. While effective for some data
sources, this simple policy makes fixed tokenization decisions up front, does not take
contextual information into account, and restricts the useof complex tokens likeid,
url andmessage thatshadowsimpler ones.

3 The Format Inference Algorithm

Our new format inference algorithm consists of four stages:(1) building a statistical
token model from labeled training data; (2) dividing the text into newline-separated
chunksof data and finding all possible tokenizations of each chunk;(3) inferring a
candidate structureusing the statistical model and the tokenizations; and (4) applying
rewriting rules to improve the candidate structure. Because this algorithm shares the
general structure of our earlier work [FWZW08], we focus on the salient differences
here.

Training the statistical models.To speed up the training cycle, we created a tool ca-
pable of reading anyPADS description and labelling the described data with the tokens
specified in the description. This way, all data for which we have PADS descriptions

can serve as a training suite. As we add more descriptions, our training data improves.
Currently, the training suite is biased towards systems data, and includes tokens for in-
tegers, floats, times, dates, IP addresses, hostnames, file paths, URLs, words, ids and
punctuation. Parsing of tokens continues to use longest match semantics and hence
the string “43.8” can be parsed by sequences such as[int] [.] [int] or [int]
[.] [float] or[float], but not by[float] [.] [int] or[float] [.]
[float]. We have experimented with a number of statistical models for tokenization,
which we discuss in Section 4.

Tokenization.When inferring a description, the algorithm computes the set of all pos-
sible tokenizations of each data chunk. Because these sequences share subsequences,
we organize them into a directed acyclic graph called aSEQSET. For example, Figure 2
shows theSEQSETfor the substring “2.2.13-4”.

float

40 41 42 43 44 46 48

47

int
float

int dot int dot int int

id

dash
float

float

float

Fig. 2. SEQSETfrom parsing string “2.2.13-4”.

Each edge in theSEQSETrepresents an occurrence of a token in the data, while each
vertex marks a location in the input. If a token edge ends at a vertexv, thenv indi-
cates the position immediately after the last character in the token. The first vertex in a
SEQSETmarks the position before the first character in its outgoingedges.

Structure discovery.The structure discovery phase uses atop-down,divide-and-conquer
algorithm outlined in Figure 3 in the pseudo-ML functiondiscover. Each invocation
of discover calls theoracle function to guess the structure of the data represented
by the current set ofSEQSETs. The oracle can prophecy either abase type, a struct,
anarray or aunion. Theoracle function also partitions the inputSEQSETs into sets
of sub-SEQSETs, each of which corresponds to a component in the guessed structure.
Thediscover function then recursively constructs the structure of eachset of sub-
SEQSETs.

How does theoracle produce its prophecy? First, it uses the trained statistical
model to assign probabilities to the edges in the inputSEQSETs. Next, it computes
for eachSEQSETthe most probable token sequence(MPTS) among all the possible
paths using a modifiedViterbi algorithm [Rab89], which we discuss in Section 4. Then,
based on the statistics of the tokens in the MPTSs, the oraclepredicts the structure of
the current collection ofSEQSETs using the heuristics designed for our earlier algo-
rithm [FWZW08].

As an example, consider applying the oracle to determine thetop-level structure of
the first line inyum.txt. It would predict the following:

struct {date; ’ ’; time; ’ ’; word; ’:’; ’ ’; id; TBD}

type description (* abstract syntax of pads description *)
type seqset (* the seqset data structure *)
type seqsets = seqset list

(* A top-level description guess *)
datatype prophecy =

BaseProphecy of description
| StructProphecy of seqsets list
| ArrayProphecy of seqsets * seqsets * seqsets
| UnionProphecy of seqsets list

(* Guesses the best top-level description *)
fun oracle : seqsets -> prophecy

(* Implements a generic inference algorithm *)
fun discover (sqs:seqsets) : description =
case (oracle sqs) of

BaseProphecy b => b

| StructProphecy sqss =>
let Ts = map discover sqss in
struct { Ts }

| ArrayProphecy (sqsfirst,sqsbody,sqslast) =>
let Tfirst = discover sqsfirst in
let Tbody = discover sqsbody in
let Tlast = discover sqslast in
struct { Tfirst; array { Tbody }; Tlast; }

| UnionProphecy sqss =>
let Ts = map discover sqss in
union { Ts }

Fig. 3. A generic structure-discovery algorithm in Pseudo-ML.

i.e., astruct containing nine sub-structures includingTBD, which is a sub-structure
whose form will be determined recursively. At this point, theoracle partitions every
SEQSET in the input into nine parts, corresponding to sub-structure boundaries,i.e.,
at the vertices after tokensdate, space, time, etc.During partitioning, the oracle
removesSEQSETedges that cross partition boundaries because such edges are irrelevant
for the next round of structure discovery. For example, if the oracle cuts after the first
float token in theSEQSETin Figure 2, then it removes theid edge and thefloat
edge between vertices 42 and 46, creating the two newSEQSETs in Figure 4. Finally,
theoracle function returns the predicated structure as a “prophecy” along with the
partitionedSEQSETs.

int
44 46 48

47

int

int int

dash

float

float

float

dot
43 43

int
40 41 42

float

dot

Fig. 4. CuttingSEQSETfor “2.2.13-4” after the first float token.

Format refinement with blob-finding.The refinement phase, which follows structure
discovery, tries to improve the initial rough structure by applying a series of rewriting
rules. We have modified the earlier algorithm to use a “blob-finding” rule. This rule tries
to identify data segments with highly complex, structured descriptions where none of
the individual pieces of the description describe much of the data. Intuitively, such oc-
currences correspond to places where the data contained a high degree of variation, and
the inference algorithm built a description that enumerated all the possible variations in
painstaking detail. The blob rule replaces such complexitywith a singleblob token. A
typical example of this kind of data is free-form text comments that sometimes appear
at the end of each line in a log file. The blob-finding rule reduces the overall complexity
of the resulting description and hence makes it more readable.

The format refinement algorithm applies the blob-finding rule in a bottom-up fash-
ion. It converts into a blob each sub-structure that it deemsoverly complex and for
which it can find a terminating pattern. ThePADS parser uses the terminating pattern to
find the extent of the blob. The algorithm merges adjacent blobs.

To decide whether a given structure is a blob, the algorithm computes thevariance
of the structure, which measures the total number of union/switch/enum branches and
different array lengths in the structure. When the ratio between the variance and the
amount of the data described by the structure exceeds a threshold, the algorithm decides
to convert the structure to a blob if it can find a terminating sequence.

4 Statistical Models

A key component of the format inference algorithm describedin the previous section is
a selection of the best token sequence from eachSEQSET. To prioritize sequences, the
algorithm assigns probabilities using a statistical tokenmodel. This section describes
three such models that we have experimented with.

Character-by-character Hidden Markov Model (HMM)The first model we investigate
is the classic first-order, character-by-characterHiddenMarkov Model (HMM) [Rab89].
An HMM is a statistical model that includes one set of states whose values we can ob-
serve and a second set whose values arehiddenand we wish to infer. The hidden states
determine, with some probability, the values of the observable states. In our case, we
can observe the sequence of characters in the input string and wish to infer the token
that is associated with each character. The model assumes the probability that we see
a particular character depends upon its associated token and moreover, since the HMM
is first-order, the probability of observing a particular token depends upon the previous

token but no other earlier tokens. The picture below illustrates the process of generat-
ing the character sequence “2.2.13-4” from a token sequence. Hidden HMM states are
white and observables are shaded. Notice particularly thatthe adjacent digits “1” and
“3” are generated from two consecutive instances of the tokenint, when in a true token
sequence, both characters are generated from a singleint token. A postpass will clean
this up, but such situations are dealt with more effectivelyby the HMEMs described in
the following subsection.

 4
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

start int int int int intdot dot dash

 2 . 2 . 1 3 −

Finally, since our training data is limited, we employ one further approximation
in our model. Instead of modelling every individual character separately, we classify
characters using a set of boolean features including features for whether the character
is (a) a digit, (b) an upper-case alphabetic letter, (c) white space, or (d) a particular
punctuation character such as a period. We call the feature vectors involving (a)-(d)
observations.

Let Ti denote theith hidden state; its value ranges over the set of all token names.
Let Ci denote the observation emitted by hidden stateTi. Three parameters determine
the model: the transition matrixP(Ti|Ti−1), the sensor matrixP(Ci|Ti) and the ini-
tial probabilitiesP(Ti|begin). We compute these parameters from the training data as
follows:

P(Ti|Ti−1) =
occurrences whereTi follows Ti−1

occurrences ofTi−1

(1)

P(Ci|Ti) =
occurrences ofCi annotated withTi

occurrences ofTi

(2)

P(T1|begin) =
occurrences ofT1 being first token

number of training chunks
(3)

Given these parameters and a fixed input, we want to find the token sequence
with the highest probability,i.e., from the input sequenceC1, C2, ..., Cn, we want
to find the token sequenceT1, T2, ..., Tn that maximizes the conditional probability
P(T1, T2, ..., Tn|C1, C2, ..., Cn). This probability is defined as usual:

P(T1, T2, ..., Tn|C1, C2, ..., Cn) ∝ P(T1, T2, ..., Tn, C1, C2, ..., Cn)

= P(T1|begin) ·

n
∏

i=2

P(Ti|Ti−1) (4)

To calculate the highest probability token sequence from this model, we run a
slightly modified variant of the Viterbi algorithm over theSEQSET.

Because the character-by-character HMM is first order and employs only single
character features, it cannot capture complex features in the data such as a substring
“http://” which indicates a strong likelihood of being part of a URL. One obvious
solution is increasing the order of the HMM. However, since the token length is vari-
able in our application, it is not clear what the order shouldbe. In addition, increasing
the order also increases the complexity exponentially. Instead, in the next sections, we
pursue two hybrid methods that incorporate existing classification techniques into the
HMM framework.

Hierarchical Maximum Entropy Model (HMEM)The character-by-character HMM ex-
tracts a set of features from each character to create an observation and then runs a
standard HMM over these observations. In contrast, the Hierarchical Maximum En-
tropy Model (HMEM), which we will explore next, extracts a set of features from each
substring, uses the Maximum Entropy (ME) procedure [TPP96,MEG07] to produce an
observation and runs a standard HMM over these new kinds of observations. Using the
sequence “2.2.13-4” as our example again, the corresponding HMEM may be drawn as
follows.

int

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

start int int intdot dot

 2 . 2 . 13 − 4

dash

Formally, letTi be theith hidden state or token in the sequence (denoted by a white
node in picture above) and letSi be the substring annotated byTi. Suppose the number
of tokens in the chunk isl; then the target probability is as follows.

P(T1, T2, ..., Tn|S1, S2, ..., Sl) ∝ P(T1|begin) ·

l
∏

i=2

P(Ti|Ti−1) ·

l
∏

i=1

P(Si|Ti) (5)

Equations (1) and (3) allow us to calculate the transition matrix and the initial prob-
ability. We can computeP(Si|Ti) using Bayes Rule,

P(Si|Ti) =
P(Ti|Si) ·P(Si)

P(Ti)
(6)

Finally, since obtaining accurate estimates ofP(Si) andP(Ti) appears to require
more training data than we currently have, we have further approximated by simply us-
ing P(Ti|Si) to estimateP(Si|Ti). Estimation ofP (Ti|Si) through the ME procedure
involves using the following features (among others): (a) total number of characters in
the string, (b) the number of occurrences of certain punctuation characters, (c) the total
number of punctuation characters in the string, (d) the presence of certain substrings
such as ”am”, ” pm”, ” January”, ” Jan”, ” january”, and (e) the presence of digit
sequences. When we substituteP(Ti|Si) for P(Si|Ti) in equation (5), we obtain the
following:

P(T1, T2, ..., Tn|S1, S2, ..., Sl) ∝ P(T1|begin) ·
l

∏

i=2

P(Ti|Ti−1) ·
l

∏

i=1

P(Ti|Si) (7)

Finally, notice that in equation (7), the number of tokens ina sequence will deter-
mine the number of terms in the product. Consequently, a sequence with more tokens
will produce more terms, which our experiments have shown produces a significant bias
towards shorter token sequences. To avoid such bias, we modify Equation (7) to use the
average log likelihood.

logP(T1, T2, ..., Tn|S1, S2, ..., Sl)

∝
logP(T1|begin) +

∑l

i=2
logP(Ti|Ti−1) +

∑l

i=1
logP(Ti|Si)

l
(8)

Using average log likelihood guarantees that the algorithmwill not select shorter token
sequences unless the average value of all conditional probabilities P(Ti|Si) exceeds a
threshold.

To find the highest probability sequence for a chunk under this model, we imple-
mented a modified Viterbi algorithm that takes into account the number of tokens in the
sequence. In what follows, let the number of characters in the chunk ben and the num-
ber of tokens bel. LetCi be the character at positioni, andPTi be the partial token that
emits the characterCi. ThenP(PT1, PT2, ..., PTi|C1, C2, ..., Ci, k) is the probability
of a partial token sequencePT1, PT2, ..., PTi conditioned on a substring of characters
C1, C2, ..., Ci, collectively emitted by a sequence ofk tokens. Now, letTi be a token
that ends at positioni and letSi be the corresponding substring. The probability of the
most likely partial token sequence up to positioni is

max
PT1,...,PTi

logP(PT1, PT2, ..., PTi, PTi+1|C1, C2, ..., Ci+1, k + 1) ∝

logP(Si+1|Ti+1) + max
Ti+1−δ

(logP(Ti+1|Ti+1−δ)+

max
PT1,...,PTi−1

logP(PT1, ..., PTi|C1, ..., Ci, k)),

if i + 1 is the end of an edge inSEQSET, δ is the length of tokenTi+1;

max
PT1,...,PTi

log P(PT1, ..., PTi|C1, ..., Ci, k + 1)

otherwise.

(9)

The left-hand-side of (9), known as aforward message, contains the token sequence
up to a positioni in the chunk as well as the lengths of the tokens. At the last position
n, we computel from

max
l

log
P(TP1, TP2, ..., TPn|C1, C2, ..., Cn, l)

l
(10)

and select the last token in the most likely token sequences.After tracing backwards
through the chain of messages, we obtain the most likely token sequences. The modified
Viterbi algorithm is linear to the number of charactersn in the chunk.

We saw there were some problems with the basic HMM model that motivated the
use of the HMEM model. What further problems plague the HMEMs? The most wor-
risome problem is that the HMEM is a generative model that simulates the procedure
of generating the data, and estimates the target conditional probability by a joint proba-
bility. Therefore, it is biased towards tokens with more occurrences in the training data.
In practice, we found that when particular tokens appear infrequently in our training
data, the algorithm would never identify them, even when they had clear distinguish-
ing features. These difficulties motivated us to explore theeffectiveness of Hierarchical
Support Vector Machines (HSVM), which use a discriminativemodel as opposed to a
generative one.

4.1 Hierarchical Support Vector Machines (HSVM)

An HSVM is exactly the same as an HMEM except it uses a Support Vector Machine
(SVM) [CL01] as opposed to Maximum Entropy to classify tokens. Basically, an SVM
measures the target conditional probabilityP(Ti|Si) by generating hyperplanes that
divide the feature vector space according to the positions of training data points. The
hyperplanes are positioned so that the data points (featurevectors in our case) are sep-
arated into classes with the maximum margin between any two classes. The data points
that lie on the margins (or boundaries) of each class are calledsupport vectors.

5 Evaluation

We use sample files from twenty different ad hoc data sources to evaluate our overall
inference algorithm and the different approaches to probabilistic tokenization. These
data sources, many of which are published on the web [PAD07],are mostly system-
generated log files of various kinds and a few ASCII spreadsheets describing business
transactions. These files range in size from a few dozen linesto a few thousand.

To test a given tokenization approach on a particular samplefile, we first construct a
statistical model from the other nineteen sample files usingthe given approach. We then
use the resulting model to infer a description for the selected file. We repeat this pro-
cess for all three tokenization approaches (HMM, HMEM, and HSVM) and all twenty
sample files. We use three metrics described in the followingsections to evaluate the
results:token accuracy, quality of descriptionandexecution time.

Token accuracy.To evaluate tokenization accuracy for a modelM on a given sample
file, we compare the most likely sequence of tokens predictedby M , denotedSm, with
the ideal token sequence, denotedS. We defineS to be the sequence of tokens generated
by the hand-writtenPADS description of the file. We define three kinds of error rates,
all normalized by|S|, the total number of tokens inS:

Data source Token Error (%) Token Group Error (%) Token Boundary Error (%)
lex HMM HMEM HSVM lex HMM HMEM HSVM lex HMM HMEM HSVM

1967Transactions 30 30 18.93 18.93 11.07 11.07 0 0 11.07 11.07 0 0
ai.3000 70.23 15.79 18.98 11.20 70.23 14.68 17.26 10.27 53.53 12.34 4.79 4.00
yum.txt 19.44 13.33 21.80 0 19.17 11.73 21.80 0 19.17 11.49 21.80 0
rpmpkgs.txt 99.66 2.71 15.01 0.34 99.66 2.14 14.67 0 99.66 0.23 14.67 0
railroad.txt 51.94 9.47 6.48 5.58 51.94 9.36 5.93 5.58 46.08 8.77 5.41 5.58
dibbler.1000 15.72 43.40 11.91 0.00 15.72 36.78 11.91 0.00 4.54 13.33 13.15 0.00
asl.log 89.92 98.91 8.94 5.83 89.63 98.91 8.94 5.83 83.28 98.54 6.27 3.29
scrollkeeper.log 18.58 28.48 18.67 9.86 18.58 18.77 8.96 0.12 18.58 17.83 8.96 0.12
pagelog 77.72 15.29 0 7.52 72.76 15.29 0 7.52 64.70 5.64 0 5.64
MER T01 01.csv 84.56 23.09 31.32 15.40 84.56 23.09 31.22 15.40 84.56 7.71 13.20 0.02
crashreporter 51.89 7.91 4.99 0.19 51.85 7.91 4.96 0.14 51.34 7.91 4.92 0.14
ls-l.txt 33.73 18.70 19.96 6.65 33.73 18.23 19.96 6.65 19.70 7.45 19.76 6.45
windowserverlast 73.31 14.98 10.16 3.24 71.50 14.98 10.07 3.15 69.18 11.16 8.05 3.14
netstat-an 13.89 17.83 9.61 9.01 12.51 15.44 5.95 5.95 12.51 14.90 5.80 5.20
boot.txt 10.67 25.40 9.37 2.77 3.99 25.10 9.14 2.43 3.34 14.48 8.27 1.69
quarterlyincome 82.99 5.52 1.98 1.98 82.99 4.22 1.53 1.54 77.53 1.54 1.53 1.54
corald.log 84.86 100 5.67 3.02 83.11 98.25 3.93 1.27 81.76 97.80 1.27 1.27
coraldnssrv.log 91.04 18.17 10.64 5.23 91.04 18.17 9.33 5.22 83.07 14.37 4.11 3.92
probed.log 1.74 27.99 16.50 16.50 1.74 27.99 16.50 16.50 1.75 27.98 16.42 16.42
coralwebsrv.log 86.67 100 8.75 23.99 86.67 100 8.75 23.99 81.90 98.33 8.75 23.81

Table 1.Tokenization errors

token error=
number of misidentified tokens inSm

|S|

token group error=
number of misidentified groups inSm

|S|

token boundary error=
number of misidentified boundaries inSm

|S|

The token error rate measures the number of times a token appears inS but the same
token does not appear in the same place inSm. A token groupis a set of token types
that have similar feature vectors and hence are hard to distinguish,e.g., hex string
andid, which both consist of alpha-numeric characters. The tokengroup error rate
measures the number of times a token from a particular token group appears inS but
no token from the same group appears in the same location inSm. Intuitively, if the
algorithm mistakes a token for another token in the same token group, it is doing better
than choosing a completely unrelated token type. Thetoken boundaryerror rate mea-
sures the number of times there is a boundary between tokens in S but no corresponding
boundary inSm. This relatively coarse measure is interesting because boundaries are

important to structure discovery. Even if the tokens are incorrectly identified, if the
boundaries are correct, the correct structure can be still discovered.

Table 1 lists the token error, token group error, and token boundary error rates of
the twenty benchmarks. The results from the original LEARNPADS system are pre-
sented in columns marked bylex. The original system produces high error rates for
many files because the lexer is unable to resolve overlappingtokens effectively. HMM
relies heavily on transition probabilities, which requirea lot of data to compute to a
useful precision. Because we currently have insufficient data, HMM generally does not
perform as well as HMEM and HSVM. In the case ofasl.log, corald.log and
coralwebsrv.log, HMM’s failure to detect some punctuation characters causes the
entire token sequences to be misaligned and hence gives veryhigh error rates.

Quality of description.To assess description quality quantitatively, we use theMini-
mum Description Length Principle(MDL) [Grü07], which postulates that a useful mea-
sure of description quality is the sum of the cost in bits of transmitting the description
(the type cost) and the cost in bits of transmitting the datagiven the description(the
data cost). In general, the type cost measures the complexity of the description, while
the data cost measures how loosely a given description explains the data. Increasing the
type cost generally reduces the data cost, andvice versa. The objective is to minimize
both. Table 2 shows the percentage change in the type and datacosts of the descriptions
produced by the new algorithm using each of the three tokenization schemes when com-
pared to the same costs produced by the original LEARNPADS system. In both cases,
the measurements were taken before the refinement case.

For most of the data sources, the probabilistic tokenization scheme improved the
quality of the description by reducing both the type and the data costs. In the files
dibbler.1000, netstat-an andcoralwebsrv.log, a few misidentified to-
kens cause the resulting descriptions to differ significantly from the ones produced by
the original system.

In another experiment, a human expert judged how each description compared to
the original LEARNPADS results, focusing on the readability of the descriptions,i.e.,
whether the descriptions present the structure of the data sources clearly. In this exper-
iment, the judge rated the descriptions one by one, on a scalefrom -2 (meaning the
description is too concise and it loses much useful information) to 2 (meaning the de-
scription is too precise and the structure is unclear). The score of a good description
is therefore close to 0, which means the description provides sufficient information for
the user to understand the data source and the user can easilyunderstand the structure
from the description. Table 3 shows that on average, HMEM andHSVM outperform
the original system denoted bylex.

Execution time.Compared to the original system, statistical inference requires extra
time to constructSEQSETs and compute probabilities. We measured the execution times
on a 2.2 GHz Intel Xeon processor with 5 GB of memory. The original algorithm takes
anywhere from under 10 seconds to 25 minutes to infer a description, while the new
system requires a few seconds to several hours, depending onthe amount of test data
and the statistical model used. In general, the character-by-character HMM model is the
fastest, while HSVM is most time-consuming.

Data source Type Cost Data Cost
HMM HMEM HSVM HMM HMEM HSVM

1967Transactions -39.661 -27.03 -27.03 -2.80 -2.80 -2.80
ai.3000 -26.27 +4.44 -19.27 -3.16 -6.85 -12.68
yum.txt -57.60 +50.93 -76.27 -1.55 -7.93 -1.05
rpmpkgs.txt -92.03 -76.29 -91.86 +1.47 -0.00 +1.47
railroad.txt -31.86 -20.88 -22.93 -29.54 -29.22 -29.16
dibbler.1000 +611.22 +17.83 +7.03 -19.88 -22.11 -22.10
asl.log -75.71 -22.33 -25.54 +8.57 -15.13 -17.53
scrollkeeper.log -14.55 -58.86 -21.18 -7.77 -9.98 -11.36
pagelog 0 0 0 -11.46 -11.67 -11.67
MER T01 01.csv -8.59 -12.74 -12.74 -25.59 -24.15 -24.14
crashreporter +4.03 -8.66 -12.73 -9.38 -9.41 -12.45
ls-l.txt -74.61 -51.32 -39.30 +0.10 -7.26 -2.18
windowserverlast -62.84 -33.29 -56.18 +6.93 -11.12 -9.87
netstat-an +147.07 -12.00 -21.63 +14.18 +6.74 +7.65
boot.txt -72.60 -38.95 -71.29 +5.26 -6.54 -5.03
quarterlyincome -18.36 -18.36 -18.36 -32.04 -32.51 -32.51
corald.log -4.75 -5.53 -5.53 -27.28 -29.81 -29.81
coraldnssrv.log -1.86 -2.03 -5.86 +59.53 +59.53 +59.53
probed.log -14.61 -33.48 -33.48 +59.53 +63.18 +63.18
coralwebsrv.log -8.75 +94.58 -71.55 -49.30 -15.91 +13.36

Table 2. Increase (+%) or decrease (-%) in type cost and data cost before refinement.

Data source lex HMM HMEM HSVM Data source lex HMM HMEM HSVM
1967Transactions0 0 0 0 crashreporter 2 0 1 1
ai.3000 1 1 1 0 ls-l.txt 2 0 1 1
yum.txt 2 -1 1 0 windowserverlast 2 0 1 1
rpmpkgs.txt 2 -1 -2 0 netstat-an 2 -2 0 0
railroad.txt 2 1 1 1 boot.txt 2 -1 1 1
dibbler.1000 0 2 0 0 quarterlyincome 1 1 1 1
asl.log 2 -2 2 2 corald.log 0 1 1 0
scrollkeeper.log 1 2 1 1 coraldnssrv.log 0 1 1 -1
pagelog 0 0 0 0 probed.log 0 0 0 0
MER T01 01.csv 0 1 0 0 coralwebsrv.log 0 1 1 -1

Table 3. Qualitative comparison of descriptions learned using probabilistic tokenization to de-
scriptions learned by original LEARNPADS algorithm.

We have performed a number of experiments (not shown due to space constraints)
that demonstrate that execution time is proportional to thenumber of lines in the data
source. Moreover, we have found that for most descriptions,a relatively small repre-
sentative sample of the data is sufficient for learning its structure with high accuracy.
For instance, out of the twenty benchmarks we have, seven data sources have more than

500 records. Preliminary results show that for these seven data sources, we can generate
descriptions from just 10% of the data that can parse 95% of records correctly.

6 Conclusion

Ad hoc data is unpredictable, poorly documented, filled witherrors, and yet ubiquitous.
It poses tremendous challenges to the data analysts that must analyze, vet and trans-
form it into useful information. Our goal is to alleviate theburden, risk and confusion
associated with ad hoc data by using the declarativePADS language and system.

In this paper, we describe our continuing efforts to developa format inference en-
gine for thePADS language. In particular, we show how to redesign our format infer-
ence algorithm so that it can take advantage of information generated from an arbitrary
statistical token model and we study the effectiveness of three candidate models: Hid-
den Markov Models (HMMs), Hierarchical Maximum Entropy Models (HMEMs) and
Support Vector Machines (SVMs). We show that each model in succession is generally
more accurate than the last, but at an increased performancecost.

References

[AGM03] Arvind Arasu and Hector Garcia-Molina. Extractingstructured data from web pages.
In SIGMOD, pages 337–348, New York, NY, USA, 2003.

[BNST06] Geert Jan Bex, Frank Neven, Thomas Schwentick, andKarl Tuyls. Inference of
concise DTDs from XML data. InVLDB, pages 115–126, 2006.

[Che95] Stanley F. Chen. Bayesian grammar induction for language modeling. InIn Pro-
ceedings of the 33rd Annual Meeting of the ACL, pages 228–235, 1995.

[CL01] Chih-Chung Chang and Chih-Jen Lin.LIBSVM: a library for support vector ma-
chines, 2001. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[FG05] Kathleen Fisher and Robert Gruber. PADS: A domain specific language for process-
ing ad hoc data. InPLDI, pages 295–304, June 2005.

[FWZ08] Kathleen Fisher, David Walker, and Kenny Q. Zhu. LearnPADS: Automatic tool
generation from ad hoc data. InSIGMOD, June 2008.

[FWZW08] Kathleen Fisher, David Walker, Kenny Q. Zhu, and Peter White. From dirt to shov-
els: Fully automatic tool generation from ad hoc data. InPOPL, January 2008.

[Grü07] Peter D. Grünwald.The Minimum Description Length Principle. MIT Press, May
2007.

[Hon02] Theodore W. Hong.Grammatical Inference for Information Extraction and Visuali-
sation on the Web. Ph.D. Thesis, Imperial College London, 2002.

[MEG07] MEGA model optimization package. http://www.cs.utah.edu/ hal/megam/, 2007.
[PAD07] PADS project. http://www.padsproj.org/, 2007.
[Rab89] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications

inspeech recognition.Proceedings of the IEEE, 77(2), February 1989.
[TPP96] Adam L. Berger T, Vincent J. Della Pietra, and Stephen A. Della Pietra. A maximum

entropy approach to natural language processing.Computational Linguistics, 22(1),
March 1996.

