
Policy Enforcement

via

Program Monitoring

Jarred Adam Ligatti

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

By the Department of

Computer Science

June, 2006

iii

Abstract

One way to guarantee that software behaves securely is to monitor programs at run

time and check that they dynamically adhere to constraints specified by a security

policy. Whenever a program monitor detects that untrusted software is attempting

to execute a dangerous action, it takes remedial steps to ensure that only safe code

actually gets executed. This thesis considers the space of policies enforceable by

monitoring the run-time behaviors of programs and develops a practical language

for specifying monitors’ policies.

In order to delineate the space of policies that monitors can enforce, we first

have to define exactly what it means for a monitor to enforce a policy. We therefore

begin by building a formal framework for analyzing policy enforcement; we precisely

define policies, monitors, and enforcement. Having this framework allows us to

consider the enforcement powers of program monitors and prove that they enforce

an interesting set of policies that we define and call the infinite renewal properties.

We show how, when given any reasonable infinite renewal property, to construct a

program monitor that provably enforces that policy.

In practice, the security policies enforced by program monitors grow more com-

plex both as the monitored software is given new capabilities and as policies are

refined in response to attacks and user feedback. We propose dealing with pol-

icy complexity by organizing policies in such a way as to make them composeable,

so that complex policies can be specified more simply as compositions of smaller

subpolicy modules. We present a fully implemented language and system called

Polymer that allows security engineers to specify and enforce composeable policies

on Java applications. We also formalize the central workings of Polymer by defining

an unambiguous semantics for our language.

iv

Acknowledgments

This thesis would not exist without the help of many people. I am especially

thankful to Lujo Bauer and David Walker for collaborating on much of the research

presented here. Their insights have had a major impact on this research, and

working with them has been an entirely enjoyable experience. David Walker has

also been a wonderful graduate advisor, always happy to suggest, listen to, and

improve on research ideas. He made graduate school an incredibly rewarding and

painless experience for me.

In addition, I am grateful to Andrew Appel and Greg Morrisett for providing

valuable feedback on how to improve this thesis. I am also indebted to Ed Fel-

ten, Kevin Hamlen, Greg Morrisett, and Fred Schneider for suggesting important

revisions to early versions of this work.

This research was supported in part by ARDA grant NBCHC030106, DARPA

award F30602-99-1-0519, NSF grants CCR-0238328 and CCR-0306313, Army Re-

search Office grant DAAD19-02-1-0389, and a Sloan Fellowship.

Contents

Abstract . iii

1 Introduction 1

1.1 Related Work . 4

1.1.1 Related Theoretical Efforts 4

1.1.2 Related Policy-specification-language Efforts 8

1.2 Contributions . 11

2 Modeling Monitors as Security Automata 15

2.1 Notation . 15

2.2 Policies and Properties . 16

2.3 Security Automata . 18

2.4 Property Enforcement . 20

3 Policies Enforceable by Monitors 23

3.1 Truncation Automata . 23

3.1.1 Definition . 24

3.1.2 Enforceable Properties . 25

3.2 Edit Automata . 32

3.2.1 Definition . 32

v

CONTENTS vi

3.2.2 Enforceable Properties . 33

3.3 Infinite Renewal Properties . 44

3.3.1 Renewal, Safety, and Liveness 44

3.3.2 Example Properties . 45

4 Enforcing Policies with Polymer 50

4.1 Polymer’s Approach to Policy Complexity 50

4.2 Polymer System Overview . 52

4.3 The Polymer Language . 54

4.3.1 Core Concepts . 54

4.3.2 Simple Policies . 59

4.3.3 Policy Combinators . 64

4.4 Empirical Evaluation . 72

4.4.1 Implementation . 72

4.4.2 Case Study: Securing Email Clients 74

4.4.3 Specifying Non-safety Policies in Polymer 78

5 Formal Semantics of the Polymer Language 84

5.1 Syntax . 85

5.2 Static Semantics . 87

5.3 Dynamic Semantics . 91

5.4 Semantics-based Observations . 95

5.5 Type Safety . 96

6 Conclusions 108

6.1 Summary . 108

6.2 Future Work . 111

CONTENTS vii

6.3 Closing Remarks . 114

Bibliography 115

List of Figures

3.1 Relationships between safety, liveness, and renewal properties. . . . 48

4.1 A secure Polymer application . 53

4.2 Basic Polymer API for Action objects 54

4.3 Polymer’s abstract Sug class . 58

4.4 The parent class of all Polymer policies 58

4.5 Polymer policy that allows all actions 59

4.6 Polymer policy that disallows Runtime.exec methods 60

4.7 Abstract action for receiving email messages; the action’s signature

is Message[] GetMail() . 62

4.8 Abbreviated Polymer policy that logs all incoming email and prepends

the string “SPAM:” to subject lines on messages flagged by a spam

filter . 63

4.9 Polymer policy that seeks confirmation before creating .exe, .vbs,

.hta, and .mdb files . 65

4.10 Lattice ordering of Polymer suggestions’ semantic impact 67

4.11 A conjunctive policy combinator . 69

4.12 The TryWith policy combinator . 70

viii

LIST OF FIGURES ix

4.13 Email policy hierarchy . 75

4.14 Polymer policy that only allows network connections to email ports 77

4.15 Non-safety Polymer policy ensuring that ATM cash dispensation gets

logged properly . 80

4.16 Abbreviated non-safety Polymer policy ensuring that files are even-

tually written satisfactorily . 82

5.1 Formal syntax for the Polymer calculus 86

5.2 Static semantics (rules for policies, suggestions, actions, and programs) 89

5.3 Static semantics (rules for case expressions) 90

5.4 Static semantics (standard rules) 91

5.5 Evaluation contexts . 92

5.6 Dynamic semantics (policy and target steps; beta steps for functions) 93

5.7 Dynamic semantics (beta steps for case expressions) 94

5.8 Dynamic semantics (standard beta steps) 95

Chapter 1

Introduction

A ubiquitous technique for enforcing software security is to dynamically monitor

the behavior of programs and take remedial action when the programs behave in

a way that violates a security policy. Firewalls, virtual machines, and operating

systems all act as program monitors to enforce security policies in this way. We can

even think of any application containing security code that dynamically checks input

values, queries network configurations, raises exceptions, warns the user of potential

consequences of opening a file, etc., as containing a program monitor inlined into

the application. This thesis examines the space of policies enforceable by program

monitors and develops a practical language for specifying monitors’ policies.

Monitor-enforceable Policies Because program monitors, which react to the

potential security violations of target programs, enjoy such ubiquity, it is important

to understand their capabilities as policy enforcers. Such an understanding is es-

sential for developing systems that support program monitoring and for developing

sound languages for specifying the security policies that these systems can enforce.

In addition, well-defined boundaries on the enforcement powers of security mecha-

1

CHAPTER 1. INTRODUCTION 2

nisms allow security architects to determine exactly when certain mechanisms are

needed and save the architects from attempting to enforce policies with insufficiently

strong mechanisms.

Schneider defined the first formal models of program monitors and discovered

one particularly useful boundary on their power [48]. He defined a class of monitors

that respond to potential security violations by halting the target application, and

he showed that these monitors can only enforce safety properties—security policies

that specify that “nothing bad ever happens” in a valid run of the target [35]. When

a monitor in this class detects a potential security violation (i.e., “something bad”),

it must halt the target.

Aside from our work, other research has likewise only focused on the ability

of program monitors to enforce safety properties. In this thesis, we advance the

theoretical understanding of practical program monitors by proving that certain

types of monitors can enforce non-safety properties. These monitors are modeled

by edit automata, which have the power to insert actions on behalf of, and suppress

actions attempted by, the target application. We prove an interesting lower bound

on the properties enforceable by such monitors: a lower bound that encompasses

strictly more than safety properties.

A Policy-specification Language Unfortunately, the run-time policies we need

to enforce in practice tend to grow ever more complex. The increased complexity

occurs for several reasons. First, as software becomes more sophisticated, so do

our notions of what constitutes valid and invalid behavior. Witness, for example,

the increased complexity of reasoning about security in a multi-user and networked

system versus a single-user, stand-alone machine. Security concerns grow even more

CHAPTER 1. INTRODUCTION 3

complex when we consider more sophisticated systems that support, for example,

electronic commerce or medical databases.

Practical security policies also grow more complex as security engineers tighten

policies in response to new attacks. When engineers discover an attack, they often

add rules to their security policies (increasing policy complexity) to avoid the newly

observed attacks. For instance, a security engineer might add policy rules that

disallow insecure default configurations or that require displaying a warning and

asking for user confirmation before downloading dangerous files.

Even when security engineers relax overly tight policies, their policies often

become more complex. In this case, the complexity increases because the original

policy forbade too much and needs more sophisticated reasoning to distinguish

between safe and dangerous behaviors. For example, an older version of the Java

Development Kit (JDK 1.0) required all applets to be sandboxed. User feedback led

to the adoption of a more relaxed policy, that only unsigned applets be sandboxed,

in a later version (JDK 1.1) [41]. This relaxation increased policy complexity by

requiring the policy to reason about cryptographic signatures.

This thesis attacks the problem of policy complexity by developing a program-

ming language in which complex policies can be specified more simply as com-

positions of smaller subpolicy modules. Our compositional design allows security

architects to reuse, update, and analyze isolated subpolicies. We present a fully

implemented language, called Polymer, for specifying and enforcing complex and

composeable run-time policies on Java applications. We provide several examples

of Polymer policies and define a formal semantics for an idealized subset of the

language that contains all of the key features.

CHAPTER 1. INTRODUCTION 4

1.1 Related Work

Only a handful of efforts have been made to understand the space of policies en-

forceable by monitoring software at run time; in contrast, a rich variety of policy-

specification languages has been implemented. This lack of theoretical work makes

it difficult to understand exactly which sorts of security policies to expect imple-

mented systems to be able to enforce. We next examine closely related theoretical

and policy-specification-language efforts and discuss high-level similarities and dif-

ferences between our work and the related projects. In the remainder of this thesis,

we point out additional, more specific relationships between our results and those

of related work.

1.1.1 Related Theoretical Efforts

Monitors As Invalid Execution Recognizers Schneider began the effort to

understand the space of policies that monitors can enforce [48]. Building on earlier

work with Alpern, which provided logic-based and automata-theoretic definitions

of safety and liveness [6, 5], Schneider modeled program monitors as infinite-state

automata using a particular variety of Büchi automata [15] (which are like regu-

lar deterministic finite automata except that they can have an infinite number of

states, operate on infinite-length input strings, and accept inputs that cause the

automaton to enter accepting states infinitely often). Schneider’s monitors1 observe

executions of untrusted target applications and dynamically recognize invalid be-

haviors. When a monitor recognizes an invalid execution, it halts the target just

before the execution becomes invalid, thereby guaranteeing the validity of all mon-
1Schneider refers to his models as security automata. In this thesis, we call them truncation

automata and use the term security automata to refer more generally to any dynamic execution
transformer. Section 2.3 presents our precise definition of security automata.

CHAPTER 1. INTRODUCTION 5

itored executions. Schneider formally defined policies and properties and observed

that his automata-based execution recognizers can only enforce safety properties (a

monitor can only halt the target upon observing an irremediably “bad thing”).

This thesis builds on Schneider’s definitions and models but develops a different

view of program monitors as execution transformers rather than execution recogniz-

ers. This fundamental shift permits modeling the realistic possibility that a monitor

might insert actions on behalf of, and suppress actions of, untrusted target applica-

tions. In our model, Schneider’s monitors are truncation automata, which can only

accept the actions of untrusted targets and halt the target altogether upon recogniz-

ing a safety violation. We define more general monitors modeled by edit automata

that can insert and suppress actions (and are therefore operationally similar to de-

terministic I/O automata [40]), and we prove that edit automata are strictly more

powerful than truncation automata (Section 3.2.2). We demonstrate concrete, prac-

tical monitors that enforce non-safety properties, and even pure liveness properties,

in Section 4.4.3.

Computability Constraints on Execution Recognizers After Schneider

showed that the safety properties constitute an upper bound on the set of poli-

cies enforceable by simple monitors, Viswanathan, Kim, and others tightened this

bound by placing explicit computability constraints on the safety properties being

enforced [51, 32]. Their key insight was that because execution recognizers inher-

ently have to decide whether target executions are invalid, these monitors can only

enforce decidable safety properties. Introducing computability constraints allowed

them to show that monitors based on recognizing invalid executions (i.e., our trun-

cation automata) enforce exactly the set of computable safety properties. Moreover,

CHAPTER 1. INTRODUCTION 6

Viswanathan proved that the set of languages containing strings that satisfy a com-

putable safety property equals the set of coRE languages [51].

Shallow-history Execution Recognizers Continuing the analysis of monitors

acting as execution recognizers, Fong defines shallow history automata (SHA) as a

specific type of memory-bounded monitor [23]. SHA decide whether to accept an

action by examining a finite and unordered history of previously accepted actions.

Although SHA are very limited models of finite-state truncation automata, Fong

interestingly shows that they can nonetheless enforce a wide range of useful access-

control properties, including Chinese Wall policies (where subjects may access at

most one element from every set of conflicting data [14]), low-water-mark policies

(where a lattice of trustworthiness determines whether accesses are valid [13]), and

one-out-of-k authorization policies (where every program has a predetermined, finite

set of access permissions [17]). In addition, Fong generalizes SHA by defining sets

of properties accepted by arbitrarily memory-bounded monitors and proves that

classes of monitors with strictly more memory can enforce strictly more properties.

Fong simplifies his analyses by assuming that monitors observe only finite exe-

cutions (i.e., all untrusted targets must eventually halt) and ignoring computability

constraints on monitors. Although we do not make those simplifying assumptions

in this thesis, we did when first exploring the capabilities of edit automata [9, 38].

Comparison of Enforcement Mechanisms’ Capabilities Hamlen, Morrisett,

and Schneider observe that in practice, program monitors are often implemented

by rewriting untrusted target code [24]. A rewriter inlines a monitor’s code directly

into the target at compile or load time. Many of the implemented systems discussed

CHAPTER 1. INTRODUCTION 7

in the next subsection, and indeed our own Polymer system, operate in this way;

Section 4.2 contains more details about this implementation technique.

Hamlen et al. define the set of RW-enforceable policies as the policies enforceable

by rewriting untrusted target applications, and they compare this set with the sets

of policies enforceable by static analysis and monitoring mechanisms. Their model

of program monitors differs from ours in that their monitors have access to the

full text (e.g., source code or binaries) of monitored target programs. Practical

monitors often adhere to this assumption: operating systems and virtual machines

can usually access the full code of target programs. However, practical monitors

also often violate this assumption: firewalls, network scanners, and monitors that

can only “hook” their code into security-relevant methods of an operating system

API (such as the “cloaking” monitors installed by some DRM mechanisms [47]) lack

access to target programs’ code.

Hamlen et al. model programs as program machines (PMs), which are three-

tape deterministic Turing Machines (one tape contains input actions, one is a work

tape, and one tape contains output actions). They show that the set of statically

enforceable properties on PMs equals the set of decidable properties of programs

(which contains only very limited properties such as “the program halts within one

hundred computational steps when the input is 1010”). Because their monitors have

access to the code of target programs, their monitors can perform “static” analysis

on PMs and hence enforce strictly more policies than can be enforced through

static analysis alone. For example, one can monitor a program to ensure that it

never executes a particular action, but this same property cannot be enforced by

static analysis on general PMs. Hamlen et al. also show that the RW-enforceable

policies are a superset of the monitor-enforceable policies and interestingly prove

CHAPTER 1. INTRODUCTION 8

that the RW-enforceable policies do not correspond to any complexity class in the

arithmetic hierarchy.

1.1.2 Related Policy-specification-language Efforts

Implemented Policy-specification Languages Although relatively little the-

oretical work has been done to understand the policies enforceable by monitoring

software, a rich variety of general policy-specification languages has been imple-

mented [36, 28, 17, 16, 20, 19, 22, 21, 46, 33, 10, 18, 49, 25]. These systems provide

languages in which security engineers can write a centralized policy specification;

the systems then use a tool to automatically insert code into untrusted target ap-

plications (i.e., they instrument the target application) in order to enforce the cen-

trally specified policy on the target application. This centralized-policy architecture

makes reasoning about policies a simpler and more modular task than the alterna-

tive approach of scattering security checks throughout application or execution-

environment code. With a centralized policy, it is easy to locate the policy-relevant

code and analyze or update it in isolation. Our implemented policy-specification

language and enforcement system, Polymer, also applies this centralized-policy ar-

chitecture; Section 4.2 contains further details.

The implementation efforts cited above thus deal with one part of the policy

complexity problem—they ensure that policies exist in a centralized location rather

than being dispersed throughout application or execution-environment code. The

next step in dealing with the problem of policy complexity is to break complex,

though centralized, policies into smaller pieces. Although some of the cited projects

support limited policy decomposition via fixed sets of policy combinators (higher-

order policies that compose arbitrary subpolicies) [21, 28, 17, 16, 10], they lack

CHAPTER 1. INTRODUCTION 9

mechanisms to define new combinators that can arbitrarily modify previously writ-

ten policies and dynamically create policies. We provide these abilities in Polymer

by making policies first-class objects; arbitrary higher-order policies may be param-

eterized by and return other policies. The ability to compose policies in arbitrary

ways allows us to write expressive combinators that flexibly reuse subpolicies. We

explore some possibilities in Section 4.3.3.

In addition, none of the previous projects provide a methodology for making

all policies composeable. Problems arise when we try to compose general policies

without constraining their effects. For example, one policy module may print an

error message and then halt the target when it observes what it considers to be

an illegal target action a, while another policy might print an acceptance message

and allow the target to continue operating when it observes a. If we enforce the

conjunction of these two policies, we expect the target to be halted when observing

a, but what, if anything, should be printed? Polymer distinguishes itself from the

related work cited above by providing a methodology for dealing with these kinds of

conflicting effects when policies are composed. Our solution is to separate policies

into effectless query methods, which tell combinators how a policy reacts to security-

sensitive actions, and effectful bookkeeping methods, which perform I/O and policy

state updates. Chapter 4 explains this methodology in greater detail.

Semantics of Policy-specification Languages Of the implemented languages

cited above, PoET/Pslang [20, 18] and Naccio [22] are the most closely related

to Polymer because they support the specification of arbitrary imperative poli-

cies that contain both security state and methods to update security state when

policy-relevant methods execute. A major difference between Polymer and these

CHAPTER 1. INTRODUCTION 10

closely related projects, in addition to the differences noted above regarding policy

composeability, is that Polymer provides a precise, formal semantics for its core lan-

guage (Chapter 5). We consider the semantics an important contribution because

it distills and unambiguously communicates the central workings of the Polymer

language.

Very recently, Krishnan created a monitoring policy calculus based on the se-

mantics of Polymer [34]. He achieves simplicity by removing our compositionality

constraint on policies (that they all be separated into effectless query methods and

effectful bookkeeping methods). Krishnan encodes most of our policy combinators

into his calculus, gives our combinators formal semantics, states interesting proper-

ties about the combinators such as associativity, and explains how to encode several

types of policies, including dynamically updateable policies, email policies similar

to the one we have implemented in Polymer (Section 4.4.2), and privacy policies, in

his calculus. Our own earlier work also provides precise semantics for some policy

combinators, but in a less general and more complicated semantics [10]. We showed

how policies composed using a common, though fixed, set of combinators can be

analyzed statically to ensure that their effects do not conflict dynamically.

Aspect-oriented Languages Our policy-specification language can also be viewed

as an aspect-oriented programming language (AOPL) [31] in the style of AspectJ [30].

The main high-level differences between our work and previous AOPLs are that our

“aspects” (the program monitors) are first-class values and that we provide mech-

anisms to allow programmers to explicitly control the composition of aspects. Sev-

eral researchers [50, 53] describe functional, as opposed to object-oriented, AOPLs

with first-class aspect-oriented advice and formal semantics. However, they do not

CHAPTER 1. INTRODUCTION 11

support aspect combinators like the ones we develop here. In general, composing

aspects is a known problem for AOPLs, and we hope the ideas presented here will

suggest a new design strategy for general-purpose AOPLs.

1.2 Contributions

This thesis extends previous work in four principal ways.

1. Beginning with standard definitions of policies and properties, we introduce

formal models of program monitors and define precisely how these monitors

enforce policies by transforming possibly nonterminating target executions

(Chapter 2). We consider this formal framework a central contribution of our

work because it not only communicates our basic assumptions about what

constitutes a policy, a monitor, and enforcement of a policy by a monitor, but

also enables rigorous analyses of monitors’ enforcement capabilities.

2. We use our formal framework to delineate the space of policies enforceable by

two varieties of run-time program monitors: simple truncation automata and

more sophisticated edit automata (Chapter 3). We also define an interesting

set of security policies called the infinite renewal properties, and show how,

when given any reasonable infinite renewal property, to construct a program

monitor that provably enforces that policy. Infinite renewal properties in-

clude some non-safety properties, and we demonstrate how example monitors

enforce non-safety properties.

3. We describe Polymer, a language for specifying complex run-time security poli-

cies more simply as compositions of smaller subpolicy modules (Chapter 4).

CHAPTER 1. INTRODUCTION 12

We make policies composeable by incorporating two primary innovations into

our language.

• We separate policies into effectless methods that generate suggestions

about how to deal with security-relevant application events and effectful

methods that update security state only under certain conditions. This

organization allows policy writers to deal with the possibly conflicting

effects of composed policies.

• We make policies, suggestions, and application events first-class objects,

so that higher-order policies can query subpolicy objects for suggestions

about how to handle application events and combine those suggestions

in meaningful ways.

We develop a library of common policy combinators and use them to build a

complex security policy for untrusted email clients. In addition, we demon-

strate concrete, practical examples of Polymer monitors that enforce non-

safety (in fact, purely liveness) properties. Our language, libraries, and exam-

ple policies are fully implemented and available for download from the Polymer

project website [12].

4. We formalize semantics for an idealized version of our language that includes

all of the key features of our implementation (Chapter 5). The formal seman-

tics helps nail down corner cases and provides an unambiguous specification

of how security policies execute. We prove that our language is type safe, a

necessary property for protecting our program monitors from untrusted ap-

plications.

CHAPTER 1. INTRODUCTION 13

Most of these contributions were first presented in a series of workshop, jour-

nal, and conference papers written in collaboration with Lujo Bauer and David

Walker [9, 38, 11, 39]. Significant portions of this thesis describing theoretical defi-

nitions of policies, monitors, and enforcement, as well as the properties enforceable

by program monitors, come from a recent paper entitled “Enforcing Non-safety

Security Policies with Program Monitors” [39], while the Polymer material chiefly

comes from “Composing Security Policies with Polymer” [11]. This thesis extends

the results of those papers in many ways.

• We include proofs for the theorems in Chapter 3. These theorems delineate

upper and lower bounds for the properties enforceable by various monitoring

mechanisms. Most importantly, the proof of Theorem 8 shows how, when

given any reasonable infinite renewal property, to construct a program monitor

that provably enforces that property.

• We provide significantly more complete code examples in Chapter 4 to fully

illustrate the key elements of designing and implementing Polymer policies.

• We demonstrate in Section 4.4.3 two practical examples of non-safety Polymer

policies. This ties the theoretical analysis in Section 3.2, which proves that

monitors can enforce some non-safety policies, to our language for specifying

monitor policies in practice.

• We include the complete semantics of the Polymer language in Chapter 5.

This semantics precisely specifies the full meaning of the idealized version of

our language.

CHAPTER 1. INTRODUCTION 14

• We also include the proof of type safety for the formal Polymer language

in Chapter 5. Although our proof techniques are standard, having a proof

formally assures us that our language is sound.

• Finally, we make numerous minor corrections and additions to the original

material. For instance, we have fixed a bug in our notation for sequence

concatenation2 in Section 2.1 and added some high-level information to the

discussion of policy combinators in Section 4.3.3.

2The original notation only applied when concatenating two finite sequences, but we often have
to notate the concatenation of finite and infinite sequences to denote a finite sequence followed by
an infinite sequence.

Chapter 2

Modeling Monitors as Security

Automata

This chapter sets up a formal framework for analyzing policies, monitors, and en-

forcement. Chapter 3 uses this framework in its formal analysis of the policies that

can be enforced by monitoring software.

We begin in Section 2.1 by describing some basic notation for specifying program

executions. Then, Section 2.2 defines policies and properties, and Section 2.3 defines

program monitors as security automata. Finally, Section 2.4 links together the

previous definitions in order to define precisely what it means for a monitor to

enforce a policy.

2.1 Notation

We specify a system at a high level of abstraction as a nonempty, possibly countably

infinite set of program actions A (also referred to as program events). An execution

is simply a finite or infinite sequence of actions. The set of all finite executions on a

15

CHAPTER 2. MODELING MONITORS AS SECURITY AUTOMATA 16

system with action set A is notated as A?. Similarly, the set of infinite executions is

Aω, and the set of all executions (finite and infinite) is A∞. We let the metavariable

a range over actions, σ and τ over executions, and Σ over sets of executions (i.e.,

subsets of A∞).

The symbol · denotes the empty sequence, that is, an execution with no actions.

We use the notation τ ; σ to denote the concatenation of two sequences, the first

of which must have finite length. When τ is a (finite) prefix of (possibly infinite)

σ, we write τ�σ or, equivalently, σ�τ . Given some σ, we often use ∀τ�σ as

an abbreviation for ∀τ ∈ A? : τ�σ; similarly, when given some τ , we abbreviate

∀σ ∈ A∞ : σ�τ simply as ∀σ�τ .

2.2 Policies and Properties

A security policy is a predicate P on sets of executions; a set of executions Σ ⊆ A∞

satisfies a policy P if and only if P (Σ). For example, a set of executions satisfies a

nontermination policy if and only if every execution in the set is an infinite sequence

of actions. A cryptographic key-uniformity policy might be satisfied only by sets of

executions such that the keys used in all the executions form a uniform distribution

over the universe of key values.

Following Schneider [48], we distinguish between properties and more general

policies as follows. A security policy P is a property if and only if there exists a

characteristic predicate P̂ over A∞ such that for all Σ ⊆ A∞, the following is true.

P (Σ) ⇐⇒ ∀σ ∈ Σ : P̂ (σ) (Property)

CHAPTER 2. MODELING MONITORS AS SECURITY AUTOMATA 17

Hence, a property is defined exclusively in terms of individual executions and

may not specify a relationship between different executions of the program. The

nontermination policy mentioned above is therefore a property, while the key-

uniformity policy is not. The distinction between properties and policies is an

important one to make when reasoning about program monitors in our current

framework because a monitor only sees individual executions and can therefore en-

force only security properties rather than more general policies.

There is a one-to-one correspondence between a property P and its characteristic

predicate P̂ , so we use the notation P̂ unambiguously to refer both to a characteristic

predicate and the property it induces. When P̂ (σ), we say that σ satisfies or obeys

the property, or that σ is valid or legal. Likewise, when ¬P̂ (τ), we say that τ violates

or disobeys the property, or that τ is invalid or illegal.

Properties that specify that “nothing bad ever happens” are called safety prop-

erties [35, 6]. No prefix of a valid execution can violate a safety property; stated

equivalently: once some finite execution violates the property, all extensions of that

execution violate the property. Technically, safety means that every invalid execu-

tion has some invalid prefix after which all extensions are likewise invalid. Formally,

P̂ is a safety property on a system with action set A if and only if the following is

true.1

∀σ ∈ A∞ : (¬P̂ (σ) =⇒ ∃σ′�σ : ∀τ�σ′ : ¬P̂ (τ)) (Safety)

Many interesting security policies, such as access-control policies, are safety proper-

ties, since security violations cannot be “undone” by extending a violating execution.
1Alpern and Schneider [6] model executions as infinite-length sequences of states, where ter-

minating executions contain a final state, infinitely repeated. We can map an execution in their
model to one in ours simply by sequencing the events that induce the state transitions (no event
induces a repeated final state). With this mapping, it is easy to verify that our definitions of safety
and liveness are equivalent to those of Alpern and Schneider.

CHAPTER 2. MODELING MONITORS AS SECURITY AUTOMATA 18

Dually to safety properties, liveness properties [6] state that nothing exception-

ally (i.e., irremediably) bad can happen in any finite amount of time. Any finite

sequence of actions can always be extended so that it satisfies the property. For-

mally, P̂ is a liveness property on a system with action set A if and only if the

following is true.

∀σ ∈ A? : ∃τ�σ : P̂ (τ) (Liveness)

The nontermination policy is a liveness property because any finite execution can

be made to satisfy the policy simply by extending it to an infinite execution.

General properties may allow executions to alternate freely between satisfying

and violating the property. Such properties are neither safety nor liveness but

instead a combination of a single safety and a single liveness property [5]. We

show in Chapter 3 that edit automata effectively enforce an interesting new sort of

property that is neither safety nor liveness.

2.3 Security Automata

Program monitors operate by transforming execution sequences of an untrusted

target application at run time to ensure that all observable executions satisfy some

property. We model a program monitor formally by a security automaton S, which

is a deterministic finite or countably infinite state machine (Q, q0, δ) that is defined

with respect to some system with action set A. The set Q specifies the possible

automaton states, and q0 is the initial state. Different automata have slightly dif-

ferent sorts of transition functions (δ), which accounts for the variations in their

expressive power. The exact specification of a transition function δ is part of the

definition of each kind of security automaton; we only require that δ be complete,

CHAPTER 2. MODELING MONITORS AS SECURITY AUTOMATA 19

deterministic, and Turing Machine computable. We limit our analysis in this work

to automata whose transition functions take the current state and input action (the

next action the target wants to execute) and return a new state and at most one

action to output (make observable). The current input action may or may not be

consumed while making a transition.

We specify the execution of each different kind of security automaton S us-

ing a labeled operational semantics. The basic single-step judgment has the form

(q, σ) τ−→S (q′, σ′) where q denotes the current state of the automaton, σ denotes

the sequence of actions that the target program wants to execute, q′ and σ′ denote

the state and action sequence after the automaton takes a single step, and τ de-

notes the sequence of at most one action output by the automaton in this step. The

input sequence, σ, is not observable to the outside world whereas the output, τ , is

observable.

We generalize the single-step judgment to a multi-step judgment using standard

rules of reflexivity and transitivity.

Definition 1 (Multi-step)

The multi-step relation (σ, q) τ=⇒S (σ′, q′) is inductively defined as follows (where

all metavariables are universally quantified).

1. (q, σ) ·=⇒S (q, σ)

2. If (q, σ) τ1−→S (q′′, σ′′) and (q′′, σ′′) τ2=⇒S (q′, σ′) then (q, σ) τ1;τ2=⇒S (q′, σ′)

In addition, we define what it means for a program monitor to transform a pos-

sibly infinite-length input execution into a possibly infinite-length output execution.

This definition is essential for understanding the behavior of monitors operating on

potentially nonterminating targets.

CHAPTER 2. MODELING MONITORS AS SECURITY AUTOMATA 20

Definition 2 (Transforms)

A security automaton S = (Q, q0, δ) on a system with action set A transforms the

input sequence σ ∈ A∞ into the output sequence τ ∈ A∞, notated as (q0, σ) ⇓S τ ,

if and only if the following two constraints are met.

1. ∀q′ ∈ Q : ∀σ′ ∈ A∞ : ∀τ ′ ∈ A? : ((q0, σ) τ ′
=⇒S (q′, σ′)) =⇒ τ ′�τ

2. ∀τ ′�τ : ∃q′ ∈ Q : ∃σ′ ∈ A∞ : (q0, σ) τ ′
=⇒S (q′, σ′)

When (q0, σ) ⇓S τ , the first constraint ensures that automaton S on input σ outputs

only prefixes of τ , while the second ensures that S outputs every prefix of τ .

2.4 Property Enforcement

We and several other authors have concurrently noted the importance of monitors

obeying two abstract principles, which we call soundness and transparency [37, 24,

18]. A mechanism that purports to enforce a property P̂ is sound when it en-

sures that observable outputs always obey P̂ ; it is transparent when it preserves the

semantics of executions that already obey P̂ . We call a sound and transparent mech-

anism an effective enforcer. Because effective enforcers are transparent, they may

transform valid input sequences only into semantically equivalent output sequences,

for some system-specific definition of semantic equivalence. When two executions

σ, τ ∈ A∞ are semantically equivalent, we write σ ∼= τ . We place no restrictions on

a relation of semantic equivalence except that it actually be an equivalence relation

(i.e., reflexive, symmetric, and transitive), and that properties of interest P̂ do not

distinguish between semantically equivalent executions.

∀σ, τ ∈ A∞ : σ ∼= τ =⇒ (P̂ (σ) ⇐⇒ P̂ (τ)) (Indistinguishability)

CHAPTER 2. MODELING MONITORS AS SECURITY AUTOMATA 21

When acting on a system with semantic equivalence relation ∼=, we will call an

effective enforcer an effective∼= enforcer. The formal definition of effective∼= enforce-

ment is given below. Together, the first and second constraints in the following

definition imply soundness; the first and third constraints imply transparency.

Definition 3 (Effective∼= Enforcement)

An automaton S with starting state q0 effectively∼= enforces a property P̂ on a system

with action set A and semantic equivalence relation ∼= if and only if

∀σ ∈ A∞ : ∃τ ∈ A∞ :

1. (q0, σ) ⇓S τ ,

2. P̂ (τ), and

3. P̂ (σ) =⇒ σ ∼= τ

In some situations, the system-specific equivalence relation ∼= complicates our

theorems and proofs with little benefit. We have found that we can sometimes

gain more insight into the enforcement powers of program monitors by limiting our

analysis to systems in which the equivalence relation (∼=) is just syntactic equality

(=). We call effective∼= enforcers operating on such systems effective= enforcers. To

obtain a formal notion of effective= enforcement, we first need to define the “syn-

tactic equality” of executions. Intuitively, σ=τ for any finite or infinite sequences σ

and τ when every prefix of σ is a prefix of τ , and vice versa.

∀σ, τ ∈ A∞ : σ=τ ⇐⇒ (∀σ′�σ : σ′�τ ∧ ∀τ ′�τ : τ ′�σ) (Equality)

An effective= enforcer is simply an effective∼= enforcer where the system-specific

equivalence relation (∼=) is the system-unspecific equality relation (=).

CHAPTER 2. MODELING MONITORS AS SECURITY AUTOMATA 22

Definition 4 (Effective= Enforcement)

An automaton S with starting state q0 effectively= enforces a property P̂ on a

system with action set A if and only if ∀σ ∈ A∞ : ∃τ ∈ A∞ :

1. (q0, σ) ⇓S τ ,

2. P̂ (τ), and

3. P̂ (σ) =⇒ σ=τ

Because any two executions that are syntactically equal must be semantically

equivalent, any property effectively= enforceable by some security automaton is also

effectively∼= enforceable by that same automaton. Hence, an analysis of the set of

properties effectively= enforceable by a particular kind of automaton is conservative;

the set of properties effectively∼= enforceable by that same sort of automaton must

be a superset of the effectively= enforceable properties.

Chapter 3

Policies Enforceable by Monitors

Now that we have set up a framework for formally reasoning about policies, prop-

erties, monitors (security automata), and enforcement, we can consider the space

of properties enforceable by program monitors. In this chapter, we examine the

enforcement powers of two types of monitors: a very simple but widely studied

variety that we model with truncation automata (Section 3.1) and a more sophis-

ticated variety that we model with edit automata (Section 3.2). We compare the

properties enforceable by these two types of monitors and show that although the

simple monitors can enforce only safety properties, it is possible to enforce some

non-safety properties using more sophisticated monitors (Section 3.3).

3.1 Truncation Automata

We begin by demonstrating why it is often believed that program monitors enforce

only safety properties: this belief is provably correct when considering a common

but very limited type of monitor that we model by truncation automata. A trunca-

tion automaton has only two options when it intercepts an action from the target

23

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 24

program: it may accept the action and make it observable, or it may halt (i.e., trun-

cate the action sequence of) the target program altogether. Schneider first defined

this model of program monitors [48], and other authors have similarly focused on

this simple, though limited, model when considering the properties enforceable by

security automata [51, 32, 23]. Truncation-based monitors have been used success-

fully to enforce a rich set of interesting safety policies including access control [22],

stack inspection [19, 3], software fault isolation [52, 20], Chinese Wall [14, 18, 23],

and one-out-of-k authorization [23] policies.1

Although previous models of program monitors considered security automata to

be invalid-sequence recognizers (a monitor simply halts the target when it recog-

nizes a policy violation), we model program monitors more generally as sequence

transformers. This shift enables us to define more sophisticated monitors such as

edit automata (Section 3.2) but also makes it important for us to recast the pre-

vious work on truncation automata to fit our model. Moving the analysis into our

formal model allows us to refine previous work by uncovering the single computable

safety property unenforceable by any truncation (or edit) automaton. Considering

truncation automata directly in our model also enables us to precisely compare the

enforcement powers of truncation and edit automata.

3.1.1 Definition

A truncation automaton T is a finite or countably infinite state machine (Q, q0, δ)

that is defined with respect to some system with action set A. As usual, Q specifies

the possible automaton states, and q0 is the initial state. The complete function
1Although some of the cited work considers monitors with powers beyond truncation, it also

specifically studies many policies that can be enforced by monitors that only have the power to
truncate.

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 25

δ : Q × A → Q ∪ {halt} specifies the transition function for the automaton and in-

dicates either that the automaton should accept the current input action and move

to a new state (when the return value is a new state), or that the automaton should

halt the target program (when the return value is halt). For the sake of determi-

nacy, we require that halt 6∈ Q. The operational semantics of truncation automata

are formally specified by the following rules.

(q, σ) τ−→T (q′, σ′)

(q, σ) a−→T (q′, σ′) (T-Step)

if σ = a; σ′

and δ(q, a) = q′

(q, σ) ·−→T (q, ·) (T-Stop)

if σ = a; σ′

and δ(q, a) = halt

As described in Section 2.3, we extend the single-step relation to a multi-step

relation using standard reflexivity and transitivity rules.

3.1.2 Enforceable Properties

Let us consider a lower bound on the effective∼= enforcement powers of truncation

automata. Any property that is effectively= enforceable by a truncation automaton

is also effectively∼= enforceable by that same automaton, so we can develop a lower

bound on properties effectively∼= enforceable by examining which properties are

effectively= enforceable.

When given as input some σ ∈ A∞ such that P̂ (σ), a truncation automaton that

effectively= enforces P̂ must output σ. However, the automaton must also truncate

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 26

every invalid input sequence into a valid output. Any truncation of an invalid input

prevents the automaton from accepting all the actions in a valid extension of that

input. Therefore, truncation automata cannot effectively= enforce any property in

which an invalid execution can be a prefix of a valid execution. This is exactly the

definition of safety properties, so it is clear that truncation automata effectively=

enforce only safety properties.

Past research claimed to equate the enforcement power of truncation automata

with the set of computable safety properties [51, 32]. We improve previous work

by showing that there is exactly one computable safety property unenforceable by

any sound security automaton: the unsatisfiable safety property that considers all

executions invalid. A monitor in our framework cannot enforce such a property

because there is no valid output sequence that could be produced in response to an

invalid input sequence. To prevent this case and to ensure that truncation automata

can behave correctly on targets that generate no actions, we require that the empty

sequence satisfies any property we are interested in enforcing. We often use the

term reasonable to describe computable properties P̂ such that P̂ (·).

Definition 5 (Reasonable Property)

A property P̂ on a system with action set A is reasonable if and only the following

conditions hold.

1. P̂ (·)

2. ∀σ ∈ A? : P̂ (σ) is decidable

The following theorem states that truncation automata effectively= enforce ex-

actly the set of reasonable safety properties.

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 27

Theorem 6 (Effective= T∞-Enforcement)

A property P̂ on a system with action set A can be effectively= enforced by some

truncation automaton T if and only if the following constraints are met.

1. ∀σ ∈ A∞ : ¬P̂ (σ) =⇒ ∃σ′�σ : ∀τ�σ′ : ¬P̂ (τ) (Safety)

2. P̂ (·)

3. ∀σ ∈ A? : P̂ (σ) is decidable

Proof (If Direction) We construct a truncation automaton T that effectively=

enforces any such P̂ as follows.

• States: Q = A? (the sequence of actions seen so far)

• Start state: q0 = · (the empty sequence)

• Transition function: δ(σ, a) =

 σ; a if P̂ (σ; a)

halt otherwise

This transition function is computable because P̂ is decidable over all finite-

length executions.

T maintains the invariant IP̂ (q) on states q = σ that exactly σ has been output

from T , (q0, σ) ⇓T σ, and ∀σ′�σ : P̂ (σ′). The automaton can initially establish

IP̂ (q0) because q0 = ·, (q0, ·) ⇓T ·, and P̂ (·). A simple inductive argument on the

length of σ suffices to show that the invariant is maintained for all (finite-length)

prefixes of all inputs.

Let σ ∈ A∞ be the input to T . If ¬P̂ (σ) then by the safety condition in the

theorem statement, ∃σ′�σ.¬P̂ (σ′). By IP̂ (σ′), T can never enter the state for this

σ′ and must therefore halt on input σ. Let τ be the final state reached on input σ.

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 28

By IP̂ (τ) and the fact that T halts (ceases to make transitions) after reaching state

τ , we have P̂ (τ) and (q0, σ) ⇓T τ .

If, on the other hand, P̂ (σ) then suppose for the sake of obtaining a contradiction

that T on input σ does not accept and output every action of σ. By the definition of

its transition function, T must halt in some state σ′ when examining some action a

(where σ′; a�σ) because ¬P̂ (σ′; a). Combining this with the safety condition given

in the theorem statement implies that ¬P̂ (σ), which is a contradiction. Hence, T

accepts and outputs every action of σ when P̂ (σ), so (q0, σ) ⇓T σ. In all cases, T

effectively= enforces P̂ .

(Only-If Direction) Consider any σ ∈ A∞ such that ¬P̂ (σ) and suppose for the

sake of obtaining a contradiction that ∀σ′�σ : ∃τ�σ′ : P̂ (τ). Then for all prefixes

σ′ of σ, T must accept and output every action of σ′ because σ′ may be extended to

the valid input τ , which must be emitted verbatim. This implies by the definition

of ⇓T that (q0, σ) ⇓T σ (where q0 is the initial state of T), which is a contradiction

because T cannot effectively= enforce P̂ on σ when ¬P̂ (σ) and (q0, σ) ⇓T σ. Hence,

our assumption was incorrect and the first constraint given in the theorem must

hold.

Also, if ¬P̂ (·) then T cannot effectively= enforce P̂ on an empty execution

because (q0, ·) ⇓T · for all T . Therefore, P̂ (·).

Finally, given σ ∈ A?, we can decide P̂ (σ) by checking whether T outputs ex-

actly σ on input σ. Because T effectively= enforces P̂ , P̂ (σ) ⇐⇒ (q0, σ) ⇓T σ.

This is a decidable procedure because T ’s transition function is computable and σ

has finite length. �

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 29

We next delineate the properties effectively∼= enforceable by truncation automata.

As mentioned above, the set of properties truncation automata effectively= enforce

provides a lower bound for the set of effectively∼= enforceable properties; a candidate

upper bound is the set of properties P̂ that satisfy the following extended safety

constraint.

∀σ ∈ A∞ : ¬P̂ (σ) =⇒ ∃σ′�σ : ∀τ�σ′ : (¬P̂ (τ) ∨ τ ∼= σ′) (T-Safety)

This is an upper bound because a truncation automaton T that effectively∼= enforces

P̂ must halt at some finite point (having output σ′) when its input (σ) violates P̂ ;

otherwise, T accepts every action of the invalid input. When T halts, all extensions

(τ) of its output must either violate P̂ or be equivalent to its output; otherwise,

there is a valid input for which T fails to output an equivalent sequence.

Actually, as the following theorem shows, this upper bound is almost tight. We

simply have to add computability restrictions on the property to ensure that a

truncation automaton can decide when to halt the target.

Theorem 7 (Effective∼= T∞-Enforcement)

A property P̂ on a system with action set A can be effectively∼= enforced by some

truncation automaton T if and only if there exists a decidable predicate D over A?

such that the following constraints are met.

1. ∀σ ∈ A∞ : ¬P̂ (σ) =⇒ ∃σ′�σ : D(σ′)

2. ∀(σ′; a) ∈ A? : D(σ′; a) =⇒ (P̂ (σ′) ∧ ∀τ�(σ′; a) : P̂ (τ) =⇒ τ ∼= σ′)

3. ¬D(·)

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 30

Proof (If Direction) We first note that the first and third constraints imply that

P̂ (·), as there can be no prefix σ′ of the empty sequence such that D(σ′). We next

construct a truncation automaton T that, given decidable predicate D and property

P̂ , effectively∼= enforces P̂ when the constraints in the theorem statement are met.

• States: Q = A? (the sequence of actions seen so far)

• Start state: q0 = · (the empty sequence)

• Transition function: δ(σ, a) =

 σ; a if ¬D(σ; a)

halt otherwise

This transition function is computable because D is decidable.

T maintains the invariant IP̂ (q) on states q = σ that exactly σ has been output

from T , (q0, σ) ⇓T σ, and ∀σ′�σ : ¬D(σ′). The automaton can initially establish

IP̂ (q0) because q0 = ·, (q0, ·) ⇓T ·, and ¬D(·). A simple inductive argument on the

length of σ suffices to show that the invariant is maintained for all (finite-length)

prefixes of all inputs.

Let σ ∈ A∞ be the input to T . We first consider the case where ¬P̂ (σ) and

show that T effectively∼= enforces P̂ on σ. By constraint 1 in the theorem statement,

∃σ′�σ : D(σ′), so IP̂ ensures that T must halt when σ is input (before entering state

σ′). Let τ be the final state T reaches on input σ before halting when considering

action a. By IP̂ (τ), we have (q0, σ) ⇓T τ . Also, since D(τ ; a) forced T to halt,

constraint 2 in the theorem statement ensures that P̂ (τ).

We split the case where P̂ (σ) into two subcases. If T never truncates input

σ then T outputs every prefix of σ and only prefixes of σ, so by the definition

of ⇓T , (q0, σ) ⇓T σ. Because P̂ (σ) and σ ∼= σ, T effectively∼= enforces P̂ in this

subcase. On the other hand, if T truncates input σ, it does so in some state

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 31

σ′ while making a transition on action a (hence, σ′; a�σ) because D(σ′; a). In this

subcase, IP̂ (σ′) implies (q0, σ) ⇓T σ′. Also, since D(σ′; a) forced T to halt, constraint

2 in the theorem statement ensures that P̂ (σ′) and σ′ ∼= σ. Therefore, T correctly

effectively∼= enforces P̂ in all cases.

(Only-If Direction) Given some truncation automaton T , we define D over A?.

Let D(·) be false, and for all (σ; a) ∈ A? let D(σ; a) be true if and only if T outputs

exactly σ on input σ; a (when run to completion). Because the transition function

of T is computable and D is only defined over finite sequences, D is a decidable

predicate. Moreover, because T effectively∼= enforces P̂ , if it outputs exactly σ on

input σ; a then the fact that T halts rather than accepting a, combined with the

definition of effective∼= enforcement, implies that P̂ (σ)∧∀τ�σ; a : P̂ (τ) =⇒ τ ∼= σ.

Our definition of D thus satisfies the second constraint enumerated in the theorem.

Finally, consider any σ ∈ A∞ such that ¬P̂ (σ) and suppose for the sake of ob-

taining a contradiction that ∀σ′�σ : ¬D(σ′). Then by our definition of D, T cannot

halt on any prefix of σ, so it must accept every action in every prefix. This implies

by the definition of ⇓T that (q0, σ) ⇓T σ (where q0 is the initial state of T), which

is a contradiction because T cannot effectively∼= enforce P̂ on σ when ¬P̂ (σ) and

(q0, σ) ⇓T σ. Hence, our assumption was incorrect and the first constraint given in

the theorem must also hold. �

On practical systems, it is likely uncommon that the property requiring enforce-

ment and the system’s relation of semantic equivalence are so broadly defined that

some invalid execution has a prefix that not only can be extended to a valid execu-

tion, but that is also equivalent to all valid extensions of the prefix. We therefore

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 32

consider the set of properties detailed in the theorem of Effective= T∞-Enforcement

(i.e., reasonable safety properties) more indicative of the true enforcement power of

truncation automata.

3.2 Edit Automata

We now consider the enforcement capabilities of a stronger sort of security automa-

ton called the edit automaton. We analyze the enforcement powers of edit automata

and find that they can effectively= enforce an interesting, new class of properties

that we call infinite renewal properties.

3.2.1 Definition

An edit automaton E is a triple (Q, q0, δ) defined with respect to some system with

action set A. As with truncation automata, Q is the possibly countably infinite set

of states, and q0 is the initial state. In contrast to truncation automata, the complete

transition function δ of an edit automaton has the form δ : Q × A → Q × (A ∪ {·}).

The transition function specifies, when given a current state and input action, a new

state to enter and either an action to insert into the output stream (without con-

suming the input action) or the empty sequence to indicate that the input action

should be suppressed (i.e., consumed from the input without being made observ-

able). In other work, we have defined edit automata that can additionally perform

the following transformations in a single step: insert a finite sequence of actions,

accept the current input action, or halt the target [38]. However, all of these trans-

formations can be expressed in terms of suppressing and inserting single actions.

For example, an edit automaton can halt a target by suppressing all future actions

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 33

of the target; an edit automaton accepts an action by inserting and then suppress-

ing that action (first making the action observable and then consuming it from the

input). Although in practice these transformations would each be performed in a

single step, we have found the minimal operational semantics containing only the

two rules shown below more amenable to formal reasoning. Explicitly including the

additional rules in the model would not invalidate any of our results.

(q, σ) τ−→E (q′, σ′)

(q, σ) a′
−→E (q′, σ) (E-Ins)

if σ = a; σ′

and δ(q, a) = (q′, a′)

(q, σ) ·−→E (q′, σ′) (E-Sup)

if σ = a; σ′

and δ(q, a) = (q′, ·)

As with truncation automata, we extend the single-step semantics of edit au-

tomata to a multi-step semantics with the rules for reflexivity and transitivity.

3.2.2 Enforceable Properties

Edit automata are powerful property enforcers because they can suppress a sequence

of potentially illegal actions and later, if the sequence is determined to be legal,

just re-insert it. Essentially, the monitor feigns to the target that its requests are

being accepted, although none actually are, until the monitor can confirm that

the sequence of feigned actions is valid. At that point, the monitor inserts all of

the actions it previously feigned accepting. This is the same idea implemented

by intentions files in database transactions [44]. Monitoring systems like virtual

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 34

machines can also be used in this way, feigning execution of a sequence of the

target’s actions and only making the sequence observable when it is known to be

valid.

As we did for truncation automata, we develop a lower bound on the set of prop-

erties that edit automata effectively∼= enforce by considering the properties they

effectively= enforce. Using the above-described technique of suppressing invalid

inputs until the monitor determines that the suppressed input obeys a property,

edit automata can effectively= enforce any reasonable infinite renewal (or simply

renewal) property. A renewal property is one in which every valid infinite-length

sequence has infinitely many valid prefixes, and conversely, every invalid infinite-

length sequence has only finitely many valid prefixes. For example, a property P̂

may be satisfied only by executions that contain the action a. This is a renewal

property because valid infinite-length executions contain an infinite number of valid

prefixes (in which a appears) while invalid infinite-length executions contain only a

finite number of valid prefixes (in fact, zero). This P̂ is also a liveness property be-

cause any invalid finite execution can be made valid simply by appending the action

a. Although edit automata cannot enforce this P̂ because ¬P̂ (·), in Section 3.3.2 we

will recast this example as a reasonable “eventually audits” policy and show several

more detailed examples of renewal properties enforceable by edit automata.

We formally deem a property P̂ an infinite renewal property on a system with

action set A if and only if the following is true.

∀σ ∈ Aω : P̂ (σ) ⇐⇒ {σ′�σ | P̂ (σ′)} is an infinite set (Renewal1)

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 35

It will often be easier to reason about renewal properties without relying on

infinite set cardinality. We make use of the following equivalent definition in formal

analyses.

∀σ ∈ Aω : P̂ (σ) ⇐⇒ (∀σ′�σ : ∃τ�σ : σ′�τ ∧ P̂ (τ)) (Renewal2)

If we are given a reasonable renewal property P̂ , we can construct an edit au-

tomaton that effectively= enforces P̂ using the technique of feigning acceptance (i.e.,

suppressing actions) until the automaton has seen some legal prefix of the input (at

which point the suppressed actions can be made observable). This technique ensures

that the automaton eventually outputs every valid prefix, and only valid prefixes,

of any input execution. Because P̂ is a renewal property, the automaton therefore

outputs all prefixes, and only prefixes, of a valid input while outputting only the

longest valid prefix of an invalid input. Hence, the automaton correctly effectively=

enforces P̂ . The following theorem formally states this result.

Theorem 8 (Lower Bound Effective= E∞-Enforcement)

A property P̂ on a system with action set A can be effectively= enforced by some

edit automaton E if the following constraints are met.

1. ∀σ ∈ Aω : P̂ (σ) ⇐⇒ (∀σ′�σ : ∃τ�σ : σ′�τ ∧ P̂ (τ)) (Renewal2)

2. P̂ (·)

3. ∀σ ∈ A? : P̂ (σ) is decidable

Proof We construct an edit automaton E that effectively= enforces any such P̂ as

follows.

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 36

• States: Q = A? × A? × {0, 1} (the sequence of actions output so far, the

sequence of actions currently suppressed, and a flag indicating whether the

suppressed actions need to be inserted)

• Start state: q0 = (·, ·, 0) (nothing has been output or suppressed)

• Transition function:

δ((τ, σ, f), a) =

((τ, σ; a, 0), ·) if f = 0 ∧ ¬P̂ (τ ; σ; a)

((τ ; a′, σ′, 1), a′) if f = 0 ∧ P̂ (τ ; σ; a) ∧ σ; a=a′; σ′

((τ ; a′, σ′, 1), a′) if f = 1 ∧ σ=a′; σ′

((τ, ·, 0), ·) if f = 1 ∧ σ=·

This transition function is computable because P̂ is decidable over all finite-

length executions.

E maintains the invariant IP̂ (q) on states q = (τ, σ, 0) that exactly τ has been

output, τ ; σ is the input that has been processed, (q0, τ ; σ) ⇓E τ , and τ is the longest

prefix of τ ; σ such that P̂ (τ). Similarly, E maintains IP̂ (q) on states q = (τ, σ, 1)

that exactly τ has been output, all of τ ; σ except the action on which E is currently

making a transition is the input that has been processed, P̂ (τ ; σ), and E will finish

processing the current action when all of τ ; σ has been output, the current action has

been suppressed, and E is in state (τ ; σ, ·, 0). The automaton can initially establish

IP̂ (q0) because q0 = (·, ·, 0), (q0, ·) ⇓E ·, and P̂ (·). A simple inductive argument on

the transition relation suffices to show that E maintains the invariant in every state

it reaches.

Let σ ∈ A∞ be the input to the automaton E. If ¬P̂ (σ) and σ ∈ A? then by the

automaton invariant, E consumes all of input σ and halts in some state (τ, σ′, 0)

such that (q0, σ) ⇓E τ and P̂ (τ). Hence, E effectively= enforces P̂ in this case. If

¬P̂ (σ) and σ ∈ Aω then by the renewal condition in the theorem statement, there

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 37

must be some prefix σ′ of σ such that for all longer prefixes τ of σ, ¬P̂ (τ). Thus, by

the transition function of E, the invariant of E, and the definition of ⇓E, E on input

σ outputs only some finite τ ′ such that P̂ (τ ′) and (q0, σ) ⇓E τ ′ (and E suppresses

all actions in σ after outputting τ ′).

Next consider the case where P̂ (σ). If σ ∈ A? then by the automaton invariant,

E on input σ must halt in state (σ, ·, 0), where (q0, σ) ⇓E σ. E thus effectively=

enforces P̂ in this case. If P̂ (σ) and σ ∈ Aω then the renewal constraint and the

automaton invariant ensure that E on input σ outputs every prefix of σ and only

prefixes of σ. Hence, (q0, σ) ⇓E σ. In all cases, E correctly effectively= enforces P̂ .

�

It would be reasonable to expect that the set of renewal properties also represents

an upper bound on the properties effectively= enforceable by edit automata. After

all, an effective= automaton cannot output an infinite number of valid prefixes of

an invalid infinite-length input σ without outputting σ itself. In addition, on a

valid infinite-length input τ , an effective= automaton must output infinitely many

prefixes of τ , and whenever it finishes processing an input action, its output must

be a valid prefix of τ because there may be no more input (i.e., the target may not

generate more actions).

However, there is a corner case in which an edit automaton can effectively=

enforce a valid infinite-length execution τ that has only finitely many valid prefixes.

If, after processing a prefix of τ , the automaton can decide that τ is the only valid

extension of this prefix, then the automaton can cease processing input and enter

an infinite loop to insert the remaining actions of τ . While in this infinite loop,

the automaton need not output infinitely many valid prefixes, since it is certain to

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 38

be able to extend the current (invalid) output into an infinite-length valid output

sequence.

The following theorem presents the tight boundary for effective= enforcement

of properties by edit automata, including the corner case described above. Because

we believe that the corner case adds relatively little to the enforcement capabilities

of edit automata, we only sketch the proof.

Theorem 9 (Effective= E∞-Enforcement)

A property P̂ on a system with action set A can be effectively= enforced by some

edit automaton E if and only if the following constraints are met.

1. ∀σ ∈ Aω : P̂ (σ) ⇐⇒

∀σ′�σ : ∃τ�σ : σ′�τ ∧ P̂ (τ)

∨ P̂ (σ) ∧

∃σ′�σ : ∀τ�σ′ : P̂ (τ) =⇒ τ=σ ∧

the existence and actions of σ

are computable from σ′

2. P̂ (·)

3. ∀σ ∈ A? : P̂ (σ) is decidable

Proof (sketch): (If Direction) We sketch the construction of an edit automaton

E that effectively= enforces any such P̂ as follows.

• States: Q = A? ×A? (the sequence of actions output so far paired with the

sequence of actions suppressed since the previous insertion)

• Start state: q0 = (·, ·) (nothing has been output or suppressed)

• Transition function (for simplicity, we abbreviate δ):

Consider processing the action a in state (τ ′, σ′).

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 39

(A) If we can compute from τ ′; σ′ the existence and actions of some σ ∈ Aω

such that ∀τ�(τ ′; σ′) : P̂ (τ) =⇒ τ=σ, enter an infinite loop that inserts

one by one all actions necessary to output every prefix of σ.

(B) Otherwise, if P̂ (τ ′; σ′; a) then insert σ′; a (one action at a time), suppress

a, and continue in state (τ ′; σ′; a, ·).

(C) Otherwise, suppress a and continue in state (τ ′, σ′; a).

This automaton is an informal version of the one constructed in the “if” direc-

tion of the proof of Theorem 8, except for the addition of transition (A), and E

effectively= enforces P̂ for the same reasons given there. The only difference is that

E can insert an infinite sequence of actions if it computes that only that sequence

of actions can extend the current input to satisfy P̂ . In this case, E continues

to effectively= enforce P̂ because its output satisfies P̂ and equals any valid input

sequence.

(Only-If Direction) Consider any σ ∈ Aω such that P̂ (σ). By the definition

of effective= enforcement, (q0, σ) ⇓E σ, where q0 is the initial state of E. By the

definitions of ⇓E and =, E must output all prefixes of σ and only prefixes of σ when

σ is input. Assume for the sake of obtaining a contradiction that the extended

renewal constraint is untrue for σ. This implies that there is some valid prefix σ′

of σ after which all longer prefixes of σ violate P̂ . After outputting σ′ on input

σ′, E cannot output any prefix of σ without outputting every prefix of σ (if it did,

its output would violate P̂). But because the extended renewal constraint does

not hold on σ by assumption, either (1) more than one valid execution will always

extend the automaton’s input or (2) E can never compute or emit all prefixes of

σ. Therefore, E cannot output every prefix of σ after outputting σ′, so E fails to

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 40

effectively= enforce P̂ on this σ. Our assumption was therefore incorrect, and the

renewal constraint must hold.

Next consider any σ ∈ Aω such that ¬P̂ (σ). The extended portion of the

renewal constraint trivially holds because ¬P̂ (σ). Assume for the sake of obtaining

a contradiction that the rest of the renewal constraint does not hold on σ, implying

that there are an infinite number of prefixes of σ that satisfy P̂ . Because E is an

effective= enforcer and can only enforce P̂ on sequences obeying P̂ by emitting them

verbatim, E must eventually output every prefix of σ and only prefixes of σ when

σ is input. Hence, (q0, σ) ⇓E σ, which is a contradiction because E effectively=

enforces P̂ and ¬P̂ (σ). Our assumption that the renewal constraint does not hold

is therefore incorrect.

Also, P̂ (·) because E could otherwise not effectively= enforce P̂ when input the

empty sequence.

Finally, we decide P̂ (σ) for all σ ∈ A? using the same procedure described in

the “Only-If” direction of the proof of Theorem 6. �

We have found it difficult to precisely characterize the properties that are

effectively∼= enforceable by edit automata. Unfortunately, the simplest way to spec-

ify this set appears to be to encode the semantics of edit automata into recursive

functions that operate over streams of actions. Then, we can reason about the rela-

tionship between input and output sequences of such functions just as the definition

of effective∼= enforcement requires us to reason about the relationship between in-

put and output sequences of automata. Our final theorem takes this approach; we

present it for completeness.

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 41

Theorem 10 (Effective∼= E∞-Enforcement)

Let repls be a decidable function repls : A?×A?→A∪{·}. Then R?
repls is a decidable

function R?
repls : A? ×A? ×A? →A? parameterized by repls and inductively defined

as follows, where all metavariables are universally quantified.

• R?
repls(·, σ, τ) = τ

• (repls(σ; a, τ) = ·) =⇒ R?
repls(a; σ′, σ, τ ′) = R?

repls(σ
′, σ; a, τ ′)

• (repls(σ; a, τ) = a′) =⇒ R?
repls(a; σ′, σ, τ ′) = R?

repls(a; σ′, σ, τ ′; a′)

A property P̂ on a system with action set A can be effectively∼= enforced by

some edit automaton E if and only if there exists a decidable repls function (as

described above) such that for all (input sequences) σ ∈ A∞ there exists (output

sequence) τ ∈ A∞ such that the following constraints are met.

1. ∀σ′�σ : ∀τ ′ ∈ A? : (R?
repls(σ

′, ·, ·) = τ ′) =⇒ τ ′�τ

2. ∀τ ′�τ : ∃σ′�σ : R?
repls(σ

′, ·, ·) = τ ′

3. P̂ (τ)

4. P̂ (σ) =⇒ σ ∼= τ

Proof (sketch): Intuitively, repls(σ, τ) = a (or ·) iff a is the next action to be

output (or suppressed) by an edit automaton when σ is the automaton input and

τ is the automaton output so far. Also, R?
repls(σ, σ′, τ ′) = τ iff the overall output of

an edit automaton whose transition function is guided by repls is τ when σ remains

to be processed, σ′ has already been processed, and τ ′ has already been output.

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 42

(If Direction) Given repls, we construct an edit automaton E that effectively∼=

enforces any such P̂ as follows.

• States: Q = A? × A? (the input processed and the output emitted so far)

• Start state: q0 = (·, ·) (nothing processed or output)

• Transition function: δ((σ, τ), a) =

 ((σ, τ ; a′), a′) if repls(σ; a, τ) = a′

((σ; a, τ), ·) otherwise

For all prefixes σ′ of the input σ to E, E emits a τ ′ such that R?
repls(σ

′, ·, ·) = τ ′.

The proof is by induction on the length of σ′, using the definition of R?
repls. Then,

by the constraints in the theorem statement and the definitions of ⇓E and effective∼=

enforcement, E effectively∼= enforces P̂ .

(Only-If Direction) Define repls(σ, τ) as follows. Run E on input σ until τ is

output (if τ is not a prefix of the output then arbitrarily define repls(σ, τ) = ·),

and then continue running E until either all input is consumed (i.e., suppressed) or

another action a′ is output. In the former case, let repls(σ, τ) = · and in the latter

case repls(σ, τ) = a′. D is decidable because σ and τ have finite lengths and the

transition function of E is computable.

By the definitions of repls and R?
repls, we have the following. ∀σ, τ ∈ A? :

(R?
repls(σ, ·, ·) = τ) ⇐⇒ (∃q′ : (q0, σ) τ=⇒E (q′, ·)), where q0 is the initial state of E.

Combining this with the definition of ⇓E and the fact that E effectively∼= enforces

P̂ ensures that all of the constraints given in the theorem statement are satisfied.

�

As with truncation automata, we believe that the theorems related to edit au-

tomata acting as effective= enforcers more naturally capture their inherent power

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 43

than does the theorem of effective∼= enforcement. Effective= enforcement provides

an elegant lower bound for what can be effectively∼= enforced in practice.

Limitations In addition to standard assumptions of program monitors, such as

that a target cannot circumvent or corrupt a monitor, our theoretical model makes

assumptions particularly relevant to edit automata that are sometimes violated in

practice. Most importantly, our model assumes that security automata have the

same computational capabilities as the system that observes the monitor’s output.

If an action violates this assumption by requiring an outside system in order to be

executed, it cannot be “feigned” (i.e., suppressed) by the monitor. For example,

it would be impossible for a monitor to feign sending email, wait for the target

to receive a response to the email, test whether the target does something invalid

with the response, and then decide to “undo” sending email in the first place.

Here, the action for sending email has to be made observable to systems outside of

the monitor’s control in order to be executed, so this is an unsuppressible action.

A similar limitation arises with time-dependent actions, where an action cannot

be feigned (i.e., suppressed) because it may behave differently if made observable

later. In addition to these sorts of unsuppressible actions, a system may contain

actions uninsertable by monitors because, for example, the monitors lack access to

secret keys that must be passed as parameters to the actions. In the future, we

plan to explore the usefulness of including sets of unsuppressible and uninsertable

actions in the specification of systems. We might be able to harness some of our

other work [38], which defined security automata limited to inserting (insertion

automata) or suppressing (suppression automata) actions, toward this goal.

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 44

3.3 Infinite Renewal Properties

In this section, we examine some interesting aspects of the class of infinite renewal

properties. We compare renewal properties to safety and liveness properties and

provide several examples of useful renewal properties that are neither safety nor

liveness properties.

3.3.1 Renewal, Safety, and Liveness

The most obvious way in which safety and infinite renewal properties differ is that

safety properties place restrictions on finite executions (invalid finite executions

must have some prefix after which all extensions are invalid), while renewal proper-

ties place no restrictions on finite executions. Thus, if we consider systems that only

exhibit finite executions, edit automata can enforce every reasonable property [38].

Without infinite-length executions, every property is a renewal property.

Moreover, an infinite-length renewal execution can be valid even if it has in-

finitely many invalid prefixes (as long as it also has infinitely many valid prefixes),

but a valid safety execution can contain no invalid prefixes. Similarly, although

invalid infinite-length renewal executions can have prefixes that alternate a finite

number of times between being valid and invalid, invalid safety executions must

contain some finite prefix before which all prefixes are valid and after which all

prefixes are invalid. Hence, every safety property is a renewal property. Given any

system with action set A, it is easy to construct a non-safety renewal property P̂

by choosing an element a in A and letting P̂ (·), P̂ (a; a), but ¬P̂ (a).

There are renewal properties that are not liveness properties (e.g., the property

that is only satisfied by the empty sequence), and there are liveness properties that

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 45

are not renewal properties (e.g., the nontermination property only satisfied by infi-

nite executions). Some renewal properties, such as the one only satisfied by the

empty sequence and the sequence a; a, are neither safety nor liveness. Although

Alpern and Schneider [6] showed that exactly one property is both safety and live-

ness (the property satisfied by every execution), some interesting liveness properties

are also renewal properties. We examine examples of such renewal properties in the

following subsection.

3.3.2 Example Properties

We next present several examples of renewal properties that are not safety prop-

erties, as well as some examples of non-renewal properties. By the theorems in

Sections 3.1.2 and 3.2.2, the non-safety renewal properties are effectively= enforce-

able by edit automata but not by truncation automata. Moreover, the proof of

Theorem 8 shows how to construct an edit automaton to enforce any of the renewal

properties described in this subsection. Later, in Section 4.4.3, we examine addi-

tional non-safety properties and show how they can be specified and enforced using

practical program monitors.

Renewal properties Suppose we wish to constrain a user’s interaction with a

computer system. A user may execute any sequence of actions that does not involve

opening files but must eventually log out. The process of executing non-file-open

actions and then logging out may repeat indefinitely, so we might write the requisite

property P̂ more specifically as (a1
?; a2)∞, where a2 ranges over all actions for

logging out, a3 over actions for opening files, and a1 over all other actions.2 This P̂

2As Alpern and Schneider note [6], this sort of P̂ might be expressed with the (strong) until
operator in temporal logic; event a1 occurs until event a2.

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 46

is not a safety property because a finite sequence of only a1 events disobeys P̂ but

can be extended (by appending a2) to obey P̂ . Our P̂ is also not a liveness property

because there are finite executions that cannot be extended to satisfy P̂ , such as

the sequence containing only a3. However, this non-safety, non-liveness property is

a renewal property because infinite-length executions are valid if and only if they

contain infinitely many (valid) prefixes of the form (a1
?; a2)

?.

Interestingly, if we enforce the policy described above on a system that only has

actions a1 and a2, we remove the safety aspect of the property to obtain a liveness

property that is also a renewal property. On the system {a1, a2}, the property

satisfied by any execution matching (a1
?; a2)∞ is a liveness property because any

illegal finite execution can be made legal by appending a2. The property is still a

renewal property because an infinite execution is invalid if and only if it contains a

finite number of valid prefixes after which a2 never appears.

There are other interesting properties that are both liveness and renewal. For

example, consider a property P̂ specifying that an execution that does anything

must eventually perform an audit by executing some action a. This is similar

to the example renewal property given in Section 3.2.2. Because we can extend

any invalid finite execution with the audit action to make it valid, P̂ is a liveness

property. It is also a renewal property because an infinite-length valid execution

must have infinitely many prefixes in which a appears, and an infinite-length invalid

execution has no valid prefix (except the empty sequence) because a never appears.

Note that for this “eventually audits” renewal property to be enforceable by an edit

automaton, we have to consider the empty sequence valid.

As briefly mentioned in Section 3.2.2, edit automata derive their power from be-

ing able to operate in a way similar to intentions files in database transactions. At

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 47

a high level, any transaction-based property is a renewal property. Let τ range over

finite sequences of single, valid transactions. A transaction-based policy could then

be written as τ∞; a valid execution is one containing any number of valid transac-

tions. Such transactional properties can be non-safety because executions may be

invalid within a transaction but become valid at the conclusion of that transaction.

Transactional properties can also be non-liveness when there exists a way to irre-

mediably corrupt a transaction (e.g., every transaction beginning with start ;self-

destruct is illegal). Nonetheless, transactional properties are renewal properties

because infinite-length executions are valid if and only if they contain an infinite

number of prefixes that are valid sequences of transactions. The renewal properties

described above as matching sequences of the form (a1
?; a2)∞ can also be viewed as

transactional; each transaction must match a1
?; a2.

Non-renewal properties An example of an interesting liveness property that is

not a renewal property is general availability. Suppose that we have a system with

actions oi for opening (or acquiring) and ci for closing (or releasing) some resource i.

Our policy P̂ is that for all resources i, if i is opened, it must eventually be closed.

This is a liveness property because any invalid finite sequence can be made valid sim-

ply by appending actions to close every open resource. However, P̂ is not a renewal

property because there are valid infinite sequences, such as o1; o2; c1; o3; c2; o4; c3; ...,

that do not have an infinite number of valid prefixes. An edit automaton can only

enforce this sort of availability property when the number of resources is limited

to one (in this case, the property is transactional: valid transactions begin with

o1 and end with c1). Even on a system with two resources, infinite sequences like

o1; o2; c1; o1; c2; o2; c1; o1; ... prevent this resource-availability property from being a

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 48

All Properties

Renewal

Safety Liveness

1

2

3

4

5

6

7
8

9

Nontermination

Resource availability

Stack inspection

Log out and never open files

Property 4 on system without

file-open actions

Eventually audits

Transaction property

Termination +

file access control

Trivial

1

2

3

4

5

6

7

8

9

Legend:

Figure 3.1: Relationships between safety, liveness, and renewal properties.

renewal property. Please note, however, that we have been assuming effective= en-

forcement; in practice we might find that o1; o2; c1
∼= o1; c1; o2, in which case edit

automata can effectively∼= enforce these sorts of availability properties.

Of course, there are many non-renewal, non-liveness properties as well. We

can arrive at such properties by combining a safety property with any property

that is a liveness but not a renewal property. For example, termination is not a

renewal property because invalid infinite sequences have an infinite number of valid

prefixes. Termination is however a liveness property because any finite execution is

valid. When we combine this liveness, non-renewal property with a safety property,

such as that no accesses are made to private files, we arrive at the non-liveness,

non-renewal property in which executions are valid if and only if they terminate

and never access private files. The requirement of termination prevents this from

being a renewal property; moreover, this property is outside the upper bound of

what is effectively= enforceable by edit automata.

CHAPTER 3. POLICIES ENFORCEABLE BY MONITORS 49

Figure 3.1 summarizes the results of the preceding discussion and that of Sec-

tion 3.3.1. The Trivial property in Figure 3.1 considers all executions legal and is

the only property in the intersection of safety and liveness properties.

Chapter 4

Enforcing Policies with Polymer

In the previous chapter, we found that program monitors can enforce a rich set of

security policies. However, due to the problem of policy complexity (discussed in

Chapter 1), actually specifying the policies we need to enforce is often difficult in

practice. We propose handling policy complexity with a new language and system

called Polymer that allows security engineers to create and enforce complex run-time

policies on Java applications.

4.1 Polymer’s Approach to Policy Complexity

In Polymer, security policies are first-class objects structured to be arbitrarily com-

posed with other policies. This allows us to specify complex policies as compositions

of much simpler policy modules.

Polymer programmers implement security policies by extending Polymer’s

Policy class, which is given a special interpretation by the underlying run-time

system. Intuitively, each Policy object contains three main elements.

50

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 51

1. An effect-free decision procedure that determines how to react to security-

sensitive application actions, which are method calls that monitors intercept.

The action objects to which policies react contain information about the

security-sensitive method’s name, signature, calling object (if any), and actual

arguments (if any).

2. Security state, which can be used to keep track of the application’s activity

during execution.

3. Methods to update the policy’s security state.

We call the decision procedure mentioned above a query method. This method

returns one of six suggestions indicating that: the action is irrelevant to the policy;

the action is OK but relevant; the action should be reconsidered after some other

code is inserted ; the return value of the action should be replaced by a precomputed

value (which may have been computed using earlier insertion suggestions); a security

exception should be thrown instead of executing the action; or, the application

should be halted. These objects are referred to as suggestions because there is no

guarantee that the policy’s desired reaction will occur when it is composed with

other policies. Also for this reason, the query method should not have effects. State

updates occur in other policy methods, which are invoked only when a policy’s

suggestion is followed.

In order to further support flexible but modular security policy programming,

we treat all policies, suggestions, and application actions as first-class objects. Con-

sequently, it is possible to define higher-order security policies that query one or

more subordinate policies for their suggestions and then combine these suggestions

in a semantically meaningful way, returning the overall result to the system, or other

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 52

policies higher in the hierarchy. We facilitate programming with suggestions and

application events by introducing pattern-matching facilities and mechanisms that

allow programmers to summarize a collection of application events as an abstract

action.

4.2 Polymer System Overview

Similarly to the designs of Naccio [22] and PoET/Pslang [20], the Polymer system

is composed of two main tools. The first is a policy compiler (implemented by Lujo

Bauer) that compiles program monitors defined in the Polymer language into plain

Java and then into Java bytecode. The second tool is a bytecode rewriter that

processes ordinary Java bytecode, inserting calls to the monitor in all the necessary

places. In order to construct a secure executable using these tools, programmers

perform the following six steps.

1. Write the action declaration file, which lists all program methods that might

have an impact on system security.

2. Instrument the system libraries specified in the action declaration file using

the bytecode rewriter. This step may be performed independently of the

specification of the security policy. The libraries must be instrumented before

the Java Virtual Machine (JVM) starts up since the default JVM security

constraints prevent many libraries from being modified or reloaded once the

JVM is running.

3. Write and compile the security policy. The policy compiler translates the

Polymer policy into ordinary Java and then invokes a Java compiler to trans-

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 53

Interpreter of highest-level
policy's suggestions

Target application Java core classes

...

Policy

Figure 4.1: A secure Polymer application

late it to bytecode. Polymer’s policy language is described in Section 4.3; its

formal semantics appear in Chapter 5.

4. Start the JVM with the modified libraries.

5. Load the target application. During this loading, our specialized class loader

rewrites the target code in the same way we rewrote the libraries in step two.

6. Execute the secured application.

Figure 4.1 shows the end result of the process. The instrumented target and

library code run inside the JVM. Whenever this code is about to invoke a security-

sensitive method, control is redirected through a generic policy manager, which

queries the current policy. The current policy will return a suggestion that is inter-

preted by the policy manager.

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 54

public class Action {
//’caller’ is the object on which this action is invoked,
//’fullSig’ is the action’s full signature, and
//’params’ are the action’s actual arguments
public Action(Object caller, String fullSig, Object[] params)
public boolean equals(Action a)
public Object[] getParams()
public Class[] getParamClasses()
public Object getCaller()
public String getMethodName()
public String getPackageName()
public String getClassName()
public String getSignature()
public String toString()

}

Figure 4.2: Basic Polymer API for Action objects

4.3 The Polymer Language

In this section, we describe the core features of the Polymer language. We begin with

the basic concepts and show how to program simple policies. Then, we demonstrate

how to create more complex policies by composing simpler ones.

4.3.1 Core Concepts

Polymer is based on three central abstractions: actions, suggestions, and policies.

Policies analyze actions and convey their decisions by means of suggestions.

Actions Monitors intercept and reason about how to react to security-sensitive

method invocations. Action objects contain all of the information relevant to such

invocations: static information such as the method signature, and dynamic infor-

mation like the calling object and the method’s parameters. The basic Action API

is shown in Figure 4.2.

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 55

For convenient manipulation of actions, Polymer allows them to be matched

against action patterns. An Action object matches an action pattern when the

action’s signature matches the one specified in the pattern. Patterns can use wild-

cards: * matches any one constraint (e.g., any return type or any single parameter

type), and .. matches zero or more parameter types. For example, the pattern

<public void java.io.*.<init>(int, ..)>

matches all public constructors in all classes in the java.io package whose first

parameter is an int. In place of 〈init〉, which refers to a constructor, we could

have used an identifier that refers to a particular method.

Action patterns appear in two places. First, the action declaration file is a set

of action patterns. During the instrumentation process, every action that matches

an action pattern in the action declaration file is instrumented. Second, policies use

action patterns in aswitch statements to determine which security-sensitive action

they are dealing with. aswitch statements are similar to Java’s switch statements,

as the following example shows.

aswitch(a) {

case <void System.exit(int status)>: E;

...

}

If Action a represents an invocation of System.exit, this statement evaluates

expression E with the variable status bound to the value of the method’s single

parameter.

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 56

Suggestions Whenever the untrusted application attempts to execute a security-

relevant action, the monitor suggests a way to handle this action (which we often

call a trigger action because it triggers the monitor into making such a suggestion).

The monitor conveys its decision about a particular trigger action using a Sug

object. Polymer supplies a concrete subclass of the abstract Sug class for each type

of suggestion mentioned in Section 4.1:

• An IrrSug suggests that the trigger action execute unconditionally because

the policy does not reason about it.

• An OKSug suggests that the trigger action execute even though the action is

of interest to the policy.

• An InsSug suggests that making a final decision about the target action be

deferred until after some auxiliary code is executed and its effects are evalu-

ated.

• A ReplSug suggests replacing the trigger action, which computes some return

value, with a return value supplied by the policy. The policy may use InsSugs

to compute the suggested return value.

• An ExnSug suggests that the trigger action not be allowed to execute, but

also that the target be allowed to continue running. Whenever following an

ExnSug, Polymer notifies the target that its attempt at invoking the trigger

action has been denied by throwing a SecurityException that the target can

catch before continuing execution.

• A HaltSug suggests that the trigger action not be allowed to execute and that

the target be halted.

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 57

Breaking down the possible interventions of monitors into these categories pro-

vides great flexibility. In addition, this breakdown, which was refined by experience

with writing security policies in Polymer, simplifies our job tremendously when it

comes to controlling monitor effects and building combinators that compose moni-

tors in sensible ways (see Section 4.3.3).

The reader might wonder why we distinguish between irrelevant and OK sug-

gestions; there are two reasons. First, for performance, we need not update policy

state when a policy considers the current action irrelevant. Second, some interesting

superpolicies, such as the Dominates combinator described in Section 4.3.3, make

a semantic distinction between subpolicies’ IrrSug and OKSug suggestions.

Figure 4.3 shows the full contents of our Sug class. It contains convenience meth-

ods for dynamically determining a suggestion’s concrete type, as well as methods

for obtaining the policy that made the suggestion, the action that triggered that

policy to make the suggestion, and any other suggestions and auxiliary objects the

suggestion’s creator found convenient to store in the Sug. Thus, when given a Sug

object, Polymer policies can determine the precise circumstances under which that

suggestion was made.

Policies Programmers encode a run-time monitor in Polymer by extending the

base Policy class (Figure 4.4). A new policy must provide an implementation of

the query method and may optionally override the accept and result methods.

• query analyzes a trigger action and returns a suggestion indicating how to

deal with it.

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 58

public abstract class Sug {
public abstract boolean isIrr();
public abstract boolean isOK();
public abstract boolean isRepl();
public abstract boolean isExn();
public abstract boolean isHalt();
public abstract boolean isInsertion();
public abstract Policy getSuggestingPolicy();
public abstract Action getTrigger();
public abstract Suggestion[] getSuggestions();
public abstract Object getAuxiliaryObject();

}

Figure 4.3: Polymer’s abstract Sug class

public abstract class Policy {
public abstract Sug query(Action a);
public void accept(Sug s) { };
public void result(Sug s, Object result, boolean wasExnThn) { };

}

Figure 4.4: The parent class of all Polymer policies

• accept is called to indicate to a policy that its suggestion is about to be

followed. This gives the policy a chance to perform any bookkeeping needed

before the suggestion is carried out.

• result gives the policy access to the return value produced by following its

InsSug or OKSug. The three arguments to result are the original sugges-

tion the policy returned, the return value of the trigger action or inserted

action (null if the return type was void and an Exception value if the action

completed abnormally), and a flag indicating whether the action completed

abnormally.

The accept method is called before following any suggestion except an IrrSug;

the result method is only called after following an OKSug or InsSug. After result

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 59

public class Trivial extends Policy {
public Sug query(Action a) { return new IrrSug(this); }

}

Figure 4.5: Polymer policy that allows all actions

is called with the result of an InsSug, the policy is queried again with the original

trigger action (in response to which the policy had just suggested an InsSug). Thus,

InsSugs allow a policy to delay making a decision about a trigger action until after

executing another action.

A policy interface consisting of query, accept, and result methods is fun-

damental to the design of Polymer. We can compose policies by writing policy

combinators that query other policies and combine their suggestions. In combining

suggestions, a combinator may choose not to follow the suggestions of some of the

queried policies. Thus, query methods must not assume that their suggestions will

be followed and should be free of effects such as state updates and I/O operations.

4.3.2 Simple Policies

To give a feel for how to write Polymer policies, we define several simple examples

in this section; in Sections 4.3.3 and 4.4.2 we will build more powerful policies by

composing the basic policies presented here using a collection of policy combinators.

We begin by considering the most permissive policy possible: one that allows

everything. The Polymer code for this policy is shown in Figure 4.5. Because the

query method of Trivial always returns an IrrSug, it allows all trigger actions to

execute unconditionally. To enable convenient processing of suggestions, every Sug

constructor has at least one argument, the Policy making the Sug.

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 60

public class DisSysCalls extends Policy {
public Sug query(Action a) {

aswitch(a) {
case <* java.lang.Runtime.exec(..)>:

return new HaltSug(this, a);
}
return new IrrSug(this);

}
public void accept(Sug s) {

if(s.isHalt()) {
System.err.println("Illegal exec method called");
System.err.println("About to halt target");

}
}

}

Figure 4.6: Polymer policy that disallows Runtime.exec methods

For our second example, we consider a more useful policy that disallows exe-

cuting external code, such as OS system calls, via java.lang.Runtime.exec(..)

methods. This policy, shown in Figure 4.6, simply halts the target when it calls

java.lang.Runtime.exec. The accept method notifies the user of the security

violation. Notice that this notification does not appear in the query method be-

cause it is an effectful computation; the notification should not occur if the policy’s

suggestion is not followed.

In practice, there can be many methods that correspond to a single action that

a policy considers security relevant. For example, a policy that logs incoming email

may need to observe all actions that can open a message. It can be cumbersome

and redundant to have to enumerate all these methods in a policy, so Polymer

makes it possible to group them into abstract actions. Abstract actions allow a

policy to reason about security-relevant actions at a different level of granularity

than is offered by the Java core API. They permit policies to focus on regulating

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 61

particular behaviors, say, opening email, rather than forcing them to individually

regulate each of the actions that cause this behavior. This makes it easier to write

more concise, modular policies. Abstract actions also make it possible to write

platform-independent policies. For example, the set of actions that fetch email may

not be the same on every system, but as long as the implementation of the abstract

GetMail action is adjusted accordingly, the same policy for regulating email access

can be used everywhere.

Figure 4.7 shows an abstract action for fetching email messages. The matches

method of an abstract action returns true when a provided concrete action is one

of the abstract action’s constituents. The method has access to the concrete ac-

tion’s run-time parameters and can use this information in making its decision. All

constituent concrete actions may not have the same parameter and return types,

so one of the abstract action’s tasks is to export a consistent interface to policies.

This is accomplished via convertParameter and convertResult methods. The

convertResult method in Figure 4.7 allows the GetMail abstract action to export

a return type of Message[].

Naccio [22] implements an alternative notion, called platform interfaces, that

supports a similar sort of separation between concrete and abstract actions. It

appears that our design is slightly more general, as our abstract actions allow pro-

grammers to define many-many relationships, rather than many-one relationships,

between concrete and abstract actions. In addition, our abstract actions are first-

class objects that may be passed to and from procedures, and we support the

convenience of general-purpose pattern matching.

The example policy in Figure 4.8 logs all incoming email and prepends the string

“SPAM:” to subject lines of messages flagged by a spam filter. To log incoming

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 62

public class GetMail extends AbsAction {
public boolean matches(Action a) {

aswitch(a) {
case <Message IMAPFolder.getMessage(int)> :
case <void IMAPFolder.fetch(Message[], *)> :
case <Message IMAPFolder.getMessageByUID(long)> :
case <Message[] IMAPFolder.getMessagesByUID(long[])> :
case <Message[] IMAPFolder.getMessagesByUID(long, long)> :
case <Message[] IMAPFolder.search(..)> :
case <Message[] IMAPFolder.expunge()>:
case <Message[] POP3Folder.expunge()>:
case <void POP3Folder.fetch(Message[], *)>:
case <Message POP3Folder.getMessage(int)>:

return true;
}
return false;

}
public static Object convertResult(Action a, Object res) {

aswitch(a) {
case <Message IMAPFolder.getMessage(int)> :
case <Message IMAPFolder.getMessageByUID(long)> :

return new Message[] {(Message)res};
case <void IMAPFolder.fetch(Message[] ma, *)> :

return ma;
case <void POP3Folder.fetch(javax.mail.Message[] ma, *)>:

return ma;
case <Message POP3Folder.getMessage(int)>:

return new Message[] {(Message)res};
default:

return res;
}

}
}

Figure 4.7: Abstract action for receiving email messages; the action’s signature is
Message[] GetMail()

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 63

public class IncomingMail extends Policy {
...
public Sug query(Action a) {

aswitch(a) {
case <abs * examples.mail.GetMail()>:

return new OKSug(this, a);
case <* MimeMessage.getSubject()>:
case <* IMAPMessage.getSubject()>:

String subj = spamifySubject(a.getCaller());
return new ReplSug(this, a, subj);

case <done>:
if(!isClosed(logFile))

return new InsSug(this, a, new Action(logFile,
"java.io.PrintStream.close()", new Object[]{}));

}
return new IrrSug(this, a);

}
public void result(Sug sugg, Object res, boolean wasExnThn) {

if(!sugg.isOK() || wasExnThn) return;
log(GetMail.convertResult(sugg.getTrigger(), result));

}
}

Figure 4.8: Abbreviated Polymer policy that logs all incoming email and prepends
the string “SPAM:” to subject lines on messages flagged by a spam filter

mail, the policy first tests whether the trigger action matches the GetMail abstract

action (from Figure 4.7), using the keyword abs in an action pattern to indicate that

GetMail is abstract. Since query methods should not have effects, the policy returns

an OKSug for each GetMail action; the policy logs the fetched messages in the result

method. Polymer triggers a done action when the application terminates; the policy

takes advantage of this feature to insert an action that closes the message log. If the

InsSug recommending that the log be closed is accepted, the policy will be queried

again with a done action after the inserted action has been executed. In the second

query, the log file will already be closed, so the policy will return an IrrSug. The

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 64

policy also intercepts calls to getSubject in order to mark email as spam. Instead of

allowing the original call to execute, the policy fetches the original subject, prepends

“SPAM:” if necessary, and returns the result via a ReplSug. Running a spam filter

on the client side allows an end user to filter based on individually customized rules.

Sometimes, a policy requires notifying the target that executing its trigger action

would be a security violation. When no suitable return value can indicate this

condition to the target, the policy may make an ExnSug rather than a ReplSug.

For example, the email Attachments policy in Figure 4.9 seeks user confirmation

before creating an executable file. When the user fails to provide the confirmation,

the Attachments policy signals a policy violation by returning an ExnSug, rather

than by halting the target outright. This ExnSug causes a SecurityException to

be thrown, which can be caught by the application and dealt with in an application-

specific manner.

4.3.3 Policy Combinators

Polymer supports policy modularity and code reuse by allowing policies to be com-

bined with and modified by other policies. In Polymer, a policy is a first-class Java

object, so it may serve as an argument to and be returned by other policies. We

call a policy parameterized by other policies a policy combinator. When referring

to a complex policy with many policy parts, we call the policy parts subpolicies and

the complex policy a superpolicy.

We have written and provide with Polymer a library of common combinators [12];

however, policy architects are always free to develop new combinators to suit their

own specific needs. Studying which combinators are the “right” ones to have avail-

able, for various definitions of “right” (e.g., that are the minimal necessary to specify

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 65

import javax.swing.*;
public class Attachments extends Policy {

private boolean isNameBad(String fn) {
return(fn.endsWith(".exe") || fn.endsWith(".vbs") ||

fn.endsWith(".hta") || fn.endsWith(".mdb"));
}
private boolean userCancel = false; //user disallowed the file?
private boolean noAsk = false; //can we skip the confirmation?
public Sug query(polymer.Action a) {

aswitch(a) {
case <abs void examples.mail.FileWrite(String fn)>:

if(noAsk) return new OKSug(this, a);
if(userCancel) return new ExnSug(this, a);
polymer.Action insAct = new polymer.Action(null,

"javax.swing.JOptionPane.showConfirmDialog(" +
"java.awt.Component, java.lang.Object, " +
"java.lang.String, int)",

new Object[]{null, "The target is creating file: " + fn +
" This is a dangerous file type. " +
"Are you sure you want to create this file?",

"Security Question",
new Integer(JOptionPane.YES_NO_OPTION)});

if(isNameBad(fn)) return new InsSug(this, a, insAct);
return new IrrSug(this, a);

}
return new IrrSug(this);

}
public void accept(Sug s) {

if(s.isExn()) userCancel = false;
if(s.isOK()) noAsk = false;

}
public void result(Sug s, Object result, boolean wasExnThn) {

if(s.isInsertion() && ((Integer)result).intValue() ==
JOptionPane.NO_OPTION) userCancel = true;

if(s.isInsertion() && ((Integer)result).intValue() ==
JOptionPane.YES_OPTION) noAsk = true;

}
}

Figure 4.9: Polymer policy that seeks confirmation before creating .exe, .vbs,
.hta, and .mdb files

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 66

all compositions of stack-inspection policies, that are guaranteed to terminate, or

that satisfy interesting properties such as associativity, commutativity, and dis-

tributivity), would make interesting future work. Because the definition of which

combinators are “right” can vary from application to application, it is important to

have a framework like Polymer in which arbitrary combinators can be expressed.

We next describe several types of combinators we have developed and found

useful in practice. The email policy described in Section 4.4.2 includes all of them.

Although our combinators were developed through experience and seem to match

intuitive notions of policy conjunction, precedence, etc., we have not formalized

their semantics beyond the intuition given in this subsection and their Polymer

code implementations. Nonetheless, Krishnan provides formal semantics for several

of our combinators [34].

Conjunctive combinator It is often useful to restrict an application’s behavior

by applying several policies at once and, for any particular trigger action, enforcing

the most restrictive one. For example, a policy that disallows access to files can

be used in combination with a policy that disallows access to the network; the

resulting policy disallows access to both files and the network. In the general case,

the policies being conjoined may reason about overlapping sets of actions. When

this is the case, we must consider what to do when the two subpolicies suggest

different courses of action. In addition, we must define the order in which effectful

computations are performed.

Our conjunctive combinator composes exactly two policies; we can generalize

this to any number of subpolicies. Our combinator operates as follows.

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 67

Replace(v1)

OK
Replace(v2)

Irrelevant Exception Halt

. . .
Replace(v3)

Figure 4.10: Lattice ordering of Polymer suggestions’ semantic impact

• If either subpolicy suggests insertions, so does the combinator, with any in-

sertions by the left (first) conjunct occurring prior to insertions by the right

conjunct. Following the principle of complete mediation, the monitor will

recursively examine these inserted actions if they are security-relevant.

• If neither subpolicy suggests insertions, the conjunctive combinator computes

and returns the least upper bound of the two suggestions, as described by

the lattice in Figure 4.10, which orders suggestions in terms of increasing

semantic impact. For instance, IrrSug has less impact than OKSug since an

IrrSug indicates the current method is allowed but irrelevant to the policy

whereas OKSug says it is allowed, but relevant, and updates of security state

may be needed. ReplSugs have more impact than OKSugs since they change

the semantics of the application. ReplSugs containing different replacements

are considered inequivalent; consequently, the “conjunction” of two ReplSugs

is considered to be an ExnSug.

Note that a sequence of insertions made by one conjunct may affect the second

conjunct. In fact, this is quite likely if the second conjunct considers the inserted

actions security-relevant. In this case, the second conjunct may make a different

suggestion regarding how to handle an action before the insertions than it does

afterward. For example, in the initial state the action might have been OK, but after

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 68

the intervening insertions the second conjunct might suggest that the application

be halted.

Figure 4.11 contains our conjunctive combinator. The invocations of

SugUtils.cpSug in the query method simply create new suggestions with the same

type as the first parameter in these calls. Notice that the suggestion returned by

the combinator includes the suggestions on which the combinator based its decision.

This design makes it possible for the combinator’s accept and result methods to

notify the appropriate subpolicies that their suggestions have been accepted and

followed.

Precedence combinators We have found the conjunctive policy to be the most

common combinator. However, it is useful on occasion to have a combinator that

gives precedence to one subpolicy over another. One example is the TryWith combi-

nator (shown in Figure 4.12), which queries its first subpolicy, and if that subpolicy

returns an IrrSug, OKSug, or InsSug, it makes the same suggestion. Otherwise, the

combinator defers judgment to the second subpolicy. The email policy described in

Section 4.4.2 uses the TryWith combinator to join a policy that allows only HTTP

connections with a policy that allows only POP and IMAP connections; the result-

ing policy allows exactly those kinds of connections and no others.

A similar sort of combinator is the Dominates combinator, which always follows

the suggestion of the first conjunct if that conjunct considers the trigger action

security-relevant; otherwise, it follows the suggestion of the second conjunct. Note

that if two subpolicies never consider the same action security-relevant, compos-

ing them with a Dominates combinator is equivalent to composing them with a

Conjunction combinator, except the Dominates combinator is in general more ef-

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 69

public class Conjunction extends Policy {
private Policy p1, p2; //subpolicies
public Conjunction(Policy p1, Policy p2) {this.p1=p1; this.p2=p2;}

public Sug query(Action a) {
//return the most restrictive subpolicy suggestion
Sug s1=p1.query(a), s2=p2.query(a);
if(SugUtils.areSugsEqual(s1,s2))

return SugUtils.cpSug(s1, this, a, new Sug[]{s1,s2});
if(s1.isInsertion())

return SugUtils.cpSug(s1, this, a, new Sug[]{s1});
if(s2.isInsertion())

return SugUtils.cpSug(s2, this, a, new Sug[]{s2});
if(s1.isHalt()) return SugUtils.cpSug(s1,this,a,new Sug[]{s1});
if(s2.isHalt()) return SugUtils.cpSug(s2,this,a,new Sug[]{s2});
if(s1.isExn()) return SugUtils.cpSug(s1,this,a,new Sug[]{s1});
if(s2.isExn()) return SugUtils.cpSug(s2,this,a,new Sug[]{s2});
if(s1.isRepl() && s2.isRepl()) return new ExnSug(this, a);
if(s1.isRepl()) return SugUtils.cpSug(s1,this,a,new Sug[]{s1});
if(s2.isRepl()) return SugUtils.cpSug(s2,this,a,new Sug[]{s2});
if(s1.isOK()) return SugUtils.cpSug(s1,this,a,new Sug[]{s1});
if(s2.isOK()) return SugUtils.cpSug(s2,this,a,new Sug[]{s2});
return new IrrSug(this, a);

}
public void accept(Sug sug) {

//notify subpolicies whose suggestions were accepted
Sug[] sa = sug.getSuggestions();
for(int i = 0; i < sa.length; i++) {

sa[i].getSuggestingPolicy().accept(sa[i]);
}

}
public void result(Sug sug, Object result, boolean wasExnThn) {

//notify subpolicies whose suggestions were followed
Sug[] sa = sug.getSuggestions();
for(int i = 0; i < sa.length; i++) {

sa[i].getSuggestingPolicy().result(sa[i], result, wasExnThn);
}

}
}

Figure 4.11: A conjunctive policy combinator

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 70

public class TryWith extends Policy {
//subpolicies
private Policy p1, p2;

public TryWith(Policy p1, Policy p2) {
this.p1=p1;
this.p2=p2;

}

public Sug query(Action a) {
Sug s1=p1.query(a);

//if p1 accepts or inserts, return its suggestion
if(s1.isInsertion() || s1.isOK() || s1.isIrr())

return SugUtils.cpSug(s1, this, a, new Sug[]{s1});

//otherwise return whatever p2 suggests
Sug s2=p2.query(a);
return SugUtils.cpSug(s2, this, a, new Sug[]{s2});

}

public void accept(Sug sug) {
//notify the subpolicy that made the now accepted suggestion
Sug[] sa = sug.getSuggestions();
sa[0].getSuggestingPolicy().accept(sa[0]);

}

public void result(Sug sug, Object result, boolean wasExnThn) {
//notify the subpolicy that made the now followed suggestion
Sug[] sa = sug.getSuggestions();
sa[0].getSuggestingPolicy().result(sa[0], result, wasExnThn);

}

}

Figure 4.12: The TryWith policy combinator

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 71

ficient because it need not always query both subpolicies. In our email policy we

use Dominates to construct a policy that both restricts the kinds of network con-

nections that may be established and prevents executable files from being created.

Since these two subpolicies regulate disjoint set of actions, composing them with

the Conjunction combinator would have needlessly caused the second subpolicy to

be queried even when the trigger action was regulated by the first subpolicy, and

therefore clearly not of interest to the second.

Selectors Selectors are combinators that choose to enforce exactly one of their

subpolicies. The IsClientSigned selector of Section 4.4.2, for example, enforces

a weaker policy on the target application if the target is cryptographically signed;

otherwise, the selector enforces a stronger policy.

Policy modifiers Policy modifiers are higher-order policies that enforce a single

policy while also performing some other actions. Suppose, for example, that we want

to log the actions of a target application and the suggestions made by a policy acting

on that target. Rather than modifying the existing policy, we can accomplish this

by wrapping the policy in an Audit unary superpolicy. When queried, Audit blindly

suggests whatever the original policy’s query method suggests. Audit’s accept and

result methods perform logging operations before invoking the accept and result

methods of the original policy.

Another example of a policy modifier is our AutoUpdate superpolicy. This policy

checks a remote site once per day to determine if a new policy patch is available. If

so, it makes a secure connection to the remote site, downloads the updated policy,

and dynamically loads the policy into the JVM as its new subpolicy. Policies of

this sort, which determine how to update other policies at run time, are useful

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 72

because they allow new security constraints to be placed on target applications

dynamically, as vulnerabilities are discovered. Note however that because library

classes (such as java.lang.Object) cannot in general be reloaded while the JVM is

running, policies loaded dynamically should consider security-relevant only actions

appearing in the static action declaration file. For this reason, we encourage security

programmers to be reasonably conservative when writing action declaration files for

dynamically updateable policies.

A third useful sort of policy modifier is a Filter that blocks a policy from seeing

certain actions. In some circumstances, self-monitoring policies can cause loops that

will prevent the target program from continuing (for example, a policy might react

to an action by inserting that same action, which the policy will then see and react

to in the same way again). It is easy to write a Filter to prevent such loops. More

generally, Filters allow the superpolicy to determine whether an action is relevant

to the subpolicy.

4.4 Empirical Evaluation

Experience implementing and using Polymer has been instrumental in confirming

and refining our design.

4.4.1 Implementation

The principal requirement for enforcing the run-time policies in which we are inter-

ested is that the flow of control of a running program passes to a monitor immedi-

ately before and after executing a security-relevant method. The kind of pre- and

post-invocation control-flow modifications to bytecode that we use to implement

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 73

Polymer can be done by tools like AspectJ [30]. Accordingly, we considered using

AspectJ to insert into bytecode hooks that would trigger our monitor as needed.

However, we wanted to retain precise control over how and where rewriting occurs

to be able to make decisions in the best interests of security, which is not the pri-

mary focus of aspect-oriented languages like AspectJ. Instead, we used the Apache

BCEL API [7] to develop our own bytecode rewriting tool.

Custom class loaders have often been used to modify bytecode before executing

it [4, 8]; we use this technique also. Since libraries used internally by the JVM cannot

be rewritten by a custom class loader, we rewrite those libraries before starting the

JVM and the target application.

Performance It is instructive to examine the performance costs of enforcing poli-

cies using Polymer. We did not concentrate on making our implementation as ef-

ficient as possible, so there is much room for improvement here. However, the

performance of our implementation does shed some light on the costs of run-time

policy enforcement.

Our system impacts target applications in two phases: before and during load-

ing, when the application and the class libraries are instrumented by the bytecode

rewriter; and during execution. The total time to instrument every method in all

of the standard Java library packages (i.e., the 28742 methods in the 3948 classes

in the java and javax packages of Sun’s Java API v.1.4.0), inserting monitor in-

vocations at the proper times before and after every method executes, was 107 s,

or 3.7 ms per instrumented method.1 Because we only insert hooks for calling the
1The tests were performed on a Dell PowerEdge 2650 with dual Intel Xeon 2.2 GHz CPUs and

1 GB of RAM, running RedHat Linux 9.0. The times represent real time at low average load. We
performed each test multiple times in sets of 100. The results shown are the average for the set
with the lowest average, after removing outliers.

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 74

interpreter of the highest-level policy’s suggestions (see Figure 4.1), rather than

inlining or invoking any particular policy, we introduce a level of indirection that

permits policies to be updated dynamically without rewriting application or library

code. Hence, this instrumentation only needs to be performed once.

The average time to load non-library classes into the JVM with our specialized

class loader, but without instrumenting any methods, was 12 ms, twice as long as

the VM’s default class loader required. The cost of transferring control to and from

a Polymer policy while executing a target is very low (approximately 0.62 ms); the

run-time overhead is dominated by the computations actually performed by the

policy. Hence the cost of monitoring a program with Polymer is almost entirely

dependent on the complexity of the security policy.

4.4.2 Case Study: Securing Email Clients

To test the usefulness of Polymer in practice, we have written a large-scale pol-

icy to secure untrusted email clients that use the JavaMail API. The entire policy,

presented in Figure 4.13, is approximately 1800 lines of Polymer code. We have

extensively tested the protections enforced by the policy on an email client called

Pooka [45], without having to inspect or modify any of the approximately 50K lines

of Pooka source code. The run-time cost of enforcing the complex constraints speci-

fied by our policy is difficult to measure because the performance of the email client

depends largely on interactions with the user; however, our experience indicates

that the overhead is rarely noticeable.

The component policies in Figure 4.13 each enforce a modular set of constraints.

The Trivial and Attachments policies were described in Section 4.3.2; the

Conjunction, TryWith, Dominates, Audit, and AutoUpdate superpolicies were de-

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 75

Conjunction

Reflection

IsClientSigned

Trivial

Dominates

DominatesNoOpenClassFiles

ConfirmAndAllowOnlyHTTP IncomingMail

Conjunction

Dominates

AutoUpdate

AttachmentsTryWith

ClassLoaders

Audit

Dominates

DisSysCalls

Conjunction

DominatesCheckMem

QueryCalls

AllowOnlyMailPorts

OutgoingMail

Figure 4.13: Email policy hierarchy

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 76

scribed in Section 4.3.3. The left branch of the policy hierarchy (shaded in Fig-

ure 4.13) describes a generic policy that we include in all of our high-level Polymer

policies. This branch of policies ensures that a target cannot use class loading, reflec-

tion, or system calls maliciously and alerts the user when the memory available to

the virtual machine is nearly exhausted (determined by generating interrupts to poll

the java.lang.Runtime.totalMemory and java.lang.Runtime.maxMemory meth-

ods every four seconds). The nonshaded branch of the policy hierarchy describes

policies specifically designed for securing an email client and enforces constraints as

follows.

• IsClientSigned tests whether the email client is cryptographically signed. If

it is, we run Trivial but continue to log security-relevant actions and allow

dynamic policy updates. If the client is not signed, we run a more restrictive

policy.

• ConfirmAndAllowOnlyHTTP pops up a window seeking confirmation before

allowing HTTP connections, and disallows all other types of network connec-

tions.

• AllowOnlyMailPorts only allows socket connections to standard email ports

(SMTP, regular POP and IMAP, and SSL-based POP and IMAP). This pol-

icy suggests throwing SecurityExceptions to prevent the target from making

any other types of network connections. Figure 4.14 contains the code for this

policy. Note that with a lot of engineering effort and run-time overhead,

we could encode the low-level details of the email protocols into our policy

to enforce a stronger AllowOnlyMail policy that would precisely ensure that

untrusted email clients only make connections that obey standard email proto-

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 77

public class AllowOnlyMailPorts extends Policy {
public Sug query(Action a) {

aswitch(a) {
case <abs void examples.mail.NetOpen(String addr, int port)>:

String logStr = "Connection made to "+addr+", port "+port;
if(port==143 //IMAP connection

|| port==993 //SSL IMAP connection
|| port==25 //SMTP connection
|| port==110 //POP3 connection
|| port==995) //SSL POP3 connection
return new OKSug(this, a, null, logStr);

else return new ExnSug(this, a);
}
return new IrrSug(this);

}
public void accept(Sug s) {

if(s.isOK()) System.out.println(s.getAuxiliaryObject());
}

}

Figure 4.14: Polymer policy that only allows network connections to email ports

cols. However, we have chosen to enforce the much simpler and lower-overhead

AllowOnlyMailPorts policy that provides weaker, port-based guarantees.

• QueryCalls is a policy modifier that allows security-sensitive actions invoked

in the query method of its subpolicy to execute unconditionally. QueryCalls

OKs these actions without requerying the subpolicy in order to prevent infi-

nite loops that can occur when the subpolicy invokes actions that it also

monitors. The implementation of QueryCalls inspects the dynamic call stack

to determine whether a trigger action was invoked in the subpolicy’s query

method.

• OutgoingMail logs all mail being sent, pops up a window confirming the re-

cipients of messages (to prevent a malicious client from quietly sending mail

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 78

on the user’s behalf), backs up every outgoing message by sending a BCC to

polydemo@cs.princeton.edu, and automatically appends contact informa-

tion to textual messages.

• IncomingMail was shown in an abbreviated form in Figure 4.8. In addition to

logging incoming mail and prepending “SPAM:” to the subject lines of email

that fails a spam filter, this policy truncates long subject lines and displays a

warning when a message containing an attachment is opened.

4.4.3 Specifying Non-safety Policies in Polymer

Chapter 3 showed that program monitors modeled by edit automata can enforce

some non-safety properties. Because Polymer implements all the ways in which

edit automata can react to trigger actions—InsSug inserts an action, and ReplSug,

ExnSug, and HaltSug are different ways to suppress actions (and IrrSug and OKSug

are different ways to accept actions)—we can likewise use the Polymer system to

enforce some non-safety properties. Although our case-study email policy is a safety

property, for the remainder of this chapter we will study two reasonable and simple

examples of non-safety policies enforceable in Polymer. The first example ensures

that ATM machines generate a proper log when dispensing cash, while the second

example ensures that targets writing to a file eventually give the file satisfactory

contents.

ATM-logging Policy Let us first consider a simple ATM system for dispensing

cash. It contains the following three methods.

1. logBegin(n) creates a log message that the ATM is about to dispense n

dollars.

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 79

2. dispense(n) causes the ATM to dispense n dollars.

3. logEnd(n) creates a log message that the ATM just completed dispensing n

dollars.

Suppose we wish to require that the ATM machine’s software properly logs

all cash dispensations; we will consider an execution valid if and only if it has

the form (logBegin(n); dispense(n); logEnd(n))∞. That is, valid executions must

be sequences of valid transactions, where each valid transaction consists of log-

ging that some amount of cash is about to be dispensed, dispensing that cash,

and then logging that that amount of cash has just been dispensed. Our desired

policy is a non-safety, non-liveness, renewal property. It is non-safety because

there exists an invalid execution (logBegin(20)) that prefixes a valid execution

(logBegin(20); dispense(20); logEnd(20)). It is non-liveness because some invalid

execution (dispense(20)) cannot be made valid through extension. Nonetheless,

this non-safety, non-liveness property is clearly a transaction-style renewal property

(as described in Section 3.3.2).

We can enforce this non-safety policy in Polymer simply by suppressing pre-

liminary logBegin and dispense actions until we are guaranteed that the current

transaction is valid, at which point the suppressed actions get re-inserted. Fig-

ure 4.15 contains the AtmPolicy, which employs this enforcement technique and

suppresses actions simply by returning ReplSugs in the query method. For simplic-

ity, we assume in the example code that all re-inserted methods complete normally.

This frees us from worrying about exceptions being raised and VM-terminating

actions being called during the inserted methods, which could prevent our policy

from inserting all of the actions necessary to satisfy the property. We can remove

this simplifying assumption by modifying our policy so that it catches exceptions

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 80

public class AtmPolicy extends Policy {
//which dollar amount is the basis for the current transaction?
private int amt = 0;
//which state of the transaction are we in?
//0=initial 1=logBegin 2=logBegin;dispense
private int transState = 0;
//are we in the process of inserting suppressed methods?
private boolean isInsert = false;

public Sug query(Action a) {
aswitch(a) {

case <void examples.ATM.logBegin(int n)>:
if(transState==0) return new ReplSug(null, a);
else return new HaltSug(a);

case <void examples.ATM.dispense(int n)>:
if(transState==1 && amt==n) return new ReplSug(null, a);
else return new HaltSug(a);

case <void examples.ATM.logEnd(int n)>:
if(transState==2 && amt==n) return new OKSug(a);
else return new HaltSug(a);

default:
if(transState>0) return new HaltSug(a);
else return new IrrSug();

} }
public void accept(Sug s) {

aswitch(s.getTrigger()) {
case <void examples.ATM.logBegin(int n)>:

transState = 1; amt = n; break;
case <void examples.ATM.dispense(int n)>:

transState = 2;
}
if(s.isOK()) { //transaction is valid

isInsert = true;
examples.ATM.logBegin(amt); examples.ATM.dispense(amt);
isInsert = false;
amt = 0; transState = 0;

} }
}

Figure 4.15: Non-safety Polymer policy ensuring that ATM cash dispensation gets
logged properly

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 81

raised and done actions invoked during execution of inserted actions but does not

allow the exceptions to propagate or the virtual machine to exit until all required

insertions have been made.

File-contents Policy For another example, let us consider enforcing a property

that allows files to be written, possibly using multiple file-write operations, if and

only if the file contents eventually satisfy some predicate that is passed to the policy

as a parameter. The predicate might not be satisfied in the middle of a sequence of

writes but must be satisfied after a later write. For instance, the predicate might be

true exactly when the file being written contains an appropriate ASCII copyright

notice. This predicate must hold at the end of a sequence of file writes to ensure

that every file on the system carries the proper copyright notice. This is not a safety

property: we can overwrite a file’s copyright notice with other data, making the ex-

ecution invalid; however, we can extend the invalid execution to satisfy the property

by appending the proper copyright text to the file. Actually, if we assume that the

file predicate is satisfiable then this file-contents policy is a liveness property: any

invalid finite execution becomes valid when the target executes whatever file-write

operations satisfy the file predicate.

As expected, we enforce the non-safety, liveness, file-contents property by sup-

pressing (feigning) writes to files until we can ensure their validity, at which point

we re-insert all suppressed writes to the now-valid file. Figure 4.16 contains an

abbreviated Polymer policy that enforces this file-contents property. In its con-

structor, FilePredPolicy accepts an object that implements the FilePredicate

interface, which contains a method to test file validity when given a file name and a

sequence of writes to that file. The FilePredPolicy uses the FilePredicate in its

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 82

public class FilePredPolicy extends Policy {

//this interface contains a method for testing
//whether a file’s contents are OK
private FilePredicate filePred;

//store whether file writes are due to our inserting them
private boolean areWeInserting = false;

public FilePredPolicy(FilePredicate filePred) {
this.filePred = filePred;

}

public Sug query(Action a) {
if(areWeInserting)

return new IrrSug(this);
aswitch(a) {

case <abs void absact.FileWrite(byte[] b, int off, int len)>:
return new ReplSug(this, a, null);

case <abs long absact.FileRead(byte[] b, int off, int len)>:
return new ReplSug(this, a, readWithSuppressedWrites(a));

default:
return new IrrSug(this);

}
}

public void accept(Sug s) {
aswitch(s.getTrigger()) {

case <abs void absact.FileWrite(byte[] b, int off, int len)>:
//we are suppressing a write; next insert all suppressed
//writes that need to be inserted, according to filePred
areWeInserting = true;
performInsertions(s.getTrigger());
areWeInserting = false;

}
}

}

Figure 4.16: Abbreviated non-safety Polymer policy ensuring that files are eventu-
ally written satisfactorily

CHAPTER 4. ENFORCING POLICIES WITH POLYMER 83

performInsertions method to check whether to insert a file’s suppressed writes.

The policy remembers which writes have been suppressed for each file by maintain-

ing a mapping from files to ordered lists of pending write operations. Maintenance

of this mapping occurs in the performInsertions method. In order to properly

feign file write operations, FilePredPolicy also monitors actions that read data

associated with files (i.e., file contents, lengths, and modification times), and en-

sures that the target sees files as if suppressed writes have actually executed. Hence,

our Polymer monitor effectively enforces the file-contents policy: the monitor does

not modify valid executions’ semantics (though intermediate file writes may be per-

formed later than they normally would), and the monitor ensures that all observed

executions are valid.

Practicality Constraints This subsection has demonstrated that practical pro-

gram monitors can sometimes enforce non-safety, and even liveness, renewal proper-

ties. The key reason we can enforce our example non-safety properties in practice is

that monitors can successfully feign dangerous logBegin, dispense, and FileWrite

actions. As described in Section 3.2.2, monitors in many situations lack the ability

to feign, or even insert, the necessary actions, so there exist many renewal proper-

ties unenforceable by practical program monitors. In the future, we plan to refine

our theoretical model to capture situations in which monitors lack the full compu-

tational abilities present in the executing machine.

Chapter 5

Formal Semantics of the Polymer

Language

We next give a semantics to the core features of the Polymer language in order to

precisely and unambiguously communicate the central workings of our language.

We used Java as the basis for our Polymer implementation to make the system

widely accessible and to take advantage of the wealth of existing Java libraries and

applications. However, we choose to give the Polymer semantics in the context of

a lambda calculus because lambda calculi are inherently simpler to specify than

class-based languages such as Java (even the lightest-weight specification of Java

such as Featherweight Java [27] is substantially more complex than the simply-typed

lambda calculus). More importantly, the central elements of our policy language do

not depend upon Java-specific features such as classes, methods, and inheritance.

We could just as easily have implemented Polymer policies for a functional language

such as ML [42] or a type-safe imperative language (type safety protects the program

monitor’s state and code from being tampered with by the untrusted application).

84

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 85

5.1 Syntax

Figure 5.1 describes the main syntactic elements of the calculus. The language is

simply-typed with types for booleans, n-ary tuples, references, and functions. Our

additions include simple base types for policies (Poly), suggestions (Sug), actions

(Act), which are suspended function applications, and results of those suspended

function applications (Res).

Programs as a whole are 4-tuples consisting of a collection of functions that may

be monitored, a memory that maps memory locations to values, and two expressions.

The first expression represents the security policy; the second expression represents

the untrusted application. Execution of a program begins by reducing the policy

expression to a policy value. It continues by executing the application expression

in the presence of the policy.

Monitored functions (funf(x:τ1):τ2{e}) have global scope and are syntactically

separated from ordinary functions (λx:τ.e).1 Moreover, we treat monitored func-

tion names f , which have global scope and may therefore alpha-vary over entire

programs, as a syntactically separate class of variables from ordinary variables x.

Monitored function names are unique and may only appear wrapped up as actions

as in act(f, e). These actions are suspended computations that must be explic-

itly invoked with the command invk e. Invoking an action causes the function in

question to be executed and its result wrapped in a result constructor result(e:τ).

The elimination forms for results and most other objects discussed above is handled

through a generic case expression and pattern matching facility. The class of pat-

terns p includes variable patterns x as well as patterns for matching constructors.
1As usual, we treat expressions that differ only in the names of their bound variables as identical.

We often write let x = e1 in e2 for (λx:τ.e2)e1.

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 86

types :

τ ::= Bool | (
→
τ) | τ Ref | τ1 → τ2 | Poly | Sug | Act | Res

programs :

P ::= (~F , M, epol, eapp)

monitored functions :

F ::= funf(x:τ1):τ2{e}

memories :

M ::= · | M, l : v

values :

v ::= true | false | (
→
v) | l | λx:τ.e | pol(vquery, vacc, vres) | irrs | oks | inss(v) |

repls(v) | exns | halts | act(f, v) | result(v:τ)

expressions :

e ::= v | x | (
→
e) | e1; e2 | ref e | !e | e1:=e2 | e1 e2 | pol(equery, eacc, eres) | inss(e) |

repls(e) | act(f, e) | invk e | result(e:τ) | case e1 of (p ⇒ e2 | ⇒ e3) |

try e1 with e2 | raise exn | abort

patterns :

p ::= x | true | false | (
→
p) | pol(x1, x2, x3) | irrs | oks | inss(p) | repls(p) | exns |

halts | act(f, p) | result(p:τ)

Figure 5.1: Formal syntax for the Polymer calculus

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 87

Ordinary, unmonitored functions are executed via the usual function application

command (e1 e2).

To create a policy, one applies the policy constructor pol to a query function

(equery), which produces suggestions, and security state update functions that exe-

cute before (eacc) and after (eres) the monitored method. Each suggestion (irrs, oks,

inss, repls, exns, and halts) also has its own constructor. For instance, the repls con-

structor takes a result object as an argument and the inss suggestion takes an action

to execute as an argument. Each suggestion will be given a unique interpretation

in the operational semantics.

5.2 Static Semantics

Figures 5.2, 5.3, and 5.4 present the rules for the language’s static semantics. The

main judgment, which types expressions, has the form S; C ` e : τ where S maps

reference locations to their types and C maps variables to types. More precisely, S

and C have the following forms.

label stores S ::= · | S, l : τ

variable contexts C ::= · | C, x : τ | C, f : τ

Whenever we add a new binding x : τ to the context, we implicitly alpha-vary x to

ensure it does not clash with other variables in the context.

We have worked hard to make the static semantics a simple but faithful model

of the implementation. In particular, notice in Figure 5.2 that well-typed policies

contain a query method, which takes an action and returns a suggestion, and accept

and result methods, which perform state updates. In addition, notice in Figure 5.2

that all actions share the same type (Act) regardless of the type of object they return

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 88

when invoked. Dynamically, the result of invoking an action is a value wrapped up

as a result with type Res. Case analysis is used to safely extract the proper value.

This choice allows policy objects to process and react to arbitrary actions. To

determine the precise nature of any action and give it a more refined type, the

policy will use pattern matching. We have a similar design for action results and

replacement values.

The judgment for overall program states (shown in the middle of Figure 5.2)

has the form ` (~F ,M, epol, eapp) : τ where τ is the type of the application code

eapp. This judgment relies on two additional judgments (shown in the bottom of

Figure 5.2), which give types to a library of monitored functions ~F and types to

locations in memory M .

Figure 5.3 presents the static semantics for case expressions and pattern match-

ing. The auxiliary judgment C ` p : (τ ; C ′) is used to check that a pattern p

matches objects with type τ and binds variables with types given by C ′.

Finally, Figure 5.4 displays the remaining, straightforward rules for the static

semantics of standard expressions in our language.

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 89

S; C ` e : τ

S; C ` equery : Act → Sug
S; C ` eacc : (Act, Sug) → () S; C ` eres : Res → ()

S; C ` pol(equery, eacc, eres) : Poly

S; C ` irrs : Sug S; C ` oks : Sug

S; C ` e : Act
S; C ` inss(e) : Sug

S; C ` e : Res
S; C ` repls(e) : Sug

S; C ` exns : Sug S; C ` halts : Sug

C(f) = τ1 → τ2 S; C ` e : τ1

S; C ` act(f, e) : Act
S; C ` e : Act

S; C ` invk e : Res

S; C ` e : τ

S; C ` result(e:τ) : Res

` (~F , M, epol, eapp) : τ

` ~F : C C ` M : S
S; C ` epol : Poly S; C ` eapp : τ

` (~F ,M, epol, eapp) : τ

` ~F : C
~F = funf1(x1:τ1):τ ′

1{e1}, ..., funfn(xn:τn):τ ′
n{en}

C = f1 : τ1 → τ ′
1, ..., fn : τn → τ ′

n

∀i ∈ {1..n} . · ; C, xi : τi ` ei : τ ′
i

` ~F : C

C ` M : S

dom(M) = dom(S) ∀l ∈ dom(M) . S; C ` M(l) : S(l)
C ` M : S

Figure 5.2: Static semantics (rules for policies, suggestions, actions, and programs)

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 90

S; C ` e : τ

S; C ` e1 : τ ′ C ` p : (τ ′; C ′)
S; C, C ′ ` e2 : τ S; C ` e3 : τ

S; C ` case e1 of (p ⇒ e2 | ⇒ e3) : τ

C ` p : (τ ′; C ′)

C ` pol(x1, x2, x3) : (Poly; x1 : Act → Sug, x2 : (Act, Sug) → (), x3 : Res → ())

C ` oks : (Sug; ·) C ` halts : (Sug; ·)

C ` irrs : (Sug; ·) C ` exns : (Sug; ·)

C ` p : (Res; C ′)
C ` repls(p) : (Sug; C ′)

C ` p : (Act; C ′)
C ` inss(p) : (Sug; C ′)

C ` p : (τ ; C ′)
C ` result(p : τ) : (Res; C ′)

C(f) = τ1 → τ2 C ` p : (τ1; C ′)
C ` act(f, p) : (Act; C ′)

C ` true : (Bool; ·) C ` false : (Bool; ·)

∀i ∈ {1..n} . C ` pi : (τi; Ci)
C ` (p1, ..., pn) : ((τ1, ..., τn); C1, ..., Cn) C ` x : (τ ; x : τ)

Figure 5.3: Static semantics (rules for case expressions)

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 91

S; C ` e : τ

C(x) = τ

S; C ` x : τ

S; C ` true : Bool S; C ` false : Bool

∀i ∈ {1..n} . S; C ` ei : τi

S; C ` (e1, .., en) : (τ1, ..., τn)
S; C ` e1 : () S; C ` e2 : τ

S; C ` e1; e2 : τ

S(l) = τ

S; C ` l : τ Ref
S; C ` e : τ

S; C ` ref e : τ Ref

S; C ` e : τ Ref
S; C ` !e : τ

S; C ` e1 : τ Ref S; C ` e2 : τ

S; C ` e1:=e2 : ()

S; C, x : τ ` e : τ ′

S; C ` λx:τ.e : τ → τ ′
S; C ` e1 : τ1 → τ2 S; C ` e2 : τ1

S; C ` e1 e2 : τ2

S; C ` abort : τ S; C ` raise exn : τ

S; C ` e1 : τ S; C ` e2 : τ

S; C ` try e1 with e2 : τ

Figure 5.4: Static semantics (standard rules)

5.3 Dynamic Semantics

To explain execution of monitored programs, we use a context-based semantics.

The first step is to define a set of evaluation contexts E, which mark where a beta-

reduction can occur. Our contexts specify a left-to-right, call-by-value evaluation

order, as shown in Figure 5.5.

We specify execution through a pair of judgments, one for top-level evaluation

(shown in the top of Figure 5.6) and one for basic reductions (shown in the bot-

tom of Figure 5.6 and in Figures 5.7 and 5.8). The top-level judgment reveals that

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 92

evaluation contexts :

E ::= [] | (
→
v , E,

→
e) | E; e2 | ref E | !E | E:=e2 | v:=E | E e | v E | pol(E, e2, e3) |

pol(v1, E, e3) | pol(v1, v2, E) | inss(E) | repls(E) | act(f, E) | invk E |

result(E : τ) | case E of (p ⇒ e2 | ⇒ e3) | try E with e

Figure 5.5: Evaluation contexts

the policy expression is first reduced to a value before execution of the untrusted

application code begins. Execution of many of the constructs is relatively straight-

forward. One exception is execution of function application, the rules for which are

given in the bottom half of Figure 5.6. For ordinary functions, we use the usual

capture-avoiding substitution. Monitored functions, on the other hand, may only

be executed if they are wrapped up as actions and then invoked using the invk

command. The invk command applies the query method to discover the suggestion

the current policy makes and then interprets the suggestion. Notice, for instance,

that to respond to the irrelevant suggestion (irrs), the application simply proceeds

to execute the body of the security-relevant action. To respond to the OK sugges-

tion (oks), the application first calls the policy’s accept method, then executes the

security-relevant action before calling the policy’s result method, and finally returns

the result of executing the security-relevant action.

The other beta reductions (i.e., besides the ones for function application) are

straightforward and appear in Figures 5.7 and 5.8. The rules for case expressions

and pattern matching (Figure 5.7) rely on an auxiliary judgment v ∼ p : V , which

holds when value v matches pattern p, and the pattern matching produces capture-

avoiding variable substitutions V .

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 93

(~F , M, epol, eapp) 7→ (~F , M ′, e′
pol, e

′
app)

(~F , M, Triv, e) →β (M ′, e′)

(~F , M, E[e], eapp) 7→ (~F , M ′, E[e′], eapp)

where Triv = pol(λx:Act.irrs, λx:(Act, Sug).(), λx:Res.())

(~F , M, vpol, e) →β (M ′, e′)

(~F ,M, vpol, E[e]) 7→ (~F , M ′, vpol, E[e′])

(~F , M, vpol, e) →β (M ′, e′)

(~F ,M, vpol, (λx:τ.e)v) →β (M, e[v/x])

Fi ∈ ~F Fi = funf(x:τ1):τ2{e}
(~F , M, vpol, invk act(f, v)) →β (M, Wrap(vpol, Fi, v))

where Wrap(pol(vquery, vacc, vres), funf(x:τ1):τ2{e}, v) =
let s = vquery(act(f, v)) in
case s of

irrs ⇒ let x = v in result(e:τ2)
| oks ⇒ vacc(act(f, v), s);

let x = v in let r = result(e:τ2) in vres r; r
| repls(r) ⇒ vacc(act(f, v), s); r
| exns ⇒ vacc(act(f, v), s); raise exn
| inss(a) ⇒ vacc(act(f, v), s); vres(invk a); invk act(f, v)
| ⇒ abort

Figure 5.6: Dynamic semantics (policy and target steps; beta steps for functions)

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 94

(~F , M, vpol, e) →β (M ′, e′)

v ∼ p : V

(~F , M, vpol, case v of (p ⇒ e2 | ⇒ e3)) →β (M, e2[V])

¬∃V. v ∼ p : V

(~F , M, vpol, case v of (p ⇒ e2 | ⇒ e3)) →β (M, e3)

v ∼ p : V

pol(v1, v2, v3) ∼ pol(x1, x2, x3) : v1/x1, v2/x2, v3/x3

oks ∼ oks : · halts ∼ halts : ·

irrs ∼ irrs : · exns ∼ exns : ·

v ∼ p : V

repls(v) ∼ repls(p) : V

v ∼ p : V

inss(v) ∼ inss(p) : V

v ∼ p : V

result(v : τ) ∼ result(p : τ) : V

v ∼ p : V

act(f, v) ∼ act(f, p) : V

true ∼ true : · false ∼ false : ·

v ∼ x : v/x

∀i ∈ {1..n} . vi ∼ pi : Vi

(v1, ..., vn) ∼ (p1, ..., pn) : V1, ..., Vn

Figure 5.7: Dynamic semantics (beta steps for case expressions)

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 95

(~F , M, vpol, e) →β (M ′, e′)

l 6∈ dom(M)

(~F , M, vpol, ref v) →β ((M, l : v), l)

M(l) = v

(~F , M, vpol, !l) →β (M, v)

(~F ,M, vpol, (); e) →β (M, e) (~F , M, vpol, l :=v) →β ([l → v]M, ())

(~F , M, vpol, try v with e) →β (M, v)

E 6= E ′[try E ′′ with e′]

(~F , M, vpol, try E[raise exn] with e) →β (M, e)

Figure 5.8: Dynamic semantics (standard beta steps)

5.4 Semantics-based Observations

The formal semantics gives insight into some of the subtler elements of our imple-

mentation, which are important both to system users and to us as implementers.

For example, one might want to consider what happens if a program monitor

raises but does not catch an exception (such as a null pointer exception). Tracing

through the operational semantics, one can see that the exception will percolate

from the monitor into the application itself. If this behavior is undesired, a security

programmer can create a top-level superpolicy that catches all exceptions raised by

the other policies and deals with them as the programmer sees fit.

As another example, analysis of the operational semantics shows a corner case in

which we are unable to fully obey the principle of complete mediation. During the

first stage of execution, while the policy itself is evaluated, monitored functions are

only protected by a trivial policy that accepts all actions because the actual policy

we want to enforce is the one being initialized. Policy writers need to be aware of

this unavoidable behavior in order to implement policies correctly.

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 96

5.5 Type Safety

To check that our language is sound, we have proven a standard type-safety re-

sult in terms of Preservation and Progress theorems. Type safety is an important

result because it implies that statically well-typed programs do not “get stuck”

operationally.

We state below the lemmas and theorems in our proof of type safety, and we

provide the proof technique for each. For the lemmas and theorems with non-trivial

proofs, we also provide proofs for a selection of interesting cases.

Lemma 11 (Variable Substitution)

If S; C, x : τ ′ ` e : τ and S; C ` e′ : τ ′ then S; C ` e[e′/x] : τ .

Proof By induction on the derivation of S; C, x : τ ′ ` e : τ . �

Lemma 12 (Store Substitution)

If C ` M : S and S(l) = τ and S; C ` v : τ then C ` [l → v]M : S.

Proof Immediate by the sole typing rule for C ` M : S. �

Lemma 13 (Weakening)

If S; C ` e : τ and S ′ extends S and C ′ extends C then S ′; C ′ ` e : τ .

Proof By induction on the derivation of S; C ` e : τ . �

Lemma 14 (Inversion of Typing)

Every typing rule is invertible. That is, if the conclusion of any typing rule (in

Figures 5.2, 5.3, and 5.4) holds then its premises must also hold. For example, if

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 97

S; C ` inss(e) : Sug then S; C ` e : Act; as another example, if C ` act(f, p) :

(Act; C ′) then C(f) = τ1 → τ2 and C ` p : (τ1; C ′).

Proof Immediate by inspection of the typing rules. �

Lemma 15 (Canonical Forms)

If S; C ` v : τ then

• τ = Bool implies v = true or v = false

• τ = (τ1, ..., τn) implies v = (v1, ..., vn)

• τ = τ ′ Ref implies v = l

• τ = τ1 → τ2 implies v = λx:τ1.e

• τ = Poly implies v = pol(vquery, vacc, vres)

• τ = Sug implies v = irrs or v = oks or v = inss(act(f, v)) or v = exns or

v = halts or v = repls(result(v:τ))

• τ = Act implies v = act(f, v)

• τ = Res implies v = result(v:τ)

Proof By induction on the derivation of S; C ` v : τ , using the definition of values

(given in Figure 5.1). �

Definition 16 (Well-typed Context)

A context E is well typed, written S; C ` Eτ : τ ′, if and only if S; C, x : τ ` E[x] : τ ′

(where x is not a free variable in E).

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 98

Lemma 17 (Well-typed, Filled Context)

If S; C ` Eτ : τ ′ and S; C ` e : τ then S; C ` E[e] : τ ′.

Proof Immediate by Definition 16 (well-typed context) and Lemma 11 (variable

substitution). �

Lemma 18 (Context Decomposition)

If S; C ` E[e] : τ then there exists a τ ′ such that S; C ` Eτ ′ : τ and S; C ` e : τ ′.

Proof By induction on the structure of E. We show the case for E = invk E ′. The

other cases are similar (except the case E = [], which is trivial).

Case E = invk E ′:

By assumption,

E = invk E ′ (1)

S; C ` E[e] : τ (2)

By (1) and (2),

S; C ` invk E ′[e] : τ (3)

By (3) and Lemma 14 (inversion of the typing rule for invk),

S; C ` E ′[e] : Act (4)

By the inductive hypothesis and (4),

S; C ` E ′
τ ′′ : Act (5)

S; C ` e : τ ′′ (6)

By (5) and Definition 16 (well-typed context),

S; C, x : τ ′′ ` E ′[x] : Act (x 6∈ FV (E ′)) (7)

By (7) and the typing rule for invk,

S; C, x : τ ′′ ` invk E ′[x] : Res (8)

By (1) and (8),

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 99

S; C, x : τ ′′ ` E[x] : Res (9)

By (9) and Definition 16 (well-typed context),

S; C ` Eτ ′′ : Res (10)

By (3) and the typing rule for invk,

τ = Res (11)

Result is from (6), (10), and (11). �

Definition 19 (Well-typed Substitutions)

A sequence of variable substitutions V has type C ′, written S; C ` V : C ′, if and

only if for all x ∈ dom(C ′) there exists v such that v/x ∈ V and S; C ` v : C ′(x).

Lemma 20 (Pattern Types)

If S; C ` v : τ ′ and v ∼ p : V and C ` p : (τ ′; C ′) then S; C ` V : C ′.

Proof By induction on v ∼ p : V . We show two cases; the others are similar.

Case p = pol(x1, x2, x3):

By assumption,

S; C ` v : τ ′ (1)

v = pol(v1, v2, v3) (2)

V = v1/x1, v2/x2, v3/x3 (3)

C ′ = x1 : Act → Sug, x2 : (Act, Sug) → (), x3 : Res → () (4)

By (1), (2), and Lemma 14 (inversion of the typing rule for policies),

S; C ` v1 : Act → Sug (5)

S; C ` v2 : (Act, Sug) → () (6)

S; C ` v3 : Res → () (7)

By (3), (4), (5), (6), and (7),

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 100

∀x ∈ dom(C ′) ∃v . (v/x ∈ V ∧ S; C ` v : C ′(x)) (8)

By (8) and Definition 19 (well-typed substitutions),

S; C ` V : C ′ (9)

Case p = act(f, p′):

By assumption,

S; C ` v : τ ′ (1)

v = act(f, v′) (2)

v′ ∼ p′ : V (3)

C ` p : (Act; C ′) (4)

By Lemma 14 (inversion of the typing rule for (4)),

C ` p′ : (τ1; C ′) (where C(f) = τ1 → τ2) (5)

By (1), (2), and Lemma 14 (inversion of the typing rule for act(f, v′)),

S; C ` v′ : τ1 (6)

By (3), (5), (6), and the inductive hypothesis,

S; C ` V : C ′ (7)

�

Lemma 21 (Multiple Substitutions)

If S; C ` V : C ′ and S; C, C ′ ` e : τ then S; C ` e[V] : τ .

Proof By induction on the length of V , using Lemma 11 (variable substitution).

�

Lemma 22 (Basic Decomposition)

If S; C ` e : τ and ` ~F : C and C ` M : S and vpol = pol(vquery, vacc, vres) then

either:

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 101

• e is a value v, or

• e can be decomposed into E[e′] such that one of the following is true.

– (~F , M, vpol, e
′) →β (M ′, e′′), for some M ′ and e′′

– e′ = raise exn and E 6= E ′[try E ′′ with e′′]

– e′ = abort

Proof By induction on the derivation of S; C ` e : τ . �

Lemma 23 (Policy Decomposition)

If ` (~F ,M, epol, eapp) : τ then either:

• epol is a value vpol, or

• epol can be decomposed into E[e] such that one of the following is true.

– (~F , M, Triv, e) →β (M ′, e′), for some M ′ and e′, where Triv is the trivial

policy defined in Figure 5.6

– e = raise exn and E 6= E ′[try E ′′ with e′′]

– e = abort

Proof Immediate by Lemma 14 (inversion of ` (~F , M, epol, eapp) : τ) and Lemma 22

(basic decomposition). �

Lemma 24 (Application Decomposition)

If ` (~F ,M, vpol, eapp) : τ then either:

• eapp is a value vapp, or

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 102

• eapp can be decomposed into E[e] such that one of the following is true.

– (~F , M, vpol, e) →β (M ′, e′), for some M ′ and e′

– e = raise exn and E 6= E ′[try E ′′ with e′′]

– e = abort

Proof Immediate by Lemma 14 (inversion of ` (~F , M, vpol, eapp) : τ), Lemma 15

(canonical forms for S; C ` vpol : Poly), and Lemma 22 (basic decomposition). �

Lemma 25 (β Preservation)

If ` (~F , M, vpol, eapp) : τ and ` ~F : C and C ` M : S and (~F , M, vpol, eapp) →β

(M ′, e′
app) then there exists an S ′ extending S such that S ′; C ` e′

app : τ and

C ` M ′ : S ′.

Proof By induction on (~F , M, vpol, eapp) →β (M ′, e′
app). We show two non-trivial

cases; the others are similar.

Case eapp = invk act(f, v):

By assumption,

` (~F , M, vpol, eapp) : τ (1)

` ~F : C (2)

C ` M : S (3)

(~F , M, vpol, eapp) →β (M ′, e′
app) (4)

eapp = invk act(f, v) (5)

funf(x:τ1):τ2{e} ∈ ~F (6)

e′
app = Wrap(vpol, funf(x:τ1):τ2{e}, v) (7)

By (2), (3), and Lemma 14 (inversion of the typing rule for (1)),

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 103

S; C ` vpol : Poly (8)

S; C ` eapp : τ (9)

By (5), (9), and the typing rule for invk,

S; C ` eapp : Res (10)

By (5), (10), and Lemma 14 (inversion of the typing rule for invk),

S; C ` act(f, v) : Act (11)

By (11) and Lemma 14 (inversion of the typing rule for act(f, v)),

C(f) = τ ′
1 → τ ′

2 (12)

S; C ` v : τ ′
1 (13)

By (6), (12), and Lemma 14 (inversion of the typing rule for (2)),

τ ′
1 = τ1 (14)

τ ′
2 = τ2 (15)

· ; C, x : τ1 ` e : τ2 (16)

By (12), (13), (14), and (15),

C(f) = τ1 → τ2 (17)

S; C ` v : τ1 (18)

By (8) and Lemma 15 (canonical forms),

vpol = pol(vquery, vacc, vres) (19)

By (8), (19), and Lemma 14 (inversion of the typing rule for Poly),

S; C ` vquery : Act → Sug (20)

S; C ` vacc : (Act, Sug) → () (21)

S; C ` vres : Res → () (22)

By (7), (16), (17), (18), (19), (20), (21), (22), and the definition of Wrap,

S; C ` e′
app : Res (23)

By (9) and (10),

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 104

τ = Res (24)

By (3), (23), and (24),

S; C ` e′
app : τ ∧ C ` M : S (25)

Case eapp = case v of (p ⇒ e2 | ⇒ e3) and v ∼ p : V :

By assumption,

` (~F ,M, vpol, eapp) : τ (1)

` ~F : C (2)

C ` M : S (3)

(~F , M, vpol, eapp) →β (M, e2[V]) (4)

v ∼ p : V (5)

eapp = case v of (p ⇒ e2 | ⇒ e3) (6)

By (2), (3), and Lemma 14 (inversion of the typing rule for (1)),

S; C ` eapp : τ (7)

By (6), (7), and Lemma 14 (inversion of the typing rule for case expressions),

S; C ` v : τ ′ (8)

C ` p : (τ ′; C ′) (9)

S; C, C ′ ` e2 : τ (10)

By (5), (8), (9), and Lemma 20 (pattern types),

S; C ` V : C ′ (11)

By (10), (11), and Lemma 21 (multiple substitutions),

S; C ` e2[V] : τ (12)

Result is from (3), (4), and (12). �

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 105

Theorem 26 (Preservation)

If ` (~F , M, epol, eapp) : τ and (~F , M, epol, eapp) 7→ (~F , M ′, e′
pol, e

′
app) then

` (~F ,M ′, e′
pol, e

′
app) : τ .

Proof Examination of the rules for (~F , M, epol, eapp) 7→ (~F , M ′, e′
pol, e

′
app) demon-

strates that either epol = E[e] or epol = vpol (that is, either the policy or the

application is being evaluated). The two cases are similar; we show the first case.

Case epol = E[e]:

By assumption,

` (~F ,M, epol, eapp) : τ (1)

epol = E[e] (2)

(~F , M, Triv, e) →β (M ′, e′) (3)

e′
pol = E[e′] (4)

eapp = e′
app (5)

By (2) and Lemma 14 (inversion of the typing rule for (1)),

` ~F : C (6)

C ` M : S (7)

S; C ` E[e] : Poly (8)

S; C ` eapp : τ (9)

By (8) and Lemma 18 (context decomposition),

S; C ` Eτ ′ : Poly (10)

S; C ` e : τ ′ (11)

By the definition of Triv,

· ; · ` Triv : Poly (12)

By (5) and (9),

S; C ` e′
app : τ (13)

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 106

By (6), (7), (11), (12), and the typing rule for program configurations,

` (~F ,M, Triv, e) : τ ′ (14)

By (3), (6), (7), (14), and Lemma 25 (β preservation),

S ′ extends S (15)

S ′; C ` e′ : τ ′ (16)

C ` M ′ : S ′ (17)

By (10), (15), Definition 16 (well-typed context), and Lemma 13 (weakening),

S ′; C ` Eτ ′ : Poly (18)

By (4), (16), (18), and Lemma 17 (well-typed, filled context),

S ′; C ` e′
pol : Poly (19)

By (13) and Lemma 13 (weakening),

S ′; C ` e′
app : τ (20)

By (6), (17), (19), (20), and the typing rule for program configurations,

` (~F ,M ′, e′
pol, e

′
app) : τ (21)

�

Definition 27 (Finished Programs)

A program configuration (~F ,M, epol, eapp) is “finished” if and only if at least one of

the following is true.

• epol and eapp are values

• epol = E[abort] or eapp = E[abort]

• epol = E[raise exn] or eapp = E[raise exn], where E 6= E ′[try E ′′ with e]

CHAPTER 5. FORMAL SEMANTICS OF THE POLYMER LANGUAGE 107

Theorem 28 (Progress)

If ` (~F ,M, epol, eapp) : τ then either (~F , M, epol, eapp) is finished or there exists a pro-

gram configuration (~F , M ′, e′
pol, e

′
app) such that (~F , M, epol, eapp) 7→ (~F , M ′, e′

pol, e
′
app).

Proof By applying Lemma 23 (policy decomposition) to the assumption that

` (~F ,M, epol, eapp) : τ , we have either epol = vpol or epol = E[e] such that e =

raise exn (where E 6= E ′[try E ′′ with e′′]) or e = abort or (~F , M, Triv, e) →β

(M ′, e′). When epol = E[e] such that e = raise exn or e = abort, the program

(~F , M, epol, eapp) is finished. When epol = E[e] and (~F , M, Triv, e) →β (M ′, e′), we

have (~F , M, epol, eapp) 7→ (~F ,M ′, E[e′], eapp), as required.

When epol = vpol, Lemma 24 (application decomposition) implies that either

eapp = vapp or eapp = E[e] such that e = raise exn (where E 6= E ′[try E ′′ with e′′])

or e = abort or (~F , M, vpol, e) →β (M ′, e′). All of these possibilities correspond

to finished program configurations, except the case where epol = vpol and eapp =

E[e] and (~F , M, vpol, e) →β (M ′, e′). In this case, we have (~F , M, epol, eapp) 7→

(~F , M ′, epol, E[e′]), as required. �

Chapter 6

Conclusions

This thesis has taken steps to improve our understanding both of the space of policies

program monitors can enforce and of how to design a practical language and system

for specifying and enforcing monitors’ policies. Our final chapter summarizes our

primary contributions (Section 6.1), enumerates several directions for future work

(Section 6.2), and makes closing remarks (Section 6.3).

6.1 Summary

As outlined in Section 1.2, we have made four principal contributions.

1. A Formal Framework for Reasoning About Enforcement Starting from

standard definitions of policies and properties, we have created formal models of

sophisticated program-monitoring mechanisms (edit automata) and defined how

they enforce properties by transforming execution sequences. We also introduced

notation, refined by experience, for conveniently yet precisely specifying monitors,

properties, systems, and executions.

108

CHAPTER 6. CONCLUSIONS 109

Building this formal framework is a primary contribution of our work. Such a

foundation enables us to be clear and explicit regarding our basic assumptions about

what constitutes a policy, a monitor, and enforcement of a policy by a monitor. More

importantly, without a formal foundation we could not demonstrate rigorously that

particular mechanisms enforce particular policies.

2. Analysis of Policies Enforceable by Monitors When considering the

space of security properties enforceable by monitoring potentially nonterminating

programs, we have found that a simple variety of monitor enforces exactly the set

of computable and satisfiable safety properties while a more powerful variety can

enforce any computable infinite renewal property that is satisfied by the empty

sequence. Because the set of renewal properties is a strict superset of the safety

properties, there exist program monitors that can enforce non-safety properties.

We have shown how, when given any reasonable renewal property, to construct an

edit automaton that provably enforces that property.

Awareness of formally proven bounds on the power of security mechanisms fa-

cilitates our understanding of policies themselves and the mechanisms we need to

enforce them. For example, observing that a stack-inspection policy is really just

an access-control property (where access is granted or denied based on the history

of function calls and returns), which in turn is clearly a safety property, makes

it immediately obvious that simple monitors modeled by truncation automata are

sufficient for enforcing stack-inspection policies. Similarly, if we can observe that

infinite executions in a property specifying how users log in are valid if and only if

they contain infinitely many valid prefixes, then we immediately know that monitors

based on edit automata can enforce this renewal property. We hope that with con-

CHAPTER 6. CONCLUSIONS 110

tinued research into the formal enforcement bounds of various security mechanisms,

security architects will be able to pull from their enforcement “toolbox” exactly the

right sorts of mechanisms needed to enforce the policies at hand.

3. A Language for Specifying Run-time Policies We have developed a pro-

gramming methodology for writing complex security policies. The design is quite

different from existing policy-specification languages in its division of policies into ef-

fectless methods that make suggestions regarding how to handle trigger actions and

effectful methods that are called when the policy’s suggestions are followed. This

design facilitates composition and allows complex security policies to be specified

more simply as compositions of smaller subpolicy modules. We have implemented

our design in a language and system called Polymer and demonstrated its practi-

cality by building a complex security policy for email clients from simple, modular,

and reusable policies.

4. Formal Semantics for Our Policy-specification Language We have made

unambiguous the meaning of the Polymer language by giving it a formal semantics.

Because the semantics faithfully models our implementation, it provides insight into

the detailed workings of our implemented system. Security engineers can consult the

language’s semantics in order to learn exactly how their Polymer policies operate

in tandem with a target application and how to organize their policies to be well

typed. We have proven that our language is sound by demonstrating a standard

type-safety result in terms of preservation and progress lemmas. This type-safety

result assures Polymer users that their well-typed programs will not “get stuck”

operationally.

CHAPTER 6. CONCLUSIONS 111

6.2 Future Work

There are many possibilities for extending our work to address open problems. We

enumerate some of the possibilities.

Practical Constraints on Theoretical Monitors Sections 3.2.2 and 4.4.3 dis-

cuss a practical limitation of monitors absent from our current theoretical model:

monitors often do not have the same computational capabilities as the machine that

executes target actions. This limitation of real monitors implies that some actions

cannot be suppressed (i.e., the monitor cannot “feign” an action), and some actions

cannot be inserted (i.e., the monitor cannot obtain information needed to invoke

an action). One easily imagined extension of our current framework is to incorpo-

rate sets of unsuppressible and uninsertable actions into system definitions and to

analyze which properties edit automata can enforce under those conditions. This

extension would make our model more precise, though significantly more complex.

Several additional practical constraints could be placed on monitors; that is, we

could consider bounding the resources available to monitors even beyond making

certain actions unsuppressible or uninsertable. For instance, Fong has shown that

limiting the memory available to monitors induces limits on the properties they

can enforce [23]. We might ask similar questions of time bounds on monitors: Are

there useful properties that require super-polynomial monitoring time to enforce?

How can we add real-time constraints to our model to reflect practical limits on the

amount of real time monitors may consume, and how do these constraints affect the

enforcement of real-time policies?

CHAPTER 6. CONCLUSIONS 112

Formally Linking Edit Automata with Polymer Policies Section 4.4.3 gave

an informal description of the ability of Polymer policies to implement edit au-

tomata: Polymer’s InsSug inserts an action, and its ReplSug, ExnSug, and HaltSug

are different ways to suppress actions (and IrrSug and OKSug accept actions). This

implementation is simple and intuitive, but it would be nice to have a formally

proven bisimulation between the operational semantics of edit automata and Poly-

mer policies. Proving such a bisimulation would be interesting because it would

tie our practical monitor specifications to properties enforceable by edit automata,

allowing us to describe formally the space of policies enforceable in Polymer.

Transactional Policies One could view all renewal policies as transactional in

nature, where the definition of whether a sequence of actions constitutes a valid

transaction may depend upon the entire history of the current execution. The

ATM-logging and file-contents policies of Section 4.4.3 implement transactions: we

attempt to commit a sequence of actions atomically only when those actions, taken

together, form a valid transaction (in the ATM or file system).

In addition, one could view the Polymer language as enabling policy composition

via transactional policy updates. The separation of policies into effectless query and

effectful result methods implements a form of rollback so that the highest-level

superpolicy can commit to one suggestion atomically, without directly managing

and rolling back subpolicy state and effects (which may be irrevocable).

Hence, strong ties seem to exist between run-time policy enforcement and trans-

actions. In the future, it would be interesting to explore these ties further and

to examine in exactly which ways languages with transactional support (e.g., [26])

further facilitate run-time policy specification and enforcement.

CHAPTER 6. CONCLUSIONS 113

Concurrency We should consider adding concurrency to our models of edit au-

tomata; in such a context, executions might be partial orderings of actions rather

than total orderings. Similarly, we have avoided considering the difficulties associ-

ated with concurrency in Polymer. We plan to make Polymer policies thread safe

by adding a locking mechanism in the interpreter of the highest-level policy’s sug-

gestions (see Figure 4.1); the interpreter will obtain a lock before initiating a query

and hold that lock until the corresponding accept method has returned.

Combinator Analysis As discussed in Section 4.3.3, we designed the Polymer

language to permit arbitrary policy composition. This generality is useful because

the definition of which combinators are the “right” ones to have available is user and

application specific. For example, one set of combinators might be the minimal nec-

essary to express all compositions of a common sort of policy (such as access-control

policies), while different sets of combinators might be guaranteed to terminate or to

satisfy other useful properties such as associativity and commutativity. Although

Polymer permits general policy compositions, it would be interesting in the future

to analyze particular sets of combinators and prove that they satisfy these sorts

of properties. Krishnan has already made progress on formalizing many of our

combinators [34].

Polymer GUI Polymer policies, while expressive, have to be written at too low

of a level (at the level of Java source code) to be convenient for many users who

might benefit from creating custom policy compositions. An interesting avenue for

future work would be to extend Polymer with a graphical user interface (GUI) that

would allow, for example, system administrators to easily form provably safe policy

hierarchies using prepackaged base policies and policy combinators.

CHAPTER 6. CONCLUSIONS 114

6.3 Closing Remarks

Mechanisms for enforcing software security typically incorporate some sort of pro-

gram monitoring. Firewalls, virtual machines, operating systems, network scanners,

intrusion detection systems, and antivirus and auditing tools clearly make extensive

use of run-time monitoring to enforce security. Even “static” mechanisms, such as

type-safe-language compilers and verifiers, often ensure that programs contain ap-

propriate dynamic checks inlined into the code. The inlined checks implement mon-

itors, guaranteeing for example that programs obey run-time memory-safety [29, 43]

or control-flow [1, 2] policies.

Given their abundance and practicality as enforcement mechanisms, it seems

strange that we understand relatively little of monitors’ actual enforcement ca-

pabilities and have relatively primitive tools for designing, reasoning about, and

implementing monitors. Even basic results, such as that practical monitors can

sometimes enforce liveness properties (Section 4.4.3), surprise us.

By continuing to explore the capabilities and designs of various types of program

monitors, we hope to improve our fundamental knowledge of these important mech-

anisms and make them easier to use and verify. As a long-term goal, we would like

to see a wide variety of static and dynamic mechanisms, and the ways in which they

can be composed to enforce policies, understood so deeply that tools and techniques

will exist for generating, when possible, efficient mechanisms that provably enforce

given policies.

Bibliography

[1] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow

integrity: Principles, implementations, and applications. In ACM Conference

on Computer and Communications Security, November 2005.

[2] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. A theory of se-

cure control flow. In International Conference on Formal Engineering Methods,

November 2005.

[3] Mart́ın Abadi and Cédric Fournet. Access control based on execution history.

In Proceedings of the 10th Annual Network and Distributed System Symposium,

February 2003.

[4] Ole Agesen, Stephen N. Freund, and John C. Mitchell. Adding type param-

eterization to the Java language. In Object Oriented Programing: Systems,

Languages, and Applications (OOPSLA), October 1997.

[5] Bowen Alpern and Fred Schneider. Recognizing safety and liveness. Distributed

Computing, 2:117–126, 1987.

[6] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing

Letters, 21(4):181–185, October 1985.

115

BIBLIOGRAPHY 116

[7] Apache Software Foundation. Byte Code Engineering Library, 2003. http:

//jakarta.apache.org/bcel/.

[8] Lujo Bauer, Andrew W. Appel, and Edward W. Felten. Mechanisms for secure

modular programming in Java. Software—Practice and Experience, 33(5):461–

480, 2003.

[9] Lujo Bauer, Jarred Ligatti, and David Walker. More enforceable security poli-

cies. In Foundations of Computer Security, Copenhagen, Denmark, July 2002.

[10] Lujo Bauer, Jarred Ligatti, and David Walker. Types and effects for non-

interfering program monitors. In M. Okada, B. Pierce, A. Scedrov, H. Tokuda,

and A. Yonezawa, editors, Software Security—Theories and Systems. Mext-

NSF-JSPS International Symposium, ISSS 2002, Tokyo, Japan, November 8-

10, 2002, Revised Papers, volume 2609 of Lecture Notes in Computer Science.

Springer, 2003.

[11] Lujo Bauer, Jay Ligatti, and David Walker. Composing security policies with

polymer. In Proceedings of the ACM SIGPLAN 2005 Conference on Program-

ming Language Design and Implementation, Chicago, June 2005.

[12] Lujo Bauer, Jay Ligatti, and David Walker. Polymer: A language for com-

posing run-time security policies, 2005. http://www.cs.princeton.edu/sip/

projects/polymer/.

[13] K. J. Biba. Integrity considerations for secure computer systems. Technical

Report ESD-TR-76-372, MITRE Corporation, July 1975.

[14] D. F. C. Brewer and M. J. Nash. The chinese wall security policy. In Proceedings

of the IEEE Symposium on Security and Privacy, pages 206–214, 1989.

BIBLIOGRAPHY 117

[15] J. R. Büchi. On a decision method in restricted second order arithmetic. In

Proceedings of the 1960 International Congress on Logic, Methodology, and

Philosophy of Science, pages 1–11, Stanford, 1962.

[16] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The

Ponder policy specification language. Lecture Notes in Computer Science,

1995:18–39, 2001.

[17] Guy Edjlali, Anurag Acharya, and Vipin Chaudhary. History-based access

control for mobile code. In ACM Conference on Computer and Communications

Security, pages 38–48, 1998.

[18] Úlfar Erlingsson. The Inlined Reference Monitor Approach to Security Policy

Enforcement. PhD thesis, Cornell University, November 2003.

[19] Úlfar Erlingsson and Fred B. Schneider. SASI enforcement of security policies:

A retrospective. In Proceedings of the New Security Paradigms Workshop,

pages 87–95, Caledon Hills, Canada, September 1999.

[20] Úlfar Erlingsson and Fred B. Schneider. IRM enforcement of Java stack in-

spection. In IEEE Symposium on Security and Privacy, Oakland, CA, May

2000.

[21] David Evans. Policy-directed Code Safety. PhD thesis, Massachusetts Institute

of Technology, February 2000.

[22] David Evans and Andrew Twyman. Flexible policy-directed code safety. In

IEEE Security and Privacy, Oakland, CA, May 1999.

BIBLIOGRAPHY 118

[23] Philip W. L. Fong. Access control by tracking shallow execution history. In

IEEE Symposium on Security and Privacy, Oakland, CA, May 2004.

[24] Kevin Hamlen, Greg Morrisett, and Fred B. Schneider. Computability classes

for enforcement mechanisms. Technical Report 2003-1908, Cornell University,

October 2003. A revised version will appear in Transactions on Programming

Languages and Systems (TOPLAS).

[25] Klaus Havelund and Grigore Roşu. Efficient monitoring of safety proper-

ties. International Journal on Software Tools for Technology Transfer (STTT),

6(2):158–173, August 2004.

[26] Benjamin Hindman and Dan Grossman. Strong atomicity for java without

virtual-machine support. March 2006.

[27] Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java.

In ACM conference on Object-Oriented Programming, Systems, Languages and

Applications, pages 132–146, Denver, CO, August 1999.

[28] Clinton Jeffery, Wenyi Zhou, Kevin Templer, and Michael Brazell. A

lightweight architecture for program execution monitoring. In Program Anal-

ysis for Software Tools and Engineering (PASTE), pages 67–74. ACM Press,

1998.

[29] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney, and

Yanling Wang. Cyclone: A safe dialect of C. In USENIX Annual Technical

Conference, Monterey, CA, June 2002.

BIBLIOGRAPHY 119

[30] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and

William Griswold. An overview of AspectJ. In European Conference on Object-

oriented Programming. Springer-Verlag, 2001.

[31] Gregor Kiczales, John Irwin, John Lamping, Jean-Marc Loingtier,

Cristina Videria Lopes, Chris Maeda, and Anurag Mendhekar. Aspect-oriented

programming. ACM Comput. Surv., 28(4es):154, 1996.

[32] Moonjoo Kim, Sampath Kannan, Insup Lee, Oleg Sokolsky, and Mahesh

Viswantathan. Computational analysis of run-time monitoring—fundamentals

of Java-MaC. In Run-time Verification, June 2002.

[33] Moonjoo Kim, Mahesh Viswanathan, Hanene Ben-Abdallah, Sampath Kan-

nan, Insup Lee, and Oleg Sokolsky. Formally specified monitoring of temporal

properties. In European Conference on Real-time Systems, York, UK, June

1999.

[34] Padmanabhan Krishnan. A monitoring policy calculus. Technical Report CSA-

05-01, Bond University, 2005.

[35] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE

Transactions of Software Engineering, 3(2):125–143, 1977.

[36] Yingsha Liao and Donald Cohen. A specificational approach to high level

program monitoring and measuring. IEEE Trans. Softw. Eng., 18(11):969–

978, 1992.

[37] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: Enforcement mech-

anisms for run-time security policies. Technical Report TR-681-03, Princeton

University, May 2003.

BIBLIOGRAPHY 120

[38] Jay Ligatti, Lujo Bauer, and David Walker. Edit automata: Enforcement

mechanisms for run-time security policies. International Journal of Information

Security, 4(1–2):2–16, February 2005.

[39] Jay Ligatti, Lujo Bauer, and David Walker. Enforcing non-safety security

policies with program monitors. In 10th European Symposium on Research in

Computer Security (ESORICS), Milan, Italy, September 2005.

[40] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for dis-

tributed algorithms. In Proceedings of the 6th annual ACM Symposium on

Principles of Distributed Computing, pages 137–151. ACM Press, 1987.

[41] Gary McGraw and Edward W. Felten. Securing Java: Getting Down to Busi-

ness with Mobile Code. John Wiley & Sons, Inc., New York, NY, USA, 1999.

[42] Robin Milner, Mads Tofte, Robert Harper, and Dave MacQueen. The Defini-

tion of Standard ML (Revised). MIT Press, 1997.

[43] George C. Necula, Scott McPeak, and Westley Weimer. CCured: type-safe

retrofitting of legacy code. In Symposium on Principles of Programming Lan-

guages, pages 128–139, 2002.

[44] William H. Paxton. A client-based transaction system to maintain data in-

tegrity. In Proceedings of the 7th ACM symposium on Operating Systems Prin-

ciples, pages 18–23. ACM Press, 1979.

[45] Allen Petersen. Pooka: A Java email client, 2003. http://www.suberic.net/

pooka/.

BIBLIOGRAPHY 121

[46] W. Robinson. Monitoring software requirements using instrumented code. In

HICSS ’02: Proceedings of the 35th Annual Hawaii International Conference

on System Sciences (HICSS’02)-Volume 9, page 276.2, Washington, DC, USA,

2002. IEEE Computer Society.

[47] Mark Russinovich. Sony, rootkits and digital rights management gone too far,

October 2005. http://www.sysinternals.com/blog/2005/10/sony-rootkits-and-

digital-rights.html.

[48] Fred B. Schneider. Enforceable security policies. ACM Transactions on Infor-

mation and Systems Security, 3(1):30–50, February 2000.

[49] K. Sen, A. Vardhan, G. Agha, and G. Rosu. Efficient decentralized monitoring

of safety in distributed systems. In 26th International Conference on Software

Engineering (ICSE’04), pages 418–427, 2004.

[50] David B. Tucker and Shriram Krishnamurthi. Pointcuts and advice in higher-

order languages. In Proceedings of the 2nd International Conference on Aspect-

Oriented Software Development, pages 158–167, 2003.

[51] Mahesh Viswanathan. Foundations for the Run-time Analysis of Software Sys-

tems. PhD thesis, University of Pennsylvania, 2000.

[52] Robert Wahbe, Steven Lucco, Thomas Anderson, and Susan Graham. Efficient

software-based fault isolation. In Fourteenth ACM Symposium on Operating

Systems Principles, pages 203–216, Asheville, December 1993.

[53] David Walker, Steve Zdancewic, and Jay Ligatti. A theory of aspects. In

ACM International Conference on Functional Programming, Uppsala, Sweden,

August 2003.

