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Abstract. We consider the enforcement powers of program monitors,
which intercept security-sensitive actions of a target application at run
time and take remedial steps whenever the target attempts to execute a
potentially dangerous action. A common belief in the security commu-
nity is that program monitors, regardless of the remedial steps available
to them when detecting violations, can only enforce safety properties. We
formally analyze the properties enforceable by various program monitors
and find that although this belief is correct when considering monitors
with simple remedial options, it is incorrect for more powerful monitors
that can be modeled by edit automata. We define an interesting set of
properties called infinite renewal properties and demonstrate how, when
given any reasonable infinite renewal property, to construct an edit au-
tomaton that provably enforces that property. We analyze the set of
infinite renewal properties and show that it includes every safety prop-
erty, some liveness properties, and some properties that are neither safety
nor liveness.

1 Introduction

A ubiquitous technique for enforcing software security is to dynamically monitor
the behavior of programs and take remedial action when the programs behave in
a way that violates a security policy. Firewalls, virtual machines, and operating
systems all act as program monitors to enforce security policies in this way. We
can even think of any application containing security code that dynamically
checks input values, queries network configurations, raises exceptions, warns the
user of potential consequences of opening a file, etc., as containing a program
monitor inlined into the application.

Because program monitors, which react to the potential security violations
of target programs, enjoy such ubiquity, it is important to understand their ca-
pabilities as policy enforcers. Such understanding is essential for developing sys-
tems that support program monitoring and for developing sound languages for
specifying the security policies that these systems can enforce. In addition, well-
defined boundaries on the enforcement powers of security mechanisms allow se-
curity architects to determine exactly when certain mechanisms are needed and
save the architects from attempting to enforce policies with insufficiently strong
mechanisms.
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Schneider defined the first formal models of program monitors and discov-
ered one particularly useful boundary on their power [24]. He defined a class of
monitors that respond to potential security violations by halting the target ap-
plication, and he showed that these monitors can only enforce safety properties—
security policies that specify that “nothing bad ever happens” in a valid run of
the target [18]. When a monitor in this class detects a potential security violation
(i.e., “something bad”), it must halt the target.

Although Schneider’s result applies only to a particular class of program
monitors, other research on formalizing monitors has likewise developed only
models that enforce just safety properties. In this paper, we advance the the-
oretical understanding of practical program monitors by proving that certain
types of monitors can enforce non-safety properties. These monitors are mod-
eled by edit automata, which have the power to insert actions on behalf of and
suppress actions attempted by the target application. We prove an interesting
lower bound on the properties enforceable by such monitors: a lower bound that
encompasses strictly more than safety properties.

1.1 Related Work

A rich variety of security monitoring systems has been implemented
[14,7,9,11,17,4,8,5]. In general, these systems allow arbitrary code to be exe-
cuted in response to potential security violations, so they cannot be modeled
as monitors that simply halt upon detecting a violation. In most cases, the
languages provided by these systems for specifying policies can be considered
domain-specific aspect-oriented programming languages [15].

Theoretical efforts to describe security monitoring have lagged behind the
implementation work, making it difficult to know exactly which sorts of security
policies to expect the implemented systems to be able to enforce. After Schneider
made substantial progress by showing that safety properties are an upper bound
on the set of policies enforceable by simple monitors [24], Viswanathan, Kim,
and others tightened this bound by placing explicit computability constraints on
the safety properties being enforced [25,16]. Viswanathan also demonstrated that
these computable safety properties are equivalent to coRE properties [25]. Fong
then formally showed that placing limits on a monitor’s state space induces limits
on the properties enforceable by the monitor [12]. Recently, Hamlen, Schneider,
and Morrisett compared the enforcement power of static analysis, monitoring,
and program rewriting [13]. They showed that the set of statically enforceable
properties equals the set of recursively decidable properties of programs, that
monitors with access to source-program text can enforce strictly more properties
than can be enforced through static analysis, and that program rewriters do not
correspond to any complexity class in the arithmetic hierarchy.

In earlier theoretical work, we took a first step toward understanding the
enforcement power of monitors that have greater abilities than simply to halt
the target when detecting a potential security violation [20]. We introduced edit
automata, a new model that captures the ability of program monitors to insert
actions on behalf of the target and to suppress potentially dangerous actions.
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Edit automata are semantically similar to deterministic I/O automata [22] but
have very different correctness requirements. The primary contribution of our
earlier work was to set up a framework for reasoning about program monitors
by providing a formal definition of what it even means for a monitor to en-
force a property. Although we also proved the enforcement boundaries of several
types of monitors, we did so in a model that assumed that all target programs
eventually terminate. Hence, from a practical perspective, our model did not ac-
curately capture the capabilities of real systems. From a theoretical perspective,
modeling only terminating targets made it impossible to compare the properties
enforceable by edit automata to well-established sets of properties such as safety
and liveness properties.

1.2 Contributions

This paper presents the nontrivial generalization of earlier work on edit au-
tomata [20] to potentially nonterminating targets. This generalization allows us
to reason about the true enforcement powers of an interesting and realistic class
of program monitors, and makes it possible to formally and precisely compare
this class to previously studied classes.

More specifically, we extend previous work in the following ways.

– We refine and introduce formal definitions needed to understand exactly
what it means for program monitors to enforce policies on potentially non-
terminating target applications (Section 2). A new notion of enforcement
(called effective= enforcement) enables the derivation of elegant lower bounds
on the sets of policies monitors can enforce.

– We show why it is commonly believed that program monitors enforce only
computable safety properties (Section 3). We show this by revisiting and
extending earlier theorems that describe the enforcement powers of simple
monitors. The earlier theorems are extended by considering nonterminating
targets and by proving that exactly one computable safety property—that
which considers everything a security violation—cannot be enforced by pro-
gram monitors.

– We define an interesting set of properties called infinite renewal properties
and demonstrate how, when given any reasonable infinite renewal property,
to construct an edit automaton that provably enforces that property (Sec-
tion 4).

– We prove that program monitors modeled by edit automata can enforce
strictly more than safety properties. We demonstrate this by analyzing the
set of infinite renewal properties and showing that it includes every safety
property, some liveness properties, and some properties that are neither
safety nor liveness (Section 5).

2 Technical Apparatus

This section provides the formal framework necessary to reason precisely about
the scope of policies program monitors can enforce.
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2.1 Notation

We specify a system at a high level of abstraction as a nonempty, possibly
countably infinite set of program actions A (also referred to as program events).
An execution is simply a finite or infinite sequence of actions. The set of all finite
executions on a system with action set A is notated as A�. Similarly, the set of
infinite executions is Aω , and the set of all executions (finite and infinite) is A∞.
We let the metavariable a range over actions, σ and τ over executions, and Σ
over sets of executions (i.e., subsets of A∞).

The symbol · denotes the empty sequence, that is, an execution with no
actions. We use the notation τ ; σ to denote the concatenation of two finite se-
quences. When τ is a (finite) prefix of (possibly infinite) σ, we write τ�σ or,
equivalently, σ�τ . If σ has been previously quantified, we often use ∀τ�σ as an
abbreviation for ∀τ ∈ A� : τ�σ; similarly, if τ has already been quantified, we
abbreviate ∀σ ∈ A∞ : σ�τ simply as ∀σ�τ .

2.2 Policies and Properties

A security policy is a predicate P on sets of executions; a set of executions
Σ ⊆ A∞ satisfies a policy P if and only if P (Σ). For example, a set of executions
satisfies a nontermination policy if and only if every execution in the set is an
infinite sequence of actions. A key-uniformity policy might be satisfied only by
sets of executions such that the cryptographic keys used in all the executions
form a uniform distribution over the universe of key values.

Following Schneider [24], we distinguish between properties and more general
policies as follows. A security policy P is a property if and only if there exists a
characteristic predicate P̂ over A∞ such that for all Σ ⊆ A∞, the following is
true.

P (Σ) ⇐⇒ ∀σ ∈ Σ : P̂ (σ) (Property)

Hence, a property is defined exclusively in terms of individual executions
and may not specify a relationship between different executions of the program.
The nontermination policy mentioned above is therefore a property, while the
key-uniformity policy is not. The distinction between properties and policies
is an important one to make when reasoning about program monitors because
a monitor sees just individual executions and can thus enforce only security
properties rather than more general policies.

There is a one-to-one correspondence between a property P and its char-
acteristic predicate P̂ , so we use the notation P̂ unambiguously to refer both
to a characteristic predicate and the property it induces. When P̂ (σ), we say
that σ satisfies or obeys the property, or that σ is valid or legal. Likewise, when
¬P̂ (τ), we say that τ violates or disobeys the property, or that τ is invalid or
illegal.

Properties that specify that “nothing bad ever happens” are called safety
properties [18,3]. No finite prefix of a valid execution can violate a safety prop-
erty; stated equivalently: once some finite execution violates the property, all
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extensions of that execution violate the property. Formally, P̂ is a safety prop-
erty on a system with action set A if and only if the following is true.1

∀σ ∈ A∞ : (¬P̂ (σ) ⇒ ∃σ′�σ : ∀τ�σ′ : ¬P̂ (τ)) (Safety)

Many interesting security policies, such as access-control policies, are safety prop-
erties, since security violations cannot be “undone” by extending a violating
execution.

Dually to safety properties, liveness properties [3] state that nothing excep-
tionally bad can happen in any finite amount of time. Any finite sequence of
actions can always be extended so that it satisfies the property. Formally, P̂ is
a liveness property on a system with action set A if and only if the following is
true.

∀σ ∈ A� : ∃τ�σ : P̂ (τ) (Liveness)

The nontermination policy is a liveness property because any finite execution
can be made to satisfy the policy simply by extending it to an infinite execution.

General properties may allow executions to alternate freely between satisfying
and violating the property. Such properties are neither safety nor liveness but
instead a combination of a single safety and a single liveness property [2]. We
show in Section 4 that edit automata effectively enforce an interesting new sort
of property that is neither safety nor liveness.

2.3 Security Automata

Program monitors operate by transforming execution sequences of an untrusted
target application at run time to ensure that all observable executions satisfy
some property [20]. We model a program monitor formally by a security au-
tomaton S, which is a deterministic finite or countably infinite state machine
(Q, q0, δ) that is defined with respect to some system with action set A. The set
Q specifies the possible automaton states, and q0 is the initial state. Different
automata have slightly different sorts of transition functions (δ), which accounts
for the variations in their expressive power. The exact specification of a transi-
tion function δ is part of the definition of each kind of security automaton; we
only require that δ be complete, deterministic, and Turing Machine computable.
We limit our analysis in this work to automata whose transition functions take
the current state and input action (the next action the target wants to execute)
and return a new state and at most one action to output (make observable). The
current input action may or may not be consumed while making a transition.

We specify the execution of each different kind of security automaton S
using a labeled operational semantics. The basic single-step judgment has the

1 Alpern and Schneider [3] model executions as infinite-length sequences of states,
where terminating executions contain a final state, infinitely repeated. We can map
an execution in their model to one in ours simply by sequencing the events that
induce the state transitions (no event induces a repeated final state). With this
mapping, it is easy to verify that our definitions of safety and liveness are equivalent
to those of Alpern and Schneider.
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form (q, σ) τ−→S (q′, σ′) where q denotes the current state of the automaton, σ
denotes the sequence of actions that the target program wants to execute, q′ and
σ′ denote the state and action sequence after the automaton takes a single step,
and τ denotes the sequence of at most one action output by the automaton in
this step. The input sequence, σ, is not observable to the outside world whereas
the output, τ , is observable.

We generalize the single-step judgment to a multi-step judgment using stan-
dard rules of reflexivity and transitivity.

Definition 1 (Multi-step). The multi-step relation (σ, q) τ=⇒S (σ′, q′) is in-
ductively defined as follows (where all metavariables are universally quantified).

1. (q, σ) ·=⇒S (q, σ)
2. If (q, σ) τ1−→S (q′′, σ′′) and (q′′, σ′′) τ2=⇒S (q′, σ′) then (q, σ)

τ1;τ2=⇒S (q′, σ′)

In addition, we extend previous work [20] by defining what it means for a pro-
gram monitor to transform a possibly infinite-length input execution into a possi-
bly infinite-length output execution. This definition is essential for understanding
the behavior of monitors operating on potentially nonterminating targets.

Definition 2 (Transforms). A security automaton S = (Q, q0, δ) on a system
with action set A transforms the input sequence σ ∈ A∞ into the output sequence
τ ∈ A∞, notated as (q0, σ) ⇓S τ , if and only if the following two constraints are
met.

1. ∀q′ ∈ Q : ∀σ′ ∈ A∞ : ∀τ ′ ∈ A� : ((q0, σ) τ ′
=⇒S (q′, σ′)) ⇒ τ ′�τ

2. ∀τ ′�τ : ∃q′ ∈ Q : ∃σ′ ∈ A∞ : (q0, σ) τ ′
=⇒S (q′, σ′)

When (q0, σ) ⇓S τ , the first constraint ensures that automaton S on input σ
outputs only prefixes of τ , while the second constraint ensures that S outputs
every prefix of τ .

2.4 Property Enforcement

Several authors have noted the importance of monitors obeying two abstract
principles, which we call soundness and transparency [19,13,8]. A mechanism that
purports to enforce a property P̂ is sound when it ensures that observable outputs
always obey P̂ ; it is transparent when it preserves the semantics of executions
that already obey P̂ . We call a sound and transparent mechanism an effective
enforcer. Because effective enforcers are transparent, they may transform valid
input sequences only into semantically equivalent output sequences, for some
system-specific definition of semantic equivalence. When two executions σ, τ ∈
A∞ are semantically equivalent, we write σ ∼= τ . We place no restrictions on a
relation of semantic equivalence except that it actually be an equivalence relation
(i.e., reflexive, symmetric, and transitive), and that properties should not be able
to distinguish between semantically equivalent executions.

∀ P̂ : ∀σ, τ ∈ A∞ : σ ∼= τ ⇒ (P̂ (σ) ⇐⇒ P̂ (τ)) (Indistinguishability)
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When acting on a system with semantic equivalence relation ∼=, we will call
an effective enforcer an effective∼= enforcer. The formal definition of effective∼=
enforcement is given below. Together, the first and second constraints in the
following definition imply soundness; the first and third constraints imply trans-
parency.

Definition 3 (Effective∼= Enforcement). An automaton S with starting state
q0 effectively∼= enforces a property P̂ on a system with action set A and semantic
equivalence relation ∼= if and only if ∀σ ∈ A∞ : ∃τ ∈ A∞ :

1. (q0, σ) ⇓S τ ,
2. P̂ (τ), and
3. P̂ (σ) ⇒ σ ∼= τ

In some situations, the system-specific equivalence relation ∼= complicates our
theorems and proofs with little benefit. We have found that we can sometimes
gain more insight into the enforcement powers of program monitors by limiting
our analysis to systems in which the equivalence relation (∼=) is just syntactic
equality (=). We call effective∼= enforcers operating on such systems effective=
enforcers. To obtain a formal notion of effective= enforcement, we first need to
define the “syntactic equality” of executions. Intuitively, σ=τ for any finite or
infinite sequences σ and τ when every prefix of σ is a prefix of τ , and vice versa.

∀σ, τ ∈ A∞ : σ=τ ⇐⇒ (∀σ′�σ : σ′�τ ∧ ∀τ ′�τ : τ ′�σ) (Equality)

An effective= enforcer is simply an effective∼= enforcer where the system-
specific equivalence relation (∼=) is the system-unspecific equality relation (=).

Definition 4 (Effective= Enforcement). An automaton S with starting state
q0 effectively= enforces a property P̂ on a system with action set A if and only
if ∀σ ∈ A∞ : ∃τ ∈ A∞ :

1. (q0, σ) ⇓S τ ,
2. P̂ (τ), and
3. P̂ (σ) ⇒ σ=τ

Because any two executions that are syntactically equal must be semantically
equivalent, any property effectively= enforceable by some security automaton is
also effectively∼= enforceable by that same automaton. Hence, an analysis of the
set of properties effectively= enforceable by a particular kind of automaton is
conservative; the set of properties effectively∼= enforceable by that same sort of
automaton must be a superset of the effectively= enforceable properties.

Past research has considered alternative definitions of enforcement [20]. Con-
servative enforcement allows monitors to disobey the transparency requirement,
while precise enforcement forces effective monitors to obey an additional timing
constraint (monitors must accept actions in lockstep with their production by
the target). Because these definitions do not directly match the intuitive sound-
ness and transparency requirements of program monitors, we do not study them
in this paper.
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3 Truncation Automata

This section demonstrates why it is often believed that program monitors enforce
only safety properties: this belief is provably correct when considering a common
but very limited type of monitor that we model by truncation automata. A trun-
cation automaton has only two options when it intercepts an action from the
target program: it may accept the action and make it observable, or it may halt
(i.e., truncate the action sequence of) the target program altogether. This model
is the focus of most of the theoretical work on program monitoring [24,25,16].
Truncation-based monitors have been used successfully to enforce a rich set of
interesting safety policies including access control [11], stack inspection [10,1],
software fault isolation [26,9], Chinese Wall [6,8,12], and one-out-of-k authoriza-
tion [12] policies.2

Truncation automata have been widely studied, but revisiting them here
serves several purposes. It allows us to extend to potentially nonterminating tar-
gets previous proofs of their capabilities as effective enforcers [20], to uncover the
single computable safety property unenforceable by any sound program moni-
tor, and to provide a precise comparison between the enforcement powers of
truncation and edit automata (defined in Section 4).

3.1 Definition

A truncation automaton T is a finite or countably infinite state machine (Q, q0, δ)
that is defined with respect to some system with action set A. As usual, Q speci-
fies the possible automaton states, and q0 is the initial state. The complete func-
tion δ : Q × A → Q ∪ {halt} specifies the transition function for the automaton
and indicates either that the automaton should accept the current input action
and move to a new state (when the return value is a new state), or that the
automaton should halt the target program (when the return value is halt). For
the sake of determinacy, we require that halt �∈ Q. The operational semantics of
truncation automata are formally specified by the following rules.

(q, σ) τ−→T (q′, σ′)

(q, σ) a−→T (q′, σ′) (T-Step)

if σ = a; σ′

and δ(q, a) = q′

(q, σ) ·−→T (q, ·) (T-Stop)if σ = a; σ′

and δ(q, a) = halt

As described in Section 2.3, we extend the single-step relation to a multi-step
relation using standard reflexivity and transitivity rules.
2 Although some of the cited work considers monitors with powers beyond truncation,

it also specifically studies many policies that can be enforced by monitors that only
have the power to truncate.
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3.2 Enforceable Properties

Let us consider a lower bound on the effective∼= enforcement powers of trun-
cation automata. Any property that is effectively= enforceable by a truncation
automaton is also effectively∼= enforceable by that same automaton, so we can
develop a lower bound on properties effectively∼= enforceable by examining which
properties are effectively= enforceable.

When given as input some σ ∈ A∞ such that P̂ (σ), a truncation automaton
that effectively= enforces P̂ must output σ. However, the automaton must also
truncate every invalid input sequence into a valid output. Any truncation of
an invalid input prevents the automaton from accepting all the actions in a
valid extension of that input. Therefore, truncation automata cannot effectively=
enforce any property in which an invalid execution can be a prefix of a valid
execution. This is exactly the definition of safety properties, so it is intuitively
clear that truncation automata effectively= enforce only safety properties.

Past research has presented results equating the enforcement power of trun-
cation automata with the set of computable safety properties [25,16,20]. We
improve the precision of previous work by showing that there is exactly one
computable safety property unenforceable by any sound security automaton:
the unsatisfiable safety property, ∀σ ∈ A∞ : ¬P̂ (σ). A monitor could never en-
force such a property because there is no valid output sequence that could be
produced in response to an invalid input sequence. To prevent this case and to
ensure that truncation automata can behave correctly on targets that generate
no actions, we require that the empty sequence satisfies any property we are in-
terested in enforcing. We often use the term reasonable to describe computable
properties P̂ such that P̂ (·). Previous work simply assumed P̂ (·) for all P̂ [20];
we now show this to be a necessary assumption. The following theorem states
that truncation automata effectively= enforce exactly the set of reasonable safety
properties.

Theorem 1 (Effective= T∞-Enforcement). A property P̂ on a system with
action set A can be effectively= enforced by some truncation automaton T if and
only if the following constraints are met.

1. ∀σ ∈ A∞ : ¬P̂ (σ) ⇒ ∃σ′�σ : ∀τ�σ′ : ¬P̂ (τ) (Safety)

2. P̂ (·)
3. ∀σ ∈ A� : P̂ (σ) is decidable

Proof. Please see our companion technical report [21] for the proofs of all the
theorems presented in this paper.

We next delineate the properties effectively∼= enforceable by truncation au-
tomata. As mentioned above, the set of properties truncation automata
effectively= enforce provides a lower bound for the set of effectively∼= enforceable
properties; a candidate upper bound is the set of properties P̂ that satisfy the
following extended safety constraint.

∀σ ∈ A∞ : ¬P̂ (σ) ⇒ ∃σ′�σ : ∀τ�σ′ : (¬P̂ (τ) ∨ τ ∼= σ′) (T-Safety)
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This is an upper bound because a truncation automaton T that effectively∼=
enforces P̂ must halt at some finite point (having output σ′) when its input (σ)
violates P̂ ; otherwise, T would accept every action of the invalid input. When T
halts, all extensions (τ) of its output must either violate P̂ or be equivalent to
its output; otherwise, there is a valid input sequence for which T fails to output
an equivalent sequence.

Actually, as the following theorem shows, this upper bound is almost tight.
We simply have to add computability restrictions on the property to ensure that
a truncation automaton can decide when to halt the target.

Theorem 2 (Effective∼= T∞-Enforcement). A property P̂ on a system with
action set A can be effectively∼= enforced by some truncation automaton T if
and only if there exists a decidable predicate D over A� such that the following
constraints are met.

1. ∀σ ∈ A∞ : ¬P̂ (σ) ⇒ ∃σ′�σ : D(σ′)
2. ∀(σ′; a) ∈ A� : D(σ′; a) ⇒ (P̂ (σ′) ∧ ∀τ�(σ′; a) : P̂ (τ) ⇒ τ ∼= σ′)
3. ¬D(·)

On practical systems, it is likely uncommon that the property requiring en-
forcement and the system’s relation of semantic equivalence are so broadly de-
fined that some invalid execution has a prefix that not only can be extended to
a valid execution, but that is also equivalent to all valid extensions of the prefix.
We therefore consider the set of properties detailed in the theorem of Effective=
T∞-Enforcement (i.e., reasonable safety properties) more indicative of the true
enforcement power of truncation automata.

4 Edit Automata

We now consider the enforcement capabilities of a stronger sort of security au-
tomaton called the edit automaton [20]. We refine previous work by presenting a
more concise formal definition of edit automata. More importantly, we analyze
the enforcement powers of edit automata on possibly infinite sequences, which
allows us to prove that edit automata can effectively= enforce an interesting,
new class of properties that we call infinite renewal properties.

4.1 Definition

An edit automaton E is a triple (Q, q0, δ) defined with respect to some system
with action set A. As with truncation automata, Q is the possibly countably
infinite set of states, and q0 is the initial state. In contrast to truncation au-
tomata, the complete transition function δ of an edit automaton has the form
δ : Q × A → Q × (A ∪ {·}). The transition function specifies, when given a cur-
rent state and input action, a new state to enter and either an action to insert
into the output stream (without consuming the input action) or the empty se-
quence to indicate that the input action should be suppressed (i.e., consumed
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from the input without being made observable). We previously defined edit au-
tomata that could also perform the following transformations in a single step:
insert a finite sequence of actions, accept the current input action, or halt the
target [20]. However, all of these transformations can be expressed in terms of
suppressing and inserting single actions. For example, an edit automaton can
halt a target by suppressing all future actions of the target; an edit automaton
accepts an action by inserting and then suppressing that action (first making the
action observable and then consuming it from the input). Although in practice
these transformations would each be performed in a single step, we have found
the minimal operational semantics containing only the two rules shown below
more amenable to formal reasoning. Explicitly including the additional rules in
the model would not invalidate any of our results.

(q, σ) τ−→E (q′, σ′)

(q, σ) a′
−→E (q′, σ) (E-Ins)

if σ = a; σ′

and δ(q, a) = (q′, a′)

(q, σ) ·−→E (q′, σ′) (E-Sup)

if σ = a; σ′

and δ(q, a) = (q′, ·)

As with truncation automata, we extend the single-step semantics of edit
automata to a multi-step semantics with the rules for reflexivity and transitivity.

4.2 Enforceable Properties

Edit automata are powerful property enforcers because they can suppress a
sequence of potentially illegal actions and later, if the sequence is determined
to be legal, just re-insert it. Essentially, the monitor feigns to the target that
its requests are being accepted, although none actually are, until the monitor
can confirm that the sequence of feigned actions is valid. At that point, the
monitor inserts all of the actions it previously feigned accepting. This is the same
idea implemented by intentions files in database transactions [23]. Monitoring
systems like virtual machines can also be used in this way, feigning execution
of a sequence of the target’s actions and only making the sequence observable
when it is known to be valid.

As we did for truncation automata, we develop a lower bound on the set of
properties that edit automata effectively∼= enforce by considering the properties
they effectively= enforce. Using the above-described technique of suppressing
invalid inputs until the monitor determines that the suppressed input obeys a
property, edit automata can effectively= enforce any reasonable infinite renewal
(or simply renewal) property. A renewal property is one in which every valid
infinite-length sequence has infinitely many valid prefixes, and conversely, every
invalid infinite-length sequence has only finitely many valid prefixes. For exam-
ple, a property P̂ may be satisfied only by executions that contain the action a.
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This is a renewal property because valid infinite-length executions contain an in-
finite number of valid prefixes (in which a appears) while invalid infinite-length
executions contain only a finite number of valid prefixes (in fact, zero). This
P̂ is also a liveness property because any invalid finite execution can be made
valid simply by appending the action a. Although edit automata cannot enforce
this P̂ because ¬P̂ (·), in Section 5.2 we will recast this example as a reasonable
“eventually audits” policy and show several more detailed examples of renewal
properties enforceable by edit automata.

We formally deem a property P̂ an infinite renewal property on a system
with action set A if and only if the following is true.

∀σ ∈ Aω : P̂ (σ) ⇐⇒ {σ′�σ | P̂ (σ′)} is an infinite set (Renewal1)

It will often be easier to reason about renewal properties without relying
on infinite set cardinality. We make use of the following equivalent definition in
formal analyses.

∀σ ∈ Aω : P̂ (σ) ⇐⇒ (∀σ′�σ : ∃τ�σ : σ′�τ ∧ P̂ (τ)) (Renewal2)

If we are given a reasonable renewal property P̂ , we can construct an edit
automaton that effectively= enforces P̂ using the technique of feigning accep-
tance (i.e., suppressing actions) until the automaton has seen some legal prefix
of the input (at which point the suppressed actions can be made observable).
This technique ensures that the automaton eventually outputs every valid prefix,
and only valid prefixes, of any input execution. Because P̂ is a renewal prop-
erty, the automaton therefore outputs all prefixes, and only prefixes, of a valid
input while outputting only the longest valid prefix of an invalid input. Hence,
the automaton correctly effectively= enforces P̂ . The following theorem formally
states this result.

Theorem 3 (Lower Bound Effective= E∞-Enforcement). A property P̂
on a system with action set A can be effectively= enforced by some edit automaton
E if the following constraints are met.

1. ∀σ ∈ Aω : P̂ (σ) ⇐⇒ (∀σ′�σ : ∃τ�σ : σ′�τ ∧ P̂ (τ)) (Renewal2)

2. P̂ (·)
3. ∀σ ∈ A� : P̂ (σ) is decidable

It would be reasonable to expect that the set of renewal properties also
represents an upper bound on the properties effectively= enforceable by edit
automata. After all, an effective= automaton cannot output an infinite number
of valid prefixes of an invalid infinite-length input σ without outputting σ itself.
In addition, on a valid infinite-length input τ , an effective= automaton must
output infinitely many prefixes of τ , and whenever it finishes processing an input
action, its output must be a valid prefix of τ because there may be no more input
(i.e., the target may not generate more actions).

However, there is a corner case in which an edit automaton can effectively=
enforce a valid infinite-length execution τ that has only finitely many valid pre-
fixes. If, after processing a prefix of τ , the automaton can decide that τ is the



Enforcing Non-safety Security Policies with Program Monitors 367

only valid extension of this prefix, then the automaton can cease processing in-
put and enter an infinite loop to insert the remaining actions of τ . While in
this infinite loop, the automaton need not output infinitely many valid prefixes,
since it is certain to be able to extend the current (possibly invalid) output into
a valid one.

The following theorem presents the tight boundary for effective= enforce-
ment of properties by edit automata, including the corner case described above.
Because we believe that the corner case adds relatively little to the enforce-
ment capabilities of edit automata, we only sketch the proof in the companion
technical report [21].

Theorem 4 (Effective= E∞-Enforcement). A property P̂ on a system with
action set A can be effectively= enforced by some edit automaton E if and only
if the following constraints are met.

1. ∀σ ∈ Aω : P̂ (σ) ⇐⇒

⎛
⎜⎜⎜⎜⎝

∀σ′�σ : ∃τ�σ : σ′�τ ∧ P̂ (τ)
∨ P̂ (σ) ∧

∃σ′�σ : ∀τ�σ′ : P̂ (τ) ⇒ τ=σ ∧
the existence and actions of σ
are computable from σ′

⎞
⎟⎟⎟⎟⎠

2. P̂ (·)
3. ∀σ ∈ A� : P̂ (σ) is decidable

We have found it difficult to precisely characterize the properties that are
effectively∼= enforceable by edit automata. Unfortunately, the simplest way to
specify this set appears to be to encode the semantics of edit automata into
recursive functions that operate over streams of actions. Then, we can reason
about the relationship between input and output sequences of such functions
just as the definition of effective∼= enforcement requires us to reason about the
relationship between input and output sequences of automata. Our final theorem
takes this approach; we present it for completeness.

Theorem 5 (Effective∼= E∞-Enforcement). Let D be a decidable function
D : A� ×A� →A∪{·}. Then R�

D is a decidable function R�
D : A� ×A� ×A� →A�

parameterized by D and inductively defined as follows, where all metavariables
are universally quantified.

– R�
D(·, σ, τ) = τ

– (D(σ; a, τ) = ·) ⇒ R�
D(a; σ′, σ, τ ′) = R�

D(σ′, σ; a, τ ′)
– (D(σ; a, τ) = a′) ⇒ R�

D(a; σ′, σ, τ ′) = R�
D(a; σ′, σ, τ ′; a′)

A property P̂ on a system with action set A can be effectively∼= enforced by
some edit automaton E if and only if there exists a decidable D function (as
described above) such that for all (input sequences) σ ∈ A∞ there exists (output
sequence) τ ∈ A∞ such that the following constraints are met.

1. ∀σ′�σ : ∀τ ′ ∈ A� : (R�
D(σ′, ·, ·) = τ ′) ⇒ τ ′�τ

2. ∀τ ′�τ : ∃σ′�σ : R�
D(σ′, ·, ·) = τ ′
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3. P̂ (τ)
4. P̂ (σ) ⇒ σ ∼= τ

As with truncation automata, we believe that the theorems related to edit
automata acting as effective= enforcers more naturally capture their inherent
power than does the theorem of effective∼= enforcement. Effective= enforcement
provides an elegant lower bound for what can be effectively∼= enforced in practice.

Limitations. In addition to standard assumptions of program monitors, such
as that a target cannot circumvent or corrupt a monitor, our theoretical model
makes assumptions particularly relevant to edit automata that are sometimes vi-
olated in practice. Most importantly, our model assumes that security automata
have the same computational capabilities as the system that observes the moni-
tor’s output. If an action violates this assumption by requiring an outside system
in order to be executed, it cannot be “feigned” (i.e., suppressed) by the monitor.
For example, it would be impossible for a monitor to feign sending email, wait
for the target to receive a response to the email, test whether the target does
something invalid with the response, and then decide to “undo” sending email
in the first place. Here, the action for sending email has to be made observable
to systems outside of the monitor’s control in order to be executed, so this is an
unsuppressible action. A similar limitation arises with time-dependent actions,
where an action cannot be feigned (i.e., suppressed) because it may behave dif-
ferently if made observable later. In addition to these sorts of unsuppressible
actions, a system may contain actions uninsertable by monitors because, for
example, the monitors lack access to secret keys that must be passed as parame-
ters to the actions. In the future, we plan to explore the usefulness of including
sets of unsuppressible and uninsertable actions in the specification of systems.
We might be able to harness earlier work [20], which defined security automata
limited to inserting (insertion automata) or suppressing (suppression automata)
actions, toward this goal.

5 Infinite Renewal Properties

In this section, we examine some interesting aspects of the class of infinite re-
newal properties. We compare renewal properties to safety and liveness proper-
ties and provide several examples of useful renewal properties that are neither
safety nor liveness properties.

5.1 Renewal, Safety, and Liveness

The most obvious way in which safety and infinite renewal properties differ is that
safety properties place restrictions on finite executions (invalid finite executions
must have some prefix after which all extensions are invalid), while renewal
properties place no restrictions on finite executions. The primary result of the
current work, that edit automata can enforce any reasonable renewal property,
agrees with the finding in earlier work that edit automata can enforce every
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reasonable property on systems that only exhibit finite executions [20]. Without
infinite-length executions, every property is a renewal property.

Moreover, an infinite-length renewal execution can be valid even if it has infi-
nitely many invalid prefixes (as long as it also has infinitely many valid prefixes),
but a valid safety execution can contain no invalid prefixes. Similarly, although
invalid infinite-length renewal executions can have prefixes that alternate a finite
number of times between being valid and invalid, invalid safety executions must
contain some finite prefix before which all prefixes are valid and after which all
prefixes are invalid. Hence, every safety property is a renewal property. Given any
system with action set A, it is easy to construct a non-safety renewal property
P̂ by choosing an element a in A and letting P̂ (·), P̂ (a; a), but ¬P̂ (a).

There are renewal properties that are not liveness properties (e.g., the prop-
erty that is only satisfied by the empty sequence), and there are liveness prop-
erties that are not renewal properties (e.g., the nontermination property only
satisfied by infinite executions). Some renewal properties, such as the one only
satisfied by the empty sequence and the sequence a; a, are neither safety nor
liveness. Although Alpern and Schneider [3] showed that exactly one property
is both safety and liveness (the property satisfied by every execution), some in-
teresting liveness properties are also renewal properties. We examine examples
of such renewal properties in the following subsection.

5.2 Example Properties

We next present several examples of renewal properties that are not safety prop-
erties, as well as some examples of non-renewal properties. By the theorems in
Sections 3.2 and 4.2, the non-safety renewal properties are effectively= enforce-
able by edit automata but not by truncation automata. Moreover, the proof of
Theorem 3 in our companion technical report [21] shows how to construct an edit
automaton to enforce any of the renewal properties described in this subsection.

Renewal properties. Suppose we wish to constrain a user’s interaction with a
computer system. A user may first obtain credentials (e.g., a Kerberos ticket)
and then log in. If he has obtained no credentials then executing a log-in action
causes him to be logged in as a guest. At no time, however, can the user log in
as “root.” The process of logging in to the system may repeat indefinitely, so
we might write the requisite property P̂ more specifically as (a1

�; a2)∞, where
a1 ranges over all actions for obtaining credentials, a2 over actions for logging
in, and a3 over actions for logging in as root.3 This P̂ is not a safety property
because a finite sequence of only a1 events disobeys P̂ but can be extended (by
appending a2) to obey P̂ . Our P̂ is also not a liveness property because there
are finite executions that cannot be extended to satisfy P̂ , such as the sequence
containing only a3. However, this non-safety, non-liveness property is a renewal
property because infinite-length executions are valid if and only if they contain
infinitely many (valid) prefixes of the form (a1

�; a2)
�.

3 As noted by Alpern and Schneider [3], this sort of P̂ might be expressed with the
(strong) until operator in temporal logic; event a1 occurs until event a2.
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Interestingly, if we enforce the policy described above on a system that only
has actions a1 and a2, we remove the safety aspect of the property to obtain a
liveness property that is also a renewal property. On the system {a1, a2}, the
property satisfied by any execution matching (a1

�; a2)∞ is a liveness property
because any illegal finite execution can be made legal by appending a2. The
property is still a renewal property because an infinite execution is invalid if and
only if it contains a finite number of valid prefixes after which a2 never appears.

There are other interesting properties that are both liveness and renewal. For
example, consider a property P̂ specifying that an execution that does anything
must eventually perform an audit by executing some action a. This is similar to
the example renewal property given in Section 4.2. Because we can extend any
invalid finite execution with the audit action to make it valid, P̂ is a liveness
property. It is also a renewal property because an infinite-length valid execution
must have infinitely many prefixes in which a appears, and an infinite-length
invalid execution has no valid prefix (except the empty sequence) because a
never appears. Note that for this “eventually audits” renewal property to be
enforceable by an edit automaton, we have to consider the empty sequence valid.

As briefly mentioned in Section 4.2, edit automata derive their power from
being able to operate in a way similar to intentions files in database transac-
tions. At a high-level, any transaction-based property is a renewal property. Let
τ range over finite sequences of single, valid transactions. A transaction based
policy could then be written as τ∞; a valid execution is one containing any
number of valid transactions. Such transactional properties can be non-safety
because executions may be invalid within a transaction but become valid at the
conclusion of that transaction. Transactional properties can also be non-liveness
when there exists a way to irremediably corrupt a transaction (e.g., every trans-
action beginning with start ;self-destruct is illegal). Nonetheless, transactional
properties are renewal properties because infinite-length executions are valid if
and only if they contain an infinite number of prefixes that are valid sequences of
transactions. The renewal properties described above as matching sequences of
the form (a1

�; a2)∞ can also be viewed as transactional; each transaction must
match a1

�; a2.

Non-renewal properties. An example of an interesting liveness property that is
not a renewal property is general availability. Suppose that we have a system
with actions oi for opening (or acquiring) and ci for closing (or releasing) some
resource i. Our policy P̂ is that for all resources i, if i is opened, it must even-
tually be closed. This is a liveness property because any invalid finite sequence
can be made valid simply by appending actions to close every open resource.
However, P̂ is not a renewal property because there are valid infinite sequences,
such as o1; o2; c1; o3; c2; o4; c3; ..., that do not have an infinite number of valid
prefixes. An edit automaton can only enforce this sort of availability property
when the number of resources is limited to one (in this case, the property is trans-
actional: valid transactions begin with o1 and end with c1). Even on a system
with two resources, infinite sequences like o1; o2; c1; o1; c2; o2; c1; o1; ... prevent
this resource-availability property from being a renewal property.
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Fig. 1. Relationships between safety, liveness, and renewal properties

Of course, there are many non-renewal, non-liveness properties as well. We
can arrive at such properties by combining a safety property with any property
that is a liveness but not a renewal property. For example, termination is not
a renewal property because invalid infinite sequences have an infinite number
of valid prefixes. Termination is however a liveness property because any finite
execution is valid. When we combine this liveness, non-renewal property with a
safety property, such as that no accesses are made to private files, we arrive at
the non-liveness, non-renewal property in which executions are valid if and only
if they terminate and never access private files. The requirement of termination
prevents this from being a renewal property; moreover, this property is outside
the upper bound of what is effectively= enforceable by edit automata.

Figure 1 summarizes the results of the preceding discussion and that of Sec-
tion 5.1. The Trivial property considers all executions legal and is the only
property in the intersection of safety and liveness properties.

6 Conclusions

When considering the space of security properties enforceable by monitoring po-
tentially nonterminating targets, we have found that a simple variety of monitor
enforces exactly the set of computable and satisfiable safety properties while
a more powerful variety can enforce any computable infinite renewal property
that is satisfied by the empty sequence. Because our model permits infinite se-
quences of actions, it is compatible with previous research on safety and liveness
properties.

Awareness of formally proven bounds on the power of security mechanisms
facilitates our understanding of policies themselves and the mechanisms we need
to enforce them. For example, observing that a stack-inspection policy is really
just an access-control property (where access is granted or denied based on the
history of function calls and returns), which in turn is clearly a safety property,
makes it immediately obvious that simple monitors modeled by truncation au-
tomata are sufficient for enforcing stack-inspection policies. Similarly, if we can



372 J. Ligatti, L. Bauer, and D. Walker

observe that infinite executions in a property specifying how users log in are valid
if and only if they contain infinitely many valid prefixes, then we immediately
know that monitors based on edit automata can enforce this renewal property.
We hope that with continued research into the formal enforcement bounds of
various security mechanisms, security architects will be able to pull from their
enforcement “toolbox” exactly the right sorts of mechanisms needed to enforce
the policies at hand.
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