
Transparent, Live Migration of a Software-Defined Network

Soudeh Ghorbani? Cole Schlesinger† Matthew Monaco‡ Eric Keller‡

Matthew Caesar? Jennifer Rexford† David Walker†

?University of Illinois at Urbana-Champaign †Princeton University ‡University of Colorado

Abstract
Increasingly, datacenters are virtualized and software-defined.
Live virtual machine (VM) migration is becoming an indis-
pensable management tool in such environments. However,
VMs often have a tight coupling with the underlying net-
work. Hence, cloud providers are beginning to offer tenants
more control over their virtual networks. Seamless migra-
tion of all (or part) of a virtual network greatly simplifies
management tasks like planned maintenance, optimizing
resource usage, and cloud bursting. Our LIME architec-
ture efficiently migrates an ensemble, a collection of virtual
machines and virtual switches, for any arbitrary controller
and end-host applications. To minimize performance dis-
ruptions, during the migration, LIME temporarily runs all
or part of a virtual switch on multiple physical switches.
Running a virtual switch on multiple physical switches must
be done carefully to avoid compromising application cor-
rectness. To that end, LIME merges events, combines traffic
statistics, and preserves consistency among multiple phys-
ical switches even across changes to the packet-handling
rules. Using a formal model, we prove that migration under
LIME is transparent to applications, i.e., any execution of
the controller and end-host applications during migration is
a completely valid execution that could have taken place in a
migration-free setting. Experiments with our prototype, built
on the Floodlight controller, show that ensemble migration
can be an efficient tool for network management.

Categories and Subject Descriptors C.2.3 [Computer-
Communication Networks]: Network Operations

Keywords Virtualization, Migration, Correctness, Trans-
parency, Consistency, Software-defined networks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to p ost on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
SoCC ’14, 3-5 Nov. 2014, Seattle, Washington, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3252-1/14/11. . . $15.00.
http://dx.doi.org/10.1145/2670979.2670982

1. Introduction
Multi-tenant cloud environments are increasingly “software-
defined” and virtualized, with a controller orchestrating the
placement of VMs and the configuration of the virtual net-
works. In a software-defined network (SDN), the controller
runs applications that install packet-processing rules in the
switches, using an API like OpenFlow [48]. In a virtual-
ized multi-tenant cloud, each tenant has its own VMs, a
controller application, and a “virtual network”, catered to
the tenant’s requirements, that are completely under its con-
trol [12, 19, 44]. The virtual networks are only as compli-
cated as needed to express the tenants’ desired policies: One
tenant might prefer a single virtual “big-switch” for man-
aging its traditional enterprise workload [19, 44], while a
multi-tier virtual topology might suit the web-service work-
load of another tenant better [44].

VM migration is an invaluable management tool for cloud
applications [8, 16, 17, 20, 55]. Frequently migrating VMs,
both within and across data centers, gives network admin-
istrators the flexibility to consolidate servers, balance load,
perform maintenance, prepare for disasters, optimize user
performance, provide high fault-tolerance, and reduce band-
width usage without disrupting the applications [16].

However, a VM rarely acts alone. Modern cloud applica-
tions consist of multiple VMs that have a tight coupling with
the underlying network, and almost all network policies, e.g.,
policy routes, ACLs, QoS, and isolation domains, depend
on the topology of the virtual network and the relative posi-
tions of the VMs [19]. VM migration (without migrating the
virtual networks), therefore, necessitates re-implementing
the policies—a notoriously complex and error-prone task
that often requires significant manual reconfiguration [19].
Moreover, changes in the physical locations of the VMs
triggers additional, unexpected “events” for the virtual net-
work’s control plane to handle. Therefore, when the VMs mi-
grate, the virtual networks should move, too.

In this paper, we propose that live migration of an ensem-
ble, a set of virtual machines and virtual switches, should
be a core infrastructure primitive in cloud networks. More-
over, we propose that this live migration should be seamless,
so that arbitrary applications function correctly throughout

transitions. Such an ability would be an invaluable manage-
ment tool for cloud providers for:

Planned maintenance: Migrate all (or part) of a virtual net-
work to perform maintenance on a physical switch without
disrupting existing services.

Optimizing resource usage: Migrate a resource-hungry
tenant to another “pod” during peak load, and consolidate
onto fewer physical components otherwise.

Cloud bursting: Migrate all or part of an enterprise’s appli-
cation between a private data center and the public cloud as
the traffic demands change.

Disaster recovery: Migrate a tenant’s network to a new
location before a natural disaster (e.g., a hurricane), or after
a data center starts operating on backup power.

In each case, live ensemble migration would minimize
performance disruptions and avoid the unwieldy, error-prone
task of reconfiguring the new servers and switches1.

Migrating the virtual network amounts to mapping the
virtual topology to a new set of physical switches. On the
surface, this seems like a simple matter of copying the
packet-processing rules from the old physical switch to
the new one. In practice, migrating an SDN is much more
challenging. While migrating a VM involves a temporary
“freeze” for the final copy of the run-time state, we cannot
“freeze” the switches, even for a short period, without caus-
ing excessive packet loss for several seconds ([47, 52, 54]
and Section 5.1.2). This excessive loss rate causes connec-
tion drops and is considered unacceptable for “live” migra-
tion [52]. To avoid that, our LIME (Live Migration of En-
sembles) architecture “clones” the virtual network, so both
instances of the network can carry traffic during the migra-
tion process.

However, running multiple clones of a virtual network
concurrently while projecting the view of a single network to
the control applications could lead to incorrect application-
level behaviors [27]. A NAT that drops legitimate traffic,
a firewall that erroneously blacklists legitimate hosts, and
a load-balancer that overloads some servers while leaving
the rest of the servers underutilized are some examples of
the applications behaving unexpectedly because of cloning
[27]. To project a correct view of a single network when
running multiple clones simultaneously, we must combine
events from multiple clones into a single event stream to the
controller application to preserve the semantics of the appli-
cations that react to events sent by the switches. A greater
challenge arises in updating the rules in the virtual switch
during the migration process. Simply deferring all updates
until the migration process completes would compromise
performance and reliability by not reacting to unplanned

1 More use-cases for virtual network migration, e.g., to increase utilization,
increase revenue, decrease cost, decrease energy consumption, and enhance
performance are provided in [10, 18, 37].

Figure 1: LIME architecture.

events like link failures. Yet, updating multiple clones at the
same time is challenging, since unavoidable variations in de-
lays mean that different instances of a virtual switch would
commit the same rule at different times. The problem is ex-
acerbated by the fact the tenants can run any applications,
with arbitrary, unknown inter-packet dependencies. To serve
as a general management tool, our migration solution must
be correct for any possible workload.

To that end, we present a network abstraction layer
that supports transparent migration of virtual networks (and
VMs), so that any SDN application continues to work cor-
rectly. LIME runs on top of an SDN controller and below
the (unmodified) controller applications, as shown in Fig-
ure 1. LIME provides each tenant with a virtual topology—
identical to the topology provided by the network virtualiza-
tion layer—and controller. It also augments the southbound
SDN API, used by the network virtualization layer to im-
plement the virtual networks on the physical network, with
the migration primitives that enable seamless relocation of
the virtual elements on the physical network. We ensure that
this migration process is transparent—that any execution of
the tenant’s controller and end-host applications during mi-
gration is a completely valid execution that could have taken
place in a migration-free setting. LIME does not require any
modifications to the switches and applications. In designing,
prototyping, and evaluating LIME, we make three research
contributions:

Efficient cloning algorithm: To prevent disruptions during
migration, multiple clones of a virtual switch may run si-
multaneously, while still forwarding and measuring traffic
correctly, even across changes to the rules (§2).

Correctness proof: We develop a new network model and
use that to prove that switch cloning works correctly for
any controller and end-host applications, under any possi-
ble unspoken dependencies between different packets (§3).
Reasoning about the correctness of concurrent distributed
systems is notoriously challenging [9], and existing work
on preserving correctness and consistency in networks fall
short of detecting the incorrect application-level behaviors
resulting from running multiple copies of a network concur-
rently [27]. To the best of our knowledge, our work is the
first work that formally defines migration correctness and
proposes an analytical framework to reason about it.

Performance evaluation: Experiments with our LIME pro-
totype on a 13-switch SDN testbed (“sliced” to emulate
a 45-switch fat-tree topology), with micro-benchmarks on
Mininet [35], and “in the wild” experiments on Emulab [2]
and FutureGrid [3] demonstrate that switch cloning enables
network migration with minimal performance disruptions
and controller overhead (§4, §5).

2. Transparent and Efficient Migration
LIME must ensure correctness and efficiency when migrat-
ing all or part of a virtual switch from one physical switch
to another2. The first challenge for designing a correct mi-
gration system is providing a correctness definition. In this
section, we define a novel and intuitive notion of correctness
for migration, transparency, before presenting a straw-man
move primitive that ensures transparency at the expense of
efficiency. Then, we show how switch cloning improves ef-
ficiency by allowing multiple copies of all or part of a vir-
tual switch to run at the same time. Finally, we show how
to update the rules in multiple clones without compromising
transparency.

2.1 Transparency During Migration
Arbitrary tenant applications must continue to operate cor-
rectly despite the migration of virtual machines and switches.
That is, applications should not experience any “important”
differences between a network undergoing migration and
a migration-free network. But what is an “important dif-
ference”? To speak precisely about transparency, we must
consider the observations that the VMs and the controller
application can make of the system. As in any network,
these components can only make limited observations about
the underlying network: (a) VMs observe packets they re-
ceive, (b) the controller can observe events (e.g., topology
changes and packets the switch directs to the controller),
and (c) the controller may query traffic statistics from the
switches. Note that the VMs and the controller application
cannot, for example, determine the precise location of every
packet in the network.

On the other hand, there are some differences the tenant
may detect during a migration: (a) latency or throughput of
data traffic may change, (b) packets may be lost or delivered
out of order, and (c) control messages between the controller
and the switches may experience variable delays. We con-
sider these to be acceptable deviations from a migration-free
setting—networks are traditionally “best effort” and may
suffer from packet loss, reordering, or fluctuations in latency
or throughput, even in the absence of migration. As such,
we consider a migration to be logically unobservable if, for
all observations generated during a migration, there exists a
migration-free execution that could make the same observa-

2 If a virtual switch is implemented using multiple physical switches, it
might be desirable to migrate only a part of it, e.g., the part residing on
one physical switch.

(A) The switch R,
along with VMs on
hosts H1, H2, and
H3, make up an en-
semble.

(B) Moving R
forces H1 and
H2 to tunnel to
R’s new location,
even when they
could communicate
locally.

(C) Cloning R only
sends necessary
traffic through the
tunnel.

Figure 2: A simple ensemble migration.

tions. Using a formal model, Section 3 proves that our mi-
gration primitives ensure this property.

To illustrate the concept of transparency, consider a
straw-man move primitive for migrating a virtual switch
from one physical switch to another. To “move” a virtual
switch, LIME first installs a copy of each rule into the new
physical switch, before any packets can start reaching the
new switch. Then, LIME “freezes” the old switch by first
installing a high-priority “drop” rule (that drops all traffic
entering the physical switch), and then querying the coun-
ters of the old rules to record the traffic statistics. (Later,
LIME can combine these statistics with the values of coun-
ters in the new physical switch.) To direct traffic to the new
physical switch, LIME would move the virtual links. After
copying the rules of R from the physical switch on the left
in Figure 2(A) to the one on the right, LIME creates tunnels
from hosts H1 and H2 to it, bringing us to the state depicted
in Figure 2(B).

Informally, the move primitive achieves transparency by
ensuring that the new physical switch handles packets and
generates events the same way as the old physical switch,
with at most one switch operating at a time. To prevent in-
consistencies in packet forwarding and monitoring, LIME
has the old switch drop packets— acceptable in a best-effort
network, and preferable to violating transparency. However,
the move primitive is not efficient. First, a “frozen” switch is
unresponsive, leading to a high rate of packet loss. Second,
the tunnels to the new switch increase latency. In fact, neigh-
boring components may send traffic over two tunnels—to
the new location and back—even though they are physically
close, as with H1 and H2 in Figure 2(B).

2.2 Running Multiple Clones of Switches
To reduce packet loss, LIME allows multiple running copies
(“clones”) of all or part of a virtual switch to coexist during
the migration process. This allows traffic to traverse either
instance of the switch without packet loss. Hence, as shown
in Figure 2(C), cloning R to the physical switches on right
and left allows H1 and H2 to communicate locally, and
only traffic destined for (or originating from) H3 needs to
traverse the tunnel. Better yet, as H1 and H2 migrate to
their new locations, they can immediately gain the benefit
of communicating locally with H3. Eventually, when the
migration of VMs completes, the old instance of the switch
is isolated and unused. At this point, LIME simply applies a
delete to clear the state of a given switch instance in its old
physical location, freeing its resources.

LIME ensures that the tenant’s controller application
sees a single virtual switch, despite the presence of mul-
tiple clones. LIME achieves transparency by merging the
events from the clones into a single event stream for the vir-
tual switch. The merging process must consider all possible
events an SDN switch sends to the controller:

• Packet-in events: A packet-in event directs a packet to
the controller. Since packets can be reordered in a best-
effort network, the LIME controller can simply merge the
ordered packet-in events coming from multiple physical
switches.

• Traffic statistics: Requests for traffic statistics are re-
layed to each instance of the switch, and the results com-
bined before the replies are relayed to the applications.
For the existing traffic statistics of OpenFlow, such as
byte counters, packet counters counters, and meters, this
operation is as straight-forward as summing them into a
single value for each rule.

• Link failures: If a link fails at either switch, LIME re-
ports a link failure to the tenant application, making the
(virtual) link unavailable at both physical switches.

• Rule timeouts: A switch can automatically delete rules
after a hard timeout (a fixed time interval) or a soft time-
out (a fixed period with no packet arrivals) expires. We
cannot ensure that two physical switches delete rules at
the same time. Instead, LIME does not use rule timeouts
during the migration process, and instead emulates the
timeouts3.

The merging process cannot preserve the relative order of
events sent by different physical switches, due to variable de-
lays in delivering control messages. Fortunately, even a sin-
gle physical switch does not ensure the ordering of events—
and the OpenFlow specification does not require switches
to create control messages in the order events occur. This is
natural, given that switches are themselves small-scale dis-
tributed systems with multiple line cards, a switching fab-

3 See our Tech Report [29] for further details on implementing this.

ric, etc. For example, packets arriving on different line cards
on the same physical switch could easily trigger packet-in
events in the opposite order. As such, we need not preserve
the relative ordering of events at clones of a virtual switch.

2.3 Updating Multiple Switch Clones
The LIME controller may need to install or uninstall rules
during the migration process. Buffering every update until
the migration completes can lead to an unacceptable perfor-
mance disruption. Due to the distributed nature of switches,
LIME cannot ensure that both clone instances are updated at
exactly the same time. However, applying updates at differ-
ent times can violate application dependencies. We give an
illustrative example below.

Running Multiple Clones: What Could Go Wrong?
As an example of the incorrect behaviors caused by running
multiple clones of a switch, consider a campus network that
has a peripheral gateway – all the traffic from external hosts
to the internal hosts and vice versa go through this gateway.
Assume, further, that in addition to this gateway, the cam-
pus network deploys a number of OpenFlow switches for
implementing its policies. Specifically, it deploys a switch
to act as a firewall with the following simple policies: (a)
drop all traffic from internal to external hosts, and (b) black
list any external host that sends traffic to any internal host,
e.g., when the controller receives a packet-in event from the
firewall with an external host’s address in the source address
field, the controller black-lists that external host by installing
the rules on the gateway for dropping the packets sent from
that external host. The campus network also deploys another
OpenFlow switch to perform destination based forwarding.

Now, imagine that initially the network operators want
to have a policy, policy 1, to block any web-communication
between internal and external hosts, blacklist any external
host that tries to send web-traffic to any internal host, and
permit any non-web communication between the internal
and external hosts. This simple policy can be implemented
by installing a single rule on the gateway to send all the
web traffic to the firewall, and all other kinds of traffic
to the forwarding switch. Assume that at some point, the
policy is updated to policy 2 which simply permits any
web and non-web communication between the internal and
external hosts. This policy update could be simply executed
by updating a single rule on the gateway to send web-traffic
to the forwarding switch, instead of the firewall.

In this scenario, if an external host receives web traffic
from an internal host, it effectively learns that the policy
update has been done, and it can send back web traffic to
the internal host without getting black-listed.

However, if the gateway is cloned for migration, and
the operators update the policy (to send web traffic to the
forwarding switch instead of the firewall) while having two
clones of the gateway, then one clone of the gateway could
be updated while the other clone still has its old policy (i.e.,
it still needs to be updated). In that case, the web traffic

from the internal hosts to the external hosts could go through
the updated clone of the gateway (and hence go through the
forwarding switch and be delivered to the external host), but
the web traffic from the external hosts to the internal hosts
could go through the yet-to-be-updated clone of the gateway,
and be forwarded to the firewall, which implies that the
external host will be black-listed if it sends web-traffic to the
internal hosts, even after it receives web traffic from internal
hosts and learns that it’s allowed to send them web-traffic.
This breaks the transparency, as something (in this example,
“blacklisting") that would not happen in a migration-free
execution could happen while migrating.

Note that despite the visibly-incorrect behavior in the ex-
ample above, some of the most common notions of correct-
ness such as “per-packet consistency” [51] are preserved
throughout: Each packet is handled by one configuration
only. In fact, we have shown in a recent work that existing
update mechanisms such as “consistent updates” [51] cannot
prevent the incorrect application-level behavior (such as fire-
walls erroneously blacklisting legitimate hosts) caused by
cloning [27]. Therefore, those mechanisms are insufficient
for correct migration. LIME ensures transparency of migra-
tion by updating rules using one of two mechanisms:

• Temporarily drop affected traffic: This two-step ap-
proach provides transparency at the cost of some packet
loss. Given a new rule from the controller, LIME first in-
stalls a rule on each clone instance with the same pattern
but with an action of “drop” to discard the packets. Once
LIME is notified that both switch instances have installed
the new rule (e.g., through the use of a barrier), the sec-
ond phase installs the original rule with the action spec-
ified by the application. This ensures that any dependent
packet is either dropped or processed by the updated rule.
Note that the packet loss only affects traffic matching the
pattern in the updated rule, and only during the first phase
of the update.

• Temporarily detour affected traffic: This mechanism
provides transparency at the cost of increased latency.
Given a rule from the controller, LIME picks one instance
of the cloned switch, establishes tunnels to it, and routes
all traffic through it (which can therefore be atomically
updated). With the other clone instance isolated, LIME
can safely update both instances. Once LIME receives
notification that the updates have been applied, traffic can
be restored to its original routes.

Either approach ensures transparency, with different trade-
offs between packet loss and packet latency.

3. Proving Transparency
In the previous section, we qualitatively defined trans-
parency and argued how LIME migrates transparently. To
be a reliable network management tool for critical infras-
tructures such as multi-tenant cloud environments, however,

Packets:
Bit b ::= 0 | 1
Packet pk ::= [b1, ...,bn]
Port p ::= 1 | ... | k
Located Pkt (LP) lp ::= (p,pk)

Observations:
Query ID idq
Host ID idh
Observation o ::= idq | (idh,pk)

Network State:
Switch S ∈ LP ⇀ (LP Set× IDq Set)
Topology T ∈ (Port×Port) Set
Hosts H ∈ Port ⇀ (IDh× (LP ⇀ LP Set))
Packet Queue Q ∈ Port→ Packet List
Configuration C ::= (S,T,H)

Updates:
Switch Update us ∈ LP ⇀ LP Set× IDq Set
Host Update uh ∈ Port ⇀ IDh× (LP ⇀ LP Set)
Update u ::= (LIME,us) | (LIME,uh)

| (Controller,us)
Network N ::= (Q,C, [u1, ...,un])

Figure 3: Network elements.

LIME’s correctness needs to be analyzed more rigorously.
Toward this goal, in this section, we develop an abstract
network model to formalize the concept of “transparency”
and use it to prove that LIME migrations are transparent,
i.e., every set of observations that the controller application
and end-host virtual machines can make during a migration
could also have been observed in a migration-free setting.
Due to space constraints, the full technical development,
proof of correctness, and supporting lemmas are presented
in a separate technical report [29].

3.1 The Network Model
We use a simple mathematical model to describe the fine-
grained, step by step execution of a network, embodied in the
relation N os−→?N′, which states that a network N may take
some number of steps during execution, resulting in the net-
work N′. Our model extends the network model presented in
[51] to account for end host and switch migration. But where
the model in [51] produces sets of packet traces, the primary
output of this relation is a multiset4 os containing the ob-
servations that the controller and end hosts can make as the
network transitions from N to N′. The traces of [51] essen-
tially model an omniscient observer that can see the location
of every packet at all times—useful for reasoning about per-
packet consistency, but too strong an assumption for reason-
ing about transparency: an omniscient observer can easily
distinguish between a network undergoing migration and a
migration-free network.

4 A multiset counts how many of each observation is made.

Basic Network Elements. Figure 3 defines the syntax of
the network elements in our model. We take packets to
be uninterpreted lists of bits, and ports bear unique names
drawn from the set of integers. A located packet pairs a
packet with a port, modeling its location in the network. An
observation o comprises either an opaque query identifier
idq, representing information sent to the controller, or a pair
(idh,pk) of a packet pk arriving at a host named idh.

Network State. As in [51], we model switch behavior as
a switch function S from located packets to sets of located
packets. We augment S to produce the set of observations
made as the switch processes the packet—these observa-
tions represent both traffic statistics and packets sent di-
rectly to the controller. A relation T describes the topology:
if (p, p′) ∈ T , then a link connects ports p and p′. We use
this to model both physical links and virtual tunnels. Hosts
are modeled as a pair (idh, f), where idh is the name of the
host and f is a function that models the behavior of the host:
given a located packet lp, then f (l p) is the (possibly empty)
set of packets that idh may produce after receiving the packet
lp. A host map H connects ports to hosts. Finally, a queue Q
maps each port in the network to a list of packets. Each list
represents the packets to be processed at that port. We say
that Q is an initial queue if every non-empty list is associ-
ated with a port connected to a host.

Network Updates. As the network runs, the controller may
emit updates to the switch behavior. A switch update us is
a partial function that describes new switch behavior, and
(Controller,us) is a switch update sent from the controller.
During a migration, LIME will also update switch behavior
and the locations of end hosts. A host update uh is a partial
function that describes new host locations, and (LIME,uh)
is a host update sent from the LIME platform. We define
override to update one partial function with another:

override(S,us) = S′

where S′(lp) =

{
us(lp) if lp ∈ dom(us)

S(lp) otherwise

A network N is made up of a queue, a configuration, and
a list of updates to be applied to the network.

Transitions. Transitions fall into two categories: processing
a packet, and updating the network state. For example, the
rule [Switch] in Figure 4 describes a packet being processed
at a switch. Lines 1–7 roughly state:

(1) If p is a port,
(2) and Q′ is a queue resulting from removing pk from the

head of Q(p),
(3) and C is made up of S,T, and H,
(4) and applying the switch function S to the packet pk lo-

cated at port p results in a set of (possibly modified) pack-
ets lps at new ports, along with the observations idsq,

SWITCH

if p is a port (1)
and (pk,Q′) = dequeue(Q, p) (2)
and C = (S,T,H) (3)
and S((p,pk)) = (lps, idsq) (4)
and lps′ =

{
(p′i,pki) | (pi,pki) ∈ lps∧ (pi, p′i) ∈ T

}
(5)

and Q′′ = enqueue(Q′, lps′) (6)

then (Q,C,us)
idsq−→ (Q′′,C,us) (7)

SWITCH UPDATE

if us = (_,us) :: us′ is a list of updates (8)
and C = (S,T,H) (9)
and C′ = (override(S,us),T,H) (10)

then (Q,C,us)−→ (Q,C′,us′) (11)

Figure 4: The network model.

(5) and forwarding each packet in lps across the topology
yields a set of packets lps′ at new locations,

(6) and Q′′ is the result of adding the packets in lps′ to the
queue Q′,

(7) then a network (Q,C,us) steps to (Q′′,C,us), producing
observations idsq.

The rule [Switch Update] (Figure 4) updates the switch
behavior. Lines 8–11 state:

(1) If us is at the head of the update list us,
(2) and C is made up of S,T, and H,
(3) and C′ is the configuration resulting from overriding the

switch function S with us,
(4) then (Q,C,us) steps to (Q,C′,us′) without producing any

observations.

The rules for processing packets at hosts and updating the
host map are similar [29].

We write N os−→?N′ as the reflexive, transitive closure of
the step relation defined in Figure 4, where os is the union of
observations occurring at each step.

3.2 Formal Results
Armed with the network model, we can define precisely the
behavior that makes a migration transparent. We begin by
defining the observations that the controller and end hosts
can make of an ensemble that is not undergoing migration.

Definition 1 (Migration-free Execution). An execution

(Q,N,us) os−→?(Q′,N′,us′)

is a migration-free execution if Q is an initial queue and all
updates in us are of the form (Controller,us).

In other words, a migration-free execution simply runs an
ensemble in its current location, possibly updating the switch
behavior with rules from the controller, and os captures
every observation that the controller and end hosts can make.

Definition 2 (Observationally Indistinguishable). For all
pairs of update sequences, us1 is observationally indistin-
guishable to us2 if for all initial queues Q and executions

(Q,C,us1)
os1−→?(Q′,C′,us′1)

there exists an execution

(Q,C,us2)
os2−→?(Q′′,C′′,us′2)

and os1 ⊆ os2.

Our definition of a transparent migration follows from
the notion of observation equivalence, a common means of
comparing the behavior of two programs [49]. Intuitively, a
sequence of updates us1 is observationally indistinguishable
to another sequence us2 if every observation produced by an
execution applying us1 can also be made in some execution
applying us2. Hence, a transparent migration is one that
is observationally indistinguishable from a migration-free
execution.

A migration can be described by two pieces of informa-
tion: the new locations of each switch and port, and the se-
quence of updates that enacts the migration to the new lo-
cations. We use a partial function M from ports to ports to
describe the new locations: M(p) = p′ if p is being migrated
to p′. And we observe that clone (and move) can be repre-
sented as a sequence of switch and host updates.

During a migration, the LIME framework instruments
switch updates from the controller. An update sequence us
from LIME that both effects a migration and contains instru-
mented updates from the controller can be split into two lists:
one that effects the migration, and another that contains in-
strumented updates from the controller. We write usC @ us to
mean that usC is the original sequence of controller updates
that have been instrumented and interspersed with migration
updates.

Theorem 1 (Migrations are Transparent). For all port maps
M and update sequences us that define a migration, let usC
be the list of uninstrumented updates from the controller
such that usC @ us. The following conditions hold:

• usC induces a migration-free execution, and
• the sequence us is observationally indistinguishable from

usC.

The proof proceeds by induction on the structure of the
network execution induced by us and hinges on preoserving
two invariants, roughly stating:

1. Every VM is either located at its new or old location, as
defined by M, and

2. Every rule that was in the switch configuration at the start
of the migration is either installed in its original location,
new location, or both and perhaps modified to forward
packets into a tunnel (clone and move primitives), or an
identical rule is installed that drops or detours all packets
and emits no observations (update algorithms).

Figure 5: Prototype Implementation.

Together, these invariants ensure that after every step of
execution, every packet is either processed in the original
network, or in the new location with an equivalent rule, or is
dropped before emitting any observations.

4. Implementation
To evaluate the performance of our system in practice, we
built a prototype implementation using the Floodlight con-
troller platform [24]. An overview of our design is shown
in Figure 5. Floodlight runs a series of modules (e.g., user
applications), and each module is supplied with common
mechanisms to control and query an OpenFlow network [6].
Our design is naturally implemented as a layer (which is it-
self a module) residing between other modules and the con-
troller platform. LIME exposes much of the same interface
as the controller platform—modules that wish to be LIME
clients simply use the LIME interface instead. The LIME
prototype instruments updates and queries received from
client modules, and notifies clients of underlying changes
to the topology.

LIME exposes two additional interfaces. A migration in-
terface allows a network operator to configure ensembles,
specify migration destinations, define custom migration al-
gorithms, and enact ensemble migrations. An endpoint inter-
face connects the LIME module to end hosts running VMs.
A small daemon program on each end host relays LIME
host migration commands to the KVM virtual machine plat-
form [4], which performs the VM migration.

A key challenge in designing the prototype lay in man-
aging the underlying network state to mask migration from
client modules. LIME maintains a lightweight network in-
formation base (NIB), similar to what the Onix platform pro-
vides [43]. But unlike Onix, LIME maintains the state each
client module would see, were the network not undergoing
migration. LIME updates the NIB at each step in the migra-
tion, as well as when it receives queries and updates from
clients.

Our prototype implements a simple tunneling algorithm
to set up and tear down virtual links in the network. Traf-
fic destined to enter a tunnel is tagged with a unique VLAN
value unused by either the client module or other tunnels.
Using the underlying topology graph provided by Flood-
light, rules are installed along the shortest path to the tunnel
destination; each rule is predicated on the VLAN tag, thus
matching only traffic passing through the tunnel.

Finally, the LIME prototype implements the migration
primitives described in Section 2. Using the primitives, we
construct the following two end-to-end orchestration algo-
rithms, and Section 5 reports on our experience using these
algorithms in practice, providing empirical evidence of their
tradeoffs:

Clone-based Migration: A clone-based migration will
clone the switches and move the hosts5; it proceeds as fol-
lows. First, clone each switch. For each switch instance,
select a virtual link to the closest neighbor; for cloned in-
stances of switches connected to hosts, this will be a vir-
tual link to the original host location. Then, for each host,
move the host to its new location and update the links its
neighbors use to communicate with it. Finally, delete the
original clone instances.

This scheme minimizes back-haul traffic: for every path
through the migrating network between every pair of hosts,
traffic will traverse at most one virtual link between the new
and old locations. It also minimizes packet loss: the only
loss occurs during the brief time each VM is frozen during
its move or when the rules are updated. The disadvantage
lies in the additional overhead needed to maintain a con-
sistent view of the network state. Note that from the two
update primitives described in Section 2, LIME’s prototype
currently does not support the detouring mechanism because
it requires some capabilities of the newer SDN protocols,
such as bundle messages or group tables in OpenFlow 1.4
for atomically updating multiple rules or having a unified
set of actions for multiple rules, that are not yet supported in
the Floodlight controller.

Move-based Migration: Despite the advantages of clone-
based migration, the additional overhead may be undesirable
in some scenarios, such as an ensemble that includes a con-
troller under heavy load. Extending this scenario, let us also
say that we intend to migrate this ensemble across a wide-
area network, where sending traffic between the new and old
locations is expensive. However, the service deployed to this
ensemble happens to be implemented robustly, such that it
can tolerate some packet loss between VMs and total packet
loss for a reasonably short period of time. Conveniently, the
move and clone primitives are flexible enough to create an
algorithm tailored for such a situation.

We call this algorithm a move migration, and it pro-
ceeds as follows. First, move each switch to its new location,

5 LIME does not currently support VM cloning as a migration technique.

Figure 6: Topology for testbed experiment.

but, as part of the move, leave the hosts connected to the
(now empty) original locations—dropping any traffic. Next,
move each host, reestablishing its connection at the new lo-
cation. As a result, the ensemble will initially experience
a brief window of downtime, followed by a period of time
where only hosts in their new locations can communicate
with each other, minimizing inter-location traffic.

5. LIME Performance Evaluation
Modern datacenters serve many interactive applications such
as search or social networking that require very low latency
and loss rate. Even small increases in packet loss and delay
can dramatically degrade user-perceived performance [13].
Hence, for LIME to be an “efficient" network management
tool, we must keep increased packet loss and delay to a min-
imum, and ensure migration completes quickly. Moreover,
migration should not introduce significant overhead on ei-
ther the control or data planes.

In this section, we quantify performance and overhead
through experiments with our prototype. In summary, (a)
we evaluate transient behavior during migration, in terms of
packet loss and latency, during intra- and inter- datacenter
migration. We also compare the transient behavior of net-
works when using our “move-based" and “clone-based" or-
chestration algorithms (§5.1). (b) We show that LIME has
negligible control and data plane overhead (§5.2). (c) We
show that LIME scales by studying migration time as a func-
tion of the size and structure of the network topology. We
also show that the limited migration performance and over-
head penalties persist for a very short period of time with
LIME, even in large networks (§5.3). (d) We close this sec-
tion with a case study that demonstrates the benefits of mi-
gration for reducing congestion in datacenters (§5.4).

5.1 Performance During Migration
Running experiments on the Emulab [2] and FutureGrid [3]
testbeds, we show that LIME introduces minimal packet
loss and latency during intra- and inter-datacenter migration
(§5.1.1). Moreover, using MiniNet experiments, we show
the efficiency of clone for avoiding packet loss during mi-
gration, compared to our straw-man move primitive and a
naive approach for migrating without LIME (§5.1.2).

5.1.1 LIME Running “in the Wild”
Performance during migration depends on the bandwidth
and latency between the components, and the number and
size of VMs. To demonstrate our system and highlight its

Figure 7: Time-series plot of the loss and latency observed
during an ensemble migration from Emulab to FutureGrid.
The horizontal lines each represent the time for which a VM
is migrating.

performance properties, we conduct a live ensemble migra-
tion within and between two testbeds.

Testbed setup: Our experiments use the Emulab [2] and
FutureGrid [3] testbeds. We run an ensemble consisting of
three virtual hosts (each with a 1GB memory footprint and a
pre-copied disk image) and two virtual switches, as shown in
Figure 6. Within Emulab, we run KVM on a 2.4 GHz 64-bit
Quad Core Xeon E5530 Nehalem processor, and connect the
switches directly. Within FutureGrid, we have to run KVM
nested within a FutureGrid VM and interconnect FutureGrid
VMs with GRE tunnels [36] to emulate direct links. We use
VM migration and switch cloning to migrate the entire en-
semble from Emulab to FutureGrid (inter-datacenter migra-
tion with a round-trip time of roughly 62ms and measured
bandwidth of 120Mbps), as well as exclusively within Emu-
lab (intra-datacenter migration). During the migration, VM1
pings VM2 and VM3 every 5ms.

Experimental results: Figure 7 shows a time-series plot
of the loss and latency of two flows (from VM1 to VM2
and VM3, respectively). Migrating between Emulab and Fu-
tureGrid takes 65.5 seconds; migrating the same topology
within Emulab takes 21.3 seconds. For each VM migration,
we notice a spike in latency at around the midpoint of the
VM migration—we speculate that this is due to extra CPU
load on the VM and contention for bandwidth between the
ensemble and the VM migration. At the end of the migra-
tion, we see a short spike in packet loss—due exclusively to
the “freeze” period of the VM migration. Migrating a VM
affects the latency for communicating with other VMs in
the ensemble. After migrating, VM3’s communication with
VM1 must traverse the wide area, leading to higher latency.
Fortunately, the “clone” mechanism ensures that two VMs
at the same site can communicate locally through the lo-
cal instance of the switch. So, once VM1 migrates, the two
VMs communicate solely within Emulab, with much lower
latency (0.25 ms), even while VM2 completes its own migra-
tion process. It should be noted that the limited loss observed

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

 2.8

 3.2

 1 10 100 1000 10000

Pa
ck

e
t

d
ro

p
 [

p
e
rc

e
n
t]

Flow table size [number of rules]

Figure 8: Percentage of packets lost during “move" migra-
tion (migration with “clone” is lossless).

is caused by VM (and not network) migration, and network
migration with the clone algorithm is lossless (as shown in
the following subsection using MiniNet experiments).

5.1.2 Transient Performance with Clone vs. Move
Migration without using LIME can lead to high packet loss.
Under the move orchestration algorithm of LIME, applica-
tions experience a period of packet loss after stopping the old
switch(es). Under the clone orchestration algorithm, there is
no packet loss due to switch migration.

To quantify this effect, we experiment with Mininet
HiFi [35] running on Intel Core i7-2600K machines with
16GB memory. The default Floodlight applications (routing,
device discovery, etc.) run throughout the experiment. We
use a simple topology with two hosts connected to one vir-
tual switch. We migrate this network using three approaches:
(a) a naive freeze and copy approach, where a simple script
retrieves the network state, freezes the source network, and
copies the rules to the destination, (b) LIME’s copy and
freeze algorithm (move), and (c) LIME’s clone algorithm.
We vary the number of rules in the switches to see how the
size of the state affects performance, and send packets at a
rate of 10,000 packets per second. We then measure packet
losses in a 1-second time window, where the migration com-
mand is issued at the beginning of the time interval.

The loss rate of freeze and copy is 100% during the first
second, and we continue having packet drops for 5 seconds.
Figure 8 shows that the loss rate with “move” is also rela-
tively high, e.g., for networks with around 10,000 rules per
switch, packet loss during a “move” is 3%. The packet loss
percentage drops to 0% after the first second. The loss rate is
0% with clone (not shown), and we observe no performance
degradation in communications. In summary, we observed
that migrating switches with clone is live, i.e., end-to-end
communication does not degrade during the migration.

5.2 Migration Overhead
Despite the performance benefits, LIME does cause higher
processing overhead at the controller, and longer forwarding

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
C

D
F

Violations [percent]

w/o LIME w/o planned seq
w/o LIME w planned seq

LIME w/o planned seq
LIME w planned seq

Figure 9: Bandwidth violations.

paths due to tunneling. In this section, we show these over-
heads are small and manageable.

5.2.1 Control-Plane Overhead
To measure processing overhead at the controller, we use the
cbench OpenFlow controller benchmarking tool [1], config-
ured to emulate 30 switches sending packet-in events from 1
million source MACs per switch. As a baseline, we com-
pare the number of packet-in events a LIME-augmented
controller can handle compared to an unmodified Flood-
light controller. The LIME prototype processed around 3 M
events per second as compared to 3.2 M for the unaugmented
Floodlight controller—an overhead of roughly 5.4%.

5.2.2 Data-Plane Overhead
By keeping traffic entirely in the old or the new physical
network, LIME’s clone algorithm reduces the bandwidth
overhead compared to iteratively using move. To verify this,
we simulate the same virtual and physical topologies, band-
width requirements, and constraints used in prior work [14,
34, 59], and place 30−90% load on the network by initially
allocating virtual networks using an existing allocation al-
gorithm [34]. We then select random virtual networks from
the allocated virtual networks to migrate, randomly deter-
mine the destination of migration, and migrate them with
the clone algorithm.

When the network is moderately or highly loaded, migra-
tion with LIME violates the bandwidth constraints much less
often than migration without LIME (i.e., sequentially mov-
ing switches). Moreover, our prior work shows that band-
width cost of migration could be reduced by planning the se-
quence of migrating the VMs (as opposed to migrating them
with some random ordering) [26]. Using the same sequence-
planning algorithm to determine which nodes to move along
with LIME offers further reductions in the bandwidth viola-
tions.

As an example, Figure 9 shows the complementary CDF
of number of violations when 100 randomly picked virtual
networks are migrated to locations determined by the Sec-
ondNet algorithm [34]. Virtual networks have 10 switches
in form of trees (branching factor= 3) each connected to one

 0

 0.1

 0.2

 0.3

 5000 10000

E
ff

e
ct

iv
e
 m

ig
ra

ti
o
n
 t

im
e
 [

s]

Flow table size per switch [number of rules]

Clone (with updates)
Clone (w/o updates)

Move

Figure 10: Migration latency as flow-table size grows.

VM, and with links with 10Mbps bandwidth requirement.
They are placed on top of a 200-node physical tree network
where each substrate node has capacity for hosting 2 VMs,
and substrate links have bandwidth 500Mbps. The network
is initially loaded with around 70% of the maximum possible
load.

On average, migrating with LIME and with and without
planning the sequence of migrating VMs resulted in viola-
tions for migrating 2.7% and 9% of the time, respectively.
While migrating without LIME, with and without using the
sequence planning algorithm caused violations 17.8% and
35.2% of times, respectively.

In summary, migration with clone significantly reduces
data-plane overhead, compared with move.

5.3 Migration Duration
To be a useful management tool, migration must complete
quickly. In this section, we show that the duration of migra-
tion process with LIME is negligible even for large topolo-
gies for both hardware and software switches.

Testbed setup: We deploy the Ocean Cluster for Experi-
mental Architectures in Networks, OCEAN [5], which is an
SDN-capable network testbed composed of 13 Pica8 Pronto
3290 switches each with 48 ports. In order to run the exper-
iments on a network with a larger scale and a more realistic
topology, we emulate a fat-tree topology built out of 45 6-
port switches by “slicing” the switches of OCEAN. That is,
we deploy a simple home-grown virtualization layer, placed
between LIME and the switches, that maps the data plane
IDs and ports of the physical switches to the virtual switch
IDs and ports of the virtual 6-port switches (more details can
be found in [29]). LIME runs on a VM, with a 4,000-MHz
CPU and 2 GB RAM, on a server in the same testbed. On
the 45-switch fat-tree network, we then populate an aggre-
gate switch and two edge switches connected to it and use
the primitives of LIME (clone, move, and update) to migrate
them to random subgraphs with similar topologies.

As a baseline, we also implement and compare per-
formance with the freeze and copy approach described in
§5.1.2. Moreover, for testing the sensitivity of migration du-
ration to parameters such as using software vs. hardware

switches, the topologies and scales of the underlying physi-
cal networks, and the topologies and scales of the virtual net-
works, we also experiment with virtual networks of various
scales and topologies placed on top of networks with differ-
ent scales and topologies built of both hardware and soft-
ware switches, including various pairings of VL2, BCube,
Fat-Tree, scale free, and tree topologies of varying sizes,
and measure the migration time as well as the duration of
updating the rules under LIME.

Experimental results: As shown in Figure 10, the mi-
gration duration stays under a second across a range of flow-
table sizes, as computed over ten runs for each data point.
Migration time increases roughly linearly with the number
of rules that require special handling (e.g., the rules that re-
quire cloning or translation), and move takes slightly less
time than clone (since it is simpler). It also shows that mi-
grating the network while using our update mechanism (ex-
plained in §2 and §4) still takes under a second despite the
added complexity and the extra steps taken by the update
mechanism.

The baseline approach has substantially worse migration
times. For example, when migrating a 3-switch topology,
where each switch has 10,000 rules, migration with the
naive approach takes over 20 seconds while the migration
time for the exact same topology with LIME is under 0.3
seconds. Even worse, the naive approach causes significant
performance degradation (see §5.1.2).

Our experiments with various topologies show that mi-
gration time depends on the number of rules requiring han-
dling by LIME but is otherwise independent of the topology
[29]. Our experiments with OVS software switches [7] (in-
stead of hardware Pica8 switches) show similar results and
trends in terms of the migration time [29].

In summary, migration duration is negligible with LIME’s
clone and move (with move slightly faster than clone), and
is a function of the network size (i.e., the number of rules),
and is independent of the topology.

5.4 Case Study: Reducing Congestion
One of the benefits of migration is the flexibility it pro-
vides to balance traffic to reduce congestion. Congestion is
prevalent in datacenters even when spare capacity is avail-
able elsewhere [31], e.g., while servers under a ToR can
communicate with full line rate, inter-ToR communication
usually traverses congested links, degrading application per-
formance [15]. Even when the initial allocation of virtual
networks is optimal, dynamics of the datacenters (incremen-
tal expansion and release of resources, failures, arrivals and
departures of tenants, etc.) cause it to become inefficient
over time. Hence, periodically re-optimizing the placement
of tenants’ virtual networks can reduce congestion on inter-
cluster links [15, 30].

Our experiments show that inter-cluster congestion in
common datacenter topologies, such as fat-tree, BCube [33],
and DCell [32], could be significantly reduced with migra-

Figure 11: Reducing inter-cluster traffic by migration.

tion. For example, Figure 11 shows the results of an ex-
periment where virtual networks of random sizes (random
graphs with 40−60 nodes, where each pair of nodes are con-
nected with probability 1% with a link speed of 10Mbps) are
sequentially placed on a 27,648-server fat-tree datacenter
network in which all links between servers and ToR switches
are 1Gbps while all other links are 10Gbps. Initial alloca-
tions are done with an existing allocation algorithm [34] and
we then applied a simple heuristic for migrating virtual net-
works (or parts of them) to reduce inter-ToR traffic in favor
of increasing intra-ToR traffic [28]6. As more virtual net-
works are allocated, the benefit of migration to reduce the
load on inter-cluster links becomes more significant.

6. Related Work
LIME is a general technique for seamlessly migrating a vir-
tual network running arbitrary control applications. As such,
LIME relates to, and generalizes, previous work on migra-
tion mechanisms. LIME also relates to previous work on
ensuring consistent network state. The current paper sig-
nificantly expands on our workshop paper [42], with im-
proved algorithms, a precise definition of correctness, a for-
mal model and correctness proofs, and an implementation
and evaluation.

6.1 Migration Mechanisms
Migrating and cloning VMs: Virtual machine migration
is an old idea. Recent work shows how to make VM mi-
gration faster or efficiently migrate a collection of related
VMs [11, 21, 23, 40, 53, 57, 58]. Remus [22] also supports
cloning of VMs. Our work brings the benefits of migration to
virtual networks supporting arbitrary end-host and controller
applications.

Migrating at the network edge: Previous work shows
how to migrate functionality running at the network edge—
inside the VM or in the soft switch on the physical server.
VIOLIN [39] runs virtual networks as overlays on hosts;
the paper mentions that VMs running switches and routers
could migrate, but does not present new migration tech-
niques. VirtualWire [56] allows a VM to migrate from one

6 See our Tech Report [28] for further discussion and analysis.

cloud provider to another, and use a tunnel to reattach the
VM’s virtual NIC to the network. Nicira’s Network Virtual-
ization Platform migrates a tenant’s VM along with the rele-
vant configuration of the soft switch on the server, so the VM
can reattach to the overlay at its new location [44]. These ap-
proaches work for software switches and routers exclusively.
VIOLIN and VirtualWire, for instance, implement virtual
network components in VMs. In contrast, LIME migrates an
entire virtual topology to a different set of hardware or soft-
ware switches. Since “core” switches carry traffic for many
VMs, LIME’s switch migration must be seamless. This leads
us to run multiple instances of a migrating virtual switch,
and handle the resulting consistency challenges. Further-
more, migrating the VMs and the software switches at the
edge could cause downtime for a few seconds [47, 52, 56]
which is considered unacceptable for “live” migration since
the active sessions are likely to drop [47, 52]. To avoid such
downtime, similar to LIME, XenFlow and VMWare vNet-
work Distributed Switch run multiple copies of the dataplane
concurrently. Unlike LIME, however, they do not handle the
possible resulting correctness violation [27].

Migrating in-network state: Other work shows how to
migrate state inside the network [25, 41, 46, 54]. VROOM [54]
can migrate a router running a BGP or OSPF control plane,
not arbitrary control software; VROOM also requires modi-
fying the network elements, whereas LIME works with un-
modified OpenFlow switches and controller applications.
Other work presents techniques for migrating part of the
state of a component like a router [41]. These works have
a different goal—explicitly changing the topology to direct
traffic to a new location—and do not support arbitrary con-
trol applications and topologies.

LIME could be used for migrating the middleboxes that
are implemented using only standard SDN switches and con-
troller applications and operate correctly in best-effort net-
works. For the middleboxes that maintain and act on more
sophisticated state or have different network requirements
(such as requiring in-order delivery), the recent work on re-
distributing packet-processing across middleboxes [25, 50]
could be used to migrate them. It should be noted, however,
that these approaches require application source-code mod-
ifications, rely on some topological assumptions, and pre-
serve consistency of state by synchronizing [50] or serial-
ization [25] that comes at a significant performance cost.

XenFlow presents a hybrid virtualization system, based
on Xen and OpenFlow switches, that migrates Xen VMs and
the virtual network while providing isolation and QoS [47].
When migrating a VM, XenFlow runs the source and desti-
nation data-planes concurrently to avoid packet-loss. How-
ever, they ignore the correctness issues that could occur due
to running multiple clones simultaneously [27]. Other re-
cent work [46] presents orchestration algorithms for virtual
network migration, but not specific migration mechanisms;
LIME could adopt these orchestration algorithms.

6.2 Consistency of Network State
Consistent updates to a network policy: Recent work on
“consistent updates” [51] shows how to change the rules
in SDN switches while ensuring that a packet in flight ex-
periences a single network policy. Informally, a consistent
update focuses on the “network", whereas LIME focuses on
“applications" running on end hosts and controllers. LIME
must satisfy application-specific dependencies between mul-
tiple packets (possibly from different flows) while managing
multiple, dynamically-changing copies of the same switch.
Our theoretical model relates to the model in the consistent-
updates paper, but with major extensions to capture the
observations that end-host and controller applications can
make, rather than simply the trace properties a single packet
experiences. The consistent-updates work cannot solve the
switch-migration problem because the consistency property
is different, the underlying model does not include hosts and
controllers, and the technique does not handle replicated
state. The two works prove different network properties, us-
ing similar proof techniques.

More recently, several papers propose ways to update a
network policy without causing transient congestion [26, 38,
45]. This line of work is orthogonal to LIME, since these
solutions do not provide a framework for migrating virtual
networks (e.g., to jointly migrate network and VM state).
However, their algorithms could help generate an efficient
plan for migrating switches or the steps for migrating the
tunneled traffic. We plan to explore this direction as part of
our future work.

7. Conclusions
Live VM migration is a staple in the management of data
centers and enterprises. When migrating VMs, their under-
lying network should migrate, too. LIME supports transpar-
ent migration of virtual machines and switches. Our effi-
cient cloning technique minimizes performance disruptions
by allowing multiple physical switches to act as a single
virtual switch during the migration, while forwarding and
measuring traffic correctly, even across updates to the rules.
Using our formal model, we prove that clone works cor-
rectly for any controller and end-host applications, under any
(unknown) dependencies between different packets. Experi-
ments with our prototype also demonstrate that clone is ef-
ficient, enabling ensemble migration to be a general tool for
network management.

Acknowledgments
We would like to thank Brighten Godfrey, Kyle Jao, Dushyant
Arora, Diego Perez-Botero, the anonymous reviewers, and
our shepherd, James Mickens, for their insightful feedback
and their help with the experiments. We gratefully acknowl-
edge the support from DARPA through grant MRC-007692-
001, ONR grant N00014-12-1-0757, and NSF grants TC-
1111520 and CNS-1320389.

References
[1] cbench OpenFlow controller benchmark. See http://www.

openflow.org/wk/index.php/Oflops.

[2] Emulab - Network Emulation Testbed. http://www.
emulab.net/.

[3] FutureGrid. https://portal.futuregrid.org/.

[4] Kernel Based Virtual Machine (KVM). http://www.
linux-kvm.org/.

[5] Ocean cluster for experimental architectures in networks
(ocean). http://ocean.cs.illinois.edu/.

[6] OpenFlow. http://www.openflow.org.

[7] Open vswitch. openvswitch.org/.

[8] NTT, in collaboration with Nicira Networks, succeeds in re-
mote datacenter live migration, August 2011. http://www.
ntt.co.jp/news2011/1108e/110802a.html.

[9] Microsoft Research Faculty Summit Keynote: L. Lam-
port, 2014. URL https://www.youtube.com/watch?v=
n4gOZrUwWmc.

[10] G. S. Akula and A. Potluri. Heuristics for migration with con-
solidation of ensembles of virtual machines. In COMSNETS,
2014.

[11] S. Al-Kiswany, D. Subhraveti, P. Sarkar, and M. Ripeanu.
VMFlock: Virtual machine co-migration for the cloud. In
High Performance Distributed Computing, 2011.

[12] A. Al-Shabibi, M. D. Leenheer, M. Gerola, A. Koshibe,
E. Salvadori, G. Parulkar, and B. Snow. OpenVirteX: Make
Your Virtual SDNs Programmable. In HotSDN, 2014.

[13] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Pa-
tel, B. Prabhakar, S. Sengupta, M. Sridharan, C. Faster, and
D. Maltz. DCTCP: Efficient packet transport for the com-
moditized data center. In SIGCOMM, 2010.

[14] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. To-
wards predictable datacenter networks. In ACM SIGCOMM,
2011.

[15] T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE:
Fine grained traffic engineering for data centers. In CoNEXT,
2011.

[16] P. Bodik, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz,
and I. Stoica. Surviving failures in bandwidth-constrained
datacenters. In SIGCOMM, 2012.

[17] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schioberg.
Live wide-area migration of virtual machines including local
persistent state. In Virtual Execution Environments, pages
169–179, 2007.

[18] N. F. Butt, M. Chowdhury, and R. Boutaba. Topology-
awareness and Reoptimization Mechanism for Virtual Net-
work Embedding. Springer, 2010.

[19] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker.
Virtualizing the network forwarding plane. In PRESTO, 2010.

[20] Cisco and VMWare. Virtual machine mobility with VMware
VMotion and Cisco data center interconnect technologies,
2009.

[21] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines.
In NSDI, 2005.

[22] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson,
and A. Warfield. Remus: High availability via asynchronous
virtual machine replication. In NSDI, 2008.

[23] U. Deshpande, X. Wang, and K. Gopalan. Live gang migra-
tion of virtual machines. In HDPC, 2011.

[24] floodlight. Floodlight OpenFlow Controller. http://
floodlight.openflowhub.org/.

[25] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella. OpenNF:
Enabling Innovation in Network Function Control. In SIG-
COMM, 2014.

[26] S. Ghorbani and M. Caesar. Walk the line: Consistent network
updates with bandwidth guarantees. In HotSDN, 2012.

[27] S. Ghorbani and B. Godfrey. Towards Correct Network Virtu-
alization. In HotSDN, 2014.

[28] S. Ghorbani, M. Overholt, and M. Caesar. Virtual Data Cen-
ters. Technical report, CS UIUC, 2013. www.cs.illinois.
edu/~ghorban2/papers/vdc.

[29] S. Ghorbani, C. Schlesinger, M. Monaco, E. Keller, M. Cae-
sar, J. Rexford, and D. Walker. Transparent, Live Migration
of a Software-Defined Network. Technical report, CS UIUC,
2013. www.cs.illinois.edu/~ghorban2/papers/lime.

[30] P. Gill, N. Jain, and N. Nagappan. Understanding network
failures in data centers: Measurement, analysis, and implica-
tions. In SIGCOMM, 2011.

[31] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta. VL2: A scalable and
flexible data center network. In SIGCOMM, 2009.

[32] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. DCell: A
scalable and fault-tolerant network structure for data centers.
In SIGCOMM Computer Communication Review, volume 38,
2008.

[33] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. BCube: A high performance, server-
centric network architecture for modular data centers. In
SIGCOMM, 2009.

[34] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,
and Y. Zhang. SecondNet: A data center network virtualiza-
tion architecture with bandwidth guarantees. CoNEXT, 2010.

[35] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McK-
eown. Reproducible network experiments using container-
based emulation. In CoNEXT, 2012.

[36] S. Hanks, T. Li, D. Farinacci, and P. Traina. Generic Routing
Encapsulation (GRE), RFC 1701, 1994.

[37] F. Hao, T. Lakshman, S. Mukherjee, and H. Song. Enhancing
dynamic cloud-based services using network virtualization.
In ACM Workshop on Virtualized infrastructure systems and
architectures, 2009.

[38] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill,
M. Nanduri, and R. Wattenhofer. Achieving high utilization
with software-driven WAN. In SIGCOMM, 2013.

[39] X. Jiang and D. Xu. Violin: Virtual internetworking on over-
lay infrastructure. In Parallel and Distributed Processing and
Applications, 2005.

[40] A. Kangarlou, P. Eugster, and D. Xu. VNsnap: Taking snap-
shots of virtual networked infrastructures in the cloud. In
IEEE Transactions on Services Computing (TSC), October
2011.

[41] E. Keller, J. Rexford, and J. van der Merwe. Seamless BGP
Migration with Router Grafting. In NSDI, 2010.

[42] E. Keller, S. Ghorbani, M. Caesar, and J. Rexford. Live
migration of an entire network (and its hosts). In HotNets,
2012.

[43] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: A distributed control platform for large-
scale production networks. In OSDI, 2010.

[44] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda,
B. Fulton, I. Ganichev, J. Gross, N. Gude, P. Ingram, E. Jack-
son, A. Lambeth, R. Lenglet, S.-H. Li, A. Padmanabhan,
J. Pettit, B. Pfaff, R. Ramanathan, S. Shenker, A. Shieh, J. Stri-
bling, P. Thakkar, D. Wendlandt, A. Yip, and R. Zhang. Net-
work Virtualization in Multi-tenant Datacenters. In NSDI,
2014.

[45] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and
D. Maltz. zUpdate: Updating data center networks with zero
loss. In SIGCOMM, 2013.

[46] S. Lo, M. Ammar, and E. Zegura. Design and analysis of
schedules for virtual network migration. In IFIP Networking,
2013.

[47] D. M. F. Mattos and O. C. M. B. Duarte. XenFlow: Seamless
Migration Primitive and Quality of Service for Virtual Net-
works. Technical report, COPPE/UFRJ, 2014. http://www.
gta.ufrj.br/ftp/gta/TechReports/MaDu14.pdf.

[48] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
Enabling innovation in campus networks. SIGCOMM Com-
puter Communications Review, 38(2), 2008.

[49] R. Milner. A Calculus of Communicating Systems. Lecture
Notes in Computer Science. Springer, 1980.

[50] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield.
Split/Merge: System Support for Elastic Execution in Virtual
Middleboxes. In NSDI, 2013.

[51] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for network update. In SIGCOMM,
2012.

[52] VMWare. VMware vNetwork Distributed Switch: Migration
and Configuration. http://www.vmware.com/files/pdf/
vsphere-vnetwork-ds-migration-configuration-wp.
pdf.

[53] VMWare. vsphere. http://www.vmware.com/products/
datacenter-virtualization/vsphere/vmotion.html.

[54] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and
J. Rexford. Virtual routers on the move: Live router migration
as a network-management primitive. In SIGCOMM, 2008.

[55] D. Williams, H. Jamjoom, and H. Weatherspoon. The Xen-
blanket: Virtualize once, run everywhere. In EuroSys, 2012.

[56] D. Williams, H. Jamjoom, Z. Jiang, and H. Weatherspoon.
VirtualWires for Live Migrating Virtual Networks across
Clouds. Technical Report RC25378, IBM, 2013.

[57] T. Wood and J. van der Merwe. CloudNet: A platform for op-
timized WAN migration of virtual machines. In International
Conference on Virtual Execution Environments, 2011.

[58] K. Ye, X. Jiang, R. Ma, and F. Yan. VC-Migration: Live
migration of virtual clusters in the cloud. In Grid Computing,
2012.

[59] Y. Zhu and M. H. Ammar. Algorithms for assigning substrate
network resources to virtual network components. In INFO-
COM, 2006.

