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Abstract
Verification of large programs is impossible without proof tech-
niques that allow local reasoning and information hiding. In this
paper, we resurrect, extend and modernize an old approach to this
problem first considered in the context of the programming lan-
guage Euclid, developed in the 70s. The central idea is that rather
than modeling the heap as a single total function from addresses
(integers) to integers, we model the heap as a collection of partial
functions with disjoint domains. We call each such partial function
a linear map. Programmers mayselectobjects from linear maps,
updatelinear maps ortransferaddresses and their contents from
one linear map to another. Programmers may also declare new lin-
ear map variables, pass linear maps as arguments to procedures and
nest one linear map within another. The program logic prevents any
of these operations from duplicating locations and thereby break-
ing the key heap representation invariant: the domains of all linear
maps remain disjoint. Linear maps facilitate modular reasoning be-
cause programs that use them are also able to use the simple, clas-
sical frame and anti-frame rules to preserve information about heap
state across procedure calls. We illustrate our approach through ex-
amples, prove that our verification rules are sound, and show that
operations on linear maps may be erased and replaced by equivalent
operations on a single, global heap.

1. Introduction
Verification of large programs is impossible without proof tech-
niques that allow local reasoning and information hiding. In this
paper, we resurrect, extend and modernize an old approach to this
problem first considered in the context of the programming lan-
guage Euclid [19, 22], developed in the 70s. This approach centers
around the introduction of a new data type, which we call alinear
map. Intuitively, linear maps are simply little heaplets: Program-
mers maystore objects in linear maps,look up objects in linear
maps and, most interestingly,transfer addresses from one linear
map to another. Programmers may also declare new linear map
variables, pass them as arguments to functions, receive them as
results, or nest them within one another. We call these mapslin-
earbecause of their connection to linear type systems [13, 30, 31]:
like values with linear type, linear maps are never duplicated nor
aliased.

Programs that use linear maps tend to be written in a functional
store-passing (i.e., linear-map-passing) style as this style facilitates
local reasoning and information hiding. However, despite this func-
tional facade, linear maps programs are actually ordinary impera-
tive programs that load from, and store to, a single, global heap. In
order to connect a linear maps program to its corresponding con-
ventional imperative program, we define anerasure transformation
that erases all linear maps variables, erases all transfer operations
and replaces linear map lookups and updates with lookups and up-
dates on the global heap. In the forward direction, the erasure trans-
formation shows that using linear maps incurs no overhead; they

are really just a new kind of ghost variable, used, as ghost variables
often are, to facilitate modular verification. In the reverse direc-
tion, the erasure transformation may be seen as a tactic for prov-
ing the correctness of ordinary imperative programs: given an or-
dinary program, the reverse transformation explains the legal ways
to transform it into an easy-to-verify linear maps program without
changing its operational behavior.

There are a number of reasons we believe researchers should
adopt linear maps as a modular verification technology. First and
foremost, the idea is surprisingly simple to understand, to imple-
ment and, we hope, to build upon. We believe this is a key contri-
bution. Second, linear maps require no new language of assertions.
Generated verification conditions are encoded in first-order logic
and may be solved by off-the-shelf SMT solvers such as Z3 [8].
Third, using linear maps enables effective use of the classical frame
and anti-frame rules, completely unchanged, despite the presence
of an imperative heap. Fourth, linear maps technology requires no
changes to the overall judgmental apparatus involved in standard,
first-order verification condition generation: it does not use non-
standard modifies clauses and it does not depend upon sophisti-
cated auxiliary notions such as the footprint or frame of a formu-
lae. Consequently, it should be relatively easy to extend any one
of a number of standard, existing verification condition generation
tools with these new data types.

Our work on linear maps has been directly inspired by several
other recent approaches to modular reasoning, including research
on Separation Logic [15, 25, 24], Dynamic Frames [17, 20] and Re-
gion Logic [1]. The advantages of linear maps over these previous
approaches are their simplicity and the minimalism of the required
extensions over standard first-order Floyd-Hoare logic. For exam-
ple, Separation Logic achieves its goals at the expense of introduc-
ing a new set of assertions involving theseparating conjunction
F1 ∗ F2 — assertions that cannot be proven directly by classical
off-the-shelf first-order theorem provers. Alternatively, Dynamic
Frames and Region Logic operate by changing classical concepts
such as the modifies clause, tracking exotic effects, or developing
new footprint analyses.

Linear maps are also closely connected to research done on the
Euclid programming language in the 70s. Euclid contained a data
type called a “collection” and each pointer was associated, via its
static type, with such a collection. Such collections are similar to
the linear maps developed in this report, and one of the important
contributions of our work is to resurrect this basic idea, which
the research community had almost entirely forgotten. In addition,
however, we have presented the theory in a modern style, added
critical new operations on linear maps, developed a logic tailored
for modern SMT solvers, outlined the connection to Separation
Logic and its frame rules, and proven important technical results
including soundness and erasure theorems.

The rest of the paper is organized as follows. Section 2 presents
the central concepts in greater depth. Section 3 presents the tech-



procedure incr(int p) returns ()
modifies heap

{
heap[p] := heap[p] + 1;

}

heap[py] := 42;
call incr(px);

Figure 1. Frame rule with ordinary maps

nical details. Section 4 explains some interesting extensions. Sec-
tions 5 and 6 discuss related work in greater depth and conclude.

2. Key Concepts
Two structural verification rules are required to verify just about
any imperative program. The first is the rule of consequence, which
states that if a Floyd-Hoare triple{P}C{Q} is valid andP ′ ⇒ P
andQ ⇒ Q′ then the triple{P ′}C{Q′} is also valid. The second
is the (classical) frame rule, which states that if{P}C{Q} is valid
and the set of variables modified byC is disjoint from the set of
free variables ofR then{R ∧ P}C{R ∧ Q} is also valid. In other
words, the validity of framing formulaR may be preserved across
any statement that does not modify the frame’s free variables.

With that background, consider the procedureincr:

procedure incr() returns ()
requires true, ensures true, modifies x

{ x := x + 1; }

This procedure has no input arguments and no output arguments.
Its specification consists of the preconditiontrue, the postcondi-
tion true, and the guarantee that it does not modify any variable
exceptx. Henceforth, our examples will use the convention that a
missingrequires clause indicates the preconditiontrue, a miss-
ing ensures clause indicates the postconditiontrue, and a miss-
ing modifies clause indicates that the procedure does not modify
any variables in the caller’s scope.

Consider a call toincr in a calling scope that contains another
variabley. The Floyd-Hoare triple{y = 42} call incr() {y
= 42} is easily proved through a combination of the conventional
frame and consequence rules.

{true} call incr() {true}
---------------------------------------- (Frame)
{y=42 ∧ true} call incr() {y=42 ∧ true}
---------------------------------------- (Consequence)
{y=42} call incr() {y=42}

The main reason for the simplicity of the proof is that the set of
variables modified by the code fragmentcall incr() is disjoint
from the free variables in the assertiony = 42.

This simple proof strategy does not quite work when the heap is
used to allocate data. The standard method of modeling a heap [5]
uses a single map variable mapping memory addresses to their
contents. Since a procedure that updates the heap at any address
must contain the map variable in its modifies set, the conventional
frame rule cannot be used for preserving heap-related assertions
across a call to such a procedure. To illustrate the problem, we
model the heap as a variableheap mappingint toint and allocate
the variablesx andy on the heap with distinct addressespx and
py (Figure 1). Further, we change the procedureincr to take
the memory address whose contents are to be incremented. LetC
denote the code fragment in Figure 1 after the definition ofincr.
Then, the triple{px != py} C {heap[py] = 42} can not be
proved using the conventional frame rule.

procedure incr(p: int, t:lin)
requires p ∈ dom(t)
ensures p ∈ dom(t)

{
t[p] := t[p] + 1;

}

l[py] := 42;
var lx:lin in

lx := l@{px};
call incr(px,lx);
l := lx@{px};

Figure 2. Frame rule with linear maps

2.1 Linear Maps

We address this weakness of the conventional frame rule, not by
changing it, but by refining our modeling of the heap. Instead of
modeling the heap with a single monolithic map, we model it as a
collection of partial maps with disjoint domains. We call each such
map a linear map, which is essentially a pair comprising a total map
representing the contents and a set representing the domain of the
linear map. We refer to the underlying total map and domain of a
linear mapℓ asmap(ℓ) anddom(ℓ) respectively. We augment our
programming language with operations over linear maps that are
guaranteed to preserve the invariant that the domains of all linear
maps are pairwise disjoint and their union is the universal set. We
refer to this invariant as the disjoint domains invariant.

We now rewrite the program from Figure 1 using linear maps
as shown in Figure 2. As we explain in Section 2.2, the program in
Figure 1 can be obtained from the program in Figure 2 using the
erasure operation; consequently, any properties about the runtime
behavior of the latter program are valid for the former as well. The
new definition of procedureincr takes a pointerp and a linear map
t as arguments.1 The implementation ofincr demonstrates that
linear maps can be read and written just like ordinary maps. Unlike
ordinary maps, a read or a write of a linear mapt at the addressp
comes with the precondition thatp is in the domaint. The read and
write of t[p] performed during the increment operation are safe
because of the precondition ofincr.

LetD denote the code fragment in Figure 2 after the definition of
incr. The contents of the heap at the beginning ofD is modeled by
the linear mapl whose domain includes both addressespx andpy.
In order to callincr with the pointerpx, we also need to pass in a
linear map whose domain contains the addresspx. We create such a
linear map by declaring a new variablelx, whose domain is empty
initially. We then perform the transfer statementlx := l@{px} to
move the contents of addresspx from l to lx; this operation has
the precondition thatpx is in the domain ofl. The linear maplx is
now passed, along with the pointerpx to incr, thus satisfying the
precondition ofincr.

It is important to note that the procedure call has a side effect
on the variablelx passed for the linear argumentt. At entry, the
contents oflx are transferred intot; at exit, the contents oft are
transferred back intolx. This operational behavior is essential to
maintain the disjoint domains invariant. After the call, we transfer
the pointerpx from lx to l. Thus, there is an implicit modifies
clause on linear map arguments for a procedure that we do not
explicitly show.

Unlike the previous version of theincr procedure in Figure 1,
the new version ofincr has the empty modifies specification.

1tot andlin denote the types of ordinary and linear maps fromint to
int respectively.



procedure incr(p: int, tm:tot, t:lin)
requires p ∈ dom(t) ∧ tm = map(t)
ensures p ∈ dom(t) ∧ t[p] = tm[p]+1

{
t[p] := t[p] + 1;

}

l[py] := 42;
l[px] := 24;
var lx:lin in

lx := l@{px};
var lxm:tot in

lxm := map(lx);
call incr(px,lxm,lx);

l := lx@{px};

Figure 3. Ghost variables

Consequently, the triple{px != py} C {l[py] = 42} can be
easily verified using the conventional frame rule.

2.2 Erasure

An important aspect of our system is the erasure operation which
allows us to connect the operational semantics of the program
written using linear maps with the corresponding program written
using a global total map. As an example, the erasure of the code in
Figure 2 is the code in Figure 1 withheap being the unified total
map. Section 3 develops a program logic for verifying properties
of programs that use linear maps. The erasure operation essentially
allows us to carry over the runtime properties established by the
verification of a program using linear maps over to the erased
program using a global map.

The erasure operation is defined both on the state and the pro-
gram text. The erasure of a state combines all linear map variables
in the state into a single unified total map; this transformation is
possible because of the disjoint domains invariant. The restrictions
on the operations permitted on linear maps have been designed pre-
cisely to ensure that the erasure of the state is well-defined. The
erasure of the program text removes all occurrences of linear map
variables and any transfer operations among them; further, a read or
write of a linear map variable is transformed into the corresponding
operation on the unified total map. The erasure operation ensures
that a program (with linear maps) takes a states to s′ iff the erased
program takes the erasure of states to the erasure of states′.

2.3 Two-state postconditions

We now augment our increment example from Figure 2 to illus-
trate another useful feature of our system. The code fragmentE in
Figure 3 assigns the value24 to l[px] before callingincr; we
would like to show thatl[px] = 25 at the end ofE. To enable this
verification, we must enrich the postcondition ofincr to relate the
value oft[p] upon exit with the value oft[p] upon entry. It is
difficult to express such a postcondition because any reference to
the linear argumentt by default refers to its value in the exit state.
To circumvent this problem, we pass an ordinary maptm to incr
as an additional argument and add the preconditiontm = map(t)
indicating the relationship betweentm andt. The presence of the
parametertm allows us to enrich the postcondition ofincr to in-
dicate that the value oft[p] at exit is one more than its value at
entry. At the call site, we pass a total map whose value ismap(lx)
for the argumenttm. This operation does not violate our disjoint
domains invariant because whilelx is a linear map,lxm is an ordi-
nary total map. The erasure of ghost variables such astm andlxm is
standard; the erasure operation removes all references to them from
the program text. A complete Floyd-Hoare proof for the program
fragmentE is shown in Figure 4. In this proof, we use two macros

{ px != py ∧ l[py] 7→ ∧ l[px] 7→ }

l[py] := 42;

{ px != py ∧ l[py] 7→ 42 ∧ l[px] 7→ }

l[px] := 24;

{ px != py ∧ l[py] 7→ 42 ∧ l[px] 7→ 24 }

var lx:lin in

{ px != py ∧ l[py] 7→ 42 ∧ l[px] 7→ 24 }

lx := l@{px};

{ px != py ∧ l[py] 7→ 42 ∧ lx[px] 7→ 24 }

var lxm:tot in

{ px != py ∧ l[py] 7→ 42 ∧ lx[px] 7→ 24 }

lxm := map(lx);

{ px != py ∧ l[py] 7→ 42 ∧ lx[px] 7→ 24
∧ lxm = map(lx) }

call incr(px,lxm,lx);

{ px != py ∧ l[py] 7→ 42 ∧ lx[px] 7→ 25 }

l := lx@{px};

{ px != py ∧ l[py] 7→ 42 ∧ l[px] 7→ 25 }

Figure 4. Proof of statementE

mod [
num : int := 0;
den : int := 1;

invariant den != 0;

procedure reset(a: int, b: int) returns ()
requires b > 0;

{
num := a;
den := b;

}

procedure floor() returns (res: int)
{

res := num/den;
}

]

Figure 5. A simple module

for compact representation of the assertions:(l[py] 7→ ) ex-
pands to(py ∈ dom(l)) and(l[py] 7→ c) expands to(py ∈
dom(l) ∧ l[py] = c).

2.4 Information hiding

Large programs are structured as a collection of modules, each of
which offers public procedures as services to clients. An impor-
tant goal of modular verification is to enable separate verification
of the module and its clients. The correctness of a client should
depend only on the preconditions and postconditions of the public



mod [
local : lin := []<>;
f : int := nil;

invariant
Btwn(local,f,nil) = (dom(local) ∪ {nil})

procedure alloc(h:lin) returns (res:int)
requires dom(h) = ∅
ensures res != nil ∧ res ∈ dom(h)

{
if (f = nil)

res := malloc(h);
else {

res := f;
f := local[res];
h := local@{res};

}
}

procedure free(arg:int,h:lin) returns ()
requires arg != nil ∧ arg ∈ dom(h)

{
local := h@{arg};
local[arg] := f;
f := arg;

}
]

Figure 6. Memory manager

procedures of the module and not on the private details of the mod-
ule implementation. This requirement precludes any precondition
from referring to the private state of the module; consequently, it
becomes difficult to verify the module implementation which of-
ten depends on critical invariants at entry into a public procedure.
As an example, consider the module shown in Figure 5 that imple-
ments a rational number and provides two procedures,reset and
floor. The private representation of this module uses two integer
variablesnum andden for storing the numerator and denominator
respectively. The integer division operation infloor fails unless
the value ofden upon entry is different from zero.

This conflict between modular verification and information hid-
ing is well-understood; so is the concept of module invariant as a
mechanism for resolving this conflict [14]. A module invariant is an
invariant on the private variables of a module that may be assumed
upon entry but must be verified upon exit. The module invariant for
the rational number module states thatden != 0; it is preserved
by each procedure and allows us to prove the safety of the division
operation infloor.

There are two important reasons for the soundness of the veri-
fication method based on module invariants. First, the module in-
variant is verified upon exit from the module. Second, the module
invariant refers only to the private variables of the module which
cannot be accessed by code outside the module. As long as the pro-
gram uses only scalar variables, verification using module invari-
ants is simple. However, if the representation of a module uses the
global heap, which is potentially shared by many different modules,
verification becomes difficult since the module invariant cannot re-
fer to the global heap variable. Linear maps come to the rescue just
as they did with the framing problem in the presence of the heap;
we illustrate their use in the context of information hiding using a
memory manager example [24].

Figure 6 shows the memory manager module. This module
provides two proceduresalloc andfree, used for allocating and
freeing a single memory address, respectively.alloc returns the
freshly allocated address in the return variableres. free frees

var ref1, ref2 : int in
var tmp1, tmp2 : lin in

ref1 := alloc(tmp1);
tmp1[ref1] := 3;
ref2 := alloc(tmp2);
assume dom(tmp1) ∩ dom(tmp2) = ∅;
assert ref1 != ref2;
tmp1 := tmp2@{ref2};
tmp1[ref2] := 6;
assert tmp1[ref1] = 3;

Figure 7. Client of memory manager

the memory address pointed to by the input variablearg. It is
worth noting that the modified set of bothalloc and free is
empty; therefore, they are allowed to modify only the private state
of the memory manager module and their respective linear map
arguments.

The private representation of the memory manager uses a linear
map variablelocal and an integer variablef. The value off is a
pointer to the beginning of an acyclic list obtained by starting from
f and applyinglocal repeatedly until the special addressnil is
reached. The variablef is initialized to a special pointernil and
local is initialized to the liner map with an empty domain denoted
by []<>. The module invariant of the memory manager uses a
special set constructorBtwn that takes three arguments, a linear
mapl, a pointera, and a pointerb. The setBtwn(l,a,b) is empty
if a cannot reachb by following l. Otherwise, there is a unique
acyclic path followingl from a to b andBtwn(l,a,b) is the set of
all pointers on this path includinga andb. The module invariant
states that the list hanging fromf is acyclic and the domain of
local includes all elements in this list except possiblynil.

The procedurealloc returns an address from the head of the
list if the list is nonempty; before returning, it transfers the returned
address from the domain oflocal to h. If the list is empty,alloc
simply calls a lower-level proceduremalloc with the same inter-
face asalloc. Thus,alloc andmalloc model two different oper-
ations with same functional specification but with different latency.
The module invariant described earlier is crucial for proving the
safety of the read and transfer operations onlocal. The procedure
free appends the pointerarg to the beginning of the list and trans-
fersarg from the domain ofh to local.

The verification of the client code, given in Figure 7, reveals an-
other interesting feature of our proof system. The statementassume
dom(tmp1) ∩ dom(tmp2) = ∅ allows downstream code to use
the assumed fact for verification. It is sound to make this assump-
tion becausetmp1 andtmp2 are distinct linear map variables whose
disjointness is assured by the disjoint domains invariant. This as-
sumption, together with the postcondition ofalloc, is sufficient to
verify the assertionassert ref1 != ref2 following it. Note that
the postcondition ofalloc is not strong enough to verify this asser-
tion by itself. Our programming language allows the programmer
to supply such sound assumptions wherever needed.

The examples in this section have been mechanized using Boo-
gie. The verification of the memory manager module depends on
reasoning about theBtwn(l,a,b) set constructor in the presence
of updates tol and transfers to and from the domain ofl. We have
extended the decision procedure for reachability [18] with a col-
lection of rewrite rules based on e-matching [11] for modeling the
interaction betweenBtwn and the semantics of transfer between lin-
ear maps. Although examples in this section only illustrate the use
of transfer of singleton sets, we have verified an example involving
multiple lists that requires transferring the contents of an entire list.



types τ ::= int | tot | lin | set
values v ::= n | f | ℓ | s
logical exps e ::= x | v | e1 + e2 | sel(e1, e2) | upd(e1, e2, e3)

| ite(e1, e2, e3) | sel
L (e1, e2) | upd

L (e1, e2, e3)
| map(e) | dom(e) | lin(e1, e2) | {x | F}

formulae F ::= true | false | ¬F | F1 ∨ F2 | F1 ∧ F2

| F1 ⇒ F2 | ∃x:τ.F | ∀x:τ.F
| e1 = e2 | e1 ∈ e2

Figure 8. Syntax of values, expressions and logical formulae

3. Technical Development
This section presents the technical intracacies involved in develop-
ing a program logic for imperative programs with linear maps.

3.1 The Assertions

Figure 8 presents the language of assertions. Here and elsewhere,x
ranges over variables,n ranges over integers ands ranges over sets
of integers. When we want to represent a specific set, we will use
standard set-theoretic notation such as{x | x > 0}. Metavariablef
ranges over total maps from integers to integers. When we want to
represent a specific total map, we will use standard notation from
the lambda calculus such asλx.x + 1.

Linear maps are simply pairs of a total mapf from integers
to integers and a domains. Intuitively, the pair of total map and
domain implements a partial map. We letℓ range over linear maps.
In general, when linear mapℓ is the pairfs, we letmap(ℓ) refer
to the underlying total mapf anddom(ℓ) refer to the underlying
domains. We write [ ]∅ to refer to the empty linear map: a linear
map with the empty set as its domain and any map as its underlying
total map.

The logic is built upon a collection of simple expressionse,
whose denotations are values with one of four primitive types:
integer (int), total map (tot), linear map (lin), and integer set
(set). The expressions include variables, values of each type, and
a collection of simple operations on each type. For total maps,
we allow the standard operations select (sel) and update (upd).
For instance,sel(e1, e2) selects elemente2 from the total map
e1 while upd(e1, e2, e3) updates total mape1 at locatione2 with
the value denoted bye3. In addition, we will allow the use of a
generalized map update with the formite(e1, e2, e3) (pronounced
“if then else”) wheree1 is a set ande2 ande3 are two additional
total maps. This expression is equal to the total map that acts as
e2 when its argument belongs to the sete1 and acts ase3 when
its argument does not belong to the sete1. This non-standard map
constructor fits within the framework of de Moura and Bjørner’s
recent work on generalized array decision procedures [9] and is
supported in Z3 [8].

The expressionsselL (e1, e2) andupdL (e1, e2, e3) are variants
of the standard select and update expressions designed to operate
on linear maps. TheselL (e1, e2) expression selectse2 from the
underlying total map ofe1. As far as the semantics of logical ex-
pressions are concerned,e2 may lie outside the domain ofe1. In
later subsections, the reader will see how the program logic will use
explicit domain checks to guarantee that reads and writes of linear
map program variables do not occur outside their domains during
program execution. TheupdL (e1, e2, e3) updates linear mape1 at
locatione2 with the value denoted bye3. If e2 does not appear in
the domain ofe1, then the domain of the resulting linear map is one
element larger than the domain of the initial map. The expressions
map(e) anddom(e) extracts the underlying total map and underly-
ing domain of linear mape while the expressionlin(e1, e2) con-
structs a linear map from total mape1 and sete2. The expression

[[e]]
E

= v

[[x]]
E

= E[x]
[[v]]

E
= v

[[e1 + e2]]E = [[e1]]E + [[e2]]E
[[sel(e1, e2)]]E = [[e1]]E([[e2]]E)
[[upd(e1, e2, e3)]]E = λx.ifx = [[e2]]Ethen[[e3]]Eelse[[e1]]E(x)
[[ite(e1, e2, e3)]]E = λx.ifx ∈ [[e1]]Ethen[[e2]]E(x)else[[e3]]E(x)
[[selL (e1, e2)]]E = map([[e1]]E) ([[e2]]E)
[[updL (e1, e2, e3)]]E = fdom([[e1]]

E
)∪{[[e2]]

E
}

wheref = λx.ifx = [[e2]]E then [[e3]]E else map([[e1]]E)(x)
[[map(e)]]

E
= map([[e]]

E
)

[[dom(e)]]
E

= dom([[e]]
E

)
[[lin(e1, e2)]]E = ([[e1]]E)[[e2]]

E

[[{x | F}]]
E

= {v |E, x = v |= F}

Figure 9. Denotational Semantics of Expressions

{x | F} denotes a set of integersx that satisfy formulaF . We will
freely use other operations on sets such as union and intersection
as they may be encoded.

The logical formulae themselves include the usual formulae
from first-order logic as well as equality and set inclusion.

Throughout the paper, we will only consider well-typed expres-
sions and formulae. Given a type environmentΓ, which is a finite
partial map from variables to their types, we writeΓ ⊢ e : τ to de-
note thate is a well-formed expression with typeτ . Likewise, we
write Γ ⊢ F : prop to denote that formulaF is a well-formed for-
mula. The rules for defining these judgments are simple and stan-
dard and therefore we omit them.

In Figure 9, expressions are given semantics through a judge-
ment with the form[[e1]]E . Here, and elsewhere,E is a finite partial
map from variables to values. We writeE[x] to look up the value
associated withx in E. We write E, x = v to extendE with x
(assumingx does not already appear in the domain ofE). We write
E[x = v] to updateE with a new valuev for x. A value envi-
ronmentE has a typeΓ, written ⊢ E : Γ, when the domains of
Γ andE are equal and for every bindingx:τ in Γ there exists a
corresponding valueE[x] with typeτ .

Given the semantics of expressions, the semantics of formulae
is entirely standard. When an environmentE satisfies a formulaF ,
we writeE |= F . When a formulaF is valid with respect to any
environment with typeΓ, we writeΓ |= F .

3.2 Programs

Figure 10 presents the formal syntax of programs. The main syn-
tactic program elements are expressions, statements and modules.

Program expressions are divided into three major categories:
implementation expressions(Z ), ghost expressions(S) and linear
expressions. Implementation expressions are those expressions that
are executed unchanged by the underlying abstract machine. Ghost
expressions are expressions that are used to help specify the behav-
ior of programs, but are not needed at run time and hence will be
erased by the erasure translation. Ghost expressions may include or
depend upon implementation expressions, but implementation ex-
pressions may not depend upon ghost expressions. Linear expres-
sions are expressions that involve linear maps. These expressions
are partially erased: the erasure translation replaces references to
linear maps with references to the single underlying heap. Linear
expressions must be constrained to ensure they are not copied.

For the purposes of this paper, we segregate the different sorts
of expressions using their types. More specifically, theint type is
our onlyimplementation type. The typestot andset are ourghost



impl exps Z ::= x | n | Z1 + Z2

ghost exps S ::= e
statements C ::= x := Z | x1 :=L x2 | x1 :=G S

| varx:τ inC | skip | C1;C2

| ifZ thenC1 elseC2

| while [F ]Z doC
| assertF | x3 := g(x1, x2)
| x1 :=L x2[Z ] | x[Z1] :=L Z2

| x1 := x2@S
| assume dom(x1) ∩ dom(x2) = ∅

mod clause mod ::= {x1, . . . , xk}

fun types σ ::= ∀arg1:τ1, arg2:τ2.F1
mod
−→ ∃ret:τ3.F2

mods mv ::= [E; Finv; g:σ = C ]
mod env′s M ::= · | M ,mv
states Σ ::= (M ; E)
programs prog ::= (Σ;C )

Figure 10. Syntax of Programs

types. The typelin is our linear type. We writeimpl(τ) whenτ
is an implementation type,ghost(τ) whenτ is a ghost type and
linear(τ) whenτ is a linear type. We writenonlinear(τ) when
τ is not a linear type. We also use these predicates over closed
values, as the type of a closed value is evident from its syntax.

StatementsC include standard elements of any imperative lan-
guage: assignment,skip, sequencing, conditionals, while loops,
asserts, function calls and local variables. We assume local vari-
ables and other binding occurrences alpha-vary as usual. We re-
quire function arguments be variables to enable a slight simplifica-
tion of the verification rules. In addition to a normal assignment,
we include a linear assignment and a ghost assignment. Opera-
tionally, the linear assignment not only assigns the source to the tar-
get, but it also assigns the empty map to the source to ensure loca-
tions are not copied and the disjoint domains invariant is preserved.
The ghost assignment acts as an ordinary assignment, though the
language type system will prevent implementation types from de-
pending upon it.

To read from locationZ in total mapx2 and assign that value
to variablex1, programmers use the statementx1 := x2[Z ]. To
update locationZ1 in total mapx with valueZ2, programmers use
the statementx[Z1] := Z2. Analogous statements for linear maps
are superscripted with the characterL. The remaining statements
are particular to the language of linear maps. The statementx1 :=
x2@S transfers the portion of linear mapx2 with domainS to
x1. Finally, assume dom(x1) ∩ dom(x2) = ∅ is a no-op that
introduces the fact that two linear maps have disjoint domains into
the theorem-proving context.

Modulesmv consist of a private environment, an invariant and,
for simplicity, a single, non-recursive function. These functions are
declared to have a nameg, a typeσ and a bodyC . For simplicity
again, functions are constrained to take two arguments, where the
first is non-linear and the second is a linear map. The first argument
is immutable within the body of the function and the second is a
mutable input-output parameter. The argument variablesarg1 and
arg2 may appear free in the preconditionF1, the postconditionF2

and the body of the function. Sincearg1 is immutable in the body
of the procedure, its value in the postcondition is the same as its
value on entry to the procedure. Sincearg2 is mutable in the body
of the procedure, its value in the postcondition isnot necessarily
the same as its value on entry to the procedure – its value will
reflect any effects that occur during execution of the procedure. The
result variableret may appear free in the postcondition and may be
assigned to in the function body. The setmod on the function type

arrow specifies the variables that may be modified during execution
of the function. The collection of constraints on the form of a
function signature are specified using a judgment with the form
Γ ⊢ σ (not shown). For convenience, we often refer to a module
using the name of the function that it contains. For instance, given
a list of modulesM , we select the module containing the function
g using the notationM (g). We assume the same function nameg
is never used twice in a list of modules.

A complete program consists of stateΣ and the statementC to
execute. A stateΣ = (M , E) is a list of modulesM paired with a
global environmentE. We assume no variablex is bound both in
the global environmentE and in some module local environment
in M (alpha-converting where necessary). We let|Σ|env be the
environment formed by concatenating the module environments
to the global environment fromΣ. We also lift most operations
on environments to operations on states in the obvious way. For
instance,Σ[x] looks up the value bound tox in any environment in
Σ andΣ[x = v] updates variablex with v in any environment in
Σ. Σ, x = v extends the global environment inΣ with the binding
x = v assumingx does not already appear inΣ. Finally, [[e1]]Σ
abbreviates[[e1]]|Σ|env

andΣ |= F abbreviates|Σ|env |= F .

3.3 The Program Logic

The program logic is defined by two primary judgment forms: one
for statements and one for modules. The judgment for verification
of statements has the formG; Γ;mod ⊢ {F1}C{F2}. Here,G is a
function context that maps function variables to their types,Γ is a
value type environment that maps value variables to their types and
mod is the set of variables that may be modified by the enclosed
statement. Given this context,F1 is the statement precondition,C
the statement to be verified, andF2 is the postcondition. The rules
for this judgement form are given in figures 11 and 12.

Figure 11 presents the most basic rules for statement verifica-
tion including the rule of consequence and the frame rule. This fig-
ure contains two rules for assignments: (Asgn) and (Ghst). (Asgn)
handles assignment for implementation types and (Ghst) handles
assignments for ghost types. The rules are identical, save the type
checking component. They are separated to simplify the definition
of the erasure translation, which will delete the ghost assignment
but leave the implementation assignment untouched. The rule for
variables in this figure is standard, though it applies only to intro-
duction of variables with non-linear type. Linear variable declara-
tions (as well as linear assignments) will discussed shortly. We have
omitted rules forskip, sequencing, if statements, and while loops
as they are standard.

Figure 12 presents the verification rules that are concerned with
maps and function calls. The first rule in the figure is the linear as-
signment rule (Asgn Lin). This rule demands that the variablex1

is the empty map prior to assignment andx2 is the empty map af-
ter assignment. The quantified statement in the precondition of the
rule states thatx2 may be assignedanyempty linear mapx′

2 (i.e.,
a linear map with empty domain and any underlying total map).
These constraints ensure that an assignment neither copies linear
map addresses (thereby preserving the disjoint domains invariant)
nor overwrites them (thereby simplifying the correspondence be-
tween linear maps and heaps in the erasure translation). Note also
that bothx1 andx2 are considered modified by this statement. The
second rule (Var Lin) illustrates that declaring a linear variable is
the same as declaring a non-linear variable except for the constraint
that the linear variable initially contains an empty linear map.

Rules (Map Select) and (Map Update) are standard rules for
processing total maps. Rules (Linear Map Select) and (Linear Map
Update) are modeled after their nonlinear counterparts, with one
addition: before using a linear map, a programmer must prove that
their linear map access falls within the domain of the linear map.



G; Γ;mod ⊢ {F1}C{F2}

Γ ⊢ x1 : lin Γ ⊢ x2 : lin x1, x2, x
′
2 are distinct variables x1, x2 ∈ mod x′

2 6∈ FV (F )

G; Γ;mod ⊢ {dom(x1) = ∅ ∧ ∀x′
2:lin.dom(x′

2) = ∅ ⇒ F [x′
2/x2][x2/x1]}x1 :=L x2{F}

(Asgn Lin)

x 6∈ (dom(Γ) ∪ FV (F2)) G; Γ, x:lin;mod ∪ {x} ⊢ {F1}C{F2}

G; Γ;mod ⊢ {∀x:lin.dom(x) = ∅ ⇒ F1}varx:lin inC{F2}
(Var Lin)

Γ ⊢ x1 : int Γ ⊢ x2 : lin Γ ⊢ Z : int x1 ∈ mod

G; Γ;mod ⊢ {Z ∈ dom(x2) ∧ F [selL (x2,Z )/x1]}x1 :=L x2[Z ]{F}
(Linear Map Select)

Γ ⊢ Z1 : int Γ ⊢ Z2 : int Γ ⊢ x : lin x ∈ mod

G; Γ;mod ⊢ {Z1 ∈ dom(x) ∧ F [updL (x,Z1,Z2)/x]}x[Z1] :=L Z2{F}
(Linear Map Update)

Γ ⊢ x : lin Γ ⊢ y : lin Γ ⊢ S : set x, y ∈ mod

G; Γ;mod ⊢ {S ⊆ dom(y) ∧ F [lin(ite(S, map(y), map(x)), dom(x) ∪ S)/x][lin(map(y), dom(y) − S)/y]}x := y@S{F}
(Transfer)

Γ ⊢ x1 : lin Γ ⊢ x2 : lin x1, x2 are distinct variables

G; Γ;mod ⊢ {dom(x1) ∩ dom(x2) = ∅ ⇒ F}assumedom(x1) ∩ dom(x2) = ∅{F}
(Assume)

G(g) = ∀arg1:τ1, arg2:τ2.F1
mod

′

−→ ∃ret:τ3.F2

Γ ⊢ x1 : τ1 Γ ⊢ x2 : τ2 Γ ⊢ x3 : τ3 (mod ′ ∪ {x2, x3}) ⊆ mod x1, x2, x3 6∈ FV (G(g))

G; Γ;mod ⊢ {F1[x1/arg1][x2/arg2]}x3 := g(x1, x2){F2[x1/arg1][x2/arg2][x3/ret]}
(Call)

Figure 12. Program Logic: Linear Statements and Function Calls

G; Γ;mod ⊢ {F1}C{F2}

Γ |= F1 ⇒ F ′
1

G; Γ;mod ⊢ {F ′
1}C{F ′

2}
Γ |= F ′

2 ⇒ F2

G; Γ;mod ⊢ {F1}C{F2}
(Consequence)

G; Γ;mod − FV (R) ⊢ {F1}C{F2}

G; Γ;mod ⊢ {F1 ∧ R}C{F2 ∧ R}
(Frame)

Γ ⊢ x : τ impl(τ) Γ ⊢ Z : τ x ∈ mod

G; Γ;mod ⊢ {F [Z/x]}x := Z{F}
(Asgn)

Γ ⊢ x : τ ghost(τ) Γ ⊢ S : τ x ∈ mod

G; Γ;mod ⊢ {F [S/x]}x :=G S{F}
(Ghst)

Γ ⊢ F ′ : prop

G; Γ;mod ⊢ {F ′ ∧ F}assertF ′{F}
(Assert)

x 6∈ (dom(Γ) ∪ FV (F2)) nonlinear(τ)
G; Γ, x:τ ;mod ∪ {x} ⊢ {F1}C{F2}

G; Γ;mod ⊢ {∀x:τ.F1}varx:τ inC{F2}
(Var)

Figure 11. Program Logic: The Basics (Selected Rules)

The (Transfer) rule first checks that the two maps in consider-
ation,x (the map transferred to) andy (the map transferred from)
can both be modified. If they can be modified, the Hoare rule itself
acts as a specialized assignment rule where a new map that acts asy
onS andx elsewhere (i.e.,lin(ite(S, map(y), map(x)), dom(x)∪
S)) is assigned tox and another new map that acts asy, but has a
smaller domain (i.e.,lin(map(y), dom(y) − S)) is assigned toy.

The second last rule (Assume) allows the theorem proving en-
vironment to be extended with the fact that the domains ofx1 and
x2 are disjoint, providex1 andx2 are distict linear map variables.
This rule directly exploits the disjoint domains invariant.

The last statement rule is (Call). This rule looks up the function
signature in the context and checks its arguments and result have
the appropriate types. It also verifies that the variables modified by
the function (mod ′) are subset of those that may be modified in
this context (mod ). Finally, it checks that bothx2 andx3 may be
modified. The variablex3 is clearly modified as it is the target of
an assignment. However, beware thatx2 is also modified as it is
a linear map and its entire contents aretransferredto the second
parameter of the call upon entry to the function, and then upon
return, a mutated linear map istransferredback. Such transfers are
necessary (as opposed to copies) to maintain the disjoint domains
invariant. The first argument to the callx1 is not mutated: as a
non-linear value, it may simply be copied into the parameter. To
simplify our formulation of the preconditions and postconditions
for the triple, we add the constraint that none ofx1, x2 or x3

may appear free in the function signature (either the precondition,
postcondition or modifies clause).

Figure 13 defines the judgment form for verification of mod-
ules: G; Γ ⊢ mv ⇒ G′. Intuitively, the module contents are
type checked in one environment (G; Γ) and the result is an ex-
tended context (G′) for the newly declared functions. For simplic-
ity, all module-local variables are private (as opposed to public),



and hence, unlikeG, Γ is not extended. The most interesting ele-
ments of the rule are:

• The private module environment must have some typeΓE .

• The module invariantFinv is checked for well-formedness with
respect only to the private environment (ΓE ⊢ Finv : prop).
This check impliesFinv may only contain the private variables
of the current module, which may not be modified by code
outside the module.

• The module invariant is valid in the initial environmentE.

• When checking the body of the module function,Finv is as-
sumed initially and proven upon exit. However,Finv does not
appear inσ, meaning it is hidden from module clients.

• The module function may modify any variable in its declared
modifies clause as well as the return variables and the private
environment. The domain of the private environment does not
appear in the function modifies cause (or elsewhere in the func-
tion signature), meaning these variables are hidden from clients.

Figure 13 contains definitions for several further judgement
forms for verifying lists of modules, states and finally programs
as a whole. The judgementΓ ⊢ M ⇒ G simply chains together
the verification of all modulesM in sequence. This judgment disal-
lows mutual recursion amongst modules. The issues involved with
mutual recursion, temporarily broken module invariants, and reen-
tracy are orthogonal to issues involving linear maps. The judgment
⊢ Σ ⇒ G; Γ verifies a state, which includes both modules and
global environment. Finally, a programprog is said to be well-
formed and to establish a post-conditionF2 when the judgment
⊢ (Σ;C ) : F2 is valid. This judgment verifies the underlying
stateΣ and then uses the generated verification context to check
the statementC satisfies some appropriate Hoare triple with post-
conditionF2.

The program checking rule relies on one other judgment⊢
E wf, whose definition we have omitted, but is easy to define. This
latter judgment ensures that the initial environment satisfies the dis-
joint domains invariant. In practice, a sensible way to perform this
global disjoint domains check is to check that all declared linear
map variables are initially bound to the empty map (as we have
done in our examples), save one, which is bound to thepriomordial
map, a linear map initially containing all addresses. Given a single
private priomordial map, it is easy to write an allocator module that
hands out addresses to other modules according to any invariant the
programmer chooses. In theory, however, it is irrelevant what spe-
cific initial conditions are chosen provided that the disjoint domains
condition holds.

3.4 Operational Semantics

The operational semantics of our language is specified as a judg-
ment with the formprog −→ prog . To facilitate the proof of sound-
ness, we extend the syntax of statements with one additional state-
ment with the formg[C ]. This new statement form arises when a
functiong is called and execution begins ong’s body (which will be
the statementC inside the square brackets). Theg[·] annotation has
no real operational effect, but its presence serves as a reminder that
code withing[·] has access to the private variables ofg’s module
and must establish the invariant forg’s module prior to completion.
Figure 14 presents the formal rules. Operational rules for sequenc-
ing, if, and while are standard and were omitted.

The first point of interest in the operational semantics involves
the linear assignment rule (OS Asgn Lin). This instruction resets
the source of the linear assignment to the empty map to prevent
duplication of addresses and to maintain the disjoint domains in-
variant. In the (OS Var) rule, we assume the existence of a function

I that maps types to sets of legal initial values for that type. For
integers, sets, and total maps, any initial value may be generated.
For linear maps, only the empty map may be generated.

The primary effect of rule (OS Call1) is to look up the module
corresponding to the functiong in the program state, evaluate the
function arguments, and replace the call withg[C ] whereC is
the body ofg. In addition, however, the call creates environment
bindings for the argument and result variables, sets the linear map
argumentx2 to the empty map and sets up the instructions to copy
the resultsret and arg2 back to variables visible in the current
context (x3 andx2 respectively). A linear assignment is used to
copy arg2 back tox2 after the call, ensuring that at no point is
the disjoint domains invariant ever broken. Rule (OS Call2) allows
ordinary execution underneath theg[·] annotation and rule (OS
Call3) discards theg[·] annotation when control leaves that scope.

The remaining rules are less interesting. We leave the reader to
investigate the specifics.

3.5 Soundness

The first key property of our language is that it issound. In other
words, execution of verified programs never encounters assertion
failures, or fails domain checks on linear maps and, if execution
terminates, the postcondition will be valid in the final state. The
following definition and theorem state these properties formally.
The relationprog −→∗ prog is the reflexive, transitive closure of
prog −→ prog .

Definition 1 (Stuck Program)
A program(Σ;C ) is stuckif C is notskip and there does not exist
another state(Σ′;C ′) such that(Σ;C ) −→ (Σ′;C ′) .

Theorem 2 (Soundness)
If ⊢ (Σ;C ) : F2 and(Σ;C ) −→∗ (Σ′;C ′) then(Σ′;C ′) is not
stuck and ifC ′ = skip thenΣ′ |= F2 .

The proof is carried out using standard syntactic techniques
and employs familiar Preservation and Progress lemmas. We have
checked all the main top-level cases for these lemmas by hand, but
have assumed a number of necessary underlying lemmas such as
substitution, weakening, and some others are true without detailed
proof. We are confident in our results because the difficult elements
of proof have nothing to do with linear maps at all. Rather, difficul-
ties in the proof revolved around the structure of modules, and, in
particular, setting up the technical machinery to track the scopes of
private module variables and the validity of module invariants as
functions are called.

3.6 Erasure

A second key property of our language is that all verified programs
can be implemented efficiently as ordinary imperative programs.
More precisely, we prove that our original operational semantics
on linear maps is equivalent to one in which ghost expressions are
erased and linear maps are replaced by accesses to a single, global
heap. To make these ideas precise, we define an erasure function
that mapslinear maps programsinto heap-based programs. The
main work done by the program erasure function is accomplished
by subsidiary functions that erase environments and erase code.

Environment erasure is relatively straightforward, and hence
the formal definitions have been omitted. Briefly, the function
erase(·) traverses all bindings in an environment, saves the imple-
mentation bindings and discards all others (either ghost bindings
or linear bindings). An auxiliary functionflatten(·) traverses all
bindings in an environment, discards all non-linear bindings and
uses the linear ones to build a total map (the heap) that acts as the
union of all the linear ones on their respective domains. Hence,



G; Γ ⊢ mv ⇒ G′

σ = ∀arg1:τ1, arg2:τ2.F1
mod

′

−→ ∃ret:τ3.F2 Γ ⊢ σ
g 6∈ dom(G) (dom(ΓE) ∪ {arg1, arg2, ret}) ∩ dom(Γ) = ∅

⊢ E : ΓE ΓE ⊢ Finv : prop E |= Finv

G; Γ, ΓE , arg1:τ1, arg2:τ2, ret:τ3;mod ′ ∪ dom(ΓE) ∪ {arg2, ret} ⊢ {F1 ∧ Finv}C{F2 ∧ Finv}

G; Γ ⊢ [E; Finv; g:σ = C ] ⇒ G, g:σ
(Mod)

Γ ⊢ M ⇒ G

Γ ⊢ · ⇒ ·
(Mod Env Emp)

Γ ⊢ M ⇒ G′

G′; Γ ⊢ mv ⇒ G′′

Γ ⊢ M ,mv ⇒ G′′
(Mod Env)

⊢ Σ ⇒ G; Γ

⊢ E : Γ Γ ⊢ M ⇒ G
⊢ (M ; E) ⇒ G; Γ

(State)

⊢ prog : F2

⊢ Σ ⇒ G; Γ ⊢ |Σ|env wf Γ ⊢ F1 : prop Γ ⊢ F2 : prop Σ |= F1 G; Γ; dom(Γ) ⊢ {F1}C{F2}

⊢ (Σ;C ) : F2
(Programs)

Figure 13. Program Logic: Modules, States and Programs

(Σ; x := Z ) −→ (Σ[x = [[Z ]]Σ]; skip)
(OS Asgn)

(Σ; x1 :=L x2) −→ (Σ[x1 = [[x2]]Σ][x2 = [ ]∅]; skip)
(OS Asgn Lin)

(Σ; x :=G S) −→ (Σ[x = [[S]]Σ]; skip)
(OS Asgn Ghst)

v ∈ I(τ) x 6∈ dom(|Σ|env )

(Σ; varx:τ inC ) −→ (Σ, x = v;C )
(OS Var)

Σ |= F

(Σ; assertF ) −→ (Σ; skip)
(OS Assert)

Σ(g) = [E′; Finv; g:∀arg1:τ1, arg2:τ2.F1
mod

′

−→ ∃ret:τ3.F2 = C ] arg1, arg2, ret 6∈ dom(|Σ|env ) v3 ∈ I(τ3)

(Σ; x3 := g(x1, x2)) −→ ((Σ[x2 = [ ]∅]), arg1=[[x1]]Σ, arg2=[[x2]]Σ, ret=v3; g[C ]; x3 := ret; x2 :=L arg2)
(OS Call1)

(Σ;C ) −→ (Σ;C ′)

(Σ; g[C ]) −→ (Σ′; g[C ′])
(OS Call2)

(Σ; g[skip]) −→ (Σ; skip)
(OS Call3)

[[Z ]]Σ = n [[x2]]Σ = f c
s n ∈ s

(Σ; x1 :=L x2[Z ]) −→ (Σ[x1 = f (n)]; skip)
(OS Linear Map Select)

[[x]]Σ = fs n1 ∈ s [[Z1]]Σ = n1 [[Z2]]Σ = n2

(Σ; x[Z1] :=L Z2) −→ (Σ[x = (λx.ifx = n1 thenn2 else f x)s]; skip)
(OS Linear Map Update)

[[x1]]Σ = fs1
[[x2]]Σ = hs2

[[S]]Σ = s3

(Σ; x1 := x2@S) −→ (Σ[x1 = (λx.ifx ∈ s3 thenh x else f x)s1∪s3
][x2 = hs2−s3

]; skip)
(OS Transfer)

(Σ; assume dom(x1) ∩ dom(x2) = ∅) −→ (Σ; skip)
(OS Assume)

Figure 14. Operational Semantics (Selected Statements)



given an execution environmentE for linear maps programs, the
corresponding execution environment for heap-based programs is
[heap = flatten(E)], erase(E).

Figure 15 explains how to erase code. The key elements of
the erasure function on code are: (1) Select and update operations
on linear maps become select and update operations on theheap
variable; (2) Linear map variable declarations, linear map proce-
dure parameters, assignments between linear maps, transfer oper-
ations, and assume statements are all converted intoskip state-
ments; and (3) Assertion statements also disappear. According to
soundness, verified programs never suffer from assertion failures
and hence erasing assertions will not cause deviations in opera-
tional behaviour.

We lift the erasure functions on environments and statements
to an erasure function on programs in a natural way. Given these
functions, we are now able to prove the following key theorem. As
with our other theorem, we have checked the main high-level cases
by hand. These high-level cases depend upon a number of simple
auxiliary lemmas that we have assumed true without detailed proof.

Theorem 3 (Erasure)
If ⊢ prog : F2 then
prog −→∗ prog ′ iff erase(prog) −→∗ erase(prog ′)

4. Extensions for Nested Data Structures
In this section, we extend our programming language to handle
nested data structures. The main difficulty in writing programs
that traverse and modify nested data structures is that the portion
of the heap accessed by the program is discovered dynamically
as the program executes and chases pointers. To express such a
programming idiom, we need the ability to store linear maps as
values in the heap. Therefore, we introduce two new linear types
rlin andpair defined mutually-recursively in terms of each other.

rlin = int ⇀ pair
pair = int * rlin

Unlike lin which represents a linear map fromint to int, rlin
represents a linear map fromint to pair, wherepair itself is
a pair comprising anint value and anrlin value. The first and
second components of a pairp are accessed asp.1 andp.2.

Sincerlin is a linear map andpair contains a linear map as
one of its components, programming with these types is subject
to restrictions similar to those with the typelin. The initial value
of a rlin variable has empty domain; the initial value of apair
variable is a pair whose second component has empty domain. The
semantics for passing arguments of these two types to procedure
calls are exactly the same as that forlin.

The manipulation ofrlin and pair values needs two new
primitive operations,(n,l) := p andp := l[n], where the type
of n is int, l is rlin, andp is pair. The first operation swaps
the contents of the pairs(n,l) andp; the second operation swaps
the contents ofp with l[n]. The semantics ofp := (n,l) and
l[n] := p are exactly the same as(n,l) := p andp := l[n],
respectively. The choice of the variation to use is simply a matter
of conceptual intent. Please observe that these swap operations,
like transfer, never copy addresses and hence always preserve the
disjoint domains invariant.

The addition ofrlin andpair is a conservative extension of
the language defined in Section 3. The existing erasure operations
on the state and the program text are extended to deal with the new
types and primitive operations. Allrlin variables are deleted and
eachpair variable is converted to anint variable. The operations
(n,l) := p and p := (n,l) are erased to the parallel assign-
mentn,p := p,n; the operationsp := l[n] andl[n] := p are

eraseΓ(C ) = C ′

eraseΓ(x1 :=L x2) = skip

eraseΓ(x :=G S) = skip

impl(Γ(x1)) impl(Γ(x3))

eraseΓ(x3 := g(x1, x2)) = x3 := g(x1)

impl(Γ(x1)) ghost(Γ(x3))

eraseΓ(x3 := g(x1, x2)) = g(x1)

ghost(Γ(x1)) impl(Γ(x3))

eraseΓ(x3 := g(x1, x2)) = x3 := g()

ghost(Γ(x1)) ghost(Γ(x3))

eraseΓ(x3 := g(x1, x2)) = g()

impl(τ) eraseΓ,x:τ (C ) = C ′

eraseΓ(varx:τ inC ) = varx:τ inC ′

ghost(τ) or linear(τ) eraseΓ,x:τ (C ) = C ′

eraseΓ(varx:τ inC ) = C ′

eraseΓ(assertF ) = skip

eraseΓ(x1 :=L x2[Z ]) = x1 := heap[Z ]

eraseΓ(x[Z1] :=L Z2) = heap[Z1] := Z2

eraseΓ(x1 := x2@S) = skip

eraseΓ(assume dom(x1) ∩ dom(x2) = ∅) = skip

Figure 15. Erasing Statements (Selected Rules)

erased to the parallel assignmentp,l[n] := l[n],p. All lin and
rlin values in the state are still flattened into a single total map
heap. However, the flatten function now has to traverse the recur-
sive structure ofrlin andpair to collect all domain elements.

4.1 Binary tree traversal

Figure 16 shows the code for traversing a binary tree that stores
int data values; the goal is to increment the data value at each
node. The implementation is a recursive procedureIncrement
which takes a single argumentp of typepair. The precondition and
postcondition ofIncrement uses a recursive predicateInv(c,p)
whose definition is given at the top of the figure. The definition of
Inv(c,p) first extracts the contents of thep into n andl. If n =
nil, we have a valid binary tree, sotrue is returned. Otherwise,
true is returned only if the three contiguous addresses in the range
[n,n+3) are in the domain ofl, the first address contains the data
valuec, and the second and third addresses recursively point to the



function Inv(c: int, p: pair) returns (bool)
{

let (n,l) = p in
if (n = nil)

true
else

[n,n+3) ⊆ dom(l) ∧ Int(l[n]) = c ∧
Inv(c,l[n+1]) ∧ Inv(c,l[n+2])

}

procedure Increment(p: pair)
requires Inv(0,p)
ensures Inv(1,p)

{
var n: int, l: rlin, t: pair in

(n,l) := p;
if (n != nil) {

t := l[n]; t.1 := t.1 + 1; l[n] := t;
t := l[n+1]; call Increment(t); l[n+1] := t;
t := l[n+2]; call Increment(t); l[n+2] := t;

}
p := (n,l);

}

Figure 16. Iteration over a binary tree

mod [
function List(list: pair) returns (bool)
{

let (n,l) = list in
n != nil ∧ n ∈ dom(l) ∧
let (head,tail) = l[n] in

Btwn(tail,head,nil) = dom(tail) ∪ {nil}
}

procedure list new(list: pair)
ensures List(list)

procedure list insert(list: pair)
requires List(list)
ensures List(list)

]

Figure 17. List module

left and right sub-trees. Note that expressionInt(e) returns the
first (integer) component of paire.

With that background, it is straightforward to understand the
implementation ofIncrement. The code opens the components of
p into variablesn andl; if n != nil, the data value is incremented
and recursive calls to the left and right sub-tree are made; finally,
the contents ofn andl are put back intop.

4.2 Implementing abstract data types

Section 4.1 addressed the difficulty of programming an unbounded
data structure. This section addresses the difficulty of programming
a data structure whose representation uses another abstract data
structure implemented separately. Figure 17 shows a list module
that provides to its clients the ability to create a new list using the
procedurelist new and to insert a value into a previously created
list using the procedurelist insert; to keep the example simple,
we have deliberately elided the second argument tolist insert,
which provides the value to be inserted into the list. The represen-
tation of each list is apair value that satisfies theList predicate.
The definition of this predicate is crucial for proving the correct-
ness of the procedures inList; consequently, the precondition of
list insert requires that the input list value satisfy this predi-

procedure malloc(l: rlin) returns (n: int)
requires dom(l) = ∅
ensures n != nil ∧ n ∈ dom(l)

mod [
function Set(set: pair) returns (bool)
{

let (n,l) = set in
n != nil ∧ n ∈ dom(l) ∧ List(l[n])

}

procedure set new(set: pair)
ensures Set(set)

{
var n: int, l: rlin, list: pair in
call list new(list);
call n := malloc(l);
l[n] := list;
set := (n,l);

}

procedure set insert(set: pair)
requires Set(set)
ensures Set(set)

{
var n: int, l: rlin, list: pair in
(n,l) := set;
list := l[n];
list insert(list);
l[n] := list;
set := (n,l);

}
]

Figure 18. Set module

cate. However, we assume the definition of theList predicate is
private to the implementation of theList module. The module im-
plementer may change the internal definition ofList and be sure
that any proofs of client code correctness remain valid.

Figure 18 shows a set module that implements each set returned
by set new in terms of a list value returned bylist new. The rep-
resentation of each set is a value of type pair that satisfies the pred-
icateSet. A pair (n,l) satisfiesSet iff n is different fromnil, n
is a member ofdom(l), andl[n] satisfies theList predicate. The
precondition ofset insert in terms ofList allows us to prove
the safety of the call tolist insert from set insert. The use
of theList predicate in the definition of theSet predicate does not
violate the principle of information hiding, since the definition of
theList predicate is private to the list module.

5. Related Work
There are four main areas of related work: (1) research on the
programming language Euclid, (2) research on verification through
the use of dynamic frames, (3) research on separation logic and (4)
research on linear type systems.

5.1 Euclid

Euclid [19, 22] was an imperative programming language derived
from Pascal. It was developed in the late 70s and early 80s, and
was designed with the hope of facilitating program verification.
In order to manage dynamically allocated data structures, Euclid
introduced the idea of acollection. There are only few ways to use a
collection: one may allocate a new object in a collection, deallocate
an object in a collection, look up an object in a collection using a
pointer to it and pass a collection to a procedure. The static type of
a pointer referred to the collection that contained it. The interesting



thing about collections is that they satisfy the disjoint domains
invariant: two pointers into different collections are guaranteed
to point to different objects. Euclid’s creators rightly observed
that this restriction would facilitate reasoning about pointers and
their aliases. However, Euclid’s collections are substantially more
limited than linear maps as locations could not be transferred from
one collection to another, collections could not be returned from
functions, and there was no support for recursion or nesting such as
that provided by our rlin and pair types. Consequently, many of the
examples presented in this paper could not be supported in Euclid.
In addition, the definition of our language and program logic is
presented quite differently from Euclid’s — we have the benefit
of 30 years of technical refinements in programming language
semantics to lean on. The design of our program logic also takes
recent advances in theorem proving technology into account.

In 1995, Utting [29] again struck upon the idea of a linear map,
which he called a local store. Utting considers the idea in the con-
text of a refinement calculus and points out that Euclid’s collec-
tions are insufficiently flexible without the ability to transfer loca-
tions from one store to another. He gives an example of using local
stores to refine a functional specification of a queue data structure
into one that uses pointers. Utting does not discuss the technical
details of how a Hoare proof theory should work (omitting, for in-
stance, discussion of the frame and anti-frame rules and the role
of assume statements in proofs, and giving only English recom-
mendations on how to enforce anti-aliasing rules), nor does he give
an operational semantics for his language, a proof of safety, or evi-
dence that local stores facilitate automated reasoning using theorem
provers (the modern SMT solvers we use, with their extended the-
ory of arrays [9], were not available at that time). He also does not
consider nested or layered data structures such as those supported
by our rlin and pair types.

5.2 Dynamic Frames

In more recent years, researchers have developed a variety of pow-
erful new verification tools, proof strategies and experimental lan-
guage designs based on classical logics, SMT solvers and verifica-
tion condition generation. One such research thread is based on the
use ofdynamic frames[17]. A frame, also known as aregion or
footprint, is the set of heap locations upon which the truth of a for-
mula depends. Intuitively, if the footprint of a formulaF is disjoint
from the modifies clause of a statementC , the validity ofF may
be preserved across execution ofC . In other words, careful use
of footprints gives rise to useful framing (and anti-framing) rules.
Kassios [17] began this line of research by developing a sophisti-
cated refinement calculus that uses higher-order logic together with
explicit frames. Leino [20] seized upon these ideas and turned them
into an effective new language for verification called Dafny. Dafny
compiles to Boogie [2], which in turn generates verification condi-
tions in first-order logic. Dafny is generally quite fast, has a set of
features suitable for doing full functional-correctness verifications,
and has been been used to verify a number of challenging heap-
manipulating programs. Finally, Banerjee, Naumann, and Rosen-
berg [1] have developed Region Logic, a further extension of the
idea of dynamic frames set in the context of Java. Region Logic in-
cludes a rich new form of modifies clause that captures the read,
write and allocation effects of a procedure in terms of regions.
Important components of Region Logic include a set of subtyp-
ing rules for region-based effects, a footprint analysis algorithm for
formulae and definitions of separator formulae, which are derived
from sets of effects.

Many of the ideas from dynamic frames and Region Logic
clearly show up in linear maps. In particular, the domains of lin-
ear maps seem analogous to the frames themselves. Moreover,
in Dafny and Region Logic, programmers explicitly manipulate

frames within the code using ghost variables and assignment in a
similar way to which we use transfer operations. There do appear
to be at least two key differences between the systems though:
(1) Linear maps obey the disjoint domains invariant whereas dy-
namic frames and regions do not obey any similar ”disjoint frames”
invariant. Instead, programmers use logical formulae to express the
relationships between various frame variables. (2) Linear maps are
pairs of a domain (or frame) and a total map. One consequence of
this latter fact is that every reference (select or update) to a lin-
ear map unavoidably mentions its domain/frame. The main effect
of these two global design differences is that they lead to a sub-
stantial simplification of the overall verification system: effects be-
come standard modifies clauses, the ”footprint analysis” becomes
routine identification of the free variables of a formula, frame and
anti-frame rules are unchanged from the classic rules, and finally,
there is no disruption to the overarching judgmental apparatus for
verification condition generation.

A variant of the dynamic frames approach is theimplicit dy-
namic framesapproach, which was developed by Smans, Jacobs
and Piessens [26] for use in object-oriented programs and by Leino
and Peter M̈uller [21] for use in concurrent programs. This ap-
proach involves writing pre- and post-conditions that containacces-
sor formulaesimilar to those found in the capability calculus [32],
alias types [27] or separation logic [15, 25]. The verification system
will examine the accessor formulae and then translate them into a
series of imperative statements that may be processed by an under-
lying classical verification condition generation system and solved
by a classical SMT solver. These imperative statements perform a
similar role as our transfer statements. In the case of Smans’s work,
they transfer access rights from the caller to the callee during func-
tion invocation, and vice-versa on return. In the case of Leino’s
work, they also tranfer privileges to access shared memory objects
when locks are acquired and released. In comparison, linear maps
are a somewhat simpler, but lower-level abstraction. Consequently,
there is no need to translate formulae involving linear maps into
lower-level objects; they may be interpreted as ordinary first-order
formulae as they are. On the other hand, programs that use linear
maps are more verbose than programs that use implicit dynamic
frames because of the use of explicit transfer operations. An inter-
esting direction for future research would be to explore compila-
tion of implicit dynamic frames into linear maps. Ideally, such a
compilation strategy would be able to avoid the universally quanti-
fied framing axioms that are used by implicit frames to relate heap
states before and after function calls, as such quantified formulae
are sometimes expensive for a theorem prover to discharge.

5.3 Separation Logic

Over the past decade, many researchers have devoted their attention
to the development of the theory and implementation of separa-
tion logic [15, 25, 3, 12, 16], an effective framework for supporting
modular reasoning in imperative programs. Separation logic has
achieved its goals by introducing a new language of assertions that
includesF1 ∗ F2 andF1−∗F2. Unfortunately, this new language of
assertions is not directly compatible with powerful classical theo-
rem proving engines such as Z3 [8], as such engine process classi-
cal formulae. One of the goals of our work is to give programmers
access to the same kind of proof strategies that are used in separa-
tion logic, but to do so only with the most minimal extension over
a classical theorem proving and verification condition generation
environment.

Despite the differences, it is useful to try to understand the
connections between linear maps and separation logic more deeply.
One informal observation is that a separating conjunction of precise
formulaeF1 ∗ F2 ∗ · · · ∗ Fk can be modelled in our context as an
ordinary conjunctionF1(H1)∧F2(H2)∧· · ·∧Fk(Hk) where each



formulaFi refers to a distinct linear map variableHi. In separation
logic, the separating conjunction ensures that the footprints of each
Fi (i.e., the heap locations upon which theFi depend) are disjoint.
In our case, the use of distinct program variablesHi together with
the disjoint domains invariant guarantees a similar property. A
second observation is that when given a separation logic formulaF ,
one will often use the rule of consequence to proveF1∗F2 and then
call a functiong with preconditionF2, saving the information inF1

across the call using Separation Logic’s frame rule. In our case, a
similar effect may be achieved using a transfer operation. IfF (H)
is true initially for some linear mapH, then the contents ofH may
be transferred to two new disjoint linear mapsH1 andH2, which
satisfyF1(H1) ∧ F2(H2). Next,H2 can be passed as a parameter
to g, satisfying preconditionF2(H2), andF1(H1) (which contains
variables disjoint from the parameters ofg) can be saved across the
call. These observations suggest that it may be possible to compile
certain precise fragments of separation logic to linear maps, which
would open up new implementation opportunities for the logic
using classical theorem proving tools.

Another way past researchers have considered implementing
separation logic formulae is by compiling them directly to first-
order logic. For example, Calcagnoet al. [6] show how to com-
pile propositional separation logic with equality and the points-to
predicate into first-order logic without function symbols, which is
PSPACE-complete. However, we do not know of implementations
of this work so it remains to be seen how this approach will perform
in practice. Instead of using a compilation strategy, separation logic
provers used in practice typically work on subsets of full separa-
tion logic and process the formulae directly as in work by Berdine
et al. [4]. One of the advantages to our approach is that through
classical SMT solvers such as Z3, we have access to a broad and
powerful collection of collaborating decision procedures including
sophisticated procedures for arithmetic, arrays and sets.

Finally, Nanevskiet al. [23] have developed powerful libraries
for reasoning about separation in Coq. In this work, like in the work
on linear maps, Nanevski eschews reasoning with separation-logic
formulae∗ and−∗. Instead, he develops a theory for working di-
rectly with heaps. One of the main contributions is the development
of an explicit operator for disjoint union and a demonstration that
proofs using this operator can be very compact. Nanevski’s work
is designed for interactive theorem proving in a higher-order logic
like Coq, but nevertheless, some of the reasoning principles might
translate to the kind of automated, first-order theorem proving en-
vironment for which linear maps were designed. This is certainly
an interesting direction for future research.

5.4 Linear Type Systems

One final source of inspiration for this work comes from linear
type systems [13, 30, 31]. In linear type systems, distinct variables
with linear type do not alias one another. Similarly, distinct linear
maps have disjoint domains. In addition, values with linear type are
neither copied nor discarded (prior to being used). Similarly again,
the contents of linear maps are neither copied nor discarded.2

Hence, although we do not use linear type systems directly in this
work, we use similar design principles to architect our language.
The linear in linear maps is a reminder of these shared principles.

More recently, linear type systems have been combined with
dependent types to form rich specification languages for reason-
ing about memory, or resources in general [32, 27, 10, 7]. The
most recent of these approaches, developed by Charguéraud and
Pottier, bears quite a number of similarities to work with linear

2 The reader may have noticed that a non-empty linear map may fall out of
scope. However, when it does so, it is not removed from the environment,
so operationally, the linear location is never really discarded.

maps. In particular, Charguéraud’s capabilities resemble linear
maps, and like in work on Euclid, or on region-based type sys-
tems [28], Chargúeraud’s pointer types include the type of the re-
gion or capability that they inhabit. Consequently, each pointer may
inhabit only one region (aka.,collection or linear map), and once
again, a variant of the disjoint domains invariant appears. Techni-
cally, however, there are quite a number of differences between the
two systems. In particular, verification of Charguéraud’s language
occurs by translating imperative, capability-based programs into
functional programs, which are then analyzed in detail in a theo-
rem proving environment for functional programs such as Coq.

6. Conclusions
Linear maps are a simple data type that may be added to imperative
programs to facilitate modular verification. Their primary benefits
are their simplicity and their compatibility with standard first-order
verification condition generators and theorem proving technology.
We hope their simplicity, in particular, will make it easy for other
researchers to study and build upon these new ideas.
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A. Appendix: Linear Maps Language Definition

This appendix defines the syntax, static semantics and operational semantics of the linear maps language in its entirety.

A.1 Syntax

expression variables x
function variables g
integers n
sets s
total maps f
linear maps ℓ ::= fs
types τ ::= int | tot | lin | set
values v ::= n | f | ℓ | s
logical exps e ::= x | v | e1 + e2 | sel(e1, e2) | upd(e1, e2, e3)

| ite(e1, e2, e3) | sel
L (e1, e2) | upd

L (e1, e2, e3)
| map(e) | dom(e) | lin(e1, e2) | {x | F}

formulae F ::= true | false | ¬F | F1 ∨ F2 | F1 ∧ F2

| F1 ⇒ F2 | ∃x:τ.F | ∀x:τ.F
| e1 = e2 | e1 ∈ e2

type environments Γ ::= · | Γ, x:τ
value environments E ::= · | E, x = v
function contexts G ::= · | G, g:σ

implementation exps Z ::= x | n | Z1 + Z2

ghost exps S ::= e
statements C ::= x := Z | x1 :=L x2 | x1 :=G S

| varx:τ inC | skip | C1;C2

| ifZ thenC1 elseC2

| while [F ]Z doC
| assertF | x3 := g(x1, x2) | g[C ]
| x1 :=L x2[Z ] | x[Z1] :=L Z2

| x1 := x2@S
| assume dom(x1) ∩ dom(x2) = ∅

modifies clause mod ::= {x1, . . . , xk}

function types σ ::= ∀arg1:τ1, arg2:τ2.F1
mod
−→ ∃ret:τ3.F2

modules mv ::= [E; Finv; g:σ = C ]
module environments M ::= · | M ,mv
states Σ ::= (M ; E)
programs prog ::= (Σ;C )

stack frames b ::= g[G; Γ; Finv]
stacks k ::= b1 · · · bn

stacks with a position K ::= b1 · · · b
∗
i · · · bn

Stack frames, stacks and stacks with a position do not appear in the body of the report. They are used in extended typing rules required
by the proof of soundness.

A.2 Notation

• Setss are defined using standard set-theoretic notation such as{x | x > 0}

• Total mapsf are defined using standard lambda calculus notation such asλx.x + 1.

• When linear mapℓ is the pairfs, we letmap(ℓ) refer to the underlying total mapf anddom(ℓ) refer to the underlying domains. We
write [ ]∅ to refer to the empty linear map: a linear map with the empty set as its domain andany map as its underlying total map.

• impl(τ) is true whenτ = int. impl(v) is true whenv = n.

• linear(τ) is true whenτ = lin. linear(v) is true whenv = ℓ.

• nonlinear(τ) is true whenτ 6= lin. nonlinear(v) is true whenv 6= ℓ.



• ghost(τ) is true whenτ = tot or τ = set. ghost(v) is true whenv = s or v = f .

• We treat environmentsE, Γ, andG as finite partial maps. For instance, we writeE[x] to look up the value associated withx in E. We
write E, x = v to extendE with x (assumingx does not already appear in the domain ofE). We writeE[x = v] to updateE with a new
valuev for x. We writedom(E) for the domain of the mapE. We use similar notation forΓ andG.

• Given a stateΣ = (M ; E), we assume no variablex is bound both in the global environmentE and in some module local environment
in M (alpha-converting where necessary). We assume no function nameg is associated with more than one function inM .

• We let|Σ|env be the environment formed by concatenating the module environments to the global environment fromΣ.

• Σ[x] looks up the value bound tox in any environment inΣ andΣ[x = v] updates variablex with v in any environment inΣ. Σ, x = v
extends the global environment inΣ with the bindingx = v assumingx does not already appear inΣ.

• Σ[g] looks up the module containing the function namedg in Σ.

• Given a typeτ , I(τ) is the set of valid initial values of a declared variable of that type. For linearmaps, only the empty linear map is a
legal initial value. For other types, any value is legal initially.

• When we have a stackk , we will write k∗ to indicate the same stack with a single asterix at some position. Intuitively, the asterix indicates
the stack frame the typing rules are currently analyzing. We allow the asterixto precede all stack frames. In other words, ifk = b1 · · · bn

thenk∗ may be∗b1 · · · bn. We also writek→ when the asterix is on the rightmost (top) stack frame. When the stack is empty, k→ refers
to the empty stack paired with an asterix.

• If b = g[G; Γ; Finv] then:

priv(b) = Γ

mod(b) = dom(Γ)

funs(b) = G

• If K = b1 · · · b
∗
i · · · bn andi > 0 then

priv(K ) = priv(bi)

mod(K ) = mod(bi)

funs(K , G) = funs(bi)

• If K = ∗b1 · · · bn then

priv(K ) = ·

mod(K ) = ∅

funs(K , G) = G

• If K = b1 · · · b
∗
i · · · bn−1bn, whereb1 · · · bi may be the empty sequence, thennext(K ) is a set containing the following elements:

b1 · · · b
∗
i · · · bn−1bn (andn may bei) and

b1 · · · b
∗
i · · · bn−1 (andn − 1 may bei but not less thani) and

b1 · · · b
∗
i · · · bn−1bnbn+1

• If K = b1 · · · b
∗
i bi+1 · · · bn, whereb1 · · · bi may be the empty sequence, thenallpriv(K ) =

S

j∈i+1...n
dom(priv(bj)).

A.3 Static Semantics

Γ ⊢ e : τ

Γ[x] = τ

Γ ⊢ x : τ

Γ ⊢ n : int

Γ ⊢ f : tot

Γ ⊢ fs : lin

Γ ⊢ s : set

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int



Γ ⊢ e1 : tot Γ ⊢ e2 : int

Γ ⊢ sel(e1, e2) : int

Γ ⊢ e1 : tot Γ ⊢ e2 : int Γ ⊢ e3 : int

Γ ⊢ upd(e1, e2, e3) : tot

Γ ⊢ e1 : set Γ ⊢ e2 : tot Γ ⊢ e3 : tot

Γ ⊢ ite(e1, e2, e3) : tot

Γ ⊢ e1 : lin Γ ⊢ e2 : int

Γ ⊢ selL (e1, e2) : int

Γ ⊢ e1 : lin Γ ⊢ e2 : int Γ ⊢ e3 : int

Γ ⊢ updL (e1, e2, e3) : lin

Γ ⊢ e : lin
Γ ⊢ map(e) : tot

Γ ⊢ e : lin
Γ ⊢ dom(e) : set

Γ ⊢ e1 : tot Γ ⊢ e2 : set

Γ ⊢ lin(e1, e2) : lin

Γ, x:int ⊢ F : prop

Γ ⊢ {x | F} : set

Γ ⊢ F : prop

Γ ⊢ true : prop

Γ ⊢ false : prop

Γ ⊢ F1 : prop Γ ⊢ F2 : prop

Γ ⊢ F1 ∨ F2 : prop

Γ ⊢ F1 : prop Γ ⊢ F2 : prop

Γ ⊢ F1 ∧ F2 : prop

Γ ⊢ F1 : prop Γ ⊢ F2 : prop

Γ ⊢ F1 ⇒ F2 : prop

Γ, x:τ ⊢ F : prop

Γ ⊢ ∃x:τ.F : prop

Γ, x:τ ⊢ F : prop

Γ ⊢ ∀x:τ.F : prop

Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ e1 = e2 : prop

Γ ⊢ e1 : int Γ ⊢ e2 : set

Γ ⊢ e1 ∈ e2 : prop

⊢ E : Γ

for all x ∈ dom(Γ), ⊢ E[x] : Γ[x]

⊢ E : Γ



[[e]]
E

= v

[[x]]
E

= E[x]
[[v]]

E
= v

[[e1 + e2]]E = [[e1]]E + [[e2]]E
[[sel(e1, e2)]]E = [[e1]]E([[e2]]E)
[[upd(e1, e2, e3)]]E = λx.ifx = [[e2]]Ethen[[e3]]Eelse[[e1]]E(x)
[[ite(e1, e2, e3)]]E = λx.ifx ∈ [[e1]]Ethen[[e2]]E(x)else[[e3]]E(x)
[[selL (e1, e2)]]E = map([[e1]]E) ([[e2]]E)
[[updL (e1, e2, e3)]]E = fdom([[e1]]

E
)∪{[[e2]]

E
}

wheref = λx.ifx = [[e2]]E then [[e3]]E else map([[e1]]E)(x)
[[map(e)]]

E
= map([[e]]

E
)

[[dom(e)]]
E

= dom([[e]]
E

)
[[lin(e1, e2)]]E = ([[e1]]E)[[e2]]

E

[[{x | F}]]
E

= {v |E, x = v |= F}

E |= F

E |= true always
E |= false never
E |= ¬F iff E |= F is not valid
E |= F1 ∨ F2 iff E |= F1 or E |= F2

E |= F1 ∧ F2 iff E |= F1 andE |= F2

E |= F1 ⇒ F2 iff E |= ¬F1 or E |= F2

E |= ∃x:τ.F iff exists⊢ v : τ s.t.E, x = v |= F
E |= ∀x:τ.F iff for all ⊢ v : τ , E, x = v |= F
E |= e1 = e2 iff [[e1]]E = [[e2]]E
E |= e1 ∈ e2 iff [[e1]]E ∈ [[e2]]E

Γ |= F

Γ |= F iff Γ ⊢ F : prop and for allE s.t.⊢ E : Γ, E |= F

[[e]]Σ = v

[[e]]|Σ|env
= v

[[e]]Σ = v

Σ |= F

|Σ|env |= F

Σ |= F

⊢ E ⇒ s

⊢ · ⇒ ∅

⊢ E ⇒ s ⊢ v : τ nonlinear(τ)

⊢ (E, x = v) ⇒ s

⊢ E ⇒ s′ s ∩ s′ = ∅

⊢ (E, x = fs) ⇒ s ∪ s′

⊢ Σ ⇒ s

⊢ |M |env , E ⇒ s

⊢ (M ; E) ⇒ s

⊢ Σ wf

⊢ Σ ⇒ Z

⊢ Σ wf

Γ ⊢ σ

nonlinear(τ1, τ3) linear(τ2)
Γ, arg1:τ1, arg2:τ2 ⊢ F1 : prop Γ, arg1:τ1, arg2:τ2, ret:τ3 ⊢ F2 : prop mod ⊆ dom(Γ)

Γ ⊢ ∀arg1:τ1, arg2:τ2.F1
mod
−→ ∃ret:τ3.F2



Γ ⊢ G

Γ ⊢ ·
Γ ⊢ G Γ ⊢ σ

Γ ⊢ G, g:σ

G; Γ;mod ⊢ {F1}C{F2}

Γ |= F1 ⇒ F ′
1

G; Γ;mod ⊢ {F ′
1}C{F ′

2}
Γ |= F ′

2 ⇒ F2

G; Γ;mod ⊢ {F1}C{F2}
(Consequence)

G; Γ;mod − FV (R) ⊢ {F1}C{F2}

G; Γ;mod ⊢ {F1 ∧ R}C{F2 ∧ R}
(Frame)

Γ ⊢ x : τ impl(τ) Γ ⊢ Z : τ x ∈ mod

G; Γ;mod ⊢ {F [Z/x]}x := Z{F}
(Asgn)

Γ ⊢ x1 : lin Γ ⊢ x2 : lin x1, x2, x
′
2 are distinct variables x1, x2 ∈ mod x′

2 6∈ FV (F )

G; Γ;mod ⊢ {dom(x1) = ∅ ∧ ∀x′
2:lin.dom(x′

2) = ∅ ⇒ F [x′
2/x2][x2/x1]}x1 :=L x2{F}

(Asgn Lin)

Γ ⊢ x : τ ghost(τ) Γ ⊢ S : τ x ∈ mod

G; Γ;mod ⊢ {F [S/x]}x :=G S{F}
(Ghst)

x 6∈ (dom(Γ) ∪ FV (F2)) nonlinear(τ)
G; Γ, x:τ ;mod ∪ {x} ⊢ {F1}C{F2}

G; Γ;mod ⊢ {∀x:τ.F1}varx:τ inC{F2}
(Var)

x 6∈ (dom(Γ) ∪ FV (F2)) G; Γ, x:lin;mod ∪ {x} ⊢ {F1}C{F2}

G; Γ;mod ⊢ {∀x:lin.dom(x) = ∅ ⇒ F1}varx:lin inC{F2}
(Var Lin)

G; Γ;mod ⊢ {F}skip{F}
(Skip)

G; Γ;mod ⊢ {F1}C1{F2} G; Γ;mod ⊢ {F2}C2{F3}

G; Γ;mod ⊢ {F1}C1;C2{F3}
(Seq)

G; Γ;mod ⊢ {F1}C1{F3} G; Γ;mod ⊢ {F2}C2{F3}

G; Γ;mod ⊢ {(Z 6= 0 ⇒ F1) ∧ (Z = 0 ⇒ F2)}ifZ thenC1 elseC2{F3}
(If)

G; Γ;mod ⊢ {F1}C{Finv}

G; Γ;mod ⊢ {Finv ∧ (Finv ∧ Z 6= 0 ⇒ F1) ∧ (Finv ∧ Z = 0 ⇒ F )}while [Finv]Z doC{F}
(While)

Γ ⊢ F ′ : prop

G; Γ;mod ⊢ {F ′ ∧ F}assertF ′{F}
(Assert)

G(g) = ∀arg1:τ1, arg2:τ2.F1
mod

′

−→ ∃ret:τ3.F2

Γ ⊢ x1 : τ1 Γ ⊢ x2 : τ2 Γ ⊢ x3 : τ3 (mod ′ ∪ {x2, x3}) ⊆ mod x1, x2, x3 6∈ FV (G(g))

G; Γ;mod ⊢ {F1[x1/arg1][x2/arg2]}x3 := g(x1, x2){F2[x1/arg1][x2/arg2][x3/ret]}
(Call)

Γ ⊢ x1 : int Γ ⊢ x2 : lin Γ ⊢ Z : int x1 ∈ mod

G; Γ;mod ⊢ {Z ∈ dom(x2) ∧ F [selL (x2,Z )/x1]}x1 :=L x2[Z ]{F}
(Linear Map Select)

Γ ⊢ Z1 : int Γ ⊢ Z2 : int Γ ⊢ x : lin x ∈ mod

G; Γ;mod ⊢ {Z1 ∈ dom(x) ∧ F [updL (x,Z1,Z2)/x]}x[Z1] :=L Z2{F}
(Linear Map Update)



Γ ⊢ x : lin Γ ⊢ y : lin Γ ⊢ S : set x, y ∈ mod

G; Γ;mod ⊢ {S ⊆ dom(y) ∧ F [lin(ite(S, map(y), map(x)), dom(x) ∪ S)/x][lin(map(y), dom(y) − S)/y]}x := y@S{F}
(Transfer)

Γ ⊢ x1 : lin Γ ⊢ x2 : lin x1, x2 are distinct variables

G; Γ;mod ⊢ {dom(x1) ∩ dom(x2) = ∅ ⇒ F}assumedom(x1) ∩ dom(x2) = ∅{F}
(Assume)

G; Γ ⊢ mv ⇒ G′

σ = ∀arg1:τ1, arg2:τ2.F1
mod

′

−→ ∃ret:τ3.F2 Γ ⊢ σ
g 6∈ dom(G) (dom(ΓE) ∪ {arg1, arg2, ret}) ∩ dom(Γ) = ∅

⊢ E : ΓE ΓE ⊢ Finv : prop E |= Finv

G; Γ, ΓE , arg1:τ1, arg2:τ2, ret:τ3;mod ′ ∪ dom(ΓE) ∪ {arg2, ret} ⊢ {F1 ∧ Finv}C{F2 ∧ Finv}

G; Γ ⊢ [E; Finv; g:σ = C ] ⇒ G, g:σ
(Mod)

Γ ⊢ M ⇒ G

Γ ⊢ · ⇒ ·
(Mod Env Emp)

Γ ⊢ M ⇒ G′

G′; Γ ⊢ mv ⇒ G′′

Γ ⊢ M ,mv ⇒ G′′
(Mod Env)

⊢ Σ ⇒ G; Γ

⊢ E : Γ Γ ⊢ M ⇒ G
⊢ (M ; E) ⇒ G; Γ

(State)

⊢ prog : F2

⊢ Σ ⇒ G; Γ ⊢ |Σ|env wf Γ ⊢ F1 : prop Γ ⊢ F2 : prop Σ |= F1 G; Γ; dom(Γ) ⊢ {F1}C{F2}

⊢ (Σ;C ) : F2
(Programs)

A.4 Additional Static Semantics Rules for Proof of Soundness

G; Γ;mod ;K ; Σ ⊢ C{F2}

Γ ⊢ F1 : prop Σ |= F1 ⊢ Σ wf G; Γ;mod ⊢ {F1}C{F2}

G; Γ;mod ; k→; Σ ⊢ C{F2}
(Connect-RT)

G; Γ;mod ;K ; Σ ⊢ C{F ′
2} Γ |= F ′

2 ⇒ F2

G; Γ;mod ;K ; Σ ⊢ C{F2}
(Consequence-RT)

Σ |= R G; Γ;mod − FV (R);K ; Σ ⊢ {F1}C{F2}

G; Γ;mod ;K ; Σ ⊢ C{F2 ∧ R}
(Frame-RT)

G; Γ;mod ;K ; Σ ⊢ C1{F2} G; Γ;mod ⊢ {F2}C2{F3}

G; Γ;mod ;K ; Σ ⊢ C1;C2{F3}
(Seq-RT)

K = b1 · · · b
∗
i bi+1 · · · bn

K1 = b1 · · · bib
∗
i+1 · · · bn

bi+1 = g1[G1; Γpriv; Finv1]
Γ′ = (Γ − dom(priv(K ))), Γpriv

mod ′ = (mod − mod(K )) ∪ dom(Γpriv)
Γ′ ⊢ F2 : prop G1; Γ

′;mod ′;K1; Σ ⊢ C{Finv1 ∧ F2}

G; Γ;mod ;K ; Σ ⊢ g1[C ]{F2}
(g-RT)

G; Γ; k ⊢ mv ⇒ G′; k ′

Γ ⊢ σ σ = ∀arg1:τ1, arg2:τ2.F1
mod

′

−→ ∃ret:τ3.F2

g 6∈ dom(G) (dom(ΓE) ∪ {arg1, arg2, ret}) ∩ dom(Γ) = ∅
⊢ E : ΓE ΓE ⊢ Finv : prop E |= Finv

G; Γ, ΓE , arg1:τ1, arg2:τ2, ret:τ3;mod ′ ∪ dom(ΓE) ∪ {arg2, ret} ⊢ {F1 ∧ Finv}C{F2 ∧ Finv}

G; Γ; k ⊢ [E; Finv; g:σ = C ] ⇒ G, g:σ; k
(Mod RT)



Γ ⊢ σ σ = ∀arg1:τ1, arg2:τ2.F1
mod

′

−→ ∃ret:τ3.F2

g 6∈ dom(G) (dom(ΓE) ∪ {arg1, arg2, ret}) ∩ dom(Γ) = ∅
⊢ E : ΓE ΓE ⊢ Finv : prop

G; Γ, ΓE , arg1:τ1, arg2:τ2, ret:τ3;mod ′ ∪ dom(ΓE) ∪ {arg2, ret} ⊢ {F1 ∧ Finv}C{F2 ∧ Finv}

G; Γ; k ⊢ [E; Finv; g:σ = C ] ⇒ G, g:σ; g[G; ΓE ; Finv]k
(Mod Stack RT)

Γ ⊢ M ⇒ G; k

G ⊢ · ⇒ ·; ·
(Mod Env Emp RT)

Γ ⊢ M ⇒ G′; k ′

G′; Γ; k ′ ⊢ mv ⇒ G′′; k ′′

Γ ⊢ M ,mv ⇒ G′′; k ′′
(Mod Env RT)

⊢ Σ ⇒ G; Γ; k

⊢ E : Γ Γ ⊢ M ⇒ G′; k ′

⊢ (M ; E) ⇒ G′; Γ; k ′
(State RT)

⊢ prog : F2 rt

⊢ Σ ⇒ G; Γ; k ⊢ |Σ|env wf Γ ⊢ F1 : prop Γ ⊢ F2 : prop Σ |= F1 G; Γ; dom(Γ); ∗k ; Σ ⊢ {F1}C{F2}

⊢ (Σ;C ) : F2 rt
(Programs RT)

A.5 Operational Semantics

(Σ; x := Z ) −→ (Σ[x = [[Z ]]Σ]; skip)
(OS Asgn)

(Σ; x1 :=L x2) −→ (Σ[x1 = [[x2]]Σ][x2 = [ ]∅]; skip)
(OS Asgn Lin)

(Σ; x :=G S) −→ (Σ[x = [[S]]Σ]; skip)
(OS Asgn Ghst)

v ∈ I(τ) x 6∈ dom(|Σ|env )

(Σ; varx:τ inC ) −→ (Σ, x = v;C )
(OS Var)

(Σ; skip;C ) −→ (Σ;C )
(OS Skip-Seq)

[[Z ]]Σ 6= 0

(Σ; ifZ thenC1 elseC2) −→ (Σ;C1)
(OS If1)

[[Z ]]Σ = 0

(Σ; ifZ thenC1 elseC2) −→ (Σ;C2)
(OS If2)

[[Z ]]Σ = 0

(Σ; while [F ]Z doC ) −→ (Σ; skip)
(OS While1)

[[Z ]]Σ 6= 0

(Σ; while [F ]Z doC ) −→ (Σ;C ; while [F ]Z doC )
(OS While2)

Σ |= F

(Σ; assertF ) −→ (Σ; skip)
(OS Assert)

Σ(g) = [E′; Finv; g:∀arg1:τ1, arg2:τ2.F1
mod

′

−→ ∃ret:τ3.F2 = C ] arg1, arg2, ret 6∈ dom(|Σ|env ) v3 ∈ I(τ3)

(Σ; x3 := g(x1, x2)) −→ ((Σ[x2 = [ ]∅]), arg1=[[x1]]Σ, arg2=[[x2]]Σ, ret=v3; g[C ]; x3 := ret; x2 :=L arg2)
(OS Call1)



(Σ;C ) −→ (Σ;C ′)

(Σ; g[C ]) −→ (Σ′; g[C ′])
(OS Call2)

(Σ; g[skip]) −→ (Σ; skip)
(OS Call3)

[[Z ]]Σ = n [[x2]]Σ = f c
s n ∈ s

(Σ; x1 :=L x2[Z ]) −→ (Σ[x1 = f (n)]; skip)
(OS Linear Map Select)

[[x]]Σ = fs n1 ∈ s [[Z1]]Σ = n1 [[Z2]]Σ = n2

(Σ; x[Z1] :=L Z2) −→ (Σ[x = (λx.ifx = n1 thenn2 else f x)s]; skip)
(OS Linear Map Update)

[[x1]]Σ = fs1
[[x2]]Σ = hs2

[[S]]Σ = s3

(Σ; x1 := x2@S) −→ (Σ[x1 = (λx.ifx ∈ s3 thenh x else f x)s1∪s3
][x2 = hs2−s3

]; skip)
(OS Transfer)

(Σ; assume dom(x1) ∩ dom(x2) = ∅) −→ (Σ; skip)
(OS Assume)

(Σ;C ) −→∗ (Σ′;C ′)

(Σ;C ) −→∗ (Σ;C )
(OS-Reflex)

(Σ1;C1) −→ (Σ2;C2) (Σ2;C2) −→
∗ (Σ3;C3)

(Σ1;C1) −→
∗ (Σ3;C3)

(OS-Trans)

A.6 Soundness Theorem and Related Lemmas

Lemma 4 (Canonical Forms)
If ⊢ E : Γ andΓ ⊢ e : τ then[[e]]

E
= v and:

• if τ = int thenv = n
• if τ = tot thenv = f
• if τ = lin thenv = ℓ
• if τ = set thenv = s

Proof By induction on the derivationΓ ⊢ e : τ . ¥

Lemma 5 (Runtime Typing)
If ⊢ (Σ;C ) : F2 then⊢ (Σ;C ) : F2 rt wherek is everywhere empty in the latter derivation.

Proof By inspection. ¥

Lemma 6 (Skip Preservation I)
If G; Γ;mod ⊢ {F1}skip{F2} andΣ |= F1 thenΣ |= F2.

Proof By induction on the verification derivation. ¥

Lemma 7 (Skip Preservation II)
If G; Γ;mod ;K ; Σ ⊢ {F1}skip{F2} thenΣ |= F2.

Proof By induction on the verification derivation. ¥

Theorem 8 (Preservation I)
If

• ⊢ Σ ⇒ G; Γ; k and
• Γ ⊢ F2 : prop and



• K = k→ and
• mod ⊆ dom(Γ) ∪ mod(K ) and
• G′ = funs(K , G) and
• Σ |= F1 and
• ⊢ |Σ|env wf and
• G′; Γ, priv(K );mod ⊢ {F1}C{F2} and
• (Σ;C ) −→ (Σ′;C ′)

then

• ⊢ Σ′ ⇒ G; Γ′; k2 and
• K2 = k∗

2

• K2 ∈ next(K ) and
• Γ′ extendsΓ and
• G′; Γ′, priv(K2);mod ∪ (dom(Γ′) − dom(Γ));K2; Σ

′ ⊢ C ′{F2} and
• for all x ∈ dom(|Σ|env ), if Σ[x] 6= Σ′[x] thenx ∈ mod or x ∈ allpriv(K )

Proof By induction on the verification derivation. ¥

Theorem 9 (Preservation II)
If

• ⊢ Σ ⇒ G; Γ; k and
• Γ ⊢ F2 : prop and
• mod ⊆ dom(Γ) ∪ mod(K ) and
• G′ = funs(K , G) and
• G′; Γ, priv(K );mod ;K ; Σ ⊢ C{F2} and
• (Σ;C ) −→ (Σ′;C ′)

then

• ⊢ Σ′ ⇒ G; Γ′; k2 and
• K2 = k∗

2 and
• K2 ∈ next(K ) and
• Γ′ extendsΓ and
• G′; Γ′, priv(K2);mod ∪ (dom(Γ′) − dom(Γ));K2; Σ

′ ⊢ C ′{F2} and
• for all x ∈ dom(|Σ|env ), if Σ[x] 6= Σ′[x] thenx ∈ mod or x ∈ allpriv(K )

Proof By induction on the verification derivation. ¥

Theorem 10 (Progress I)
If

• ⊢ Σ ⇒ G; Γ; k and
• Γ ⊢ F2 : prop and
• K = k→ and
• mod ⊆ dom(Γ) ∪ mod(K ) and
• G′ = funs(K , G) and
• Σ |= F1 and
• ⊢ |Σ|env wf and
• G′; Γ, priv(K );mod ⊢ {F1}C{F2}

then

• C = skip or
• (Σ;C ) −→ (Σ′;C ′)

Proof By induction on the verification derivation for statements. ¥

Theorem 11 (Progress II)
If

• ⊢ Σ ⇒ G; Γ; k and
• Γ ⊢ F2 : prop and
• mod ⊆ dom(Γ) ∪ mod(K ) and



• G′ = funs(K , G) and
• G′; Γ, priv(K );mod ;K ; Σ ⊢ C{F2}

then

• C = skip or
• (Σ;C ) −→ (Σ′;C ′)

Proof By induction on the verification derivation for statements within the derivationof ⊢ prog : F2 rt. ¥

Definition 12 (Stuck Program)
A program(Σ;C ) is stuckif C is notskip and there does not exist another state(Σ′;C ′) such that(Σ;C ) −→ (Σ′;C ′) .

Theorem 13 (Soundness)
If ⊢ (Σ;C ) : F2 and(Σ;C ) −→∗ (Σ′;C ′) then(Σ′;C ′) is not stuck and ifC ′ = skip thenΣ′ |= F2 .

Proof By induction on the length of the execution and using Progress, Preservation and Skip Preservation lemmas. ¥

B. Appendix: Erasure

B.1 Additional Syntax for Erased Programs

fun types σ ::= · · · | ∀arg1:τ1.F1
mod
−→ ∃ret:τ3.F2 | ∀arg1:τ1.F1

mod
−→ F2 | F1

mod
−→ ∃ret:τ3.F2 | F1

mod
−→ F2

statements C ::= · · · | x := heap[Z ] | heap[Z1] := Z2 | x3 := g(x1) | g(x1) | x3 := g() | g()

B.2 Additional Operational Rules for Erased Programs

[[Z ]]Σ = n [[heap]]Σ = f

(Σ; x1 := heap[Z ]) −→ (M ; E[x1 = f n]; skip)
(OS Map Select)

[[heap]]Σ = f [[Z1]]Σ = n1 [[Z2]]Σ = n2

(Σ; heap[Z1] := Z2) −→ (Σ[heap = (λx.ifx = n1 thenn2 else f x)]; skip)
(OS Map Update)

Σ(g) = [E′; Finv; g:∀arg1:τ1.F1
mod

′

−→ ∃ret:τ3.F2 = C ] arg1, ret 6∈ dom(|Σ|env ) v3 ∈ I(τ3)

(Σ; x3 := g(x1)) −→ (Σ, arg1=[[x1]]Σ, ret=v3; g[C ]; x3 := ret; skip)
(OS Call4)

Σ(g) = [E′; Finv; g:∀arg1:τ1.F1
mod

′

−→ F2 = C ] arg1 6∈ dom(|Σ|env )

(Σ; g(x1)) −→ (Σ, arg1=[[x1]]Σ; g[C ]; skip; skip)
(OS Call5)

Σ(g) = [E′; Finv; g:F1
mod

′

−→ ∃ret:τ3.F2 = C ] ret 6∈ dom(|Σ|env ) v3 ∈ I(τ3)

(Σ; x3 := g()) −→ (Σ, ret=v3; g[C ]; x3 := ret; skip)
(OS Call6)

Σ(g) = [E′; Finv; g:F1
mod

′

−→ F2 = C ]

(Σ; g()) −→ (Σ; g[C ]; skip; skip)
(OS Call7)

B.3 Erasure Function

erase(E) = E′

erase(·) = ·

erase(E) = E′ impl(v)

erase(E, x = v) = E′, x = v



erase(E) = E′ ghost(v)

erase(E, x = v) = E′

erase(E) = E′

erase(E, x = ℓ) = E′

flatten(E) = f

flatten(·) = λx.0

flatten(E) = f nonlinear(v)

flatten(E, x = v) = f

flatten(E) = f ′

flatten(E, x = fs) = λx.ifx ∈ s then f x else f ′ x

eraseΓ(C ) = C ′

eraseΓ(x := Z ) = x := Z

eraseΓ(x1 :=L x2) = skip

eraseΓ(x :=G S) = skip

impl(τ) eraseΓ,x:τ (C ) = C ′

eraseΓ(varx:τ inC ) = varx:τ inC ′

ghost(τ) or linear(τ) eraseΓ,x:τ (C ) = C ′

eraseΓ(varx:τ inC ) = C ′

eraseΓ(skip) = skip

eraseΓ(C1) = C ′
1 eraseΓ(C2) = C ′

2

eraseΓ(C1;C2) = C ′
1;C

′
2

eraseΓ(C1) = C ′
1 eraseΓ(C2) = C ′

2

eraseΓ(ifZ thenC1 elseC2) = ifZ thenC ′
1 elseC ′

2

eraseΓ(C ) = C ′

eraseΓ(while [F ]Z doC ) = while [F ]Z doC ′

eraseΓ(assertF ) = skip

impl(Γ(x1)) impl(Γ(x3))

eraseΓ(x3 := g(x1, x2)) = x3 := g(x1)

impl(Γ(x1)) ghost(Γ(x3))

eraseΓ(x3 := g(x1, x2)) = g(x1)

ghost(Γ(x1)) impl(Γ(x3))

eraseΓ(x3 := g(x1, x2)) = x3 := g()

ghost(Γ(x1)) ghost(Γ(x3))

eraseΓ(x3 := g(x1, x2)) = g()



eraseΓ(C ) = C ′

eraseΓ(g[C ]) = g[C ′]

eraseΓ(x1 :=L x2[Z ]) = x1 := heap[Z ]

eraseΓ(x[Z1] :=L Z2) = heap[Z1] := Z2

eraseΓ(x1 := x2@S) = skip

eraseΓ(assume dom(x1) ∩ dom(x2) = ∅) = skip

erase(σ) = σ′

impl(τ1) impl(τ3)

erase(∀arg1:τ1, arg2:τ2.F1
mod
−→ ∃ret:τ3.F2) = ∀arg1:τ1.F1

mod
−→ ∃ret:τ3.F2

impl(τ1) ghost(τ3)

erase(∀arg1:τ1, arg2:τ2.F1
mod
−→ ∃ret:τ3.F2) = ∀arg1:τ1.F1

mod
−→ F2

ghost(τ1) impl(τ3)

erase(∀arg1:τ1, arg2:τ2.F1
mod
−→ ∃ret:τ3.F2) = F1

mod
−→ ∃ret:τ3.F2

ghost(τ1) ghost(τ3)

erase(∀arg1:τ1, arg2:τ2.F1
mod
−→ ∃ret:τ3.F2) = F1

mod
−→ F2

eraseΓ(mv) = mv ′

⊢ E : ΓE σ = ∀arg1:τ1, arg2:τ2.F1
mod
−→ ∃ret:τ3.F2

eraseΓ([E; Finv; g:σ = C ]) = [erase(E); Finv; g:erase(σ) = eraseΓ,ΓE ,arg1:τ1,arg2:τ2,ret:τ3
(C )]

eraseΓ(M ) = M ′

eraseΓ(·) = ·

eraseΓ(M ,mv) = eraseΓ(M ), eraseΓ(mv)

erase(Σ) = Σ′

⊢ E : Γ flatten(E, |M |env ) = f

erase((M ; E)) = (eraseΓ(M ); heap = f , erase(E))

erase(prog) = prog ′

erase(Σ) = Σ′ ⊢ |Σ|env : Γ eraseΓ(C ) = C ′

erase((Σ;C )) = (Σ′;C ′)

B.4 Erasure Theorems and Related Lemmas

Theorem 14 (Erasure I)
If

• ⊢ Σ ⇒ G; Γ; k and
• Γ ⊢ F2 : prop and
• K = k→ and
• mod ⊆ dom(Γ) ∪ mod(K ) and



• G′ = funs(K , G) and
• Σ |= F1 and
• ⊢ |Σ|env wf and
• G′; Γ, priv(K );mod ⊢ {F1}C{F2} and
• (Σ;C ) −→ (Σ′;C ′)

thenerase((Σ;C )) −→∗ erase((Σ′;C ′))

Proof By induction on the verification derivation. ¥

Theorem 15 (Erasure II)
If

• ⊢ Σ ⇒ G; Γ; k and
• Γ ⊢ F2 : prop and
• mod ⊆ dom(Γ) ∪ mod(K ) and
• G′ = funs(K , G) and
• G′; Γ, priv(K );mod ;K ; Σ ⊢ C{F2} and
• (Σ;C ) −→ (Σ′;C ′)

thenerase((Σ;C )) −→∗ erase((Σ′;C ′))

Proof By induction on the verification derivation. ¥

Theorem 16 (Erasure III)
If

• ⊢ Σ ⇒ G; Γ; k and
• Γ ⊢ F2 : prop and
• K = k→ and
• mod ⊆ dom(Γ) ∪ mod(K ) and
• G′ = funs(K , G) and
• Σ |= F1 and
• ⊢ |Σ|env wf and
• G′; Γ, priv(K );mod ⊢ {F1}C{F2} and
• erase((Σ;C )) −→ erase((Σ′;C ′))

then(Σ;C ) −→∗ (Σ′;C ′)

Proof By induction on the verification derivation. ¥

Theorem 17 (Erasure IV)
If

• ⊢ Σ ⇒ G; Γ; k and
• Γ ⊢ F2 : prop and
• mod ⊆ dom(Γ) ∪ mod(K ) and
• G′ = funs(K , G) and
• G′; Γ, priv(K );mod ;K ; Σ ⊢ C{F2} and
• erase((Σ;C )) −→ erase((Σ′;C ′))

then(Σ;C ) −→∗ (Σ′;C ′)

Proof By induction on the verification derivation. ¥

C. Appendix: Nested Data Structures
C.1 Syntax



types τ ::= · · · | rlin | pair
rlin values r ::= [ ]∅ | r, n = p
pair values p ::= (n, r)
values v ::= · · · | r | p
logical exps e ::= · · · | iteR(e, e, e) | e − e | (e1, e2) | e.1 | e.2

statements C ::= · · · | xr :=R (rlin)xl@Z | xl :=R (lin)xr@Z

| x1 :=R x2[Z ] | x1 :=R x2@S | (xn, xr) :=R xp

C.2 Notation

• Typesrlin andpair are considered linear types. Hencelinear(rlin) andlinear(pair) are both true.

• maptype(τ) is valid if τ = lin or τ = rlin

• Expressionsdom(e), selL (e, e), andupdL (e, e, e) are overloaded for use with typerlin.

• Rather than introducing total maps over pairs, we useiteR(S, r1, r2) to describe the linear mapr1, extended with elements fromS
transferred fromr2. We user2 − S to describe the mapr2 without the elements ofS.

• In examples, we allowxp.1 in an implementation expression. This may be erased to simplyxp.

• Only [ ]∅ is a valid initial value of typerlin. ie: only [ ]∅ ∈ I(rlin).

• (n, [ ]∅) ∈ I(pair) for any integern.

• r[n = p′] updates the partial mapr. Assumingn is in the domain ofr, r[n] looks upn in r. dom(r) is the domain of the partial map.

• F [e1, e2/x1, x2] denotes simultaneous substitution ofe1 ande2 for x1 andx2.

C.3 Static Semantics

Γ ⊢ e : τ

Γ ⊢ e1 : set Γ ⊢ e2 : rlin Γ ⊢ e3 : rlin

Γ ⊢ iteR(e1, e2, e3) : rlin

Γ ⊢ e1 : rlin Γ ⊢ e2 : set

Γ ⊢ e1 − e2 : rlin

Γ ⊢ e1 : rlin Γ ⊢ e2 : int

Γ ⊢ selL (e1, e2) : int

Γ ⊢ e1 : rlin Γ ⊢ e2 : int Γ ⊢ e3 : int

Γ ⊢ updL (e1, e2, e3) : rlin

Γ ⊢ e : rlin
Γ ⊢ dom(e) : set

Γ ⊢ e1 : int Γ ⊢ e2 : rlin

Γ ⊢ (e1, e2) : int

Γ ⊢ e : pair

Γ ⊢ e.1 : int

Γ ⊢ e : pair

Γ ⊢ e.2 : rlin

[[e]]
E

= v

[[iteR(e1, e2, e3)]]E = [n1 = p1, . . . , nk = pk] where fori = 1, . . . , k, ni = pi if



ni ∈ [[e1]]E andni = pi ∈ [[e2]]E
ni 6∈ [[e1]]E andni = pi ∈ [[e3]]E

[[e1 − e2]]E = [n1 = p1, . . . , nk = pk] where fori = 1, . . . , k, ni = pi if ni 6∈ [[e2]]E andni = pi ∈ [[e1]]E
[[selL (e1, e2)]]E = ([[e1]]E)[[[e2]]E ] if [[e2]]E ∈ dom([[e1]]E)

= (0, [ ]∅) if [[e2]]E 6∈ dom([[e1]]E)

[[updL (e1, e2, e3)]]E = [[e1]]E [[[e2]]E = [[e3]]E ]
[[dom(e)]]

E
= dom([[e]]

E
)

[[(e1, e2)]]E = ([[e1]]E , [[e2]]E)
[[e.1]]

E
= n where[[e]]

E
= (n, r)

[[e.2]]
E

= r where[[e]]
E

= (n, r)



⊢ r ⇒ s

⊢ [ ]∅ ⇒ ∅

⊢ r ⇒ s ⊢ r′ ⇒ s′ s and{n} ands′ are mutually disjoint

⊢ r, n = (n′, r′) ⇒ s ∪ s ∪ {n}

⊢ E ⇒ s

⊢ E ⇒ s′ for i = 1..k: ⊢ ri ⇒ si si ands′ are mutually disjoint sets

⊢ (E, x = [n1 = (n′
1, r1), . . . , nk = (n′

k, rk)]) ⇒ (
S

i=1..k
si) ∪ s′

⊢ E ⇒ s ⊢ r ⇒ s′ s ands′ are disjoint

⊢ E, x = (n, r) ⇒ s ∪ s

G; Γ;mod ⊢ {F1}C1{F2}

x 6∈ (dom(Γ) ∪ FV (F2)) G; Γ, x:rlin;mod ∪ {x} ⊢ {F1}C{F2}

G; Γ;mod ⊢ {∀x:rlin.dom(x) = ∅ ⇒ F1}varx:rlin inC{F2}
(Var Rlin)

x 6∈ (dom(Γ) ∪ FV (F2)) G; Γ, x:pair;mod ∪ {x} ⊢ {F1}C{F2}

G; Γ;mod ⊢ {∀x:pair.dom(x.2) = ∅ ⇒ F1}varx:pair inC{F2}
(Var Pair)

Γ ⊢ x1 : rlin Γ ⊢ x2 : rlin x1, x2, x
′
2 are distinct variables x1, x2 ∈ mod x′

2 6∈ FV (F )

G; Γ;mod ⊢ {dom(x1) = ∅ ∧ ∀x′
2:rlin.dom(x′

2) = ∅ ⇒ F [x′
2/x2][x2/x1]}x1 :=L x2{F}

(Asgn RLin)

Γ ⊢ x1 : pair Γ ⊢ x2 : pair x1, x2, x
′
2 are distinct variables x1, x2 ∈ mod x′

2 6∈ FV (F )

G; Γ;mod ⊢ {dom(x1.2) = ∅ ∧ ∀x′
2:pair.dom(x′

2.2) = ∅ ⇒ F [x′
2/x2][x2/x1]}x1 :=L x2{F}

(Asgn Pair)

Γ ⊢ Z : int Γ ⊢ xl : lin Γ ⊢ xr : rlin x, y ∈ mod

G; Γ;mod ⊢ {Z ∈ dom(xl) ∧ F [upd(xr,Z , (sel(xl,Z ), [ ]∅)/xr][xl − Z/xl]}xr := (rlin)xl@Z{F}
(RLin Cast)

Γ ⊢ Z : int Γ ⊢ xl : lin Γ ⊢ xr : rlin x, y ∈ mod

G; Γ;mod ⊢ {Z ∈ dom(xr) ∧ sel(xr,Z ) = ∅ ∧ F [upd(xl,Z , (sel(xr,Z )).1)/xl][xr − Z/xr]}xl := (lin)xr@Z{F}
(Lin Cast)

Γ ⊢ x1 : pair Γ ⊢ x2 : rlin Γ ⊢ Z : int x1, x2 ∈ mod

G; Γ;mod ⊢ {Z ∈ dom(x2) ∧ F [selL (x2,Z ), updL (x2,Z , x1)/x1, x2]}x1 :=R x2[Z ]{F}
(RLin Swap)

Γ ⊢ x : rlin Γ ⊢ y : rlin Γ ⊢ S : set x, y ∈ mod

G; Γ;mod ⊢ {S ⊆ dom(y) ∧ F [iteR(S, y, x)/x][y − S/y]}x := y@S{F}
(RLin Transfer)

Γ ⊢ xn : int Γ ⊢ xr : rlin Γ ⊢ xp : pair xn, xr, xp ∈ mod

G; Γ;mod ⊢ {F [xp.1, xp.2, (xn, xr)/xn, xr, xp]}(xn, xr) :=R xp{F}
(Pair Swap)

Γ ⊢ x1 : τ1 Γ ⊢ x2 : τ2 maptype(x1) maptype(x2) x1, x2 are distinct variables

G; Γ;mod ⊢ {dom(x1) ∩ dom(x2) = ∅ ⇒ F}assume dom(x1) ∩ dom(x2) = ∅{F}
(General Assume)

C.4 Operational Semantics

[[x1]]Σ = r [[x2]]Σ = fs [[Z ]]Σ = n

(Σ; x1 :=R (rlin)x2@Z ) −→ (Σ[x1 = (r[n = (f (n), [ ]∅)])][x2 = fs−{n}]; skip)
(OS Cast Rlin)

[[x1]]Σ = fs [[x2]]Σ = r [[Z ]]Σ = n
h = λx.ifx = n then r[n].1 else f (n)

(Σ; x1 :=R (lin)x2@Z ) −→ (Σ[x1 = hs∪{n}][x2 = [[r2 − {n}]]Σ]; skip)
(OS Cast Lin)

[[Z ]]Σ = n n ∈ dom(r) [[x2]]Σ = r [[x1]]Σ = p

(Σ; x1 :=L x2[Z ]) −→ (Σ[x2 = (r[n = p])][x1 = r[n]]; skip)
(OS Rlin Swap)



[[x1]]Σ = r1 [[x2]]Σ = r2 [[S]]Σ = s

(Σ; x1 := x2@S) −→ (Σ[x1 = [[iteR(s, r2, r1)]]Σ][x2 = [[r2 − s]]Σ]; skip)
(OS Transfer)

[[xn]]Σ = n [[xr]]Σ = r [[xp]]Σ = (n′, r′)

(Σ; (xn, xr) :=L xp) −→ (Σ[xn = n′][xr = r′][xp = (n, r)]; skip)
(OS Pair Swap)

C.5 Erasure

erase(E) = E′

erase(E) = E′

erase(E, x = r) = E′

erase(E) = E′

erase(E, x = (n, r)) = E′, x = n

flatten(r) = f

flatten([ ]∅) = λx.0

flatten(r) = f flatten(r′) = f ′ ⊢ r′ ⇒ s

flatten(r, n = (n′, r′)) = λx.ifx = n thenn′elseifx ∈ s then f ′ x else f x

flatten(E) = f

flatten(E) = f flatten(r) = f ′ ⊢ r ⇒ s

flatten(E, x = r) = λx.ifx ∈ s then f ′ x else f x

flatten(E) = f flatten(r) = f ′ ⊢ r ⇒ s

flatten(E, x = (n, r)) = λx.ifx ∈ s then f ′ x else f x

eraseΓ(C ) = C ′

eraseΓ(xr :=R (rlin)xl@Z ) = skip

eraseΓ(xl :=R (lin)xr@Z ) = skip

y is distinct fromx1,x2,FV (Z )

eraseΓ(x1 :=R x2[Z ]) = var y:int in y := x1; x1 := heap[Z ]; heap[Z ] := y

eraseΓ(x1 :=R x2@S) = skip

y is distinct fromxn,xp

eraseΓ((xn, xr) :=R xp) = var y:int in y := xn; xn := xp; xp := y


