15-819A3 — Class Notes
Mechanical Reasoning about
Low-Level
Programming Languages

David Walker
Department of Computer Science
Carnegie Mellon University

March 16, 2001

Background

e Insert picture of John, Samin, Peter and Cristiano reason-
ing about pointers in Hoare logic.

Meanwhile, on the other side of town ...

e Dave, Fred, Greg, and Karl are running up against some
of the limitations of their research on typed assembly lan-

guage.

e Again and again, these limitations revolve around reason-
ing about state, aliasing and memory reuse.

e Fundamental question: How do we mechanically check
low-level programs that destructively alter program state
in the presence of aliasing?

What we did

e A type system for reasoning about region-based memory
management. (with Crary, Morrisett, popl 99)
— possible to reason about shared and unshared regions

— bounded quantification allowed us to move between
shared and unshared views

— no reasoning about the internal structure of regions

e A type system for reasoning about aliasing between indi-
vidual objects. (with Smith, Morrisett, esop 00)

— shared and unshared objects, no bounded quantifica-
tion

— we represent the internal structure of objects.

e Add recursive and existential types. (with Morrisett, tic
00)

— Only unshared objects.

e We have implemented some of these features in TAL.

Notice: as the structure of objects becomes more sophisticated,
the logic surrounding them decreases in complexity.

In part, this is because we were missing the beautiful and simple
model proposed by Reynolds & Co.

Today

Goal: take a fragment of the logic of bunched implications and
its model and incorporate it into our type system.

Benefits:

e Given a simple enough fragment, mechanical checking be-
comes possible. The type system provides a foundation
for programming language design.

e Easily handles higher-order functions.
e Highlights the role of parametric polymorphism.

e Provides intuitive understanding of the relationships be-
tween Hoare-style reasoning and advanced type systems.

A Plan
Types for reasoning about aliasing.

e the storage model

a simple fragment of BI for reasoning about the store

a simple higher-order imperative language

rules for typing instructions and examples

rules for typing unshared trees and examples

e missing: a general account of recursive types

6
Mechanical Reasoning: Why not use a theorem prover?

Why prefer a typed programming language over static program
analysis and theorem proving technology?

To use a theorem prover we must:

e synthesize loop invariants and function specifications
— eg: {pAstree 7(i)} copytree (i;j) {pAstree 7(i)}
e prove logical implications
— eg: list a- f(i, k) & Fj.1ist (i, j) * List B(J, k)
But this is intrinsically extremely hard:

e theorem proving is necessarily incomplete because our logic
is undecidable.

— what happens when the theorem prover fails?

— does the programmer have an intuitive model that
suggests when the theorem prover will succeed /fail?

e theorem proving will not scale to large programs.

Mechanical Reasoning: Type Systems

When we use a decidable type system we must reduce our ex-
pectations. We must:

e give up on verifying complete specifications. Attempt to
describe the shapes of data structures rather than their
contents.

e focus on detecting and eliminating a wide class of common
errors

— dereferencing null or a dangling pointer

— leaking memory

e be prepared to reject some programs because they use op-
erations that are simply too hard to reason about.

— eg: programs that xor their pointers!

e aim for the common case.

8
Some Advantages of Typed Programming Languages

e a type system ensures basic properties about the shapes
of data structures and the behavior of code.

e programs can normally be checked one module at a time
and therefore, type systems normally scale very well to
large programs.

e type systems will reject sound programs that are too hard
to reason about.

e the goal: develop an intuitive programming model so pro-
grammers understand why programs are rejected and how
to fix them: let the programmer be your theorem prover.

The Storage Model

A store is a finite partial map from locations p to stored values
s.

{p1+ S1,.., pn > Sn}

e locations are abstract values, with no assumed relation
between them.

e cach stored value is a “big thing.”

e for now, we will consider tuples (vy,...,v,)

Small Values
Small (register-sized) values v fit into the fields of tuples.

e values of base type: integers ¢, booleans, ...
e pointers p
e recursive functions fix f (---).e

— functions are considered small

— non-recursive functions are denoted A(---).e

10

11
Some Observations

We have raised the level of abstraction considerably.

e not all values are integers.

e different operations will apply to the different categories
of values.

— eg: integers can be added to each other, but not to
pointers.

— eg: pointers can be dereferenced, code cannot
e the model precludes certain forms of reasoning.

— impossible to view a 4-tuple as two adjacent pairs.
— no pointers into the middle of objects.

— no pointer arithmetic
e garbage collectors can often make use of these invariants.

— eg: BDW conservative collector for C

— choose your level of abstraction carefully!

12
Types for Values

We define a typing judgment for values: A;T" F v : 7. The
context A is a list of the locations that may be in use. The
context I' is a mapping from term variables x to types 7.

Base types are ordinary:
o AsT'F14:ant

To capture the shape of data structures, we will be more precise
with pointers:

e A;THp:p (if p € A)

The type p is a singleton type. The only value in that type is
the value p.

[Read more about singleton types in Xi & Pfenning’s DML]

13
Reasoning with Singletons

A useful lemma: If A;T" - v : p for some value v, then v must
be p (or a variable z).

e By analyzing the type, we learn very precise information
about the value.
A corollary: If A;T Fwv:pand A;T o' @ p and v and v’ are

not variables then v and v' must be aliases.

Singleton types provide a rudimentary form of equality informa-
tion.

e no need to reason with sets of equations

14
Store Types

We will equip our type system with a decidable logic for reason-
ing about the store.

We will concentrate on a very simple fragment of BI/LL

store types C == €| 1|CrxCy |
true ‘ 01&02 |

{p—{(11,...,T)}

Example
Pz P2t pPs:

N

{p1 = (p3, p2) } *
{p2 = (p3)} *
{p3 = (int)}

Singleton types help specify the shape of the store.

15
Well-formed Stores

The judgment A - h : C states that a store h is well-formed with
type C. We specify a nondeterministic merge of two stores h;
and hy using the notation hy > hy. It requires that the domains
of the stores h; and hy be disjoint.

AF{}:1

Al—hl:C’l AI_hQ:CQ
A|_h11><1h2201*02

AFh:true

ArFh:C; AFhR:Cy
A|_h501&02

Ay-Fovr forl<i<n
AF{pe (o v)} o (7))

16
The Logic

In order to show that a program manipulates the store properly,
the type-checker will have to prove judgments in this logic.

Judgments have the form:

A-C
Where A === - | A, C.
We often omit the initial “”. For example, when we have a
single hypothesis we write:

CiFCy

As before, we use the notation A; b Ay to indicate a nonde-
terministic merge of the two contexts. It contains all of the
formulas in A; and A, (each formula appearing exactly once)
interleaved in an arbitrary order.

Sequent Calculus for (1, %, true, &)

A, Ao HC
AL, A EC

AMECT A FECy
A1|><|A2}_01*02

Alacla CQaAQ }_ C
Al,Cl * CQ,AQ F C

A F true

AFC, ARGy
AF Ci1&Cy

AlaCI:AZ H 03

A1702:A2 F 03

Frn=r1 for1<i<n

{p—={m,...,m)}E{p— (m],...,7))}

17

18
Properties of the Logic

Soundness:

e f A-h:Cyand C) F Cy then A h: Ch.

e More generally, if A = h; : C; for ¢ € 1..n, h; Lh; whenever
i#j,and Cy,...,C,F C then A+ h;: C.

i€l.n

Decideability:

e Given (' and (), it is possible to decide whether or not
CiF Cs.

Computability of the residual store type:

e To develop the type system, we also require a procedure
which given C; and p, computes a residual store type Co
and types 71, ..., T, such that Cy - Cox{p — (11,...,70) }.

e In general, we cannot necessarily compute a “best” store
type C5, but we can compute a finite set of formulae and
try each one in the remaining typing derivation. There
is an algorithm that generates a “best” store type for all
examples in this talk and it will succeed whenever the
region in question appears at most once on the left of a
points-to proposition in the formula in question.

19
So Far

e types for small values (integers, pointers)
e types (specifications) for heaps

e a decidable logic for mechanical reasoning about heap types

Next: the programming language and its type checking rules

20
Continuation Passing Style

The language we will study requires programs be written in
continuation-passing style (CPS).

CPS functions have the following structure:

e a linear sequence of primitive operations (eg: allocate, dis-
pose, dereference, update, etc.)

e terminated by a control-flow transfer

— a jump to another function
— a branching construct (if or case statement)

— a special halt instruction

CPS functions do not have conventional call and return opera-
tions.

To mimic call and return, we jump to the function, explicitly
passing the return address as an argument.

21
An Example

The factorial function in CPS. fact(n) =nx (n—1) x---x 1

fix fact (n, k).
if n =0 then
k(1)
else
letz =n—1in
let cont = A(y).letz =n X yink(z) in
fact(zx, cont)

To use the factorial function, we apply fact to an argument and
an initial continuation.

fact(6, \(n).halt n)

Note: we will disregard space required for closures in this lecture.

22
Types for CPS Functions

Every CPS function specifies the type of the store that it ex-
pects:

(Cy1iy..ym) — 0
Think of the store as an extra argument to every function.

Example: a dereference function

{p= (1)}, P, Teont) = 0

Where Teons = ({p = (1)},7) = 0

Before calling a function, it is necessary to satisfy its typing
precondition.

Example: before calling the dereference function, we must prove
the store has the shape {p — (7)}.

23
Polymorphism

Problem: the dereference function can only operate on one spe-
cific location (p).

Location polymorphism makes it possible to abstract away
from the specifics of the particular location.

Example: the dereference function

Vipl.({p = ()}, ps Teont) = O
Where 7oy = ({p+— (7)},7) = 0

Before calling the dereference function, we must:

1. instantiate the bound type variables
e eg: deref[p]: ({p— (1)}, p,...) =0
2. prove the new typing precondition

e eg: prove the current store satisfies {p' — (1)}

24
More polymorphism

Store polymorphism makes it possible to preserve portions of
the store across function calls.

Example: the dereference function
V[G, p](ﬁ * {p = <T>}a pa Tcont) — O
Where Teon; = (€% {p+— (1)},7) = 0

The variable € may be instantiated with any store type.

25
Store Polymorphism vs. The Frame Axiom

Recall: the frame axiom

{p}flq}
{pxr}flgxr}

In our polymorphic, continuation passing style:

f:Vel.(pxe (gxe) > 0)—0

To apply the frame axiom, instantiate the polymorphic variable
€.

flr]: (p*7,(g*xr) —>0)—0

Store polymorphism appears essential for higher-order programs
and for preservation of store shape in other circumstances (see
example later).

26
A Problem?

A potential problem:
deref : V[e, pl.(ex {p— (1)},...) =0
Apply deref to the “wrong” store type:

deref[{p = (1)}, p]: ({p' = (N} *{p = (1)},...) =0

We have created a “bad” store type. No store can be described
by this type.

That is okay!

e We will never be able to prove that the current store has
that shape and we will never be able to call the function.

e The instantiated function is dead code.

Term Syntax

type contexts
store types

types
location vars

small values

primitive operators

structions

nb\}QD

e

27

'|A,6|A,p

Clt|p

||l
fix f [A|(C,z1im, ..., TyiTh) €

x|]

letx =v, @3 ine

let p,x =new (i) in e |
dispose v;e |

let x =wv.iine |

v1.0:=v9; € |
if v = 0 else e; then e |
(v, e, V) |

halt v

28
Typing Rules for Instructions

The typing rules have the form: A; ;" F e where:

e the free type, location and store variables in C, I' and e
are contained in A.

e (' describes the store before executing e
e [" describes the types of free value variables in e

e Assume that all variables in " or A are distinct (alpha-vary
bound variables where necessary)

These rules rely on the judgment for well-formed types A F c,
which states that FV(c) C A.

29
Store Invariant Rules
The rule for let:

ATFov:r AC T xmhRe
A;C;T'Flet x =vine

The rule for primitives:

A;TFwocint A;TRwoyiint A;C; T ziint F e
A;C;TFletr =v, evyine

The rule for if:

A;THvint A;C;THer A;C; T Fey
A;C;T'F if v =0 else e; then ey

30
New
A p;Cx{p+— r(junk, ... ,junky}; Ixpke
A;C;T - 1let p,x =new (i) in e

The Hoare rule:

C
x := cons(junk, ..., junk)
C *{z — (junk, ..., junk)}

where z is fresh

31
Dispose

A;TRHov:p CEC' x{p—(m,...,m)} A;C";Tke
A;C; T+ dispose v;e

The Hoare rule for single-cell dispose:

C'x{e— —}
dispose e
Cl

Notice we have built in the rule for “strengthening the prece-
dent”

p=q {q}c{r}

{p}e{r}

The Hoare rule for multiple-cell dispose:

C's{e——-}*---x{e+(n—1)— =}
dispose e,n

Cl

Lookup

AsTHwep
CH{p—(1,...,Tn)} *x true A;C; T o Fe

A;C;T'F let x =wv.iine

The Hoare rule:

Jy.Cly/z) & {e+ (i—1) =y} =
Jy.Cly/x] & ({e+ (i — 1) — y} * true)
é:: [e+ (1 —1)]

32

Update

A;F"U1
AT w7

Lp

CHC'x{p—(m,...
N Cx{p—{m,...,T,. ..

Tis- - sTn)}
T T Ee

The Hoare rule:

A;C;T'Fvd:=vq5e

C's{e+(i—1)— -}
e+ (i—1):=¢
C'x{e+(i—1)— €}

33

34
Specification-Invariant Update Rule

Another update rule (specification invariant):

AT o :p CH{p—(m,...,Tiy...,Tn)} * true
AT Fuoy T A;C;T e
A;C; T Fvd:=vq;e

Be careful: unsound in the presence of subtyping.

Is this rule an instance of the more general rule for update? No:

AT v o p
{p— (M)} xCy) & Co - {p+— (1)} * true
A;ThHwy T A;{p—= (1)} xCh) & Cy;T He

A;({p—= (1)} xCy) & Co; T F vy 1:=wg5€

In general, we will lose the information contained in Cj if we use
the previous update rule:

AT ot p
{p—= (1)} *xC) & Co-Crx{p— (1)}
AT Fog T A;Crx{p— ()T ke
A;({p—= (1)} xCy) & Co; T F vy 1:=wg5e

The Hoare rule?

35
Function Application and Termination

Function application
AT Fov:V[](Cm,...,T) =0
AT Fo:m AT Fo, T, CrC
A;C T (v, ..., vp)

Termination For “tight” specifications that require programs
to collect their garbage:

ATFv:int CEH1
A;C;T'Fhaltwv

For “loose” specifications that leave garbage lying around:

A;TFov:iint CF true
A;C;T'Fhaltwv

36
Functions

The typing judgment for (possibly open) values has the form
ATFw:T

For function values:

AASC T f VA NC, 1y 1) = 0,207, . xiT e
AFV[AC,7,...,7)— 0

AT F fixfIA(C, xyimy ..o &) YA (Cy .oy 1) — 0

Type application:

AN C;T vV, A'NC, m,...,7) 20 Abp
A;C;T Folp] : VIANC, 71, ..., 70) — O[p/p]

N C;TFo: Ve A'NC, 7,...,T) >0 AFC
A;C;T = o[C] : V[A(C, 71, ..., Tn) = O[C" /€]

37
Example

Arguments: two references to integers.

Add contents of arguments, store result in first argument.

Preserve the structure of the store

let add = A, p1, po]
(C, @:p1,y:p2, k:(€) — 0).
letz =2z.1in
letw =y.lin
leta=z4+win
z.1:=aq % by invariant update
k() % C F ¢, by &-left, id

in - - -

where C =€ & ({p1 — (int)} * true) & ({p2 — (int)} * true)

38
Example Continued

Using the add function:

let p;,x = new(l) in % {p1 — (Junk)}

z.1:= 1T, % {p1 — (int)}

let po,y = new(1) in % {p1 — (int)} x {py — (junk)}
y.1:=32; % {p1— (int)} x {ps — (int)}
letk = \[]

({p1 = (int)} x {p2 = (int)})
leta=2z.1in
dispose(z); h {p2 — (int)}
dispose(y); h1 (%)
halt a

in

add[{py = (int)} «{p2 = (int)}, p1, po] (2,9, k) O¥)
The dispose operation:

-F1 {pa— (int)} F {p2 — (int)}
{p2 — (int)} F 1% {py — (int)}

()

39
Justification for (k)

The function application:
add : V[e, p1, po]-(C, p1, p2, (€) = 0)) = 0
where C = ¢ & ({p1 — (int)} + true) & ({ps > (int)} % true)
add[C", p1, p2] (C[C' /€], p1, p2, (C') = 0)) = 0
where C' = {p; — (int)} * {p2 — (int)}

Must prove that the current store C’ satisfies the precondition
for add|[- - -]:

{p1 = (int)} * {p2 = (int)} F
({p1 = (int)} * {p2 — (int)}&({p1 > (int)} x true)&({pz > (int)} x true)

Which reduces to proving the three conjuncts separately (by &-right).

(o1 > (int)} x {p2 = (int)} F ({p1 — (int)} = {p2 — (int)})

{p1 = (int)} F {p1 > (int)} {p2 — (int)} F true
{p1 = (in)}, {p2 > (int)} F {p1 = (int)} * true
{p1 = (int)} x {pa — (int)} F {p1 = (int)} * true

The last conjunct is similar.

40
Example Continued

Using the add function:

let pi,z = new(1) in % {p1 — (Junk)}
z.1:= 1T, % {p1 — (int)}
letk = \[]

({p1 = (int)})

leta=z.1in
dispose(z); %h1
halt a

in

add[{p; — (int)}, p1, p1](z, z, k) (k)

We must prove the following at the function application (**).

{p1 = (int)} =
{p1 — (int) }&({p1 — (int)} * true)&({p; — (int)} * true)

Main points:
e add is sharing insensitive
e add preserves store shape exactly

e store polymorphism is essential

41
An Aside

In previous work, I (with Crary and Morrisett, popl 99) solved
the same problem with a slightly different logic and bounded
polymorphism:

Ve < Cl.r

Recently, Crary (icfp 00) has shown that bounded polymorphism
can be compiled into a language with ordinary parametric poly-
morphism and intersection types:

Ve < C|.m ~ V][e|.T[C&e/¢]
Our add function in previous work:
Vie<C,..](¢...)—0
Our add function today:
Vie,...].(C&e,...) =0

I had hoped that this insight would lead to a formal connection
between our “capability logic” and this fragment of BI. Still
working on it.

42
Unshared Trees

We introduce an abstract type for unshared trees.

store types C == ---|tree(p)

types T = ---|L|N

values v = ---|L|N

instructions e = ---|casev (L = ey |N(p1,p2) = €2)

We give the atoms N and L singleton types.

A;THL:L

A;TEN:N

Whenever we need to express some data dependence, we use
singleton types.

43
Store Typing for Trees

In addition to previous rules, we have:

AF{p— (L)} : tree(p)

F hy: tree(p) F hs : tree(ps)
Fhs:{p— (N, p1,p2)}
A& hy < hy X hy : tree(p)

A leaf node can be given two types: tree(p) or {p+— (L)}.

Therefore, we extend the logic:

A{p= (L)}
A F tree(p)

A {p > (N, p1, p2)} * tree(p:) x tree(ps)
A F tree(p)

The logic remains easily decidable.

44
Case Statement

The elimination form for trees is a case on the first component.

AT Ho:p C I tree(p) * true
A;CHp = (LT F e
A, py, pa; C{p = (N, py, p2) } tree(p:) « tree(py)]; ' e,
A;C;T Fcasewv (L = e | N(p1, p2) = e2)

The notation C[{p +— (- --)}] replaces all occurrences of tree(p)
in C with {p — (---)}.

Unlike the case in ML, this case does not automatically project
the two components of the node in the second branch.

45
In-place Tree Traversal

It is possible to traverse a tree without using a stack by reusing
the tree nodes to store control information. (Deutsch, Schorr,
Waite)

This technique was initially used in the mark phase of a garbage
collector.

Traversal overview:

1. Begin with a tree T, a pointer to T’s parent and a contin-
uation.

2. Store the pointer to T’s parent in the position normally
used for T’s left subtree. Store the continuation in the po-
sition normally used for the tag. Traverse the left subtree.

3. Restore the left subtree. Store the pointer to T’s parent in
the position normally used for T’s right subtree. Traverse
the right subtree.

4. Restore the right subtree and the tag. Call the initial
continuation.

46
In-place Tree Traversal

% Traverse a tree p; with parent ps
fixwalk[e, p1, pa | € x tree(p)](t : p1,up : pe, cont : T.l€, p1, pa2])-
caset,
(L = cont(t,up)
| N(pLa pR) =

h ex{pr— (N,pr,pr)} * tree(pr) * tree(pr)

t.1:=cont; % store cont in tag position
let left =t.21in
t.2:=up; % store parent in left subtree

o€ x{p1— (T[€, p1, p2], p2, pr)} * tree(pL) x tree(pr)

walk[e x {p1 = (7c[€, p1, pa2l, P2, pr) } * tree(pr), pr, p1]
(l€ft, L, Twa'lk[a P1, P25 PL, PR]))

where 7.[¢€, p1, pa] =
V[-].(e x tree(pr), p1, p2) — 0

Traversal Continued

% Walk the right-hand subtree pp
and rwalk[e, p1, p2, pr. pr | € % {p1 > (7€, p1, p2; p2, pr) }*
tree(pr) * tree(pr)]
(left: pr,t: p1)-
let up=1t.21in

t.2:=left; % restore left subtree
let right =t.31in
t.3:=up; % store parent in right subtree

walkle * {p1 = (7cl€, p1, pal; pr, p2) } * tree(pL), pr, pi]
(T”lght, 12 fz'm'sh[e, P1, P2, PL, pR])

where TC[E, P1, :02] =
V[-].(e x tree(py), p1, p2) = O

47

48
Traversal Continued

% Reconstruct tree node and return
and finishle, p1, pa, pr, pr | € * {p1 = (7c[€, p1, pal; pr, p2) }
tree(pr) * tree(pgr)]
(right : pr,t: p1).
let up=1t.31in

t.3:=right; % restore right subtree
let cont =t.1in

t.1:=N; % restore tag

cont(t, up)

where TC[E, P1, :02] =
V[].(e * tree(p1), p1,p2) = 0

49
General Recursive Types

For an explanation of how to define trees and other recursive
datatypes in the multiplicative fragment of the logic, see my
paper with Morrisett.

One difference between the Reynolds/O’Hearn approach and our
approach:

e Reynolds and O’Hearn use induction over the structure of
the store: pe.C

e We use induction over types: po.7.

Our technique requires that we find a way to include specifica-
tions of the store within a type 7.

e Can be achieved through a special form of existential type.

e These ideas led to techniques for combining regions with
linear data structures in a recent paper with Kevin Watkins.

50
Conclusions and Future Work

e Integration of substructural logics with dependent typing
is a rich area for further research.

e This simple fragment of BI (multiplicative and additive
conjunctions and units) seems like it has great potential
in the domain of memory management.

e To incorporate this type system into a practical source
programming language, we will need to resolve many issues
with respect to syntax and type inference.

e In may be possible to use this framework to control other
program effects including concurrency, access control and
security-relevant effects.

