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ABSTRACT
Software Defined Networks (SDNs) support diverse net-

work policies by offering direct, network-wide control over
how switches handle traffic. Unfortunately, many controller
platforms force applications to grapple simultaneously with
end-to-end connectivity constraints, routing policy, switch
memory limits, and the hop-by-hop interactions between for-
warding rules. We believe solutions to this complex problem
should be factored in to three distinct parts: (1) high-level
SDN applications should define their end-point connectivity
policy on top of a “one big switch” abstraction; (2) a mid-
level SDN infrastructure layer should decide on the hop-by-
hop routing policy; and (3) a compiler should synthesize an
effective set of forwarding rules that obey the user-defined
policies and adhere to the resource constraints of the un-
derlying hardware. In this paper, we define and implement
our proposed architecture, present efficient rule-placement
algorithms that distribute forwarding policies across general
SDN networks while managing rule-space constraints, and
show how to support dynamic, incremental update of poli-
cies. We evaluate the effectiveness of our algorithms analyt-
ically by providing complexity bounds on their running time
and rule space, as well as empirically, using both synthetic
benchmarks, and real-world firewall and routing policies.

1. INTRODUCTION
Software-Defined Networking (SDN) enables flexible net-

work policies by allowing controller applications to install
packet-handling rules on a distributed collection of switches.
Over the past few years, many applications (e.g., server load
balancing, virtual-machine migration, and access control)
have been built using the popular OpenFlow API [1]. How-
ever, many controller platforms [2, 3, 4, 5, 6] force appli-
cations to manage the network at the level of individual
switches by representing a high-level policy in terms of the
rules installed in each switch. This forces programmers to
reason about many low-level details, all at the same time,
including the choice of path, the rule-space limits on each
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Figure 1: High-level policy and low-level rule placement

switch, and the hop-by-hop interaction of rules for forward-
ing, dropping, modifying, and monitoring packets.

Rule space, in particular, is a scarce commodity on
current SDN hardware. Many applications require rules
that match on multiple header fields, with “wildcards” for
some bits. For example, access-control policies match on
the “five tuple” of source and destination IP addresses and
port numbers and the protocol [7], whereas a load balancer
may match on source and destination IP prefixes [8]. These
rules are naturally supported using Ternary Content Ad-
dressable Memory (TCAM), which can read all rules in par-
allel to identify the matching entries for each packet. How-
ever, TCAM is expensive and power hungry. The merchant-
silicon chipsets in commodity switches typically support just
a few thousand or tens of thousands of entries [9].

Rather than grappling with TCAM sizes, we argue that
SDN application programmers should define high-level poli-
cies and have the controller platform manage the placement
of rules on switches. We, and more broadly the commu-
nity at large [10, 11, 12], have observed that such high-level
policies may be specified in two parts, as shown in Figure 1:

• An endpoint policy: Endpoint policies, like access
control and load balancing, view the network as one
big switch that hides internal topology details. The
policy specifies which packets to drop, or to forward
to specific egress ports, as well as any modifications of
header fields.



• A routing policy: The routing policy specifies what
paths traffic should follow between the ingress and
egress ports. The routing policy is driven by traffic-
engineering goals, such as minimizing congestion and
end-to-end latency.

Expressing these two parts of the policy separately modu-
larizes the problem and allows, for example, an SDN client
to express an endpoint policy at the highest level of abstrac-
tion while an SDN provider plans the lower-level routing
policy. Given two such specifications, the controller plat-
form (a compiler) can apply a rule-placement algorithm to
generate switch-level rules that realize both parts of the pol-
icy correctly, while adhering to switch table-size constraints.

Optimizing the placement of rules is challenging. Min-
imizing the number of rules for a single switch is computa-
tionally difficult [13], though effective heuristics exist [14].
Solving the rule-placement problem for an entire network of
switches, given independent endpoint and routing policies,
is even harder:

• Given an optimal rule list for the traffic between two
endpoints, we must generate an efficient and correct
placement of rules along the path between them.

• The placement must carefully manage the interactions
between packet modification and packet forwarding
(which may depend upon the fields modified).

• A network consists of multiple paths that share switch
rule space. Consequently, we must consider the joint
optimization problem across all paths.

• Since network policies evolve dynamically, we must be
able to process changes efficiently, without recomput-
ing rule placement from scratch.

• We must manage the fact that in each of the previous
tasks, forwarding depends upon packet analysis over
multiple dimensions of header fields.

In this paper, we take on the general challenge of solving
the rule-placement problem. In doing so, we make a number
of important contributions that range from new algorithm
design, to complexity analysis, to implementation and em-
pirical analysis on both synthetic and real-world data sets.
More specifically, our central contributions include:

• The design of a novel rule-placement algorithm. The
algorithm has as a key building block an elegant and
provably efficient new technique for rule layout along
a linear series of switches.

• The design and analysis of principled heuristics for
controlling the time complexity of our algorithm. These
heuristics bring, among other things, the concept of
cost-effective covers from the broader algorithms liter-
ature to bear on rule placement.

• The design of new algorithms for incremental rule up-
date when either the endpoint or routing policy change.
Such algorithms are a crucial practical component of
any SDN system that requires rapid response to a
changing environment.

• An evaluation of our algorithms in terms of rule space
and running time on both synthetic and real-world
data that validates our algorithm.

In the next section, we formally introduce the optimiza-
tion problem required to implement the one big switch ab-
straction. Next, Section 3 presents related work on optimiz-
ing rule space. Section 4 presents our algorithm and Sec-
tion 5 addresses the incremental update issues. Section 6
presents experiments involving both synthetic benchmarks
and real-world policies. We conclude the paper in Section 7.
A technical report [15] presents the missing proofs and ad-
ditional experiments.

2. OPTIMIZING A BIG SWITCH
A key problem in implementing the one big switch ab-

straction is mapping global, high-level policies to an equiv-
alent, low-level set of rules for each switch in the network.
We call this problem the big switch problem, and introduce
a precise formulation in this section.

Network topology: The network consists of n switches,
each with a set of ports. We refer a port at a switch as a
location (loc). The locations connected to the outside world
are exposed locations. A packet enters the network from an
exposed location called ingress and leaves at an exposed lo-
cation called egress.

Packets: A packet (pkt) includes multiple header fields.
Examples of header fields include source IP (src ip) and des-
tination IP (dst ip). Switches decide how to handle traffic
based on the header fields, and do not modify any other part
of the packet; hence, we equate a packet with its header
fields.

Switches: Each switch has a single, prioritized list of
rules [r1, . . . , rk], where rule ri has a predicate ri.p and an
action ri.a. A predicate is a boolean function that maps
a packet header and a location (pkt, loc) into {true, false}.
A predicate can be represented as a conjunction of clauses,
each of which does prefix or exact matching on a single field
or location. An action could be either “drop” or “modify
and forward”. The “modify and forward” action specifies
how the packet is modified (if at all) and where the packet
is forwarded. Upon receiving a packet, the switch identi-
fies the highest-priority rule with a matching predicate, and
performs the associated action. A packet that matches no
rules is dropped by default.

Endpoint policy (E): The endpoint policy operates
over the set of exposed locations as if they were ports on one
big abstract switch. An endpoint policy is a prioritized list of
rules E , [r1, ..., rm], where m = ‖E‖ is the number of rules.
We assume that at the time a given policy E is in effect, each
packet can enter the network through at most one ingress
point (e.g., the port connected to the sending host, or an
Internet gateway). An example of endpoint policy is shown
in Figure 3(a).

Routing policy (R): A routing policy R is a function
R(loc1, loc2,pkt) = si1si2 ...sik , where loc1 denotes packet
ingress, loc2 denotes packet egress. The sequence si1si2 ...sik
is the path through the network. The routing policy may
direct all traffic from loc1 to loc2 over the same path, or
split the traffic over multiple paths based on packet-header
fields. An example endpoint policy is shown in Figure 3(b).

Rule-placement problem: The inputs to the rule-
placement problem are the network topology, the endpoint



policy E, the routing policy R, and the maximum number
of rules each physical switch can hold. The output is a list
of rules on each switch such that the network (i) obeys the
endpoint policy E, (ii) forwards the packets over the paths
specified by R, and (iii) does not exceed the rule space on
each switch.

3. RELATED WORK
Prior work on rule-space compression falls into four

main categories, as summarized in Table 1.

Compressing policy on a single switch: These algo-
rithms reduce the number of rules needed to realize a policy
on a single switch. While orthogonal to our work, we can
leverage these techniques to (i) reduce the size of the end-
point policy that is input to our rule-placement algorithm
and (ii) further optimize the per-switch rule-lists output by
our algorithm.

Distributing policy over the network perimeter:
These works distribute a centralized firewall policy by plac-
ing rules for packets at their ingress switches [7, 17], or ver-
ify that the edge switch configurations realize the firewall
policy [18]. These algorithms do not enforce rule-table con-
straints on the edge switches, or place rules on the internal
switches; thus, we cannot directly adopt them to solve our
problem.

Distributing policy while changing routing: DIFANE
[19] and vCRIB [20] leverage all switches in the network to
enforce an endpoint policy. They both direct traffic through
intermediate switches that enforce portions of the policy,
deviating from the routing policy given by users. DIFANE
takes a “rule split and caching” approach that increases the
path length for the first packet of a flow, whereas vCRIB di-
rects all packets of some flows over longer paths. Instead, we
view routing policy as something the SDN application should
control, based on higher-level goals like traffic engineering.
As such, our algorithms must grapple with optimizing rule
placement while respecting the routing policy.

Distributing policy while respecting the routing:
Similar to our solution, Palette [21] takes both an endpoint
policy and routing policy as input, and outputs a rule place-
ment. However, Palette leads to suboptimal solutions for
two main reasons. First, Palette has all network paths fully
implement the endpoint policy. Instead, we only enforce the
portion of the endpoint policy affecting the packets on each
path. Second, the performance of their algorithm depends
on the length of the shortest path (with non-zero traffic) in
the network. The algorithm cannot use all available switches
when the shortest path’s length is small, as is the case for
many real networks. Section 6 experimentally compares
Palette with our algorithm. We remark here that existing
packet-classification algorithms [22, 23] could be viewed as a
special case of Palette’s partitioning algorithm. These tech-
niques are related to a module in our algorithm, but they
cannot directly solve the rule-placement problem. We make
further comparisons with these techniques when we present
our algorithm.

4. A “ONE BIG SWITCH” ALGORITHM
This section describes our algorithm, which leverages
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Figure 2: Overview of the rule placement algorithm

The “path problem” is a building block: Given a
packet pkt entering the network, the routing policy R tells
the path s1, ...., s` for the packet. In addition to forwarding
pkt to this path, we must ensure that the endpoint policy E
is correctly applied to pkt along the path. In other words, we
need to decide the rules for s1, ..., s` so that these switches
collectively apply E on all the traffic going through this path.
Therefore, deciding the rule placement for path s1, ..., s` to
implement E is a basic building block in our algorithm.

The “path problem” is an easier special case of our
problem: We may also interpret the path problem as
a special case of our general problem, where the network
topology degenerates to a path. Thus, algorithmically un-
derstanding this special case is an important step towards
tackling the general problem.

The high-level idea of our algorithm is to find an ef-
fective way to decompose the general problem into smaller
problems over paths and design efficient heuristics to solve
the path problems.

4.1 Algorithm Overview
Figure 2 shows the three main components of our algo-

rithm:

Decomposition (component 1): Our first step is to in-
terpret the problem of implementing {E,R} as implement-
ing the routing policy R and a union of endpoint policies



Type and Examples Switches Rule-space limits Routing policy
Compressing policy on a single switch [14, 16, 13] Single Yes N/A
Distributed policies on edge [7, 17, 18] Edge No Yes
Distributed policies while changing routing [19, 20] All Yes No
Distributed policies while respecting routing [21] Most Yes Yes
Our work All Yes Yes

Table 1: Summary of related works

r1 : (dst ip = 00∗, ingress = H1 : Permit, egress = H2)
r2 : (dst ip = 01∗, ingress = H1 : Permit, egress = H3)

(a) An example endpoint policy E

H1 
H2 

H3 
S1 

S2 

S3 
S4 

(b) An example routing policy R

P1 = s1s2s4, D1 = {dst ip = 00∗}
P2 = s1s3s4, D2 = {dst ip = 01∗}

(c) Paths and flow spaces computed from E and R

Figure 3: An example decomposition

over the paths. We give an example for the routing pol-
icy in Figure 3(a) and the endpoint policy in Figure 3(b).
From these policies, we can infer that the packets can be
partitioned into two groups (see Figure 3(c)): the ones in
D1 (using the path P1 = s1s2s4) and the ones in D2 (using
the path P2 = s1s3s4). We may separately implement two
path-wise endpoint policies on P1 and P2. By doing so, we
decompose the general rule-placement problem into smaller
sub-problems. More formally, we can associate path Pi with
a flow space Di (i.e., all packets that use Pi belong to Di)

1

and the projection Ei of the endpoint policy on Di:

Ei(pkt) =

{
E(pkt) if pkt ∈ Di
⊥ otherwise,

(1)

where ⊥ means no operation is performed.

Resource allocation (component 2): The per-path
problems are not independent, since one switch could be
shared by multiple paths (e.g., s4 in Figure 3). Thus, we
must divide the rule space in each switch across the paths,
so that each path has enough space to implement its part of
the endpoint policy. Our algorithm estimates the resources
needed for each path, based on analysis of the policy’s struc-
ture. Then the algorithm translates the resource demands
into linear programming (LP) instances and invokes a stan-
dard LP-solver. At the end of this step, each path-wise
endpoint policy knows how many rules it can use at each
switch along its path.

1We can associate a dropped packet with the most natural
path it belongs to (e.g.,the path taken by other packets with
the same destination address).

C1=4          C2=4          C3=4  

Figure 4: A 3-hop path with rule capacities (C)

Path algorithm (component 3): Given the rule-space
allocation for each path, the last component generates a rule
placement for each path-wise policy. For each path, the algo-
rithm efficiently searches for an efficient “cover” of a portion
of the rules and “packs” them into the switch, before mov-
ing on to the next switch in the path. If the estimate of the
rule-space requirements in step 2 was not accurate, the path
algorithm may fail to find a feasible rule placement, requir-
ing us to repeat the second and third steps in Figure 2.

The rest of this section presents these three components
from the bottom up. We start with the path algorithm
(component 3), followed by the solution for general network
topologies (components 1 and 2). We also discuss exten-
sions to the algorithm to enforce endpoint policies as early
in a path as possible, to minimize the overhead of carrying
unwanted traffic.

4.2 Placing Rules Along a Path
Along a path, every switch allocates a fixed rule ca-

pacity to the path, as in Figure 4. For a single path Pi, the
routing policy is simple—all packets in the flow space Di are
forwarded along the path. We can enforce this policy by in-
stalling fixed forwarding rules on each switch to pass packets
to the next hop. The endpoint policy is more complex, spec-
ifying different actions for packets in the flow space. Where
a packet is processed (or where the rules are placed), is con-
strained by the rule capacity of the switches. However, per-
forming the defined action (such as drop or modification)
for each packet once is enough along the path. Therefore,
the endpoint policy gives us flexibility to moves rules among
multiple switches.

Our goal is to minimize the number of rules needed
to realize the endpoint policy2 , while respecting the rule-
capacity constraints. We remark that there exists a stan-
dard reduction between decision problems and optimization
problems [25]. So we will switch between these two formu-
lations whenever needed.

In what follows, we present a heuristic that recursively
covers the rules and packs groups of rules into switches along
the path. This algorithm is computationally efficient and

2Since optimizing the size of a rule list is NP-hard [24], we
cannot assume an optimal representation of E is provided as
input to our algorithm. Instead, we accept any prioritized
list of rules. In practice, the application module generating
the endpoint policy may optimize the representation of E.



R1 : (src ip = 0∗, dst ip = 00 : Permit)
R2 : (src ip = 01, dst ip = 1∗ : Permit)
R3 : (src ip = ∗,dst ip = 11 : Drop)
R4 : (src ip = 11, dst ip = ∗ : Permit)
R5 : (src ip = 10, dst ip = 0∗ : Permit)
R6 : (src ip = ∗,dst ip = ∗ : Drop)

(a) Prioritized rule list of an access-control policy
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(b) Rectangular representation of the policy

Figure 5: An example two-dimensional policy
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Figure 6: Processing 2-dim endpoint policy E

offers good performance. For ease of exposition, we assume
the flow space associated with the path is the full space
(containing all packets) and the endpoint policy matches on
the source and destination IP prefixes (two-dimensional). A
fully general version of the algorithm is presented at the end
of this subsection.

4.2.1 Overview of path heuristic
The endpoint policy E can be visualized using a two-

dimensional space where each rule is mapped to a rectangle
based on the predicate (Figure 5). Higher-priority rectangles
lie on top of lower-priority rectangles, as packets are always
handled by the matching rule with the highest priority. Rule
R6 is intentionally omitted in the figure since it covers the
whole rectangle. Let us consider enforcing the policy on
the path shown in Figure 4. Since a single switch cannot
store all six rules from Figure 5(a), we must divide the rules
across multiple switches. Our algorithm recursively covers
a rectangle, packs the overlapping rules into a switch, and
replaces the rectangle region with a single rule, as shown in
Figure 6.

Cover: The “cover” phase selects a rectangle q as shown
in Figure 6(a). The rectangle q overlaps with rules R2, R3,
R4, and R6 (overlapping rules), with R2 and R3 (internal
rules) lying completely inside q. We require that the number
of overlapping rules of a rectangle does not exceed the rule
capacity of a single switch.

r1 : (q ∧R2.p, R2.a)
r2 : (q ∧R3.p, R3.a)
r3 : (q ∧R4.p, R4.a)
r4 : (q ∧R6.p, R6.a)

(a) Eq

r1 : (q,Fwd)
r2 : (R1.p, R1.a)
r3 : (R4.p, R4.a)
r4 : (R5.p, R5.a)
r6 : (R6.p, R6.a)

(b) New rule list

Figure 7: Example policy

Pack: The intersection of rectangle q and the overlapping
rules (see Figure 6(b)) defines actions for packets inside the
rectangle. The intersection can also be viewed as the pro-
jection of the endpoint policy E on q, denoted as Eq (Fig-
ure 7(a)). By“packing”Eq on the current switch, all packets
falling into q are processed (e.g., dropped or permitted), and
the remaining packets are forwarded to the next switch.

Replace: After packing the projection Eq in a switch,
we rewrite the endpoint policy to avoid re-processing the
packets in q: we first add a rule qFwd = (q,Fwd) with the
highest priority to the policy. The rule qFwd forwards all
the packets falling in q without any modification. Second,
all internal rules inside q (R2 and R3) can be safely deleted
because no packets will ever match them. The new rewritten
endpoint policy and corresponding rule list are shown in
Figure 6(c) and Figure 7(b).

The cover-pack-and-replace operation is recursively ap-
plied to distribute the rewritten endpoint policy over the
rest of the path. Our heuristic is “greedy”: at each switch,
we repeatedly pack rules as long as there is rule space avail-
able before proceeding to the next switch. We make two
observations about the cover-pack-and-replace operation:

• Whether a feasible rule placement exists becomes clear
upon reaching the last switch in the path. If we can fit
all remaining rules on the last switch, then the policy
can be successfully implemented; otherwise, no feasible
rule placement exists.

• The total number of installed rules will be no less than
the number of rules in the endpoint policy. This is
primarily because only rules inside the rectangle are
deleted. A rule that partially overlaps with the se-
lected rectangle will appear on multiple switches. Sec-
ondly, additional rules (q,Fwd) are included for every
selected rectangle to avoid re-processing.

4.2.2 Search for candidate rectangles
Building on the basic framework, we explore what rect-

angle to select and how to find the rectangle.

Rectangle selection plays a significant role in determining
the efficacy of rule placement. A seemingly natural approach
is to find a predicate q that completely covers as many rules
as possible, allowing us to remove the most rules from the
endpoint policy. However, we must also consider the cost
of duplicating the partially-overlapping rules. Imagine we
have two candidate rectangles q1 (with 10 internal rules and
30 overlapping rules) and q2 (with 5 internal rules and 8
overlapping rules). While q1 would allow us to delete more
rules, q2 makes more effective use of the rule space. Indeed,
we can define the cost-effectiveness of q in a natural way:

utility(q) =
#internal rules− 1

#overlapping rules



R7	   R6	  

R5	  
R1	  

R3	  

R2	  

(a) Large cover

R7	   R6	  

R5	  
R1	  

R3	  

R2	  

(b) Small cover

Figure 8: Not using unnecessarily large cover.

If q is selected, all overlapping rules must be installed on the
switch, while only the internal rules can be removed and one
extra rule (for qFwd) must be added3.

Top-Down search strategy is used in finding the most
cost-effective rectangle. We start with rectangle (src ip =
∗, dst ip = ∗), and expand the subrectangles (src ip = 0∗,
dst ip = ∗), (src ip = 1∗,dst ip = ∗), (src ip = ∗, dst ip =
0∗), and (src ip = ∗, dst ip = 1∗). In the search procedure,
we always shrink the rectangle to align with rules, as illus-
trated by the example in Figure 8. Suppose our algorithm
selected the predicate p in Figure 8(a) (the shadowed one)
to cover the rules. We can shrink the predicate as much
as possible, as long as the set of rules fully covered by p
remains unchanged. Specifically, we may shrink p as illus-
trated in Figure 8(b), without impacting the correctness of
the algorithm. Moroever, for any shrinked predicate, two
rules determine the left and right boundaries on the x-axis,
resulting in a total of m2 possible sides along the x-axis.
Similarly, the y-axis has a total of m2 possible sides, result-
ing in a total number of relevant predicates of m4.

Even searching O(m4) predicates in each pack-cover-
and-replace operation would be impractical for larger m.
To limit the search space, our algorithm avoids searching
too deeply, preferring larger rectangles over smaller ones.
Specifically, let q be a rectangle and q′ be its subrectan-
gle (q′ is inside q). When both Eq and Eq′ can “fit” into
the same switch, packing Eq often helps reduce the number
of repeated rules. In Figure 9, we can use either the large
rectangle in Figure 9(a) or the two smaller rectangles in Fig-
ure 9(b). Using the larger rectangle allows us to remove R3.
Using the two smaller rectangles forces us to repeat R3, and
repeat R1 and R4 one extra time. As such, our algorithm
avoids exploring all of the small rectangles. Formally, we
only consider those rectangles q such that there exists no
rectangle q′ which satisfies both of the following two con-
ditions: (i) q is inside q′ and (ii) Eq′ can be packed in the
switch. We call these q the maximal feasible predicates.

The pseudocode of the full path heuristic is shown in
Figure 10. Note that we could have used an existing rule-
space partitioning algorithm [22, 23, 27, 28] but they are
less effective. The works of [22, 23, 27] take a top-down
approach to recursively cut a cover into smaller ones until
each of the cover fits into one switch. This approach cannot
ensure that every switch fully uses its space4 (See results
in Section 6). SmartPC [28] takes a bottom-up approach

3Cost-effectiveness metrics have been used in other domains
to solve covering problems [26].
4For example, imagine at some point in their algorithms,
one cover contains C + 1 rules. Since this cannot fit into
one switch, they cut the cover further into two smaller ones.
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(b) using smaller rectangles

Figure 9: Only pack maximal rectangle.

Pack-and-Replace-2D(i, E′)

1 Let di ← the remaining capacity of si.
2 Let Q be the set of maximal feasible predicates

with respect to E′ that need ≤ di rules.

3 q ← argmaxq{ |Internal(q,E
′)|−1

‖E′
q‖

| q ∈ Q}
4 Append the rules E′q sequentially to the end of

the prioritized list of si.
5 Let R← {r ∈ E′ : r.p is inside q}.
6 E′ ← E′\R
7 E′ ← (q,Fwd) ◦ E′

Compile-rules-2D({s1, ..., s`}, E)

1 E′ ← E
2 for i← 1 to `
3 do Add a default forward rule for all

unmatched packet at si.
4 while si has unused rule space
5 do Pack-and-Replace(i, E′)

Figure 10: Our heuristics for 2-dim chains

to find the covers. But it searches much less extensively
among the set of feasible covers; they do not use the cost-
effectiveness metric to control the number of repeated rules
either.

4.2.3 Generalizing the algorithm
We end this subsection by highlighting a number of ex-

tensions to our algorithm.

Smaller flow space : When the flow space for a path is
not the full space, we can still use the algorithm except we
require that the rectangular covers chosen for the path reside
in the corresponding flow space.

Single dimension: If the endpoint policy depends on
only one header field, this algorithm is near optimal—the
gap between the number of installed rules and the size of
endpoint policy is marginally small. See [15] for a discussion.

Higher dimensions: Our algorithm works when E is a d-
dimensional function for a d ≥ 3. There are two approaches
— (i) use“hypercube” predicates instead of rectangular ones
in the “cover” phase and cut on all dimensions in searching
for predicates. “packing” and “replace” phases remain the
same. Or (ii) still cut along source and destination IP prefix
dementions with all rules projected to rectangles. When we
pack a projection of a rectangular predicate q into a switch,
all the rules intersetct with q are packed and the priorities
of the rules are preserved. “replace” phase is the same. In
both ways, our algorithm behave correctly.

Switch-order independence: Once our algorithm fin-
ishes installing rules on switches, we are able to swap the

But after this cut, each of the two subcovers could have only
≈ C/2 rules, wasting nearly 50% of space in each switch.



contents of any two switches without altering the behavior
of the whole path (the full technical report gives a proof for
this claim). This property plays a key role when we tackle
the general graph problem.

4.3 Decomposition and Allocation
We now describe how we decompose the network prob-

lem into paths and divide rule space over the paths.

4.3.1 Decomposition through cross-product
We start the “decomposition” by finding all τ paths in

the graph P1, P2, ..., Pτ , where path Pi is a chain of switches
si1si2 ...si`i connecting one exposed location to another. By
examining the“cross-product”of endpoint policy E and rout-
ing policy R, we find the flow space Di for each Pi. Finally,
we project the endpoint policy E on Di to compute the
“path-wise endpoint policy”Ei for Pi. This generates a col-
lection of path problems: for each path Pi, the endpoint
policy is Ei and the routing policy directs all packets in Di
over path Pi.

Since each packet can enter the network via a single
ingress location and exit at most one egress location (Sec-
tion 2), any two flow spaces Di and Dj are disjoint. There-
fore, we can solve the rule-placement problem for each path
separately. In addition to solving the τ rule-placement prob-
lems, we must ensure that switches correctly forward traffic
along all paths, i.e., the routing policy is realized. The algo-
rithm achieves this by placing low-priority default rules on
switches. These default rules enforce “forward any packets
in Di to the next hop in Pi”, such that packets that are not
handled by higher-priority rules traverse the desired path.

4.3.2 Rule allocation through linear programming
Ideally, we would simply solve the rule-placement prob-

lem separately for each path and combine the results into a
complete solution. However, multiple paths can traverse the
same switch and need to share the rule space. For each path
Pi, we need to allocate enough rule space at each switch in
Pi to successfully implement the endpoint policy Ei, while
respecting the capacity constraints of the switches. The goal
of “allocation” phase is to find a global rule-space allocation,
such that it is feasible to find rule placements for all paths.

Enumerating all possible rule-space partitions (and check-
ing the feasibility by running the path heuristic for each
path) would be too computationally expensive. Instead, we
capitalize on a key observation from evaluating our path
heuristic: the feasibility of a rule-space allocation depends
primarily on the total amount of space allocated to a path,
rather than the portion of that space allocated to each switch.
That is, if the path heuristic can find a feasible rule place-
ment for Figure 4 under the allocation (c1 = 4, c2 = 4, c3 =
4), then the heuristic is likely to work for the allocation
(c1 = 3, c2 = 4, c3 = 5), since both allocations have space
for 12 rules.

To assess the feasibility of a rule-space allocation plan,
we introduce a threshold value η for the given path: if
the total rule space allocated by the plan is no less than
η (c1 + c2 + c3 ≥ η in the example), then a feasible rule
placement is likely to exist; otherwise, there is no feasible
rule placement. Therefore, our rule-space allocation plan
consists of two steps: (i) estimate the threshold value η for
each path and (ii) compute a global rule-space allocation

max: ⊥
s.t: ∀i ≤ n :

∑
j≤τ hi,j · xi,j ≤ 1 (C1)

∀j ≤ τ :
∑
i≤n hi,j · xi,j · cj ≥ ηj (C2)

Figure 11: Linear program for rule-space allocation

plan, which satisfies all of the constraints on the threshold
values.

This strategy is very efficient and avoids exhaustive enu-
meration of allocation plans. Furthermore, it allows us to
estimate whether any feasible solution exists without run-
ning the path heuristics.

Estimate the necessary rule space per path: Two
factors impact the total rule space needed by a path:

• The size of endpoint policy: The more rules in the
endpoint policy, the more rule space is needed.

• The path length: The number of rectangles grows with
the length of the path, since each switch uses at least
one rectangle.

Since paths have different endpoint policies and lengths, we
estimate the threshold value for the `i-hop path Pi with
endpoint policy Ei. When

∑
j≤`i cij ≥ ηi for a suitably

chosen ηi, a feasible solution is likely to exist. In practice,
we found that ηi grows linearly with ‖Ei‖ and `i. Thus, we
set ηi = αi‖Ei‖, where αi is linear in the length of Pi and
can be estimated empirically.

Compute the rule-space allocation: Given the space
estimates, we partition the capacity of each switch to sat-
isfy the needs of all paths. The decision can be formulated
as a linear programming problem (hereafter LP). Switch si
can store ci rules, beyond the rules needed for the default
routing for each path. Let ηj be the estimated total rule
space needed by path Pj . We define {hi,j}i≤n,j≤τ as indi-
cator variables so that hi,j = 1 if and only if si is on the
path Pj . The variables are {xi,j}i≤n,j≤τ , where xi,j rep-
resents the portion of rules at si allocated to Pj . For ex-
ample, when c4 = 1000 and x4,3 = 0.4, we need to allocate
1000×0.4 = 400 rules at s4 for the path P3. The LP has two
types of constraints (see Figure 11): (i) capacity constraints
ensuring that each switch si allocates no more than 100%
of its available space and (ii) path constraints ensuring that
each path Pj has a total space of at least ηj .

Our LP does not have an objective function since we are
happy with any assignment that satisfies all the constraints.5

Moreover, we apply floor functions to round down the frac-
tional variables, so we never violate capacity constraints;
this causes each path can lose at most `i rules compared to
the optimal solution, where the path length `i is negligibly
small.

Re-execution and correctness of the algorithm: When
the path algorithm fails to find a feasible solution based on
the resource allocation computed by our LP, it means our
threshold estimates are not accurate enough. In this case,
we increase the thresholds for the failed paths and re-execute
the LP and path algorithms and repeat until we find a feasi-
ble solution. In the technical report, we show the correctness
of the algorithm.

5This is still equivalent to standard linear programs; see [29].



4.4 Minimizing Unwanted Traffic
One inevitable cost of distributing the endpoint pol-

icy is that some unwanted packets travel one or more hops
before they are ultimately dropped. For instance, consider
an access-control policy implemented on a chain. Installing
the entire endpoint policy at the ingress switch would en-
sure all packets are dropped at the earliest possible mo-
ment. However, this solution does not utilize the rule space
in downstream switches. In its current form, our algorithm
distributes rules over the switches without regard to where
the unwanted traffic gets dropped. A simple extension to
our algorithm can minimize the cost of carrying unwanted
packets in the network. Specifically, we leverage the follow-
ing two techniques:

Change the LP’s objective to prefer space at the
ingress switches: In our original linear program formu-
lation, we do not set any objective. When we execute a
standard solver on our LP instance, we could get a solution
that fully uses the space in the “interior switches,” while
leaving unused space at the edge. This problem becomes
more pronounced when the network has more rule space
than the policy needs (i.e., many feasible solutions exist).
When our path algorithm runs over space allocations that
mostly stress the interior switches, the resulting rule place-
ment would process most packets deep inside the network.
We address this problem by introducing an objective func-
tion in the LP that prefers a solution that uses space at or
near the first switch on a path. Specifically, let `j be the
length of the path Pj . Our objective is

max:
∑
i≤n

∑
j≤τ

`j − wi,j + 1

`j
hi,jxi,j , (2)

where wi,j is si’s position in Pj . For example, if s4 is the
third hop in P6, then w4,6 = 3.

Leverage the switch-order independence in the path
algorithm: At the path level, we can also leverage the
switch-order independence property discussed in Section 4.2.3
to further reduce unwanted traffic. Specifically, notice that
in our path algorithm, we sequentially pack and replace the
endpoint policies over the switches. Thus, in this strategy,
more fine-grained rules are packed first and the“biggest”rule
(covering the largest amount of flow space) is packed at the
end. On the other hand, the biggest rule is more likely to
cover larger volumes of unwanted traffic. Thus, putting the
biggest rules at or near the ingress will drop unwanted traf-
fic earlier. This motivates us to reverse the order we place
rules along a chain: here, we shall first pack the most refined
rules at the last switch, and progressively pack the rules in
upstream switches, making the ingress switch responsible for
the biggest rules.

5. INCREMENTAL UPDATES
Network policies change over time. Rather than com-

puting a new rule placement from scratch, we must update
the policy incrementally to minimize the computation time
and network disruption. We focus on the following major
practical scenarios for policy updates:

Change of drop or modification actions: The endpoint
policy may change the subset of packets that are dropped
or how they are modified. A typical example is updating
an access-control list. Here, the flow space associated with
each path does not change.

(a) Original placement

R’ R 

(b) Final placement

Figure 12: Rule insertion example

Change of egress points: The endpoint policy may
change where some packets leave the network (e.g., because
a mobile destination moves). Here, the flow space changes,
but the routing policy remains the same.

Change of routing policy: When the topology changes,
the routing policy also need to be changed. In this case, the
network has some new paths, and the flow space may change
for some existing paths.

The first example is a “planned change,” while the other
two examples may be planned (e.g., virtual-machine mi-
gration or network maintenance) or unplanned (e.g., user
mobility or link failure). While we must react quickly to
unplanned changes to prevent disruptions, we can handle
planned updates more slowly if needed. These observations
guide our algorithm design, which has two main compo-
nents: a “local algorithm” used when the flow space does
not change, and a “global algorithm” used when the flow
space does change. 6

5.1 Local Algorithm
When the flowspace remains the same (i.e., all packets

continue to traverse the same paths), a local update algo-
rithm is sufficient. If a path’s policy does not change, the
rule placement for that path does not need to change, so we
do not need to re-execute the path algorithm presented in
Section 4.2. We can always convert an original path-wise
endpoint policy into the new one by applying one of the
following three operations one or more times: (i) insert a
new rule, (ii) delete an existing rule, and (iii) alter an exist-
ing rule. Thus, we need only design an algorithm to handle
each of these operations. Then we may recursively invoke
this algorithm to update the policy for the entire path.

Let us focus on rule insertion, i.e., adding a new rule
R to the endpoint policy E and the path P = s1s2...s`, as
shown in Figure 12. Strategies to handle the other two op-
erations are similar. Recall each switch si along the path is
responsible for some region of flow space, indicated by predi-
cates. In our algorithm, we simply walk through each si and
see whether R.p overlaps with the region (R.p is the predi-
cate of rule R). When an overlap exists, we “sneak in” the

6We can use techniques in [30] to ensure consistent updates.



Insert-Rule-Path({s1, ..., s`}, R,E)

1 for i← 1 to `
2 do Let Q be the set of predicates covered by si.
3 for every predicate q ∈ Q
4 do if R.p overlaps with q
5 then Install (R.p ∧ q,R.a) on si
6 do if R.p is inside q
7 then return

Figure 13: Procedure for rule insertion

projection of R with respect to the region of si. Otherwise,
we do nothing. Figure 13 illustrates the pseudocode.

5.2 Global Algorithm
When the flowspaces change, our algorithm first changes

the forwarding rules for the affected paths. Then we must
decide the rule placements on these paths to implement the
new policies. This consists of two steps. First, we run the
linear program discussed in Section 4 only on the affected
paths to compute the rule-space allocation (notice that rule
spaces assigned to unaffected paths should be excluded in
the LP). Second, we run the path algorithm for each of the
paths using the rule space assigned by the LP.7

Performance in unplanned changes. When a switch or
link fails, we must execute the global algorithm to find the
new rule placement. The global algorithm could be compu-
tationally demanding, leading to undesirable delays.8 To
respond more quickly, we can precompute a backup rule
placement for possible failures and cache the results at the
controller. We leave it as a future work to understand the
most efficient way to implement this precompute-and-cache
solution.

6. PERFORMANCE EVALUATION
In this section, we use real and synthetic policies to

evaluate our algorithm in terms of (i) rule-space overhead,
(ii) running time, and (iii) resources consumed by unwanted
traffic.

6.1 Experimental Workloads
Routing policies: We use GT-ITM [31] to generate

10 synthetic 100-node topologies. Four core switches are
connected to each other, and the other 96 switches constitute
12 sub-graphs, each connected to one of the core switches.
On average, 53 of these 96 switches lie at the periphery of
the network. We compute the shortest paths between all
pairs of edge switches. The average path length is 7, and
the longest path has 12 hops.

Endpoint policies: We use real firewall configurations
from a large university network. There are 13 test cases in
total. We take three steps to associate the rule sets with
the topology. First, we infer subnet structures using the
following observation: when the predicate of a rule list is
(src ip = q1 ∧ dst ip = q2) (where q1 and q2 are prefixes),

7If the algorithm cannot find an allocation plan leading to
feasible rule placements for all affected paths, an overall re-
computation must be performed.
8In our experiments, we observe the failure of one important
switch can cause the recomputation for up to 20% of the
paths (see Section 6 for details). The update algorithm may
take up to 5 to 10 seconds when this happens.

then q1 and q2 should belong to different subnets. We use
this principle to split the IP address space into subnets such
that for any rule in the ACL, its src ip prefix and dst ip pre-
fix belong to different subnets. Subnets that do not overlap
with any rules in the ACL are discarded. Second, we attach
subnets to edge switches. Third, for any pair of source and
destination subnets, we compute the projection of the ACL
on their prefixes. Then we get the final endpoint policy E.
4 of the 13 endpoint policies have less than 15,000 rules, and
the rest have 20,000–120,000 rules.

In addition, ClassBench [32] is used to generate syn-
thetic 5-field rule sets to test our path heuristic. Class-
Bench gives us 12 test cases, covering three typical packet-
classification applications: five ACLs, five Firewalls, and two
IP Chains. (IP Chain test cases are the decision tree for-
mats for security, VPN, and NAT filter for software-based
systems, see [32] for details.)

We evaluate our algorithms using two platforms. For
stand-alone path heuristic, we use RX200 S6 servers with
dual, six-core 3.06 Intel X5675 processors with 48GB ram.
To test the algorithm on graphs, we use the Gurobi Solver
to solve linear programs. Unfortunately, the Gurobi Solver
is not supported on the RX200 S6 servers so we use a Mac-
book with OS X 10.8 with a 2.6 GHz Intel Core i7 processor
and 8GB memory for the general graph algorithms. Our
algorithms are implemented in Java and C++ respectively.

6.2 Rule-Space Utilization
Our evaluation of rule-space utilization characterizes

the overhead of the algorithm, defined as the number of ex-
tra rules needed to implement the endpoint policy E. The
overhead comes from two sources:

Decomposition of graph into paths: A single rule
in the endpoint policy may need to appear on multiple paths.
For example, a rule (src ip = 1.2.3.4 : Drop) matches pack-
ets with different destinations that follow different paths; as
such, this rule appears in the projected endpoint policies of
multiple paths. Our experiments show that this overhead
is very small on real policies. The average number of extra
rules is typically just twice the number of paths, e.g., in a
network with 50 paths and 30k rules in the endpoint policy,
the decomposition leads to approximately 100 extra rules.

Distributing rules over a path: Our path heuristic
installs additional rules to distribute the path-wise endpoint
policy. If our heuristic does a good job in selecting rectan-
gles, the number of extra rules should be small. We mainly
focus on understanding this overhead, by comparing to a
lower bound of ‖Ei‖ rules that assumes no overhead for
deploying rules along path Pi. This also corresponds with
finding a solution in our linear program where all αi’s are
set to 1.

Our experiments assume all switches have the same rule

capacity. As such, the overhead is defined as C−CL

CL , where
C is the rule capacity of a single switch, such that our al-
gorithm produces a feasible rule placement, and CL is the
minimum rule capacity given by the LP, assuming no over-
head is incurred in the path algorithm.

Results: The overhead is typically between 15% and 30%,
as shown in Figure 14(a). Even when the overhead reaches
0%, the overhead is still substantially lower than in the
strawman solution that places all rules at the first hop [7,
17]—for example, we distribute a policy of 117.5k rules us-
ing 74 switches with 2.7k rules, while the first-hop approach
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Figure 14: The performance of the graph algorithm over different endpoint policies on 100-switch topologies

(a) A large university network data
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Figure 15: The performance of the path heuristic.

needs 32 edge switches with 17k rules each. Figure 14(b)
shows the running time of our algorithm, broken down into
solving the LP and applying the path heuristic. The LP
solver introduces a small overhead, and the path heuristic
is responsible for the longer delays. Fortunately, the path
heuristic can easily run in parallel, with different processes
computing rule placement for different paths. Each pair of
bars in Figure 14(b) compares the running time when using
one vs. two processes. The speed-up is significant, except
for some policies that have one particularly hard path prob-
lem that dominates the running time. The algorithm is fast
enough to run in the background to periodically reoptimize
rule placements for the entire network, with the incremental
algorithm in Section 5 handling changes requiring an imme-
diate response.

Evaluating the path heuristic: We also evaluate the
path heuristic in isolation to better understand its behavior.
These experiments apply the entire endpoint policy to one
path of a given length. Figure 15(a) plots the rule-space
overhead (as a function of path length) for three representa-
tive policies (with the lowest, median and highest overhead)
from the university firewall data. The median overhead for
the 8-hop case is approximately 5% and the worst case is
around 28%. For all policies, the overhead grows steadily
with the length of the path. To understand the effect of path
length, we compare the results for four and eight switches
in the median case.

#switches #rules/switch #total rules ‖E‖
4 1776 7104 6966
8 911 7288 6966

With eight switches, the number of rules per switch (911) is
reduced by 49% (compared to 1776 for four switches). This
also means we must search for smaller rectangles to pack
rules into the smaller tables. As each rectangle becomes
smaller, a rule in the endpoint policy that no longer “fits”
within one rectangle must be split, leading to more extra
installed rules.

Figure 15(b) plots the CDF of the overhead across both
the synthetic and real policies for three different path lengths.
While overhead clearly increases with path length, the vari-
ation across data sets is significant. For 8-hop paths, 80%
of the policies have less than 40% overhead, but the worst
overhead (from the ClassBench data) is 155%.9 In this syn-
thetic policy, rules have wildcards in either the source or
destination IP addresses, causing significant rule overlaps
that make it fundamentally difficult for any algorithm to
find good “covering” rectangles. Of the six data sets with
the worst overhead, five are synthetic firewall policies from
ClassBench. In general, the overhead increases if we tune the
ClassBench parameters to generate rules with more overlap.
The real policies have lower overhead, since they don’t con-
tain many rule overlaps.

Profiling tool: We created a profiling tool that analyzes
the structure of the endpoint policies to identify the poli-
cies that are fundamentally hard to distribute over a path.

9Even for this worst-case example, spreading the rules over
multiple hops allow a network to use switches with less than
one-third the TCAM space than a solution that places all
rules at the ingress switch.
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Figure 16: CDF of dropped traffic in the graph

The tool searches for all the rectangular predicates in the
endpoint policy that can possibly be packed into a single
switch. Then, for each predicate q, the tool analyzes the
cost-effectiveness ratio between the number of internal rules
with respect to q and ‖Eq‖. The largest ratio here corre-
lates well with the performance of our algorithm. Our tool
can help a network administrator quickly identify whether
distributed rule placement would be effective for their net-
works.

6.3 Minimizing Unwanted Traffic
We next evaluate how well our algorithm handles un-

wanted traffic (i.e., packets matching a “drop” rule). When
ingress switches have sufficient rule space, our LP automat-
ically finds a solution that does not use internal switches.
But, when switches have small rule tables, some rules must
move to interior switches, causing unwanted packets to con-
sume network bandwidth. Our goal is to drop these packets
as early as possible, while still obeying the table-size con-
straints. We summarize our results using a cumulative dis-
tribution function F (·), e.g., F (0.3) = 0.65 means that 65%
of the unwanted packets are dropped before they travel 30%
of the hops along their associated paths.

We evaluate the same test cases in Section 6.2 and as-
sume the unwanted traffic has a uniform random distribu-
tion over the header fields. Figure 16 shows a typical result.
We run the algorithm using two sets of α values. When α
values are small, LP allocation leave as much unused space
as possible; when α values are large, LP allocates more of
the available rule space, allowing the path algorithm to drop
unwanted packets earlier. In both cases, more than 60% of
unwanted packets are dropped in the first 20% of the path.
When we give LP more flexibility by increasing α value, the
fraction of dropped packets rises to 80%. Overall, we can see
that our algorithm uses rule space efficiently while dropping
unwanted packets quickly.

6.4 Comparison with Palette
We next compare our algorithm with Palette [21], the

work most closely related to ours. Palette’s main idea is
to partition the endpoint policy into small tables that are
placed on switches, such that each path traverses all tables
at least once. Specifically, Palette consists of two phases. In
the first phase (coloring algorithm), the input is the network
structure and the algorithm decides the number of tables
(i.e., colors), namely k, needed. This phase does not need
the endpoint policy information. In the second phase (par-
titioning algorithm), it finds the best way to partition the
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Figure 17: Comparing our path heuristic to Palette

endpoint policy into k (possibly overlapping) parts. This
phase does not require the knowledge of the graph.

We compare the performance of our work and Palette
for both the special case where the network is a path and
the general graph case. When the network is a path, we only
examine the partitioning algorithm (because the number of
partitions here exactly equals to the length of the path).
Figure 17 shows that Palette’s performance is similar to ours
when path length is a power of 2 but is considerably worse
for other path lengths. Moreover, Palette cannot address
the scenario where switches have non-uniform rule capacity.

Next, we examine Palette’s performance over general
graphs. Specifically, we execute Palette’s coloring algorithm
on the general graph test cases presented in Section 6.2. The
maximum number of partitions found by their algorithm is
four. This means in a test case where an endpoint policy
contains 117k rules, Palette requires each switch to contain
at least 117k/4 ≈ 29k rules (this assumes no further over-
head in their partitioning phase). In contrast, our algorithm
produces a solution requiring only 2.5k rules per switch.

7. CONCLUSION AND FUTURE WORK
Our rule-placement algorithm helps raise the level of

abstraction for SDN by shielding programmers from the de-
tails of distributing rules across switches. Our algorithm
performs well on real and synthetic workloads, and has rea-
sonable running time.

In our future work, we plan to explore techniques for
handling policies which do not fit within the global network
hardware constraints. In such cases, we plan to develop
network-wide caching strategies that place as rules in hard-
ware when possible, but rely on software to handle the over-
flow [33]. We are also exploring ways to parallelize our algo-
rithms, so we can handle even larger networks and policies
efficiently.
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