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Abstract
A transient hardware fault occurs when an energetic particle strikes
a transistor, causing it to change state. These faults do not cause
permanent damage, but may result in incorrect program execution
by altering signal transfers or stored values. While the likelihood
that such transient faults will cause any significant damage may
seem remote, over the last several years transient faults have caused
costly failures in high-end machines at America Online, eBay, and
the Los Alamos Neutron Science Center, among others [6, 44,
15]. Because susceptibility to transient faults is proportional to the
size and density of transistors, the problem of transient faults will
become increasingly important in the coming decades.

This paper defines the first formal, type-theoretic framework for
studying reliable computation in the presence of transient faults.
More specifically, it defines λzap, a lambda calculus that exhibits
intermittent data faults. In order to detect and recover from these
faults, λzap programs replicate intermediate computations and use
majority voting, thereby modeling software-based fault tolerance
techniques studied extensively, but informally [10, 20, 30, 31, 32,
33, 41].

To ensure that programs maintain the proper invariants and use
λzap primitives correctly, the paper defines a type system for the
language. This type system guarantees that well-typed programs
can tolerate any single data fault. To demonstrate that λzap can
serve as an idealized typed intermediate language, we define a
type-preserving translation from a standard simply-typed lambda
calculus into λzap.

Categories and Subject Descriptors D.3.1 [Programming lan-
guages]: Formal Definitions and Theory—Semantics; B.8.1 [Hard-
ware]: Reliability, Testing, and Fault-Tolerance

General Terms Languages, Reliability, Theory, Verification

Keywords Transient hardware faults, soft faults, type systems,
typed intermediate languages, lambda calculus, fault tolerance, re-
liable computing

1. Transient Faults and Trustworthy Computing
In recent decades, microprocessor performance has been increas-
ing exponentially, due in large part to smaller and faster transistors
enabled by improved fabrication technology. While such transis-
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tors yield performance enhancements, their lower threshold volt-
ages and tighter noise margins make them less reliable [5, 23, 37].
Processors that use these transistors are more susceptible to tran-
sient faults (also known as soft faults), which result from external
events, such as energetic particles striking the chip. These faults do
not cause permanent damage, but may result in incorrect program
execution by altering signal transfers or stored values. As each pro-
cessor generation increases the density of transistors, the effects
of transient faults will become more pronounced. To mitigate the
deleterious effects of processor strikes, processor designers are de-
voting more of their attention to the growing reliability problem.

While discussions of alpha particles, neutrons, and cosmic rays
interfering with earthly transistors may sound like science fiction
to those unfamiliar with state-of-the-art processor design, it abso-
lutely is not; transient faults are already causing substantial failures
with significant costs in high-end machines. Consider, for instance,
the following well-documented failures:

• In 2000, Sun Microsystems acknowledged that cosmic rays
interfered with cache memories and caused crashes in server
systems at major customer sites, including America Online,
eBay, and dozens of others [6].

• Cypress Semiconductor acknowledged, “the wake-up call came
in the end of 2001 with a major customer reporting havoc at
a large telephone company. Technically, it was found that a
single soft fail. . . was causing an interleaved system farm to
crash.” [44]

• Cypress Semiconductor also states: “Another incident occurred
at an automotive supplier, where their billion-dollar factory
ground to a halt every month due to what was traced to a single-
bit flip in their network” [44]. (Emphasis added was our own.)

• At the Los Alamos Neutron Science Center, Hewlett Packard
acknowledged their AlphaServer ES45 supercomputer was fre-
quently crashing due to transient faults [15].

Hence, reliability in the presence of transient faults is already a
significant cause for concern. Moreover, in the next 10 to 20 years,
a desire to keep Moore’s law on track will continue to provide
huge incentives to reduce transistor sizes even further, substantially
increasing the threat of transient faults.

The case for software-implemented fault tolerance. Processor
designers must constantly make trade-offs to obtain the best per-
formance while still meeting their constraints. With the increas-
ing importance of transient fault tolerance, reliability will emerge
as another critical axis that can be traded off against performance,
power, and cost. However, reliability, like security, can be a more
difficult sell to the general public. The number of GHz your newest
processor has, the lifetime of your laptop battery, and the cost of
your computing solution all attract more attention. This is particu-
larly true since hardware manufacturers are generally loath to pub-



lish the soft error rates of their chips – such numbers can only gen-
erate negative publicity and can potentially even lead to lawsuits.
So with all the focus on power, cost, and performance, reliability
may be the axis to suffer.

One might speculate that the hardware industry will only de-
ploy hardware fault tolerance techniques in its chips when it has
actually suffered severe monetary losses. For many consumers, this
may be too late. Indeed, the anecdotal evidence above suggests
it is already too late for some consumers. Moreover, while many
hardware techniques are available for dealing with transient faults,
including using double or triple hardware redundancy [4, 13, 14,
38, 42, 43], these heavyweight techniques are extremely costly.
Hence, although hardware fault tolerance techniques can be cru-
cial for mission-critical applications, they are currently infeasible
for commodity systems. As a result, even processor manufacturers
are considering techniques with at least some software component.

Software-only fault tolerance techniques possess a massive po-
tential advantage over hardware-only techniques in that they may
be deployed selectively and immediately on existing hardware to
whomever needs it, whenever they need it. At the first sign of trou-
ble from transient faults, one could deploy new fault-resilient soft-
ware to correct the problem. One certainly would not have to wait
for a new generation of microprocessors while the current gener-
ation is failing in the field, costing millions or more to affected
industries. Most importantly, companies and services with high re-
liability requirements could make the decisions themselves to de-
ploy software that covers for potential hardware errors. The fast
reaction time that is possible only in software could avert potential
disasters for these companies. Surely, America Online, EBay, the
affected telephone and automotive suppliers, and the Los Alamos
super computer users mentioned above would have welcomed im-
mediate software technology to avert further losses.

Consequently, over the last several years there has been sub-
stantial interest in developing new software fault detection methods
for protecting memory [36], control flow [25, 28, 40], and general
computation [7, 12, 24, 26, 27, 29]. At a high level, these systems
effectively perform every subcomputation twice or three times and
then compare the results of redundant executions to detect faults.
From a performance standpoint, there is certainly a cost to this re-
peated computation, but it is not as high as one might think. For in-
stance, the code redundancy in the SWIFT-R technique, a software-
only system for fault tolerance that most closely matches the model
used in this paper, comes at a reasonable cost. Intelligent instruc-
tion scheduling and other optimizations bring the performance cost
down from the naı̈ve 3x normal execution to a geometric mean
overhead of 36%, over a set of recognized benchmarks [8].

A trustworthy, end-to-end solution. Replacing hardware fault
tolerance with software techniques that purport to tolerate and re-
cover, but fail or introduce new errors, is unacceptable for cus-
tomers who require highly reliable and trustworthy systems. Un-
fortunately, industrial-strength compilers are typically hundreds of
thousands of lines of code and, naturally, contain bugs. Traditional
compiler writers attempt to track down their bugs by building mas-
sive test suites. However, no matter how large the test suite, it
cannot cover all combinations of programming language features.
Bugs inevitably slip through the testing net and manifest them-
selves in the field. In the “good” case, relatively speaking, program
developers catch compiler errors as they develop and test their pro-
grams. Developers then rewrite their programs, often awkwardly,
to avoid actually deploying buggy applications. At the same time,
they can communicate the bugs they found back to compiler writers
who will then fix these problems in the next version of the compiler
software. Hence, in a real sense, application developers work as a
second line of testers for compiler writers. Of course, in the bad

case, compiler errors slip through the last line of testing defense by
the application developers and result in buggy applications.

For compiler writers attempting to generate fault-tolerant code,
the compiler reliability problems are many orders of magnitude
more difficult to overcome, yet the most concerned target customers
demand greater end-to-end reliability than anyone else. The central
difficulty is that transient hardware faults are an infrequently oc-
curring and completely nondeterministic phenomenon. Faults may
occur at any point in a computation: during execution of any in-
struction or in the midst of a control-flow transfer. Faults may also
affect many different elements of observable hardware state: archi-
tectural registers, the program counter, condition flags, caches, and
memory. If developing tests to cover compilation of all possible
combinations of features ranges from difficult to near-impossible,
then developing tests to cover all features in addition to all different
kinds of faults at all different times in execution should be beyond
consideration. If the situation could be any worse, one should also
recognize that compiler writers cannot use application developers
as a second line of testers. Transient faults that occur in the field
show up infrequently and are generally unreproducible. Their only
effect is to cause great damage, and when they do, it is too late to
wish one had added that extra test case.

The clear conclusion is that a trustworthy platform for comput-
ing in the presence of transient faults cannot be built on the ba-
sis of traditional testing techniques alone. However, while conven-
tional testing falls short, typed intermediate languages and type-
preserving compilation [3, 16, 19, 21, 22, 35, 39] have the potential
to provide substantially better reliability and to guarantee that com-
piled code is indeed fault tolerant. Unlike conventional compilers,
a type-preserving compiler propagates typing information into its
compiler intermediate languages. After each code transformation
or optimization, the compiler can run an intermediate language type
checker on the resulting code. If the type checker detects an error,
then the compiler has produced incorrect code. Type-preserving
compilation is extremely helpful for compiler writers attempting to
debug their compiler. In addition, application developers can avoid
shipping incorrect and unreliable code by type checking their com-
piled products. While they may be annoyed at type errors indicat-
ing that the compiler they are using has a bug, finding out earlier is
substantially better than suffering expensive consequences later.

Type checking intermediate language programs is an important
complement to conventional testing. While conventional testing
only catches errors that show up on a particular run of a compiled
program, a type checker can verify that certain properties hold
for all runs of the program, no matter the inputs. So far, type
preserving compilers have only been used to verify standard sorts
of “type safety” and “memory safety” properties and, crucially,
do so under the assumption of perfect hardware. However, we
believe that the role of type checkers for intermediate languages
can be dramatically expanded to take on the new task of verifying
reliability properties. When verifying reliability, the type checker
will not assume perfect hardware. Rather, the type checker will
guarantee that under a certain hardware fault model, for all runs
of the program and for all possible faults in the model, the program
will not fail.

The guarantee over all runs and all faults is a guarantee no test
suite can ever provide, but a type checker can. In fact, we believe
that compiling for reliability in the presence of transient faults is a
true “killer app” for type-directed compilation.

Contributions: sound static typing for a faulty lambda calculus.
This paper describes the first step in our program to develop trust-
worthy compilers for reliable computing in the presence of tran-
sient faults. More specifically, it defines the syntax and semantics
of a faulty lambda calculus, λzap. Operationally, the most interest-
ing aspect of λzap is that at any point in execution, the (abstract)



machine can suddenly exhibit a fault. These faults are modeled by
picking an arbitrary program value and spontaneously changing it
to any other value, even an ill-typed one. To detect and recover from
such faults, λzap programs replicate computations and use λzap

primitives to compare the values computed from multiple replicas.
If a single fault has occurred, a majority vote will detect that fault
and recover before any problem becomes observable to the out-
side world. Overall, λzap’s operational semantics provides a high-
level, formal model for the programs produced by the SWIFT-R
system [8] and the data faults from which that system can recover.

In order for λzap programs to be fault-tolerant, replicated com-
putations must not depend upon one another. If they do then a sin-
gle fault in one replica may propagate to other replicas. In such
a case, comparing replicas will not necessarily detect faults, and
the faulty computation might continue, possibly crashing or pro-
ducing erroneous outputs. More interesting still, while implement-
ing SWIFT-R, we noticed that some completely standard optimiza-
tions, including common subexpression elimination, are actually
unsound in this context — they do not preserve fault-tolerance
properties. Hence, in order to guarantee that programs are indeed
fault-tolerant, we have defined a novel type system for λzap. The
type system enforces the basic invariant necessary for fault toler-
ance — replicated computations cannot depend upon one another.
The type system’s strength is its simplicity and elegance. We be-
lieve it should easily scale to realistic typed intermediate languages.
In examples, we show that the incorrect application of common
subexpression elimination does indeed lead to type-incorrect code,
and we conclude that the type system will be effective in helping
compiler writers debug their code.

Our formal analysis of the language begins with proofs of the
standard progress and preservation lemmas and continues with
formulation and proof of a fault tolerance property for well-typed
programs. Finally, we prove that it is possible to produce well-
typed λzap programs automatically by starting with terms in the
ordinary simply typed lambda calculus and defining a correct, type-
preserving translation to λzap.

2. Introduction to a Faulty Lambda Calculus
The faulty lambda calculus λzap is an idealized intermediate lan-
guage for compilers that generate fault-tolerant code. As mentioned
in the introduction, the central mechanism these compilers use to
detect and recover from faults is replication of computations. In this
paper, we adopt the Single Event Upset model, which is a standard
in the literature on hardware fault tolerance and which assumes that
only a single fault will happen at a time.1 In order to detect a single
fault it is necessary to perform the same computation twice. Be-
fore the results of the two computations become observable to the
outside world, the program compares them for equivalence. If the
results are different then a fault has occurred. In general, in order
to both detect and recover from a single fault, one performs three
equivalent computations. A majority vote amongst the three results
suffices for detecting and recovering from a fault.2

A second important element of our fault model is that we do not
consider memory faults. When designing the SWIFT system [8],
we observed that hardware (with error-correcting codes) protects
against faults in cache and main memory much more efficiently
than software. Hence, our software replication is intended to protect

1 It would be trivial to change this assumption. Slight variants of λzap

involving 2k + 1 replicas could be used tolerate any fixed k number of
faults.
2 Though we have designed our calculus for both detection and recovery,
changing this assumption and focusing on detection only would also likely
be straightforward, though the forms of various theorems would change
slightly.

data in the processor pipeline, rather than data in cache and main
memory. We rely on auxiliary hardware to tolerate faults in the
memory hierarchy. In our abstract, high-level lambda calculus, we
will model this by considering faults in integers and pointers to
closures, but not in the closure data or code itself.

A first example. Let us assume a source-level programmer writes
a program to perform the following simple arithmetic computation
and then print out the result:

let x = 2 in
let y = x + x in
out y

A compiler for single fault detection and recovery might produce
the following code:

let x1 = 2 in
let x2 = 2 in
let x3 = 2 in
let y1 = x1 + x1 in
let y2 = x2 + x2 in
let y3 = x3 + x3 in
out [y1,y2,y3]

Each of the arithmetic computations is replicated three times. How-
ever, to simulate the observable behavior of the source program,
there is only a single output command. This output command atom-
ically compares y1, y2, and y3 and prints out the majority value.3

If we assume that addition is a total function mapping any two val-
ues to a third, this code is guaranteed to tolerate a single data fault.
In other words, at any point during execution any one of the values
may be corrupted and changed to any other value; nonetheless, the
program is guaranteed to print out 4. Moreover, any errors and in-
correct intermediate results are unobservable to the outside world.

Triples and color tags. We call the argument to out, [y1,y2,y3],
a triple, and it deserves some comment as its structure is subtly
different from the structure of conventional tuple data structures
one finds in standard functional programming languages. The key
difference is that the components of a triple live in separate reg-
isters whereas a conventional tuple is implemented as a pointer
into memory. While a single data fault can corrupt a tuple pointer,
making all its components inaccessible, a single data fault can
only corrupt one of the elements of a triple. The most general in-
troduction form for a triple is [e1, e2, e3]. Its elimination form is
let [x1, x2, x3] = e1 in e2, where e1 should be a triple and x1,
x2, and x3 are bound to the components of that triple in e2. Un-
like tuples, triples may not be nested. Triple evaluation proceeds
from left to right. Hence, the example above could be rewritten as
follows:

let [x1,x2,x3] = [2, 2, 2] in
let [y1,y2,y3] = [x1 + x1, x2 + x2, x3 + x3] in
out [y1,y2,y3]

This example code is still not quite syntactically correct λzap

code. For the purposes of typing, which will be discussed in the
coming sections, each value is tagged with a color (C), which may
be either red (R), green (G) or blue (B). After color tagging, our
running example looks like this:

let [x1,x2,x3] = [R 2, G 2, B 2] in
let [y1,y2,y3] = [x1 + x1, x2 + x2, x3 + x3] in
out [y1,y2,y3]

3 While conventional machines do not generally support a fault tolerant
atomic output instruction, methods to implement such functionality are
described in the literature (see Section 7 for references).



Colors are all equivalent and have no impact on execution. Readers
may ignore them for the rest of this section.

Control flow. Faults in data used to determine control flow can
clearly have an impact on observable program behavior. In the fol-
lowing example, a single bit flip in the value x can cause different
results to be printed.

if x then out [y1,y2,y3]
else out [z1,z2,z3]

Consequently, all control-flow transfers must be coupled with
fault-detection checks. Hence, in λzap, if statements require a
triple of booleans in the primary position. Majority voting detects
and recovers from any faults in the boolean before making the
control-flow transfer. Any correct λzap control-flow transfer has
this form: if [eb1,eb2,eb3] then e1 else e2, where the
ebi are boolean computations producing equivalent values.

Functions. Function calls entail control-flow transfers and hence,
just like if statements, must be coupled with a fault-detection
check. Moreover, because function arguments are susceptible to
faults, it is necessary to pass multiple replicas to a function at any
call site. Therefore, any correct λzap function call has the following
form:

[ef1,ef2,ef3] [ea1,ea2,ea3]

Here, efi are the replicated functions and eai are the replicated
arguments.

While checking for equivalence of integers and booleans is
clearly trivial, the discerning reader might wonder how we propose
to check for equivalence of functions. Fortunately, it will suffice to
check for equivalence of functions simply by comparing function
pointers for equality, or, in a system with closures, by comparing
closure pointers for equality. Of course, this equivalence test is not
semantically complete, but the incompleteness has no impact on
the practicality of the system. In fact, it is unnecessary to consider
a stronger semantic equivalence checker because a compiler gener-
ates the replicated code, and the simplest, most efficient thing for
the compiler to do is to create a single function or closure pointer
and to thread the same (replicated) pointers throughout the inter-
mediate language code.

To model this design at a high level of abstraction, λzap allo-
cates function closures and returns three equal pointers to them in
a single command. At run time, these pointers will be represented
as abstract locations l. All functions have multiple arguments and
return multiple results. Hence, an example function declaration and
use looks like this:4

let [f1,f2,f3] =
λ[x1,x2,x3].

[x1 + R 1,x2 + G 1,x3 + B 1]
in
[f1,f2,f3] [R 7,G 7,B 7]

In the code above, f1, f2, and f3 are all bound to the location
holding the function’s closure.

Summary of λzap syntax. Figure 1 summarizes the syntax of
λzap with integers, booleans, and functions. For completeness, we
include the syntax of types, which will be explained in subsequent
sections. We only include a couple of simple arithmetic operators
(+, ≤) in our formal syntax, but we will freely use others with
obvious meanings in our examples. The only requirement on these
operators is that they be total, effect-free functions over all values

4 We have omitted typing annotations on function arguments for clarity
here.

colors C ::= R | G | B
uncolored types I ::= int | bool | T1 → T2

colored types T ::= C I | [R I, G I, B I]

code locations l
uncolored vals w ::= l | n | true | false
colored vals v ::= C w
expressions e ::= x | v | e + e | e ≤ e

| if e then e else e
| λ[x1:R I, x2:G I, x3:B I].e | e e
| [e1, e2, e3]
| let [x1, x2, x3] = e in e
| let x = e in e | out e; e

Figure 1. Syntax of λzap.

in the language. When supplied with an unexpected value (e.g.,
passing true to the addition operator), the operator is free to return
any arbitrary value of the expected type.

In the rest of the paper we will use several abbreviations. For
example, triples of equal values [R w, G w, B w] or equal un-
colored types [R I, G I, B I] will be abbreviated RGB w and
RGB I respectively. Function declarations will use similar ab-
breviations: λ[x1:R I, x2:G I, x3:B I].e will usually be written
λ~x:RGB I.e. Likewise, let [x1, x2, x3] = e1 in e2 will be
written let ~x = e1 in e2. In general, three related variables x1,
x2, x3 will be written ~x, and we will use xi to refer to any one
of them. We will also write ~v (~e) for triples of three values (ex-
pressions). As usual, we treat terms that differ only in the names of
bound variables as equivalent and indistinguishable.

3. A Faulty Operational Semantics
We define the meaning of λzap programs using a small-step op-
erational semantics. This semantics explains how to rewrite one
machine state S into another. Machine states are pairs of a code
heap M and a program expression e. A code heap is a finite partial
map from locations l to closed functions λ~x:RGB I.e. We write
M(l) for the closed function associated with l in M . We write
M, l 7→ λ~x:RGB I.e to create M ′, an extension of M . We treat
machine states (M ; e) that differ only because of consistent renam-
ing of locations l as identical and indistinguishable.

The operational semantics depends upon an auxiliary majority
voting mechanism votej(v1, v2, v3). This operation compares the
values contained in v1, v2, and v3, ignoring the associated color
tags. In the normal case, the j is 2, and if at least 2 of the 3 uncol-
ored values are equal, that uncolored value is returned; otherwise,
all the uncolored values are unequal, and the votej(v1, v2, v3) is
undefined. For the purposes of proving certain metatheoretic prop-
erties of our type system, we will sometimes consider situations in
which j is 3. In this case, if all three uncolored values are equal, that
uncolored value is returned; otherwise, votej(v1, v2, v3) is unde-
fined. Since j is 2 everywhere except in proofs of certain theorems,
we will usually omit the parameter j and write vote(v1, v2, v3)
instead.

For convenience, we use evaluation contexts E to help describe
the operational semantics. The definition of evaluation contexts
specifies that evaluation is call-by-value and proceeds left-to-right:

E ::= [ ] | E + e | v + E | E ≤ e |v ≤ E
| if E then e else e | E e | [v1, v2, v3] E
| [E1, e2, e3] | [v1, E2, e3] | [v1, v2, E3]
| let [x1, x2, x3] = E in e
| let x = E in e | out E; e



To substitute closed expression e for the single hole [ ] in E, we
write E[e].

More general than an evaluation context E is a fault context F .
A fault context is used to specify the places a fault may occur. We
place the fewest possible restrictions on where faults may occur by
defining fault contexts to be arbitrary expressions with a single hole
[ ] in the place of any subexpression. To substitute closed value v
for the hole in F , we write F [v].

The operational semantics is split into a pair of relations.
The first relation describes top-level evaluation and has the form
(M ; e)j −→s

k (M ′; e′). Here s is the (possibly empty) sequence
of (uncolored) integer values printed by the out command. We
write nothing for the empty sequence and use commas to separate
elements of non-empty sequences. The metavariable k indicates
the number of faults. Since we will be using the standard Single
Event Upset model, k will always either be 1, indicating a single
fault, or 0, indicating no faults. The meta-variable j is the vot-
ing parameter and will be set to either 2 or 3, as discussed above.
Since j is a global parameter that never changes throughout exe-
cution, we will omit mentioning it except in certain theorems and
their proofs, writing (M ; e) −→s

k (M ′; e′) instead. Unless notified
otherwise, the reader may assume j is 2. The second relation de-
scribes fault-free execution of the core commands and has the form
(M ; e)j =⇒s (M ′; e′). As with the top-level semantics, we will
normally omit the parameter j. In general, the reader may assume
it is 2. We denote capture-avoiding substitution of a single value
v for x in e using the notation e[v/x] and three values for three
variables using the notation e[~v/~x].

Figure 2 specifies the details of the operational semantics. The
key top-level rule, which gives our calculus its name, is zap.5 It
specifies that a fault may occur in any fault context F , changing
any uncolored value w to any other uncolored value w′, leaving the
color tag (which has no operational effect) unchanged. There are
no constraints on the resulting value w′ — it may have a different
type from w or no valid type at all. The context rule Octxt allows for
fault-free execution of a core command in some evaluation context.
We use (M ; e) −→∗ s

k (M ′; e′) to denote the reflexive, transitive
closure of the top-level operational relation.

We have already discussed the operational semantics of the core
commands informally in the previous section, so we will only com-
ment on a couple of key elements of the formal specification. First,
notice that the rule Oadd depends upon the function addtot. This
total function over values sums its two arguments if they are inte-
gers, and if not, returns an arbitrary integer. The function lesstot
used in rule Oless is similar, but produces a boolean b. Intuitively,
our rules model the fact that addition and comparisons never get
stuck, no matter what bit patterns they operate on. Moreover, exter-
nal observers cannot tell when these operations are processing cor-
rupted values unless those values are subsequently printed. Second,
notice that the rules for if, function application, and output all use
majority voting to detect and recover from faults before continuing.
On the other hand, the let forms potentially copy and propagate
faulty values without checking for problems.

4. Simple Typing for Faulty Computations
The first goal of any λzap type system is to ensure that well-typed
λzap programs are safe, even in the presence of transient faults.
The second goal is to guarantee that faults cannot change observed
program behavior, a property we informally call fault tolerance.

What can go wrong? λzap programs can go wrong when sup-
posedly redundant computations actually depend upon one another.

5 All the other operational rule names are prefixed with O; we decided to
make this name special.

(M ; e) −→s
k (M ′; e′)

(M ; F [C w]) −→1 (M ; F [C w′])
(zap)

(M ; e) =⇒s (M ′; e′)

(M ; E[e]) −→s
0 (M ′; E[e′])

(Octxt)

(M ; e) −→∗ s
k (M ′; e′)

(M ; e) −→∗
0 (M ; e)

(Orefl)

(M1; e1) −→s1
k1

(M2; e2) (M2; e2) −→∗ s2
k2

(M3; e3)

(M1; e1) −→∗ s1,s2
k1+k2

(M ; e3)
(Otrans)

(M ; e) =⇒s (M ′; e′)

addtot(w1, w2) = n

(M ; C w1 + C w2) =⇒ (M ; C n)
(Oadd)

lesstot(w1, w2) = b

(M ; C w1 ≤ C w2) =⇒ (M ; C b)
(Oless)

vote(~v) = true

(M ; if ~v then e1 else e2) =⇒ (M ; e1)
(Oif1)

vote(~v) = false

(M ; if ~v then e1 else e2) =⇒ (M ; e2)
(Oif2)

(M ; λ~x:RGB I.e) =⇒ (M, l 7→ λ~x:RGB I.e; RGB l)
(Olam)

vote(~v1) = l M(l) = λ~x:RGB I.e

(M ; ~v1 ~v2) =⇒ (M ; e[~v2/~x])
(Oapp)

(M ; let ~x = ~v in e) =⇒ (M ; e[~v/~x])
(Olett)

(M ; let x = v in e) =⇒ (M ; e[v/x])
(Olet)

vote(~v) = n

(M ; out ~v; e) =⇒n (M ; e)
(Oout)

Figure 2. Operational semantics of λzap.



Original code:

let [x1,x2,x3] = [2, 2, 2] in
let [y1,y2,y3] = [x1 + x1, x2 + x2, x3 + x3] in
out [y1,y2,y3]

Correct transformation (let conversion):

let x1 = 2 in
let x2 = 2 in
let x3 = 2 in
let y1 = x1 + x1 in
let y2 = x2 + x2 in
let y3 = x3 + x3 in
out [y1,y2,y3]

Incorrect transformation (common subexpression elimination)
leading to fault-intolerant code:

let x1 = 2 in
let y1 = x1 + x1 in
out [y1,y1,y1]

Figure 3. Erroneous optimization for fault-tolerant code.

For instance, consider the following subtle tweak to one of the ex-
amples in the previous section:

let [f1,f2,f3] =
λ[x1,x2,x3].

[x1 + R 1,x1 + G 1,x1 + B 1]
in
[f1,f2,f3] [R 7,G 7,B 7]

Perhaps it took the reader a moment to identify where the error
was? Our compiler has accidentally emitted code that uses the same
argument x1 three times in supposedly redundant computations.
Consequently, a single fault in the first argument will corrupt the
entire computation. To make matters worse, in the absence of faults,
the program executes just fine. Hence, no conventional test suite
will detect this sort of error. One might try to find the error by
injecting faults at random throughout the program and testing it
to see what happens, but doing so might still miss the problem. In
contrast, type checking is guaranteed to succeed and to pinpoint the
location of such mistakes.

Faulty optimizations. It is easy to create arbitrarily many random
examples with the sorts of flaws exhibited above. More interesting
is the fact that this sort of problem has shown up in practice in the
SWIFT optimizing compiler for fault tolerance [31]. SWIFT was
architected so that the fault tolerance transformation was a stand-
alone compiler pass that could be inserted anywhere into the back-
end of the compiler. Initially, the transformation was inserted prior
to the major optimization routines in the compiler. Naturally, the
implementers wished to exploit their past work on optimizations to
improve the performance of their fault-tolerant code. However, they
were surprised to find that many conventional optimizations are
completely unsound for fault-tolerant code. In retrospect, it might
have been obvious that optimizations such as common subexpres-
sion elimination and copy propagation eliminated the redundancy
specifically introduced to guarantee fault tolerance. A simple ex-
ample of how this can happen in untyped λzap code appears in
Figure 3. Here, code using triples is transformed into code using
ordinary let statements, which can more easily be rearranged and
scheduled than triples. Next, common subexpression elimination
removes all redundancy that existed in the program. This is exactly
what happened in an early version of SWIFT – common subex-
pression elimination and copy propagation combined with other

optimizations to eliminate all redundancy in the code. The current
SWIFT solution is to do without these optimizations after introduc-
tion of redundancy. Of course, this is not ideal either, but at least
it is sound until we can devise a sound set of reliability-preserving
optimizations — a topic of our ongoing research.

Colored typing: the setup. In order to guarantee safety and fault
tolerance, our type system assigns a “color” to every data structure
and maintains the invariant that data of color C, be it red (R), green
(G), or blue (B), are only ever constructed from data with the same
color. Consequently, if a fault occurs in one piece of blue data, other
blue data may become corrupted, but red and green data will never
be compromised. When it comes to a majority vote, and one vote
for each color is cast, the votes of the correct red and green data
will outweigh the vote of the erroneous blue data.

The types of expressions, which have already shown up in the
syntax of our examples, include color tags to keep track of the color
of the data produced by the expression. For instance, an expression
with type B int produces a blue integer. Triples always have the
type RGB I for some uncolored type I .6 Hence, an expression
with type RGB (RGB bool → RBG int) produces a triple of
functions where each function takes three boolean arguments, one
of each color, and returns three boolean results, again one of each
color. Figure 1 presented the complete syntax of types.

The type system itself is formalized primarily through an ex-
pression typing judgment Γ `Z e : T , which states that given con-
text Γ and zap tag Z, expression e has colored type T . The zap tag
Z specifies the location of possible corrupted values: If Z is a color
C then there may be errors in data of that color, but not in any of
the other colors. If Z is “ ” (no color) then there are no errors in the
data. At compile time, programs are checked under the assumption
they contain no errors. The proof of our Type Preservation lemma
uses the colored zap tags to demonstrate typing is preserved despite
the occurrence of any single fault.

The context Γ has the following form:

Γ ::= · | Γ, x:C I | Γ, l:I

The hypothesis x:C I indicates x will be bound to data with color
C and uncolored type I . There are no hypotheses with the more
general form x:T because T includes triples; variables are only
bound to elements of triples, not triples themselves (which are not
real data structures). The second form of hypothesis associates a
code location l with an uncolored type I. The type is uncolored be-
cause different copies of the same location l may be associated with
different colors – if a fault corrupts one copy, it does not necessar-
ily corrupt the others. When a context only contains hypotheses of
the form l:I , we use the metavariable L as opposed to Γ. Contexts
are considered ill formed if the same variable or location appears
more than once. We implicitly alpha-vary variables and locations
before entering them into the context to avoid repetitions. We con-
sider contexts that differ only in the order of hypotheses equivalent
and indistinguishable.

Colored typing: the rules. Figure 4 presents the formal rules
for type checking λzap expressions. This figure presents the most
interesting and unusual rule, Tany, first. This rule states that when
the zap tag is a color C, a value w tagged with that color need not
be verified and may be granted any type with the form C I . Hence,
the integer 3 could be given a boolean or function type by this rule.
Alternatively, a location l that does not appear anywhere in the
current code store could be given a valid function type. This will
happen when a fault occurs and data colored C no longer satisfies
the conventional canonical forms lemma. Nevertheless, the rest of

6 Recall, RGB I is an abbreviation for [R I, G I, B I].



the language is organized to prevent anything from going wrong in
such situations.

The rest of the rules for values and the rule variables are quite
a bit more standard. Regardless of the zap tag Z, integers n may
have integer type with a color given by the associated color tag.
Likewise booleans have boolean type. Variables and locations have
the types ascribed to them by the context. Simple operators such as
addition require their arguments to have the same color and return
a result with that color, thereby preserving the invariant that faults
in one color do not percolate to another. When the zap tag Z is
the same color as the arguments of these operators, the arguments
might contain faults and therefore might be non-integer values.
However, since addition and similar operators are required to be
total functions over values, programs will not get stuck here.

The rule for if statements requires that the primary argument
e1 have type RGB bool. In words, this constraint means e1 must
evaluate to a triple of booleans, and the booleans will be tagged
with different colors. Operationally, a majority vote detects and
recovers from any fault before the control-flow decision is made.
If a majority is found, the winning value will be a boolean since
at least two of the three values voting are tagged with fault-free
colors.

Notice, however, that it is possible for there to be no majority.
For instance, suppose the compiler generates the following state-
ment: if [R true, G true, B false] then e1 else e2. This
code is obviously incorrect — the generated code should have three
equivalent values in the triple. Nevertheless, it type checks provided
e1 and e2 have equal types. Now, a single fault can corrupt the first
value, perhaps changing it to a random code location l giving us
the statement if [R l, G true, B false] then e1 else e2. In this
case, voting detects the fault but cannot recover (we assume failed
votes lead to a graceful program exit, perhaps alerting the user of
the presence of a fault).

A particularly unlucky user can also be hit by a single fault
that is not detected and changes the behavior of the program.
For instance, if the value R true changes to R false, opposite
control-flow branches will be taken in the faulty and non-faulty
cases. In either case, programs remain safe.

Despite this difficulty, we can formulate and prove a fault toler-
ance property for all well-typed programs. Intuitively, if, in a fault-
free run, whenever we reach a majority vote, all three values are
equivalent, then in a faulty run, at least two of the three will re-
main the same and continue to be equivalent. Hence, every fault-
free run that uses 3-voting will be simulated by every faulty run
that uses 2-voting. This result shows that responsibility for correct-
ness is factored between type system and compiler: the compiler is
responsible for producing equivalent computations for voting; the
type system guarantees their independence.

Returning to our typing rules, one may observe the remain-
ing rules for expressions follow similar patterns to those al-
ready discussed. Recall that operationally, a function declaration
λ~x:RGB I.e allocates a closure and returns a triple of locations.
Hence the type of such an expression is RGB(RGB I → T2).
Function application behaves analogously to if statements in that
the object in the function position must be a triple of locations, all
with different colors. The output command also requires its argu-
ment be a triple of (integer) values, all with different colors.

Figure 5 presents the typing rules for the abstract machine. The
judgment `Z M : L ascribes type L to the code heap M . The
judgment `Z (M ; e) : T checks that the complete code heap M is
well formed and that e produces a result with type T .

Faulty optimizations revisited. Looking back at the faulty opti-
mization illustrated at the beginning of this section, we can see that
the λzap type system detects the problem and rejects the optimized
code. More specifically, no matter what color tag we attempt to as-

Γ `Z e : T

Γ `C C w : C I
(Tany)

Γ `Z C n : C int
(Tint)

Γ `Z C true : C bool
(Ttrue)

Γ `Z C false : C bool
(Tfalse)

Γ(x) = C I

Γ `Z x : C I
(Tvar)

Γ(l) = I

Γ `Z C l : C I
(Tloc)

Γ `Z e1 : C int Γ `Z e2 : C int

Γ `Z e1 + e2 : C int
(Tadd)

Γ `Z e1 : C int Γ `Z e2 : C int

Γ `Z e1 ≤ e2 : C bool
(Tless)

Γ `Z e1 : RGB bool Γ `Z e2 : T Γ `Z e3 : T

Γ `Z if e1 then e2 else e3 : T
(Tif)

Γ, ~x:RGB I `Z e : T2

Γ `Z λ~x:RGB I.e : RGB(RGB I → T2)
(Tfun)

Γ `Z e1 : RGB(T1 → T2) Γ `Z e2 : T1

Γ `Z e1 e2 : T2

(Tapp)

Γ `Z e1 : R I Γ `Z e2 : G I Γ `Z e3 : B I

Γ `Z [e1, e2, e3] : RGB I
(Ttrip)

Γ `Z e1 : RGB I Γ, ~x:RGB I `Z e2 : T2

Γ `Z let ~x = e1 in e2 : T2

(Tlett)

Γ `Z e1 : C I Γ, x:C I `Z e2 : T2

Γ `Z let x = e1 in e2 : T2

(Tlet)

Γ `Z e1 : RGB int Γ `Z e2 : T

Γ `Z out e1; e2 : T
(Tout)

Figure 4. Simple type system for λzap.



`Z M : L

Dom(M) = Dom(L)
for all l ∈ Dom(M),

M(l) = λ~x:RGB I.e
L(l) = RGB I → T
L, ~x : RGB I `Z e : T

`Z M : L
(Tmem)

`Z (M ; e) : T

`Z M : L L `Z e : T

`Z (M ; e) : T
(TS)

Figure 5. Typing λzap machine states.

sign to the constant 2 in the final code fragment from Figure 3, the
output command will not type check, as y1 cannot possibly be three
different colors at the same time. Interestingly, while some com-
mon subexpressions cannot be legally eliminated, others can. When
common subexpressions produce values that inhabit the same color,
they can be eliminated.

In the SWIFT compiler, we also observed similar sorts of prob-
lems occurring with copy propagation optimizations. Depending
upon the specifics of how register allocation is implemented, there
may be problems there as well. In general, developing a correct,
possibly type-directed optimization suite for λzap programs and its
practical counterpart in SWIFT appears to be a rich problem we
leave to future work.

5. Properties of the Colored Type System
We have proven two important theorems concerning the type sys-
tem. First, we show that well-typed programs execute safely in the
presence of a single fault. By safe, we mean that while programs
may terminate early when the voting operation cannot find a major-
ity, programs nevertheless remain type safe: they never attempt to
use integers or booleans as if they were functions (and vice versa),
never call functions that do not exist, and never use non-booleans
to make a decision on which branch of an if statement to execute.
Second, we show that an execution with one fault simulates the be-
havior of an execution with no faults, provided that all three values
are equivalent in every majority vote in the fault-free execution.

Type safety. In order to state what type safety means precisely
in our system, we define the notion of a j-safe state. Intuitively, a
state is j-safe if either it can make progress in the usual sense (i.e.,
it is either a value or it can take a step) or it fails to make progress
only because a dynamic voting operation (votej) is undefined. In
the latter case, an implementation would be able to exit gracefully
(or throw an exception which might allow recovery). The progress
lemma states that well-typed machine states are j-safe. The proof
of progress follows the usual strategy. Notice that if Γ `C v : C I
then we can conclude that v has the shape C w, but w itself has
no particular canonical form. This fact does not hinder progress
because at function application sites and if statements, one takes
a majority vote between values of three colors. At least two of
the three values do not have color C and therefore do have well-
determined canonical forms based on their type.

Definition 1 (j-safe states)
(M ; e) is a j-safe state if one of the following is true:

• e is a value v or a triple of values [v1, v2, v3],
• e = E[e′] and (M ; e′)j=⇒s (M ′; e′′), or
• e = E[e′] and e is (if ~v then e1 else e2) or (~v ~v2) or (out ~v)

and votej(~v) is undefined.

Lemma 2 (Progress)
If `Z (M ; e) : T then (M ; e) is j-safe.

The second component of a standard type safety result is a
preservation lemma. Proving preservation for the core operational
rules is uninteresting – no faults occur here. Proving preservation
for the top-level rules, particularly the zap rule, depends on the sim-
ple Reliability Weakening lemma stated below, but it is otherwise
not difficult.

Lemma 3 (Reliability Weakening)
1. If Γ ` e : T then Γ `C e : T for any color C.
2. If ` M : L then `C M : L for any color C.

Lemma 4 (Preservation: Core Rules)
If `Z (M ; e) : T and (M ; e)j =⇒s (M ′; e′) then `Z (M ′; e′) :
T .

Lemma 5 (Preservation: Top-level Rules)
1. If `Z (M ; e) : T and (M ; e) −→s

0 (M ′; e′) then `Z

(M ′; e′) : T .
2. If ` (M ; e) : T and (M ; e) −→s

1 (M ′; e′) then `C (M ′; e′) :
T for some color C.

Notice that preservation for the top-level rules involves two cases,
one for fault-free execution and one for faulty execution. In the first
case, the initial machine state may be well typed under any zap tag
Z, and the result is well typed under that same tag Z. In contrast,
in the second case, the initial machine state must be fault free and
therefore is typed under the empty (colorless) tag. After a faulty
machines step, the machine state is typed under a zap tag for some
color C.

The final type safety theorem states that if there has been no
more than one fault, execution will only lead to safe states. The
proof of this theorem uses both cases of the preservation lemma for
the top-level rules to show that execution preserves typing. Progress
is used to establish that the final state in the execution is safe.

Theorem 6 (j-Safety)
If ` (M ; e) : T and (M ; e)j −→∗ s

k (M ′; e′) and k ≤ 1 then
(M ′; e′) is j-safe.

Simulation. We say that one machine state is an error-free simu-
lation of the second machine state when the two states are syntacti-
cally identical (modulo consistent renaming of bound variables and
locations as usual):

(M ; e) sim (M ; e)

Intuitively, two machine states C-simulate when they are syntacti-
cally identical except possibly for values with color C. More for-
mally, when M and e contain free variables x1, ..., xn and there ex-
ists substitutions θ1 and θ2 such that θ1 = [C w1/x1] · · · [C wn/xn]
and θ2 = [C w′

1/x1] · · · [C w′
n/xn], the following states C-

simulate:

(θ1(M); θ1(e)) simC (θ2(M); θ2(e))

To refer to either sort of simulation we write (M1; e1) simZ (M2; e2)
where Z is a zap tag (either C or “ ”).



Our goal is to prove a fault-tolerance theorem: if we begin with
a well-typed program, and an n-step execution of the program
exhibits no faults, then no faulty execution will get stuck, and every
n + 1-step execution with one fault outputs the same values and
reaches a C-similar state for some color C. To achieve this goal,
we prove the following two lemmas, which express the fact that
simulation is preserved by single evaluation steps. The first lemma
describes the situation in which the evaluation step is not faulty
(but if Z is the color C, there might have been a fault in some
past step). The second lemma describes the situation in which the
evaluation step is faulty (and there can have been no fault in the
past). Notice that Lemma 7 specifies that any vote taken during a
step from the first state have all three voters agree (subscript “3”
on the evaluation relation) whereas a step from the second state
need only have two voters agree. This non-uniformity is necessary
to avoid the Byzantine situation discussed earlier involving code
that holds votes between inequivalent values even in the absence
of faults. Intuitively, the compiler is responsible for producing
equivalent computations; the type system guarantees the equivalent
computations do not depend upon one another.

Lemma 7 (Fault-free simulation)
If ` (M1; e1) : T and `Z (M2; e2) : T and (M1; e1) simZ (M2; e2)

and (M1; e1)3−→s
0 (M ′

1; e
′
1) then (M2; e2)2−→s′

0 (M ′
2; e

′
2) and

s = s′ and (M ′
1; e

′
1) simZ (M ′

2; e
′
2).

Lemma 8 (Faulty simulation)
If ` (M1; e1) : T and (M1; e1)2−→s

1 (M ′
1; e

′
1)

then (M1; e1) simC (M ′
1; e

′
1) for some color C.

With these lemmas in hand, we may easily prove our fault tolerance
theorem by induction on the length of the evaluation sequence.

Theorem 9 (Fault Tolerance)
1. (Faulty computations do not get stuck)

If ` (M1; e1) : T and in n steps, (M1; e1)3−→∗ s
0 (M ′

1; e
′
1)

and in m ≤ n steps, (M1; e1)2−→∗ s′
1 (M ′

2; e
′
2) then (M ′

2; e
′
2)

can take at least one more step.
2. (Faulty computations simulate fault-free computations)

If ` (M1; e1) : T and in n steps, (M1; e1)3−→∗ s
0 (M ′

1; e
′
1)

and in n+1 steps, (M1; e1)2−→∗ s′
1 (M ′

2; e
′
2) then s = s′ and

(M ′
1; e

′
1) simC (M ′

2; e
′
2) for some color C.

6. From λ→ to λzap

To illustrate that λzap is expressive enough to serve as a typed in-
termediate language, we have defined a type-preserving translation
from the simply-typed lambda calculus to λzap. Our simply-typed
lambda calculus contains integers, booleans, functions, and an ef-
fectful output command out. Unlike λzap, it does not have triples;
all functions take a single argument. To simplify the translation and
prove correctness, we give the lambda calculus an allocation-style
semantics, which, like λzap, and Morrisett et al.’s λgc [18], allo-
cates function closures on an explicit heap M . The syntax, which
is largely standard, appears below.

T ::= int | bool | T1 → T2

Γ ::= · | Γ, x:T | Γ, l:T
w ::= l | n | true | false
e ::= x | w | e + e | e ≤ e | if e then e else e

| λx:T.e | e e | let x = e in e | out e; e
M ::= |M, l 7→ λx:T.e

The typing judgment for the lambda calculus has the standard
form (Γ ` e : T ), and the small-step operational semantics maps

1[[T ]]
def
= I

1[[int]]
def
= int

1[[bool]]
def
= bool

1[[T1 → T2]]
def
= 3[[T1]] → 3[[T2]]

3[[T ]]
def
= T ′

3[[T ]]
def
= RGB 1[[T ]]

[[Γ]]
def
= Γ′

[[ · ]] def
= ·

[[Γ, x:T ]]
def
= [[Γ]], x1:R 1[[T ]], x2:G 1[[T ]], x3:B 1[[T ]]

[[Γ, l:T ]]
def
= [[Γ]], l:1[[T ]]

Figure 6. From λ→ to λzap: Types and Contexts.

[[e]]
def
= e′

[[x]]
def
= [x1, x2, x3]

[[w]]
def
= RGB w

[[let x = e1 in e2]]
def
= let ~x = [[e1]] in [[e2]]

[[λx:T.e]]
def
= λ~x:3[[T ]].[[e]]

[[e1 e2]]
def
= [[e1]][[e2]]

[[if e1 then e2 else e3]]
def
= if [[ e1]] then [[e2]] else [[e3]]

[[out e1; e2]]
def
= out [[e1]]; [[e2]]

[[e1 + e2]]
def
= let[x1, x2, x3] = [[e1]] in

let[y1, y2, y3] = [[e2]] in

[x1 + y1, x2 + y2, x3 + y3]

(~x not in FV ([[e2]]))

[[e1 ≤ e2]]
def
= let [x1, x2, x3] = [[e1]] in

let [y1, y2, y3] = [[e2]] in

[x1 ≤ y1, x2 ≤ y2, x3 ≤ y3]

(~x not in FV ([[e2]]))

[[M ]]
def
= M

[[ · ]] def
= ·

[[M, l 7→ λx:T.e]]
def
= [[M ]], l 7→ λ~x:3[[T ]].[[e]]

Figure 7. From λ→ to λzap: Expressions and Code.



machine states to machine states: (M1; e1) −→s (M2; e2). We
omit the inference rules for both of these judgments.

The translation behaves like a highly abstract and idealized
version of the SWIFT-R compiler, replicating all computations
three times to detect and recover from faults. Figure 6 presents
the type translation, while Figure 7 presents the translation of
expressions and code heaps.

The main element of interest in the type translation is the trans-
lation of function types. A single-argument function in the lambda
calculus with type T1 → T2 is translated into a function with a
triple of arguments and a triple of results, each with different colors:
3[[T1]] → 3[[T2]]. This way, if one of the three individual arguments
is zapped, it can be compared against the other two to detect and
recover from the fault. To translate the typing context, each individ-
ual source variable x is transformed into three target variables x1,
x2, and x3, which will again each be bound to values with different
colors. We implicitly assume there is some well-defined mapping
that generates three unique target variables given any source vari-
able.

The expression translation preserves the basic control-flow
structure of the lambda calculus program being translated but repli-
cates the values. Hence, the translation of a source variable x is a
triple of related target variables x1, x2 and x3.7 The translation
of any lambda calculus value w is a red, green and blue color-
annotated triple of values. Function declarations in λzap generate a
triple of labels, so the translation of a lambda calculus function is
a λzap function with an appropriately translated typing annotation
and body. Control-flow operations such as if statements and func-
tion application are translated by leaving their structure intact and
translating their subexpressions recursively. An ordinary lambda
calculus let statement is translated into a λzap triple-let to pre-
serve the invariant that every source variable x is translated into
three variables x1, x2 and x3 in the target. Basic total operations
such as addition and inequalities that do not require voting before
execution are replicated three times. Notice that in the translation
of these operations, the number and order of effects are preserved.

Lambda calculus code heaps are translated by recursively trans-
lating each of the elements in the heap.

Properties of the translation. We have proven two important
properties of the translation. First, we have shown that the trans-
lation is type preserving: well-typed lambda calculus programs are
always translated into well-typed λzap programs. This property es-
tablishes the fact that λzap’s type system is sufficiently expressive
to check the results of compilation. Second, we have shown that the
translation is correct in the absence of faults: if a lambda calculus
program takes one step, producing output stream s and resulting
machine state (M ′, e′), then its translation will take one or more
fault-free steps to produce to same output s and the translation of
(M ′; e′). A key lemma required for this second result is that sub-
stitution commutes in an interesting way with the translation.

Lemma 10 (Compilation preserves types)
1. If Γ ` e : T then [[Γ]] ` [[e]] : 3[[T ]].
2. If ` M : Γ then ` [[M ]] : [[Γ]].

Lemma 11 (Substitution commutes with translation)
[[e[w/x]]] = [[e]][R w, G w, B w/x1, x2, x3]

Lemma 12 (Compilation is correct)
If ` M : Γ and Γ ` e : T and (M ; e) −→s (M ′; e′) then
([[M ]]; [[e]])3−→∗ s

0 ([[M ′]]; [[e′]]).

7 Again, this translation depends upon an implicit map from source vari-
ables to unique target variables.

Since the translation is type preserving and correct with respect
to the fault-free operational semantics, we may exploit results from
previous sections to prove that the faulty lambda calculus λzap

can serve as a correct and reliable platform for implementing the
simply-typed lambda calculus.

Theorem 13 (End-to-end Reliability)
If e is a lambda calculus program such that ` e : T and
(·; e) −→∗ s (M ′; w) then (·; [[e]])2 −→∗ s

k (·;~v) with k ≤ 1
and vote2(~v) = w.

7. Related Work
The process of propagating typing information from source lan-
guage down through compiler intermediate and target languages is
known as type-preserving compilation. Java, TIL [39], FLINT [34],
Church [9], proof-carrying code (PCC) [21, 3], and typed assembly
language (TAL) [19, 17] compilers typically apply some form of
this technology in order to generate well-typed compiler interme-
diate code. Importantly, although these type-preserving compilers
advocate using types to improve compiler reliability, they assume
perfect hardware and provide no guarantees in the presence of tran-
sient faults.

Similar to our formal assumption that data faults can arbitrarily
“zap” values at any operational step, related work in the security
domain shows how, also by transforming software, to provably en-
force interesting control-flow properties when attackers can arbi-
trarily perturb data memory at any operational step [1, 2]. This en-
forcement of control-flow integrity (CFI) guarantees that software
dynamically obeys predefined control-flow policies, even as attack-
ers have read access to all of memory and write access to data mem-
ory. Although enforcing CFI is useful for preventing many kinds of
security attacks (such as buffer overflow exploits) and is more ef-
ficient than software-based fault tolerance, enforcing control-flow
policies in the presence of an attack on a single data value provides
a weaker guarantee than that of fault tolerance (where all of the
fault-tolerant program’s outputs are guaranteed to be equivalent to
those of the fault-intolerant version). On the other hand, the formal
CFI attack model is stronger than the fault model assumed here in
that the CFI model places no restrictions on the number of times
an attacker may perturb data memory. In addition, while the work
on enforcing CFI provides a formal proof for translating from and
to an idealized assembly language, in the present paper we have
focused on the translation from a high-level, typed, functional lan-
guage to a typed intermediate language.

While we have focused on reliability in this paper, these tech-
niques may also have some relevance to security, as one cannot
have security without reliability first. For example, Govindavajhala
and Appel [11] recently demonstrated that it was easily possible to
attack commercial virtual machines running completely type-safe
code by inducing and exploiting soft faults. The software protec-
tions and type system described in this paper would defeat such
attacks.

Software-only approaches to redundancy are attractive because
they essentially come free of hardware cost. There have been nu-
merous implementations of software-only redundancy, each vary-
ing in their level of coverage and performance degradation. At the
high-level, Rebaudengo et al. [29] proposed a source-to-source pre-
pass compiler that generates fault-detection code in the source lan-
guage. Oh et al. [27] proposed EDDI, a low-level detection tech-
nique, which duplicates all instructions except branches and in-
serts validation code before all stores and control transfers, thus
ensuring the correctness of values to be written to memory. This
work was extended with ED4I [26], which creates a different, but
functionally equivalent program by mapping values in the origi-
nal program to different values in the duplicated program. Reis et



al. [31] proposed SWIFT, which improves on EDDI performance
and reliability through better control-flow validation and other op-
timizations. While the previous approaches have focused on fault
detection, Chang et al. [8] proposed two software-only recovery
techniques: SWIFT-R, a SWIFT-like technique that uses three ver-
sions of instructions with majority voting, and TRUMP, a recovery
technique using AN-codes.

Finally, the idea that one can defend against faults by replicating
software has been used extensively and studied in great depth, for-
mally and experimentally, for decades in distributed systems. How-
ever, the context, assumptions, constraints, and kinds of faults that
can occur are clearly different here, making it necessary to study
the formal properties of transient faults in standalone hardware as
well as in distributed systems.

8. Current and Future Work
The faulty lambda calculus λzap and its simple type system pro-
vide a sound theoretical basis for implementation of reliable fault-
tolerance systems. However, there is much more research to be
done in this area.

One of our immediate concerns involves finding ways to
strengthen λzap’s colored type system in order to provide corre-
spondingly stronger fault tolerance guarantees. One possible im-
provement to our type system involves preventing a compiler from
incorrectly generating inequivalent expressions in places where
majority voting should occur. For instance, in Section 4 we consid-
ered the expression if [R true, G true, B false] then e1 else e2.
To rule out “obviously bad” expressions such as this one, one
can add static equivalence checking to the type-checking rules for
triples. More precisely, suppose Γ `Z e1 ∼ e2 is valid when e1

and e2 evaluate to equivalent values (in all well-typed contexts
specified by Γ, modulo the equivalence tag Z). In this case the fol-
lowing extended typing rule for triple introduction not only checks
that the elements of the triple do not depend upon one another, but
also that they produce equivalent values.

Γ `Z e1 : R I Γ `Z e2 : G I Γ `Z e3 : B I
Γ `Z e1 ∼ e2 Γ `Z e2 ∼ e3

Γ `Z [e1, e2, e3] : RGB I
(ETtrip)

We are in the process of devising an extended type system based
on this idea and proving that it gives rise to a stronger safety prop-
erty for λzap (voting will never get stuck) and also a stronger fault-
tolerance property. 8 However, we note that while these stronger
properties are theoretically pleasing, it is not obvious that the more
complex type system is more practical. An important strength of the
type system presented in this paper is its simplicity, which should
make it relatively easy to understand and to implement in a real
compiler. Adding equivalence checking, while well-understood in
the simply typed lambda calculus (though not, of course, with
faults), may well be substantially more difficult to implement effi-
ciently in the context of a realistic compiler intermediate language.

A second direction for future work is the development of a cor-
responding typed assembly language. The faulty lambda calculus
λzap operates at quite a high level of abstraction. To implement its
abstractions in assembly language, the majority voting operations
must be compiled into a sequence of comparisons. Developing a
low-level type system that allows the comparisons to be scheduled
efficiently yet guarantees fault tolerance will be a challenge.

A third aspect of our future work involves developing provably
correct, type-preserving optimization infrastructure. As we have
observed in this paper, common optimizations undo fault-tolerance

8 In fact, we have already fully defined and proven correct one variant, but
are exploring further variations.

transformations. We are in the process of trying to get a better
understanding of the range of optimizations affected by this phe-
nomenon and to develop correct new optimizations.

Finally, we are investigating applying the theoretical principles
developed here to the intermediate languages used in the imple-
mentation of the SWIFT-R compiler system.

9. Conclusions
This paper defines λzap, a lambda calculus that exhibits intermittent
data faults. These faults may strike any value in the computation at
any time, changing that value arbitrarily. Hence, λzap provides an
abstract model of computations performed on modern, occasionally
faulty hardware.

In order to detect and recover from faults, λzap programs com-
pute intermediate results multiple times and use the majority vot-
ing mechanisms built in to many of λzap’s primitives. To detect
errors in λzap code that might make it unreliable, we devise a
simple type system that uses colors to ensure replicated compu-
tations do not depend upon one another. We prove the type system
sound, demonstrate that it can catch errors that might occur due
to incorrect program optimization, and show that well-typed pro-
grams have important fault-tolerance properties. Finally, to prove
that λzap and its type system are sufficiently expressive to serve
as an idealized typed intermediate language for compilers, we de-
fined a type-preserving and provably correct translation from the
simply-typed lambda calculus into λzap. Our compilation strategy
simulates the compilation strategy used in SWIFT-R, a compiler
for fault-tolerance. Together, the properties of the λzap type system
and the correctness of compilation provide a strong end-to-end re-
liability guarantee: Despite being faulty, λzap is nevertheless pow-
erful enough to implement the lambda calculus correctly. Overall,
we believe that this is the first systematic, type-theoretic study of
the problem of transient hardware faults.
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