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ABSTRACT

Many applications that run on programmable data planes rely on
approximate data structures, due to insufficient in-network memory.
However, programming with approximate data structures is chal-
lenging because it requires (1) expertise in streaming algorithms to
select the data structures that best match an application’s require-
ments, (2) meticulous configuration to minimize approximation
error while fitting within the hardware constraints, and (3) profi-
ciency in the low-level P4 language. To address these issues, we
propose NAP, a high-level network programming language. The
core of NAP is the versatile approximate dictionary abstraction that
captures a wide range of compact data structures, while allowing
programmers to simply specify the kinds of error an application
can tolerate. We demonstrate the language’s expressiveness, con-
ciseness, and efficiency through a variety of network applications,
each compiling to P4 for the Intel Tofino in less than a second
and featuring 25X-50X fewer lines of code compared to the P4 out-
put. We evaluate an approximate stateful firewall written in NAP
with real campus traffic, achieving performance consistent with
the predicted accuracy.
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1 INTRODUCTION

As networks continue to scale, there is a growing interest in control-
ling network traffic via programmable data planes. Programmable
data planes enable a diverse set of high-speed network applica-
tions. These applications typically gather information from packet
streams, and based on the information, make real-time decisions,
which can involve dropping, reporting, modifying, or forwarding
packets. Classic network applications include:

o A stateful firewall [18] that records outgoing flows to identify
and drop unsolicited incoming packets;

o A layer-4 load balancer [15] that keeps track of millions of con-
nections to servers to maintain connection affinity; and

e An in-network store [11] that detects and caches popular key-
value pairs so that the queries of hot keys can be resolved in the
data plane to reduce server workload.

Despite the advantages of programmable data planes, writing
network applications for these targets is not easy. Many applications
require taking different actions on different flows, but the data
plane lacks sufficient memory to store information separately for
potentially millions of flows. For example, a typical Intel Tofino [9,
10] switch has only tens of megabytes of register memory [12].
In contrast, a standard layer-4 load balancer requires hundreds of
megabytes of memory [15].

As a result, network applications need to use approximate data
structures to represent information compactly. For example, Net-
Cache [11] uses a count-min sketch to estimate the number of
queries for every key, occasionally overestimating less popular ones;
for query resolution, it employs a finite-space cache, intending to
serve cache hits for only the popular keys. Both data structures are
space-efficient with approximation.

Despite the works that demonstrate the power of approximate
data structures in the data plane [1, 13, 14, 16, 19], implementing
and using them efficiently still imposes many challenges in practice.
Selecting the data structure. With an expanding array of approx-
imate data structures available, it is now a burden on users to choose
the most suitable one. For example, while the original NetCache
implementation uses a count-min sketch to track popular keys, it
might instead have deployed a basic cache to keep counters for
as many keys as possible and gather the popular ones from the
keys in memory. Selecting the best data structure to use can be
difficult, requiring a profound understanding of all the possibilities,
especially when data-plane resources are limited.

NAP is available at: https://github.com/Princeton-Cabernet/NAP
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Sizing the data structure. Once the decision is made, another
challenge arises: optimizing the chosen approximate data structure
to minimize the approximation error within hardware resource
limitations. Manual execution of this process demands substantial
time, effort, expertise, and iterative experimentation. Conventional
compilers for programmable data planes, such as the P4 compiler
for Intel Tofino, are not designed to search the implementation
space efficiently.

Tailoring the data structure. Approximate data structures need
to be contorted to satisfy the architectural constraints of the target.
For example, a classical Bloom filter uses a register array, where
multiple slots are accessed during insertion and querying. However,
Intel Tofino restricts access to only a single memory slot. Hence, the
Bloom filter needs to be tweaked to accommodate this constraint.
Likewise, data structures often use sliding time windows to discard
outdated information, but the PISA pipeline architecture [3] pre-
cludes a precise implementation. Without expertise in the specific
hardware, writing an approximate data structure from scratch in a
low-level language like P4 is error-prone and hard to debug.

To this end, we present Network Approximate Data Structure
Programming Language, or NAP, which is a high-level language
for network programming with approximate data structures. The
key novelty of the language lies in the abstraction for various kinds
of approximate data structures, namely the approximate dictionary.
An approximate dictionary stores key-value pairs. Typically, in
the context of network applications, the key identifies a flow and
the value represents the corresponding flow’s information. The
language provides approximations in two different dimensions:

(1) The inclusion dimension: A dictionary can either overapprox-
imate or underapproximate the true data. Overapproximation
occurs when unintended keys are included during a key in-
sertion, expanding the dictionary’s content beyond its space.
Conversely, underapproximation happens when only a subset
of key-value pairs can be inserted, adhering to the bounded size
of the dictionary. Both of them are useful in various contexts.
The temporal dimension: A dictionary is subject to either a
tumbling window or an approximate sliding window to confine
the collected information to the recent past.

With these abstractions, users can program approximate data struc-
tures solely by specifying and utilizing approximate dictionaries in
NAP, without worrying about choosing a data structure, configur-
ing its sizes, or writing its low-level implementation.

The NAP compiler chooses and configures approximate data
structures in translating programs to P4. After a data structure
choice is made, it finds the configuration with minimal approxi-
mation error while fitting into the hardware resource constraints.
By specializing in data structure synthesis and thus narrowing the
search space in advance, the compiler expedites this constrained
optimization simply with a brute-force search and a greedy place-
ment algorithm. Specifically, given a NAP program, the compiler
first selects the underlying data structure for every approximate
dictionary and computes the analytical error for all the possible
configurations. Starting from the configuration with the lowest
error, it then simulates a greedy placement of the program onto the
Intel Tofino. The first configuration that fits is deemed the best and
used to generate the P4 program.
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We prototype NAP by extending the syntax of Lucid [18], which

is a high-level network programming language on top of P4. We
develop three common approximate dictionary classes—ExistDict,
CountDict, and FoldDict—and apply them to write a diverse selec-
tion of network applications. We show that all the programs are
compiled to P4 within a second and have 25X-50X fewer lines of
code than their P4 outputs. Finally, we conduct a case study by
loading the P4 program generated from an approximate stateful
firewall written in NAP on the Intel Tofino and replaying a campus
network trace. Our results show that its performance matches the
analytical error predicted by the compiler.
Ethics statement: This study uses anonymized campus traces.
Human network operators inspected all packet traces to ensure per-
sonal data were removed before being access. It has been conducted
with all necessary approvals from the institute.

2 THE NAP LANGUAGE

Network applications often group traffic into flows to collect in-
formation. This makes the dictionary a natural abstraction, where
a flow is represented by a key and the associated data by a value.
To reflect the inherent approximation, we introduce the approx-
imate dictionary, where the nature of approximation is denoted
by the error direction (e.g., under- or over- approximation). Many
network applications need a specific error direction when using
approximate data structures. In this section, we demonstrate how
approximate dictionaries facilitate programming with approximate
data structures, using concrete examples in the NAP language.

2.1 Example: approximate stateful firewall

Enterprise networks often use a stateful firewall to drop unsolicited
traffic from the Internet. In our example, it uses the pair of internal
and external IP addresses as the key to identify a flow. In a stateful
firewall, outgoing packets are always permitted, while incoming
packets must match the keys of recent outgoing packets, say from
the last 60 seconds, or they are deemed unsolicited. By recording the
keys of outgoing packets, the stateful firewall scans the incoming
traffic to drop any packet that does not have a matched key.

However, due to the limited hardware memory and the high
traffic rate, approximation becomes necessary. One important ob-
servation is that many applications have a preference on the direc-
tion of the error. An enterprise network can tolerate the occasional
acceptance of unsolicited packets over the risk of blocking legit-
imate traffic. This preference arises because other devices, such
as an intrusion prevention system or the end hosts, can drop the
small fraction of unsolicited traffic that bypasses the firewall. In
contrast, blocking legitimate traffic, would wrongly disrupt normal
connections. The approximate stateful firewall serves as a filter that
drops the majority of unwanted traffic.

2.2 Approximate dictionary

The core abstraction of NAP is the approximate dictionary, mapping
a key to a value. The key comprises header fields and other data to
identify a flow, and the value holds one or multiple numerical fields
to store flow information. A dictionary can be created, added a
packet by the key, queried by the key, or simultaneously added
and queried (add_query).
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When adding a packet to a dictionary, if its key maps to no
value, the value is initialized; otherwise, the existing value is up-
dated. When querying a dictionary with a key, if it maps to a value,
the value is converted into a single numeric result and returned,;
otherwise, nothing is done.

Our NAP prototype supports three dictionary classes.

e ExistDict stores keys and is queried for key existence.

e CountDict counts the number of packets for every key.

e FoldDict initializes, updates & reads values in a customized way.
The example below shows the first half of an approximate stateful
firewall implemented in NAP. We define an ExistDict dictionary,
keyed by the internal and external IP pair (line 1-5). We use this
dictionary class to store the IP pairs of recent outgoing packets.

1| type key = {int<32> int_ip; int<32> ext_ip}

| global ExistDict.t<key> seen =

ExistDict.create(over,
within(sec(60),
Exist());

sec(90)),

All the classes of approximate dictionaries are created with three
parameters. With the third one discussed later in Section 2.3, we
are introducing the two main parameters here.

Error direction. The first argument to create() is the error direc-
tion. A dictionary stores key-value pairs. Ideally, programmers ex-
pect an exact 1-to-1 mapping between a key and a value (Figure 1a).
There are in general two ways to approximate: overapproximation or
underapproximation. An overapproximate dictionary maps multiple
keys to a single value so that the data of these packets is accumu-
lated in one value (Figure 1b). This error direction guarantees that
there is always a query result at the cost that it is an “overestimation”
of the true value. In contrast, in an underapproximate dictionary, a
key is optionally added: it may be added or it may not (Figure 1c).
In other words, it ensures that the query result, if it exists, is always
exact, at the cost of providing no information for the rest of the keys.
It is also possible to allow for both directions of errors, leading to a
general approximation (Figure 1d). For the stateful firewall example,
we allow mistakes of permitting unsolicited packets, so there can
be more keys recognized as existing in the ExistDict than inserted.
Hence, the error direction is overapproximation (line 3).

Time window. The second argument to create() is the time win-
dow. As the value of stateful information diminishes over time,
programmers naturally want the old key-value pairs to expire from
the dictionary. In stream processing, two primary windowing con-
structs prevail: a tumbling window (where time is split into contigu-
ous disjoint intervals) and a sliding window (which is a fixed-length
time interval ending at the current time point). Due to the limited
computational resources, we introduce an approximate sliding win-
dow of a variable length within a user-defined range. Assuming
that the current time is curr and the approximate dictionary is D,
NAP supports the following time windows (Figure 2).

‘o 6 ok X

(a) Exact (b) Over (c) Under (d) Approx

Figure 1: Error directions.

35

EuroP4 23, December 8, 2023, Paris, France

current time

sliding Q within(lo, hi)
windows
lo
-
) hi
tumbling cen | T T ]
windows

since(intv)
last(intv)

intv

L=
Figure 2: Time windows.

e within(lo,hi): a sliding window of any duration € [lo, hi], so
that Vp € D,0 < curr — p.time < t,lo <t < hi.

e since(intv): the latest tumbling window of duration intv, so
that Vp € D,0 < curr — p.time < t,t = curr mod intov.

e last(intv): the latest complete tumbling window of duration
intv, so that Vp € D,t < curr — p.time < t + into,t = curr
mod into.

The stateful firewall adopts a sliding window between 60 and 90
seconds (line 4). It guarantees that all outgoing flows from now to
60 seconds ago are included in the dictionary and those older than
90 seconds are never included.

In the second half of the approximate stateful firewall program,
we use the ExistDict to drop unsolicited packets. Any outgoing
packet is added to the ExistDict (line 10-12), and any incoming
packet queries the dictionary for the existence of its internal and ex-
ternal IP pair during the last 60-90 seconds (line 14-16). If the query
returns false, the packet is deemed unsolicited and dropped (line 19).
Since the dictionary is overapproximate, the query may have false
positives, hence falsely allowing some unsolicited packets.

| handle pkt_in(pkt_ty p) {

bool s = true;
if (p.ingress_port == INT_PORT)
then {

ExistDict.add(seen,

{ext_ip = p.ip.dst;
int_ip = p.ip.src}); }

else {

s = ExistDict.query(seen,

{ext_ip = p.ip.src;
int_ip = p.ip.dst}); 3

if (s)
then { p.drop_ctl = NO_DROP; }
else { p.drop_ctl = DROP; }

2.3 Value state machine

When a key is added to a dictionary, the value is initialized if the
key maps to no value and updated otherwise. In general, this can
be described as a state machine, which involves

e an initialization function that sets up the state with packet data;

e an update function that computes a new state value from the old
state and packet data;

e areading function that converts the state to a numeric result.

The third argument of create() is such a state machine for
values, which is commonly defined with Fold in functional pro-
gramming languages [17]. For example, the state machine for an
ExistDict can be expressed as Fold(init, upd, read) below. Since
all ExistDict instances share this state machine, we can abbreviate
it with Exist () (line 5).
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type state_ty = {bool b}
fun state_ty init(pkt_ty p)
{ return {b = true}; }
fun state_ty upd(pkt_ty p,

{ return s; }
fun bool read(state_ty s)
{ return s.b; }

state_ty s)

Predefined state machines cannot satisfy all the programming
intents. Therefore, to allow users to customize their own value
state machines in an approximate dictionary, we provide FoldDict.
We show as an example below a FoldDict that counts the number
of out-of-order (OOO) packets in TCP flows. The state here is a
record of two integer fields, where the fst field stores the last seen
TCP sequence number, and the snd field stores the number of OO0
packets (line 3). After specifying the init (line 4-5), upd (line 6-9),
and read functions (line 10-11), a state machine is defined, which
will return the number of OOO packets as the query result (line 12-
13). This FoldDict can be used to alarm possible network congestion
when a TCP flow has too many OOO packets.

5| type state_ty = {int<32> fst;

5| fun

| global FoldDict.t<key_ty> ooo =

type key_ty = {int<32> src_ip; int<32> dst_ip;
int<16> src_port; int<16> dst_port}
int<32> snd}
fun state_ty init(pkt_ty p)
{ return {fst = p.tcp.seq_no; snd =
state_ty upd(pkt_ty p, state_ty s)
{ return {fst = p.tcp.seq_no;
snd = s.snd + 1 if s.fst > p.tcp.seq_no
else s.snd}; }
fun int<32> read(state_ty s)
{ return s.snd; }

0}; %

FoldDict.create

(under, last(sec(6@)), Fold(init, upd, read));

3 COMPILING TO THE DATA PLANE

We implemented NAP targeting the Intel Tofino. Following the PISA
architecture, the Tofino data plane has several limitations. First, it
is organized as a fixed number of stages, each allowing a bounded
amount of simple computation. Also, every stage contains a small
number of local register arrays, each with constrained memory
capacity. Finally, a stage can only access its own register arrays,
and such access is restricted to a single slot within each array.

An approximate dictionary implementation must adhere to these
architectural constraints. To make full use of the memory, the data
structure should feature multiple rows, each implemented on a
register array (Section 3.1).

Furthermore, we must accurately remove outdated key-value
pairs that exceed the time window. However, the constraint of a
single access to each register array hinders bulk cleaning. Instead,
we employ a technique from ConQuest [5], which involves creating
multiple copies of a data structure and using packets to passively
clean one entry at a time!. Each copy thus represents a pane in the
time window (Section 3.2).

When implementing a multi-pane multi-row approximate data
structure, we encounter several elastic parameters: the number
of panes (P), rows per pane (R), and slots per row (S). Our NAP
compiler optimizes these parameters to reduce approximation error
while fitting the data structure within the data plane (Section 3.3).

UIf the packet arrival rate does not support full pane cleaning in time, control packets
can be generated and recirculated solely for cleaning purposes.
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3.1 Selecting the data structure

Given a created approximate dictionary, the NAP compiler chooses
the suitable data structure based on the dictionary class—ExistDict,
CountDict, and FoldDict—and the error direction—exact, over, un-
der, approx (Table 3).

An exact dictionary is implemented with an exact cache in-
dexed by the key. Due to the 1-to-1 mapping, it requires O(2/k€Yl)
memory, where |key| is the length of the key. If its memory re-
quirement exceeds the capacity, the compiler fails and suggests
programmers add approximation.

An overapproximate dictionary ensures that every key has
a value in the memory by hashing the key to a shared slot in a
register array. This class of dictionaries can be implemented by
either a hashing cache or a sketch. In a hashing cache, a given key
is hashed to a single slot in a single row. It uses two hash functions
to determine the row index and the slot index individually for
accessing the corresponding state machine based on the key. In
comparison, in a sketch, a key is hashed to a slot in every one of
the R rows, each with its unique hash function. This type of data
structure applies to the special case where values can be aggregated
to reduce the error introduced by hash collisions and thus achieve
higher accuracy. For instance, the compiler chooses a multi-row
Bloom filter [4] for an overapproximate ExistDict. When inserting
a key, each row sets to ’true’ the hashed slot; when queried with
a key, R values are read from all the rows and AND-ed to yield
the final result. Since other keys may be hashed and inserted into
the same slots, a key can be falsely identified as existing even if
not added, introducing a false positive error. Similarly, a count-min
sketch [6] is available for CountDict with an overestimation error.

An underapproximate dictionary guarantees that a value is
accessible to a single key. This requires a cache with full fingerprints,
where the entire key serves as a fingerprint stored alongside the
value. Despite potential hash collisions when generating a hashed
index, the fingerprint preserves the original key for identification,
ensuring that querying retrieves a result only when the key matches
the fingerprint.

A generally approximate dictionary can use any of the afore-
mentioned data structures. Besides, for a cache with fingerprints,
the full fingerprint is no longer necessary. Any partial fingerprints
generated by hashing can be used since both error directions are
allowed. Since there is no easy way to compare data structures with
different error directions, the NAP compiler defaults to a Bloom
filter for ExistDict, a count-min sketch for CountDict, and a cache
with partial fingerprints for FoldFict.

Error dir. ExistDict ‘ CountDict [ FoldDict
Exact exact cache
Over Bloom filter ‘ count-min sketch ‘ hashing cache
Under cache w. full fingerprints
Bloom filter, count-min sketch,
All of above,
all of the rest above, | all of the rest above, .
Approx . . cache w. partial
cache w. partial cache w. partial .
. . fingerprints
fingerprints fingerprints

Table 3: Data structure choices.
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3.2 Time window implementation

NAP uses a time window to define the eligible key-value pairs. To
realize this abstraction, each data structure comprises a series of P
panes, cycled through for reading, writing and cleaning operations.
This technique enables both sliding and tumbling windows.
Approximate sliding windows. An approximate dictionary of
within(lo, hi) captures key-value pairs from the present to lo
in the past while excluding those older than hi in the past. To
implement this, time is discretized into P segments, where P >
f%} +1. Each pane stores information for a distinct time segment.
Figure 4 illustrates the approximate sliding window scheme for a
Bloom filter. At any given time, one pane undergoes cleaning and
one undergoes writing. If a key is queried, (P — 1) values are read
from the panes and OR-ed to find if the given key exists in any of
the corresponding time segments. As one pane is written and read
simultaneously, the approximate sliding window extends until the
panes rotate and the oldest one expires.

Tumbling windows. The since(intv) time window is a base case
of within(lo,hi) where 1o is zero. This scheme can be realized
with two panes by always reading and writing to the same pane.
The last(intv) time window needs to keep information for both
the current and the previous intervals, requiring three panes of a
data structure as a result.

3.3 Sizing the data structure

An approximate data structure inherently introduces errors, with
its configuration directly determining the error size and resource
requirements. This configuration is characterized by parameters
such as the number of panes (P), rows per pane (R), and slots per
row (S). All of these parameters can be flexibly adjusted to minimize
the error while fitting onto the data plane.

Due to the limited hardware resources, the configuration param-
eters can only be chosen from a finite range of values. For example,
the number of rows R and panes P should satisfy that R X P is less
than the total number of register arrays. Additionally, the number of
slots S has to be a power of 2, as generating the hashed index other-
wise requires an expensive modulo operation. Consequently, all the
feasible configurations of (S, R, P) can be exhaustively enumerated.

For each configuration, the NAP compiler then calculates its
analytical error. Table 5 provides the error functions for all the data
structures in our prototype, which depend on only a few configura-
tion parameters and input traffic characteristics. Besides S, R and P,
some may rely on the fingerprint length (F) and the average num-
ber of distinct keys in the given time window (M). In cases where
multiple approximate dictionaries are created in an application, the
compiler combines all the errors into an overall objective.

time

R

Pane P-1 | WR C

R
wr [ R [ R] c]

[wel e [« [ ]

Pane 1

Figure 4: An approximate sliding window Bloom filter with
Cleaning, Writing and Reading panes.
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Data structures ‘What to minimize

Bloom filter

Analytical error
min. 1-(1-(1-(1- HP)RP

False positive rate
Upper bound of
expected error

Count-min sketch min. e R + $

Cache w. full fingerprint Cache misses min. M — SR
M
f=51511*(1*§)7)
Key collision k=%

Cache w. partial fingerprint probability o= {1 Lyt
min. Rf (k —¢)/M

Table 5: Analytical errors of data structures.

Following the computation of analytical errors, the configura-
tions are ranked in ascending order based on error size. The NAP
compiler then simulates the available hardware resources and at-
tempts to place each configuration greedily onto the target until it
identifies the first suitable fit.

Finally, the approximate data structure choices and size parame-
ters, along with the rest of the NAP program, are translated into a
P4 program. Our prototype predefines some commonly used packet
parsers, assuming that users will provide additional definitions if
needed. We leave the simplification of this task as future work.

4 EVALUATION

We evaluate NAP by implementing a variety of applications in Ta-
ble 6 and compiling them to P4. We analyze the expressiveness of
the language and the efficiency of the compiler. Finally, we run the
stateful firewall on an Intel Tofino switch and evaluate its perfor-
mance on a campus traffic trace.

4.1 Language design

We implement a diverse set of nine example applications in NAP,
including network telemetry, network monitoring, and network
control applications. Each of them utilizes one or more approximate
dictionaries. All of these practical applications can be expressed
within 30 lines of code (LoC). In comparison to their compiled
P4 counterparts, NAP substantially reduces programming effort,
achieving a reduction of 25X to 50X in LoC (Table 6).

It is worth noting that NAP generates highly modularized P4
programs, potentially resulting in an even greater reduction in
LoC when compared to hand-written P4 programs. For reference,
Lucid [18] generates a 2267-LoC P4 program for an approximate
stateful firewall, significantly longer than our 555-LoC P4 output.

4.2 Compiler performance

All example programs compile to P4 programs for the real hardware
target within one second, with single-dictionary applications taking
less than 0.01 seconds to compile. To further assess our compiler’s
performance, we conduct benchmarks with an increasing number
of overapproximate ExistDicts, which are compiled into Bloom
filters. The compilation time roughly increases by a factor of 100
with each additional Bloom filter in the application (Table 6).

A closer look at the time breakdown reveals that, as the number
of data structures grows, the majority of time is spent creating and
fitting configurations. For instance, compiling the 4-Bloom filter
benchmark takes on average 2278.87 seconds, with 2020.27 sec-
onds dedicated to generating 261 million configurations and 255.23
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Application LoC Compile Configs
NAP | P4 | time(s) | Total | Opt.rank
Single dictionary
Stateful firewall [2] 15 555 | 0.0055 525 87 (16.6%)
DNS amplification mitigation [2] | 15 582 | 0.0056 525 87 (16.6%)
FTP monitoring [2] 20 798 | 0.0035 64 32 (50.0%)
Heavy hitter detection [2] 8 595 | 0.0049 126 3(2.4%)
Traffic rates measurement by IP/8 | 12 466 | 0.0040 14 1(0.8%)
TCP out-of-order monitoring [17] | 19 559 | 0.0043 66 22 (33.3%)
Heterogeneous dictionaries
TCP superspreader detection [2] 20 842 | 0.0130 3274 730 (22.3%)
TCP SYN flood detection [2] 20 842 | 0.0130 3274 730 (22.3%)
NetCache [11] 22 802 0.0394 9726 5049 (51.9%)
Bloom filter benchmarks

1-Bloom filter 17 555 0.0055 525 87 (16.6%)
2-Bloom filter 30 960 0.1743 88053 4053 (4.6%)
3-Bloom filter 43 1289 | 25.94 6648.2K | 367.4K (5.5%)
4-Bloom filter 56 1618 | 2278.87 261.0M | 24.5M (9.4%)

Table 6: Network applications and benchmarks.

seconds spent on attempting to fit the top 9.4% of the configura-
tions. This also highlights potential avenues for improving compiler
performance in the future, either by reducing the total number of
configurations or by expediting the discovery of the optimal one.

4.3 Stateful firewall case study

Our approximate stateful firewall example is compiled to P4, uti-
lizing a 4-pane and 3-row Bloom filter with an analytical error of
0.329%. After deploying the P4 program on a Tofino switch, we
replay a 10-minute anonymized trace captured at the campus bor-
der starting at 2 p.m. EST on August 19, 2020. The trace comprises
around 106 million packets at a rate of 185,000 packets per second.

Compared to the ground truth with an exact 60-second sliding
window, our approximate stateful firewall exhibits a 0.509% false
positive rate. This error is slightly higher than the analytical error,
possibly due to the temporal approximation. The NAP program
adopts a [60,90]-second approximate sliding window, which in-
cludes keys that the ground truth does not have in its exact window.

Figure 8 presents the variation of the false positive rate over
time. It starts off at 0% since the initially empty Bloom filter does
not allow any unsolicited incoming traffic. As it fluctuates between
0.25% and 2%, an interesting pattern emerges, characterized by
spikes occurring about every 30 seconds, corresponding to the 30-
second pane length. The rate gradually increases as the writing
pane fills up and then drops suddenly when the oldest pane is
replaced with a cleaned pane.

Table 7 displays the resource utilization for the output P4 pro-
gram on the Tofino. While one might intuitively expect the program
to fully utilize the memory, as well as the associated hash and ALU
units, to minimize errors, the optimal allocation actually consumes
only 25.6% of the SRAM. This deviation can be attributed to two
primary factors: first, a significant portion of Tofino’s SRAM can-
not be allocated to register memory, and second, the preprocessing
and postprocessing dependencies confine the data structures to

Hash Units | ALU Units | SRAM | TCAM
27.3% 31.8% 25.6% 7.9%

Table 7: Hardware resource utilization on the Tofino.
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Figure 8: False positive rate fluctuations over ten minutes.

the middle stages. Consequently, NAP applications can coexist on
the same hardware target with other applications that balance the
resource usage distribution.

5 RELATED WORK

Several network programming languages have been developed for
programmable data planes, each with its unique problem scope and
approach to addressing resource limitations. Lucid [18] is an event-
driven language for implementing low-latency network control
on programmable data planes. While it is a concise language, it
requires users to define data structures themselves. Lucid’s compiler
simplifies control flows with static analysis to reduce resource usage
mainly in the number of stages, which is orthogonal to our efforts
of optimizing data structures under memory constraints.

Marple [17] is a network performance query language backed
by a new key-value store primitive, while Sonata [7] is a network
telemetry query language that leverages stream processors for scala-
bility. However, neither of them aims to collect network information
solely in the programmable data plane. Newton [20] supports net-
work monitoring queries and uses approximate data structures to
withstand dynamic network changes, but it lacks a general approach
and abstraction of approximate data structures. Furthermore, as
network query languages, all of them do not support immediate
packet actions based on the result of a query.

P4All [8] extends P4 with parameterized data structures that are
optimized by the compiler via integer linear programming. How-
ever, granting users the flexibility to define custom data structures
and objectives also results in a vast solution space and significantly
prolonged compilation times. In contrast, NAP confines users to
the data structures offered by our compiler under the dictionary
abstraction, resulting in expedited optimization thanks to prior
knowledge of resource usage and placement heuristics.

6 CONCLUSION

This paper presents a high-level programming language. With the
approximate dictionary abstraction, NAP chooses, sizes, and im-
plements approximate data structures, allowing programmers to
write many network applications within 30 LoC, which compile to
P4 programs within one second.
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