
NV: An intermediate language for network
verification

Ryan Beckett

Microsoft Research

Redmond, WA

ryan.beckett@microsoft.com

Nick Giannarakis

Princeton University

Princeton, NJ

nick.giannarakis@princeton.edu

Devon Loher

Princeton University

Princeton, NJ

devon.loehr@gmail.com

David Walker

Princeton University

Princeton, NJ

dpw@princeton.edu

KEYWORDS
network verification,network simulation, control plane mod-

elling

ACM Reference Format:
Ryan Beckett, Nick Giannarakis, Devon Loher, and David Walker.

2019. NV: An intermediate language for network verification. In

NetPL ’19: ACM SIGCOMMWorkshop on Networking and Program-
ming Languages, August 23, 2019, Beijing, China. ACM, New York,

NY, USA, 2 pages. https://doi.org/10.1145/3341561.3349592

Introduction. Network devices often rely on distributed

protocols, such as BGP, to make routing decisions. Network

operators can enforce routing policies (that may express se-

curity, economic or other concerns) by configuring what

routing protocols devices execute, and how they process

routing messages. These configurations are expressed in

low-level, vendor specific languages. Combined with the dis-

tributed nature of routing protocols, reasoning about the

correctness of the configurations is a daunting task for op-

erators. Network verification [1, 4] and simulation tools [3]

have been proposed to aid operators. Additionally, as those

techniques often face scaling problems, researchers have

suggested ways [2] to simplify the complexity of networks.

Regardless of the transformation or reasoning principles

used, one needs to parse the original network configurations

as provided by operators. To tackle the range of vendor-

specific configurations, Batfish [3] uses a vendor-agnostic

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

NetPL ’19, August 23, 2019, Beijing, China
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6877-3/19/08. . . $15.00

https://doi.org/10.1145/3341561.3349592

representation of routing configurations for common proto-

cols, and provides a translation from each vendor’s language

to Batfish’s representation. Subsequent analysis such as com-

pression [2], simulation [3] or verification [1, 4] can be then

performed on top of this representation.

Batfish has been an indispensable tool for network re-

searchers thanks to its ability to parse a wide range of config-

urations from different vendors. Unfortunately, its interme-

diate language (IR) falls short of many language design goals.

First, at 105 different expressions and 23 statements Batfish’s

IR is massive. This is a symptom of other problems in the

design of the IR. In particular, the expressions and structures

used are specialized to routing protocols. For example, in-

stead of a set operation that specifies the field of the attribute

to be changed along with its new value, Batfish uses a differ-

ent expression to set the local preference of a BGP attribute, a

different expression to set the MED value, and so on. As such,

expressions cannot be composed to build other more complex

operations. Besides the explosion in the size of the IR, this

poses another issue: many desirable transformations cannot

be expressed within Batfish’s IR. For instance, replacing the

AS Path attribute of BGP with its length can often improve

simulation performance without loss of precision. Yet, this

transformation cannot be expressed within Batfish’s current

AST, because one cannot alter the type of the AS Path or the
operations on it. Moreover, understanding the semantics of

the language requires deep knowledge of routing protocols

and the intricacies of vendor specific implementations.

Finally, some effects of executing a protocol are not ex-

pressed in the configurations, but are left implicit and it’s up
to the backend (e.g. the simulator) to correctly capture them.

This makes it difficult to implement new analyses of con-

figurations, as one has to correctly implement any implicit

effects operations may have.

https://doi.org/10.1145/3341561.3349592
https://doi.org/10.1145/3341561.3349592

NetPL ’19, August 23, 2019, Beijing, China R. Beckett et al.

NV: A flexible IR for control plane configurations. To over-

come these limitations, we propose a typed intermediate lan-

guage, called NV. NV allows the user to specify the topology

of a network, the type of the routing messages exchanged,

and functions that define how each device processes these

messages. The key design points of NV are its compact size,

the compositionality of its expressions, and the use of stan-

dard programming language constructs (similar to the ones

of ML based languages). We have implemented two different

backends to NV, a BDD-based simulator that simulates the

message exchange procedure of distributed routing protocols,

and a SMT-based logical encoding that can verify properties

of the converged state of a network. Furthermore, to improve

the performance of such techniques we have implemented

some common compiler optimizations such as constant un-

folding, inlining and partial evaluation. The small size and

the use of standard constructs with well-defined semantics

facilitates the implementation of such optimizations.

NV is designed to be an IR, but also a verification frame-

work. NV includes two key features to support this role: 1.

symbolic variables that denote unknowns in the network, 2.

assertions to be verified about the network’s converged state.

For instance, a symbolic variable can model a potential link

failure, or a routing announcement from an external peer.

Finally, for NV to be useful, it must be able to (at least)

model commonly used routing protocols, such as BGP and

OSPF. One of the challenges we faced is to find a language

that is sufficient to model in detail these protocols, but that

we can also efficiently compile to BDDs or logical formulas

to be verified by an SMT solver. Currently, we can translate

a number of protocol configurations from Batfish to NV,

including eBGP and OSPF, and we are working towards

supporting more complicated protocols such as iBGP.

Related Work. The design of NV is partly inspired from

routing algebras [5, 6]. Routing algebras were originally de-

vised to reason about convergence properties of protocols,

but the main goal of NV is to enable modelling of protocols

and reasoning about routing properties such as reachability,

way-pointing, and fault tolerance.

REFERENCES
[1] Beckett, R., Gupta, A., Mahajan, R., and Walker, D. A general

approach to network configuration verification. In SIGCOMM (August

2017).

[2] Beckett, R., Gupta, A., Mahajan, R., and Walker, D. Control plane

compression. SIGCOMM ’18, pp. 476–489.

[3] Fogel, A., Fung, S., Pedrosa, L., Walraed-Sullivan, M., Govindan,

R., Mahajan, R., and Millstein, T. A general approach to network

configuration analysis. In NSDI (2015).
[4] Gember-Jacobson, A., Viswanathan, R., Akella, A., and Mahajan,

R. Fast control plane analysis using an abstract representation. In

SIGCOMM (2016).

[5] Griffin, T. G., and Sobrinho, J. L. Metarouting. In Proceedings of

the 2005 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (August 2005), SIGCOMM ’05,

pp. 1–12.

[6] Sobrinho, J. a. L. An algebraic theory of dynamic network routing.

IEEE/ACM Trans. Netw. 13, 5 (October 2005), 1160–1173.

	References

