
1

Kirigami, the Verifiable Art of Network Cutting
Timothy Alberdingk Thijm, Ryan Beckett, Aarti Gupta and David Walker

Abstract—Satisfiability Modulo Theories (SMT)-based analysis
allows exhaustive reasoning over complex distributed control
plane routing behaviors, enabling verification of converged rout-
ing states under arbitrary conditions. To improve scalability
of SMT solving, we introduce a modular verification approach
to network control plane verification, where we cut a network
into smaller fragments. Users specify an annotated cut which
describes how to generate these fragments from the monolithic
network, and we verify each fragment independently, using
these annotations to define assumptions and guarantees over
fragments akin to assume-guarantee reasoning. We prove that
any converged states of the fragments are converged states of the
monolithic network, and there exists an annotated cut that can
generate fragments corresponding to any converged state of the
monolithic network. We implement this procedure as Kirigami,
an extension of the network verification language and tool NV,
and evaluate it on industrial topologies with synthesized policies.
We observe a 10x improvement in end-to-end NV verification
time, with SMT solve time improving by up to 6 orders of
magnitude.

Index Terms—modular verification, network control plane,
control plane verification, routing protocols

I. INTRODUCTION

Today’s networks are labyrinthine and hard-to-analyze sys-
tems. To determine the best paths routers may use to forward
traffic, networks typically run distributed routing protocols.
Despite advances like software-defined networking, these pro-
tocols remain widely used in data centers [1] and wide-area
networks. Millions of lines of decentralized, low-level router
configuration code control protocol behaviors, and operators
must update these device configurations over time. This over-
whelming complexity has led to several notable and costly
outages [2]–[5]. Often, the culprits behind these incidents are
subtle network misconfigurations.

In response, researchers have developed a variety of ver-
ification tools and techniques to catch errors before outages
occur. Some [6]–[13] have targeted the network data plane,
which is responsible for forwarding traffic from point A to
point B. This work has produced scalable, efficient methods
for modeling the data plane and checking properties of how
packets traverse it.

The data plane is produced by the control plane. It uses
the aforementioned routing protocols to decide which routes
forwarding should use. Occasionally, these protocols may
update their choice of routes — e.g., following a device failure
— and recompute new paths. When this happens, the data
plane is regenerated, and the user must repeat any data plane
analysis. Control plane errors can lead to further issues like

This work was supported in part by the National Science Foundation awards
NeTS 1704336, FMitF 1837030, SHF 2107138, and Facebook Research
Award on “Network control plane verification at scale.”

route flapping, leaving human operators to hunt for subtle bugs
in a Kafkaesque morass of router configurations.

To address this problem, researchers have developed another
suite of tools to analyze the control plane [14]–[25]. Control
plane analyses consider which routes the data plane will
use in given network environments, and check properties of
the network in such environments. One branch of control
plane verification, starting from Minesweeper [15], encodes
a network as a Satisfiability Modulo Theories (SMT) for-
mula and then asks an SMT solver [26] to check properties
of the encoded network. SMT-based verification has some
advantages over other approaches: it is expressive and can
reason symbolically about network behavior, allowing analyses
about all possible routes a neighbor might announce; it also
may form a basis for network synthesis and repair [27].
Unfortunately, it suffers from scalability issues. Prior work
has explored using abstractions to resolve this problem, e.g.,
using symmetries in topologies to compress networks [19],
[20]. These abstractions offer some relief, but cannot always
handle arbitrary networks.

Control plane verification users thus face a trade-off: they
may use semi-symbolic or simulation-based tools [16], [21]–
[25], [28] to analyze industrial-sized networks when the flex-
ibility of SMT-based symbolic reasoning is not necessary; or
they must contend with SMT-based verifiers which may not
scale to networks with more than a few hundred nodes. This
paper offers another option: using a user’s own insights about
their network’s behavior, we leverage the inherent modularity
of the control plane to cut a monolithic network into multiple
fragments to verify independently. Networks’ modular struc-
ture — where end-to-end behaviors emerge from individual
routers’ local decisions — makes cutting an intuitive way to
scale verification. In an SMT-based context, it allows us to
verify properties in the presence of faults or arbitrary external
announcements, which is not shown with prior abstraction ap-
proaches [19], [21]. Building on assume-guarantee verification
of modular programs [29], [30], we present a new technique
for modular verification of control planes and implement it as
Kirigami, an extension for the NV [23] network verification
tool. While we focus on SMT-based verification, one could
combine our cutting technique with other methods e.g., model
checking, simulation.

In a typical assume-guarantee verification approach, one can
verify a safety property over a system of concurrent processes
by verifying local properties of each process independently,
using assumptions over the process’s inputs and guaran-
tees over its outputs. The verifier will check the required
proof obligations on each component (formulated as assume-
guarantee rules): if all checks pass, then the property holds
for the monolithic system. Our verification technique mirrors
this idea: we verify a property over network fragments (cf.978-1-6654-8234-9/22/$31.00 ©2022 IEEE

2

processes), given assumptions over the rest of the network and
guarantees over our fragments, to conclude that the property
holds for the monolithic network.

We start from an existing model for distributed routing, the
Stable Routing Problem (SRP) [19]. In an SRP, each node of
the network exchanges routes with its neighbors to compute a
locally-stable solution. To define an SRP, we require complete
knowledge of the network and its configurations. In theory,
our work could apply to interdomain routing — if multiple
organizations gave us their configurations, we could jointly
analyze those configurations. In practice, operators are reluc-
tant to share their configurations outside their organization.
Thus, our work’s main practical application is on networks
controlled by a single entity. This is frequently the case in large
data centers, many of which run distributed routing protocols
such as BGP [31].

We first generalize SRPs to “open SRPs”, in which a
network receives routes along a set of input nodes and sends
out routes along a different set of output nodes. We identify the
input node solutions as our open SRP’s assumptions, and the
output node solutions as its guarantees. We present a procedure
CUT which, given an interface — a mapping from a cut-set
of edges to routes — cuts an open SRP S into two open SRPs
T1 and T2 covering S, and where we replace each cut edge
with a route assumed in one SRP and guaranteed in the other.
Interfaces can follow a network’s natural boundaries, e.g., tiers
or hierarchies in a data center topology [32]–[34].

As with the traditional (closed) SRP, we can check that an
open SRP satisfies a given safety property prop by verifying
that prop holds for the SRP’s solutions. We prove that if P
holds on T1 and T2’s solutions, then it holds on S’s. This is the
basis for our modular network verification technique. Starting
from a network S, an interface I , and a safety property P , we
use CUT(S, I) to obtain a set of n open SRPs T1, . . . , Tn that
we verify independently. We verify P for each open SRP Ti:
if P does not hold, we return a counterexample demonstrating
a solution that violates P .

We consider SRPs with any number of solutions. Our CUT
procedure constructs fragments such that, given an interface
which captures some solutions of the monolithic SRP, the
fragments will have the same solutions. This allows us to
check properties of all solutions that satisfy our interface’s
guarantees given its assumptions – we call these solutions
“modulo” the interface. If the monolithic network has a unique
solution, we can check properties of this solution using a
single interface. If the network has multiple solutions, we
can check properties of all solutions modulo a given interface,
and compute additional interfaces to cover other solutions. If
the interface’s guarantees do not hold, or the network has no
solution, we report this case to the user to diagnose.

Checking multiple smaller open SRPs rather than a single
closed SRP offers significant scalability improvements. SMT-
based verification time can — depending on the policy and
property — grow exponentially with the size of the net-
work [15]. Hence, verifying P on each open SRP Ti takes
a fraction of the time to verify P directly on S, and is
embarrassingly parallel. Our experiments demonstrate that this
modular verification technique works well for a variety of

data center, random and backbone networks, with significant
improvements in SMT solve time: we show for one set of
fattree [32] benchmarks that verifying the fattree pod-by-pod
cuts SMT time from 90 minutes to under 2 seconds; verifying
every node individually reduces SMT time to around 10
milliseconds. Taking advantage of parallelism also cuts down
NV end-to-end verification time for our largest benchmarks
from over 2 hours to under 15 minutes. This modularity
can scale verification to tomorrow’s networks, and produce
localized errors when verification fails, empowering network
operators with stronger safety and reliability guarantees.

In summary, we make the following contributions:

• A Theory of Network Fragments. We develop an ex-
tension of the Stable Routing Problem (SRP) model [19]
for network fragments. Our extension provides a method
to cut monolithic SRPs into a set of fragments. We define
interfaces to cut SRPs and map the cut edges to anno-
tations which then define assumptions and guarantees of
our fragments. We prove that under these assumptions, if
these guarantees hold, then a property that holds in every
fragment also holds in the monolithic network. (§IV)

• A Modular Network Verification Technique. We
present a checking procedure to verify SRP properties.
Given a property P we wish to verify, we cut an SRP
S according to a given interface I into fragments, and
generate checks on each fragment to both verify that
our interface captures the monolithic network behavior,
and verify P on every fragment. This enables a novel
approach for modular control plane verification based on
assume-guarantee reasoning. (§V)

• Fast, Scalable and Modular SMT Verification. We im-
plement our technique as Kirigami, an extension for NV,
a network verification language and tool [23]. Kirigami
improves on NV verification scalability and performance,
with an SMT solve time up to six orders of magnitude
faster for a selection of NV benchmarks. (§VI and §VII)

• An Algorithm for Modular Verification for Multi-
Solution Networks. We present a second checking pro-
cedure to verify properties of networks with multiple
solutions. This procedure takes multiple interfaces as
arguments to verify properties of SRPs with multiple
solutions. We illustrate how it functions via the classic
multi-solution DISAGREE example from the routing al-
gebra literature [35]. (§VIII)

This paper is based on the Kirigami modular verification
method presented earlier [36], which considered networks with
unique converged states. This work extends the method to
consider networks with multiple converged states.

II. OVERVIEW

A. The Stable Routing Problem

A network is a graph with nodes V representing routers and
edges E representing the links between them. A distributed
control plane uses routing protocols to determine paths to
routing destinations. Each router deploys its own local rules
to broadcast routing announcements (or routes) and select a

3

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

e6 e7 e10 e11 e14 e15 e18 e19

Fig. 1: A 4-pod fattree topology.

1 type attribute = { id: int; cost: int }
2
3 symbolic d : int (* symbolic id *)
4 require (d = 6 || d = 7 || d = 10 || d = 14 || d

= 15 || d = 18 || d = 19)
5 let nodes = 20 (* topology *)
6 let edges = {
7 0=4; 0=8; 0=12; 0=16;(*...*)
8 16=18; 16=19; 17=18; 17=19;
9 }

10
11 let merge node x y = if x.cost < y.cost then x

else y
12 let trans edge x = {x with cost = x.cost + 1}
13 let init node = match node with
14 | 0n -> if (d = 0) then {id=d; cost=0;} else

NULL
15 | 1n -> if (d = 1) then {id=d; cost=0;} else

NULL (*...*)

Fig. 2: An NV program fat.nv representing Fig. 1.

“best” route: the details of these rules vary with the protocol,
but generally protocols focus on minimizing routing costs.

These elements — nodes and edges, a set of routes, and a
set of rules to initialize, compare and broadcast them — form
the basis for our control plane routing model, the SRP [19]
(defined formally in §III). In a well-designed network, this
exchange of routes eventually converges to a stable state,
where no node may improve on its current best route by
selecting another offered by a neighbor. A solution L to the
SRP is a mapping from nodes to these stable routes.

a) An Example SRP: Consider a fattree [32] data center
network, as shown in Fig. 1. Routing in fattree networks
typically follows a Λ shape: traffic that starts at an edge layer
switch (e6, . . . , e19) travels up a link to an aggregation layer
switch (a4, . . . , a17), then ascends from the pod to a core layer
switch (c0, . . . , c3) in the spine and descends into another pod.

Suppose we wish to verify that every node in a fattree SRP
instance S can reach every edge layer node of the fattree,
where S is running BGP (the Border Gateway Protocol) [1].
We can do so by first modeling S’s routes as highly-simplified
BGP announcements ⟨ p, x ⟩ with 2 fields: an identifier p (cf. a
prefix) and a cost metric x (abstracting, e.g., local preference,
AS path length [37], [38], etc.).1 Each node has an identifier p,
where every node has an initial route ⟨ p, 0 ⟩ for its identifier,
and no route to other identifiers. Nodes will broadcast their
current routes to their neighbors: in this simple example, if a
node has a route ⟨ p, x ⟩, it will send a route ⟨ p, x + 1 ⟩ to
its neighbors (incrementing the metric). Nodes compare each
received route with their current choice and select the one with
the smallest cost, and then re-broadcast if their route changes.

1In a real network, routes could represent many more BGP fields, but this
example provides the necessary detail to demonstrate the basics of SRPs.

1 include "fat.nv"
2
3 (* map nodes to solutions (stable routes) *)
4 let sol = solution {init = init; trans = trans;

merge = merge}
5 (* check a property of every node's solution *)
6 assert foldNodes (fun n r acc -> acc && r.id = d

&& r.cost <= 4) sol true

Fig. 3: An NV program asserting that every node can reach
every prefix advertised by an edge layer switch.

A node u’s solution L(u) is the best route between u’s initial
route and the solutions broadcast by each of u’s neighbors.

b) Verifying SRPs with NV [23]: To verify all-edge
reachability in S, we must check that for any choice of
identifier p of an edge layer node, all nodes of the network
have a path of cost at most 4 to that node. Naively enumerating
all possible identifiers is obviously inefficient, if not infeasible
in practice. In some scenarios, an equivalence class-based
approach like that of Plankton [24] may make the space of all
identifiers small enough to efficiently enumerate. We will use a
symbolic approach, where we treat the identifier as a symbolic
variable d: we then will verify that for any concrete identifier
instantiating d, every node can reach that identifier. Symbolic
variables can also help verify properties in the presence of
link failures or arbitrary external announcements from outside
one’s network. One verification tool supporting symbolic rea-
soning is NV [23]. NV is a functional programming language
for modeling control planes and verifying their properties
using SMT. An NV program’s components resemble an SRP’s:
it has a topology with nodes and edges; a type of routes
attribute; a function init to initialize routes; a function
trans to broadcast routes; and a function merge to compare
routes. NV provides symbolic and require expressions
to declare and constrain symbolic values, respectively. Fig. 2
presents a condensed NV program for Fig. 1.

Fig. 3 demonstrates how to verify a safety property P over
all nodes and their solutions in NV, where P (u,L(u)) holds
for node u and solution L(u) iff L(u).p = d ∧ L(u).x ≤ 4.
We define a solution (line 4) using init, trans and merge
from Fig. 2. We then assert (line 6) that P holds on this
solution. When we ask NV to verify Fig. 3, it encodes S and
P as an SMT query, and confirms that P holds.

B. Modular SRP Verification

SMT-based verification is flexible, but has issues when it
comes to scalability. Our evaluation in §VII shows it scales
superlinearly for larger fattrees with more complex policies:
from 0.03 seconds for a 20-node network, to 1.4 seconds
for an 80-node network, and 1833.7 seconds for a 320-node
network! To verify industrial fattree networks with 104 or more
switches [13], we need a way to scale this technique up.

Suppose then that we took a large network and cut it into
fragments, then verified a safety property P on each fragment
independently. If P holds for every fragment, then we want
it to hold for the monolithic network; otherwise, we want to
observe real counterexamples as in the monolithic network. To

4

c0 c1 c2 c3

a4 a5

e6 e7

⟨ d, 2 ⟩ ⟨ d, 2 ⟩ ⟨ d, 2 ⟩ ⟨ d, 2 ⟩

(a) SRP fragment Tp0

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

ϕ0 ϕ0 ϕ1 ϕ1 ϕ2 ϕ2 ϕ3 ϕ3

(b) SRP fragment Tspines

Fig. 4: SRP fragments Tp0 and Tspines, with input nodes in
blue, output nodes in yellow and assumptions in purple.

achieve this goal, our cutting procedure must also summarize
the network behavior external to each fragment.

We incorporate these summaries into the SRP model by
generalizing it to open SRPs. Open SRPs extend the SRP
model by designating some nodes as input nodes and some
others as output nodes. We annotate input and output nodes
with routes representing solutions assumed on the inputs and
guaranteed on the outputs. We express these annotations
using an interface: a mapping from each cut edge to a route
annotation. Given an open SRP S and an interface I , we cut
S into open SRP fragments, where each fragment identifies
assumptions on its inputs and guarantees on its outputs.

a) Cutting Down Fattrees: We will now move on to
demonstrating this idea for our example. Let’s cut each pod of
our network into its own fragment Tp0 through Tp3, leaving
the spine nodes as a fifth fragment Tspines.

Figs. 4a and 4b show pod 0 and the spines of Fig. 1 as
open SRPs Tp0 and Tspines, respectively. In Tp0, we assume
routes from the spines and check guarantees on a4 and a5.
Every route guaranteed by one fragment is assumed by another
(and vice-versa): if we guarantee that c0 has a route ⟨ d, 2 ⟩ in
Tspines, we assume it has a route ⟨ d, 2 ⟩ in Tp0. The exact
route advertised by an aggregation node a depends on if the
destination identifier d lies in a’s pod or not. For instance, if
d = 6, nodes a4, a5 of pod 0 have a route ⟨ d, 1 ⟩ from their
neighbor e6, while all other aggregation nodes have a route
⟨ d, 3 ⟩ (via the core nodes). We write ϕi as a shorthand for
this reasoning over costs in Fig. 4b, where

ϕi = if d in pod i then ⟨ d, 1 ⟩ else ⟨ d, 3 ⟩

b) Verifying Network Fragments: In modular verifica-
tion, we perform an independent verification query for each
fragment: we encode the open SRP and property, along with
an assumptions formula assuming a state of the inputs and a
guarantees formula to check on the state of the outputs. We
then submit every query to our solver and ask if the network
has a solution where, under the given assumptions, either the
property is false or the guarantee do not hold. The solver
searches for a counterexample demonstrating a concrete vio-
lation of the property or our guarantees. Guarantee violations

1 include "fat.nv"
2
3 let partition node = match node with
4 | 0n | 1n | 2n | 3n -> 0 (* spines *)
5 | 4n | 5n | 6n | 7n -> 1 (* p0 *)(*...*)
6
7 let interface edge x = match edge with
8 | 0˜_ | 1˜_ | 2˜_ | 3˜_ -> x = { id = d; cost

= 2; }
9 | 4˜_ | 5˜_ -> x = { id = d; cost = if d > 3

&& d < 8 then 1 else 3; }
10 | 8˜_ | 9˜_ -> x = { id = d; cost = if d > 7

&& d < 12 then 1 else 3; }

Fig. 5: An (abbreviated) NV program to cut Fig. 2 into pods.

demonstrate possible bugs in our network implementation or
mistakes in our beliefs, just as property violations do.

Let us consider our fattree network again. Suppose we
misconfigured a4 to black hole (silently drop) outgoing traffic.
Consider what happens when d = 6, meaning the destination
is e6: then d is in a4’s pod. Because a4 is dropping outgoing
traffic, the best route c0 will receive will be a ⟨ 6, 3 ⟩ route from
one of a8, a12, a16, and hence L(c0) = ⟨ 6, 4 ⟩. The solution
in Tspines will be as follows:

drop drop

c0 c1 c2 c3

a4 a5 a8 a9 a12 a13 a16 a17

⟨6, 1⟩⟨6, 1⟩⟨6, 3⟩⟨6, 3⟩⟨6, 3⟩⟨6, 3⟩⟨6, 3⟩⟨6, 3⟩

⟨ 6, 4 ⟩ ⟨ 6, 2 ⟩ ⟨ 6, 4 ⟩ ⟨ 6, 2 ⟩

Our interface maps c0a8 to ⟨ d, 2 ⟩, so we must guarantee
that L(c0) = ⟨ d, 2 ⟩ when verifying Tspines. Due to the bug,
this check fails (⟨ 6, 2 ⟩ ≠ ⟨ 6, 4 ⟩) and our solver returns
the solution above as a counterexample. This localizes the
counterexample to this part of the network; our other frag-
ments will pass verification. This means that, so long as our
interface remains the same, we only need to correct the bug
and re-verify Tspines, without needing to re-verify any other
fragment. In §IV, we prove that if our guarantees and P
hold for all fragments of S, then P holds for the monolithic
network S.

c) Cutting with Kirigami: As part of our work, we imple-
mented an extension Kirigami to NV for cutting and verifying
networks. Fig. 5 shows an NV file with new partition
and interface functions. partition maps each node
to a fragment, while interface adds assertions to check
that a route x along a cross-fragment edge equals the given
annotation, e.g., that the route from 0n to 4n has id d and cost
2. These functions provide the necessary detail to construct our
fragments and modularly verify them.

d) Alternative Cuts: Pod-based cuts suit our hierarchical
view of fattrees, but we can consider alternative cuts. We could
cut Fig. 2 so that every node is in its own fragment. Verifying
a single node in SMT can take milliseconds, and hence leads
to significant performance improvements. The corresponding
NV program resembles Fig. 5, except every node maps to its
own fragment and we annotate every edge.

5

III. BACKGROUND ON THE STABLE ROUTING PROBLEM

We summarize prior work [19] on the Stable Routing Prob-
lem (SRP) network model. Its components resemble routing
algebras used for reasoning about convergence of routing
protocols [39]–[41], but SRPs also include a network topology
for reasoning about properties such as reachability between
nodes.

An SRP instance S is a 6-tuple (V,E,R, init,⊕, trans),
defined as follows.

a) Topology: V is a set of nodes and E ⊆ V × V is a
set of directed edges. We write uv for an edge from node u
to node v. Edges may not be self-loops: ∀v ∈ V. vv /∈ E.

b) Routes: R is a set of routes that describe the fields
of routing messages. For example, when modeling BGP, R
might be a set of tuples of an integer local preference, a set of
community tags, and a sequence of AS numbers representing
the AS path [37], [38].

c) Node Initialization: The initialization function init :
V → R describes the initial route of each node. When
modeling single destination routing, init may map a destination
node e19 to some initial route rd, and all other nodes to a
null route; in multiple destination routing, we may have many
initial routes.

d) Route Update: The merge function ⊕ : R × R → R
defines how to compare routes. ⊕ represents updates of
a node’s selected route: we assume ⊕ is associative and
commutative, i.e., the order in which routes are merged does
not matter.

e) Route Transfer: The transfer function trans : E×R→
R describes how routes are modified between nodes. Given an
edge uv and a route r from node u, trans(uv, r) determines
the route received at v.

f) Solutions: A solution L : V → R is a mapping from
nodes to routes. Intuitively, a solution is defined such that each
node is locally stable, i.e., it has no incentive to deviate from
its currently chosen neighbors. Nodes compute their solution
via message exchange, where each node in the SRP advertises
its chosen route to each of its neighbors. Formally, an SRP
solution L satisfies the constraint:

L(v) = init(v)⊕
⊕
uv∈E

trans(uv,L(u)) (1)

where
⊕

is the sequence of ⊕ operations on each transferred
route trans(uv,L(u)) from each neighbor u of v. These
received routes are merged with v’s initial value init(v).

If an SRP has at least one solution, we say it converges.
Convergence has been studied in past work [35], [39]–[41],
which identified monotonicity properties that guarantee that
the SRP converges to a unique solution. In particular, if the
network has a finite R, and satisfies the constraints below
∀r, r1, r2 ∈ R,∀e ∈ E:

r1 ⊕ r2 ∈ {r1, r2} (2)
∃∞ ∈ R. r ⊕∞ = r =∞⊕ r (3)
∃0 ∈ R. r ⊕ 0 = 0 = 0⊕ r (4)
r ̸=∞→ trans(e, r)⊕ r = r ∧ trans(e, r) ̸= r (5)

a

c

b

e

d

(a) SRP S

a

c

b

e

d

(b) SRP T

a

b

e

d

(c) SRP U
Fig. 6: A series of successive cuts which produce open SRPs
S, T and U . Base nodes are grey, input nodes blue and output
nodes yellow. Each cut (in red) slices off part of the SRP,
leaving input nodes to represent the cut components.

then it converges to a unique solution.2 Constraint (2) defines
⊕ to be selective, meaning it always chooses between one
of the two given routes, and never introduces “new” routes.
Constraint (3) defines a route ∞ to be an identity for ⊕,
meaning that other routes are always preferred over ∞. This
typically represents an “invalid” or null route. Constraint (4)
defines a trivial route 0 to be an annihilator for ⊕, meaning
that 0 is always preferred over any other route. This typically
represents a node’s route to itself. Constraint (5) defines trans
to be strictly monotonic (a.k.a. strictly increasing) over ⊕,
meaning that applying a trans function along any edge to a
route r always makes a route that is less preferable according
to ⊕ than r.

SRPs with no solution are said to diverge. An SRP has
no solution if there is no mapping that satisfies (1). Griffin
et al. [35] present a variety of “gadgets” which demonstrate
these cases, which do not satisfy (5). We consider SRPs with
any number of solutions, meaning there may exist multiple
mappings L satisfying (1).

A solution may determine an SRP’s forwarding behavior
or another decision-making procedure, as shown in [19]. We
omit discussing forwarding behavior to focus on a general SRP
definition without restricting ourselves only to forwarding.

IV. CUTTING SRPS

We now introduce our original contributions, starting with
open SRPs. We define a CUT procedure to partition an open
SRP into fragments. We prove that fragment have solutions
corresponding to the larger SRP’s solutions and vice-versa.

We introduce some notation in this section. dom(f) is the
domain of the function f , and f |X is the restriction of f to
X ⊆ dom(f). We use subscripts to specify SRP components,
e.g., initS refers to SRP S’s init component.

A. Open SRPs

An open SRP generalizes our earlier SRP definition to
include assumptions and guarantees. An open SRP instance
S is an 8-tuple (V,E,R, init,⊕, trans, ass, guar).

The first six elements are exactly as for regular (closed)
SRPs. The final two elements, ass (“assumptions”) and guar
(“guarantees”), are partial functions (V ↪→ R) mapping
mutually disjoints subsets V in , V out ⊆ V to routes. We use
V in (input nodes) as a shorthand for dom(ass) and V out

(output nodes) as a shorthand for dom(guar). All nodes that
are neither input nor output nodes are “base nodes” V base . A

2These constraints are sufficient to ensure uniqueness, but not necessary.

6

closed SRP is an open SRP where V in = V out = ∅. Going
forward, we assume an open SRP wherever we write “SRP”.

Input nodes are source nodes (i.e., they have in-degree 0).
Hence, they act as auxiliary nodes, indicating where a fixed
incoming route “arrives” from outside the SRP, as specified
by the assumptions ass. Output nodes correspondingly mark
where routes “depart” the SRP, per the guarantees guar. We
do not require any connectivity properties of output nodes:
they simply identify an outgoing route we wish to guarantee,
without detailing where the SRP is announcing that route to.3

Fig. 6 illustrates this concept.

Definition IV.1 (Open SRPs). An open SRP instance S =
(V,E,R, init,⊕, trans, ass, guar) has the following properties:

• V = V in ∪ V out ∪ V base and V in , V out , V base are
pairwise-disjoint;

• ass : V in → R and guar : V out → R; and
• ∀v ∈ V in . in-degree(v) = 0.

1) Open SRP Solutions: A mapping L : V → R is a
solution to an open SRP iff :

L(u) = init(u)⊕
⊕
vu∈E

trans(vu,L(v)) ∀v /∈ V in (6)

L(u) = ass(u) ∀v ∈ V in (7)
L(u) = guar(u) ∀v ∈ V out (8)

Note that Equations (6) and (8) both apply for all outputs v ∈
V out . Solutions for open SRPs resemble closed SRP solutions,
with the addition of constraints based on the values of ass and
guar. For any input node u, its assumption ass(u) determines
the node’s solution directly; for an output node u, its solution
L(u) must be consistent with both the right-hand side of (6)
and the right-hand side of (8). Hence, if ∃u ∈ V out . init(u)⊕⊕

vu∈E trans(vu,L(v)) ̸= guar(u), there is no solution to the
open SRP. As in closed SRPs, open SRPs may converge or
diverge. We discuss open SRPs with more than one solution
in more depth later in this section (see §IV-D).

We consider safety properties on SRP solutions. A property
P : V ×R→ B holds on a solution LS iff

∀v ∈ V base
S ∪ V out

S . P (v,LS(v)) (9)

We ignore input nodes as they are “outside” the SRP. We
can express many properties this way, including reachability,
isolation, path length, waypointing and fault tolerance [15], but
not convergence properties or properties over multiple nodes,
e.g., that two nodes u, v have the same solutions L(u) = L(v)
(useful for checking consistency across nodes, irrespective of
their exact solutions).

B. Interfaces and Cutting SRPs

We now consider how to cut an SRP S into two SRPs T1

and T2, where T1 and T2 cover S and replicate its behavior
using their assumptions and guarantees. We select a cut-set
C ⊆ E of edges in S and annotate each cut edge uv with a
route that describes the solution transferred from u to v. This

3We could have alternatively attached auxiliary nodes to output nodes to
show where routes went, but we found this definition more intuitive.

cut-set divides the non-input nodes VS \V in
S into two disjoint

subsets, W1 and W2 (we will treat input nodes separately).
We call this annotated cut-set an interface I .

Definition IV.2 (Interface). Let S be an SRP and let C ⊆ E
be a cut-set partitioning VS \V in

S . I : C → RS is an interface
if it maps every element uv of C to a route I(uv) in RS .

We now define a CUT procedure. Given an SRP S and an
interface I , CUT(S, I) partitions S into two SRPs, T1 and T2,
which we call fragments. We can CUT an SRP into arbitrarily
many SRPs by recursively cutting the resulting fragments.

Definition IV.3 (CUT). Let S be an SRP and let I be an
interface over S. Let (W1,W2) be disjoint subsets of VS \V in

S

as cut by dom(I). Given S and I , CUT(S, I) = (T1, T2),
where T1 and T2 are open SRPs where, for i ∈ {1, 2}:

V in
i = {u | u ∈ V in

S ∧ ∃uv ∈ ES . v ∈Wi}
∪ {u | ∃uv ∈ dom(I). v ∈Wi}

V out
i = {u | u ∈Wi ∧ u ∈ V out

S }
∪ {u | ∃uv ∈ dom(I). u ∈Wi}

Vi = Wi ∪ V in
i

Ei = {uv | u, v ∈ Vi ∧ uv ∈ ES}
Ri = RS

⊕i = ⊕S

initi = initS |Vi

transi = transS |Ei

assi(u) =

{
assS(u) if u ∈ V in

S

I(uv) if uv ∈ dom(I) ∧ v ∈ Vi

guari(u) =

{
guarS(u) if u ∈ (V out

S \ V in
i)

I(uv) if uv ∈ dom(I) ∧ v /∈ Vi

The resulting SRPs T1 and T2 have the following properties:
• Covering: V1∪V2 = VS and E1∪E2 = ES , with V in

1 ∪
V in
2 ⊇ V in

S and V out
1 ∪ V out

2 ⊇ V out
S ;

• Policy preservation: init, trans and ⊕ produce the same
routes as in S for all possible routes in RS ;

• Input-output nodes: every input node u in T1 or T2

that is not an input node “inherited” from S has a
corresponding output node in the other fragment, and
such that ass1(u) = guar2(u) or ass2(u) = guar1(u);

• Input-output nodes produced by I: ∀uv ∈ dom(I), u
is an input-output node with the above property;

• Shared inherited inputs: the only other nodes shared by
T1 and T2 are input nodes into both fragments inherited
from S: V1 ∩ V2 = (V in

1 ∩ V in
2) ∪ (V in

1 ∪ V in
2) \ V in

S .
Importantly, CUT defines T1 and T2 to have equal assump-

tions and guarantees along each cut edge using our interface I .
For each edge uv ∈ dom(I), CUT(S, I) establishes a guaran-
tee guar(u) = I(uv) in T1 and an assumption ass(u) = I(uv)
in T2 (or vice-versa). By requiring guarantees and assumptions
to be equal, we rely on the stability of an open SRP’s
solution to rule out circular (self-justifying) assumptions. As
u’s solution is both assumed in one fragment and guaranteed
in the other, we refer to it as an input-output node.

7

C. Fragment Solutions

1) Solutions Modulo Interfaces: The solutions of fragments
produced by CUT may be a subset of the solutions of S. The
interface I imposes new constraints on the solutions of input
nodes (7) and output nodes (8), which restrict the solutions of
these nodes to individual routes. We call these solutions that
are restricted by the interface-generated constraints solutions
modulo an interface I . Recall that an SRP has no solution
if the conjunction of the network semantics constraint (6) and
the guarantee constraint (8) is unsatisfiable at any output node.
If CUT(S, I) produces fragments with no solutions from a
monolithic SRP S with solutions, we call its interface I an
incorrect interface, as it enforces guarantees that do not respect
the monolithic solutions and lead to divergence.

We prove that if we use CUT to produce fragments T1

and T2 from S, then the joined solutions of T1 and T2 are
a solution of S; and that if S has a solution, then there always
exists a (correct) interface I such that CUT(S, I) produces
two fragments T1 and T2 where the solution of S is a solution
modulo I (when appropriately restricted) for T1 and T2. Proofs
of our theorems are available in the appendix. By showing that
the fragments’ solutions are the same as the monolithic SRP’s
modulo a given interface, we can use the fragments in place
of the monolithic SRP during verification of a property P .

We first prove that the solutions modulo a given interface
I of the fragments T1, T2 correspond to a solution of the
monolithic SRP S: each node of S maps to its fragment
solution, with S’s input nodes mapping to their expected
assumptions.

Theorem IV.1 (Fragment Solutions Are Non-Spurious). Let
S be an open SRP, and let I be an interface over S. Let
CUT(S, I) = (T1, T2). Suppose T1 has a solution L1 and T2

has a solution L2. Consider a mapping LS
′ : VS → R, defined

such that:

∀v ∈ V1. LS
′(v) = L1(v)

∀v ∈ V2. LS
′(v) = L2(v)

∀v ∈ V in
S . LS

′(v) = assS(v)

Then LS
′ is a solution of S.

Proof Sketch. By case analysis on a given node v’s group
(base nodes, input nodes, output nodes) in S. There are three
cases to consider:

• v is a base node in S: must satisfy (6);
• v is an input node in S: must satisfy (7);
• v is an output node in S: must satisfy (6) and (8).

Each case determines particular equations which must hold
on a solution at v, according to the definition of an open SRP
solution. For each case, the proof proceeds by showing that,
since v has a solution Li(v) in the fragments, that solution
will satisfy the constraints to be a solution L′

S in S.

Given a solution LS of S, we can always find a suitable
(correct) interface I to cut S, such that T1 and T2 have the
same solution as in LS for each node: we simply annotate each
cut edge uv with the solution LS(u), which is the solution
transferred from u to v in S.

Theorem IV.2 (Correct Interface Existence). Let S be an open
SRP, and let I be an interface over S. Let CUT(S, I) =
(T1, T2). Assume S has a solution LS . Assume that ∀uv ∈
dom(I). I(uv) = LS(u). Consider the following two map-
pings L1

′ : V1 → R and L2
′ : V2 → R, defined such that:

∀v ∈ V1. L1
′(v) = LS(v)

∀v ∈ V2. L2
′(v) = LS(v)

Then L1
′ is a solution for T1 and L2

′ is a solution for T2.

Proof Sketch. As with our non-spuriousness theorem above,
we prove the existence of correct interfaces by case analysis
on the group (base, input, output) of a given node v. We start
from a solution LS and show that this solution will satisfy
all the same equations as a solution for T1 and T2, using the
fact that I will define assumptions and guarantees such that
ass(v) = L(v) and guar(v) = L(v).

Theorem IV.1 implies that any property P that holds over
our fragments’ solutions modulo the interface I will hold over
the corresponding solution in the monolithic network.

Corollary IV.3 (Property Preservation Modulo Interfaces). Let
S be an open SRP, and let I be an interface over S. Let
CUT(S, I) = (T1, T2). Let P be a safety property. Assume
that T1 has a solution L1 and T2 has a solution LS . Then if P
holds on L1 and P holds on L2, P holds on the corresponding
solution LS of S.

Proof Sketch. Directly by Theorem IV.1 and the definition of
a safety property.

Similarly, Theorem IV.2 implies that a property P that holds
over a given solution in the monolithic network will hold over
the solution modulo a (correct) interface I of each fragment.
This gives a useful contrapositive for property checking: if
a property P does not hold on the solution modulo I of any
fragment, then P will also not hold on the monolithic solution.

Corollary IV.4 (Property Violation Modulo Interfaces). Let
S be an open SRP, and let I be an interface over S. Let
CUT(S, I) = (T1, T2). Let P be a safety property. Assume that
S has a solution LS , and T1 and T2 have solutions modulo
I: L1 and L2, respectively. If P does not hold on L1 or L2,
then P does not hold on LS .

Proof Sketch. The contrapositive follows directly by Theo-
rem IV.2 and the definition of a safety property.

D. SRPs with No or Multiple Solutions

We now elaborate on the special cases when CUT takes
SRPs with no or multiple solutions as input.

1) Divergent SRPs: When an SRP has no solution, at least
one of its fragments will also have no solution. This follows
directly from our non-spurious fragment solutions theorem:
suppose (for contradiction) that an SRP has no solution but all
of its fragments do (i.e., they have spurious solutions). Then
by Theorem IV.1, the combined solution of those fragments is
a solution to the SRP.

Figure 7 presents an example SRP with no solution, for
the BAD GADGET example taken from [35]. The routes in

8

a

b c

d

e
a

bda ≺ ba cba ≺ ca

deca ≺ da
eca ≺ eda

Fig. 7: The BAD GADGET SRP from [35]

this network are paths (finite sequences of nodes) π termi-
nating at a destination vn, i.e., π : v1v2 . . . vn, such that
∀i < n. vivi+1 ∈ E. When a node transfers a route, it
prepends itself to the path: trans(uv, uπ) = vuπ. ⊕ defines
a partial order ⪯ over paths: π1 ⊕ π2 = π1 iff π1 ⪯ π2.
The reflexive reduction of ⪯ is a strict partial order ≺, where
π1 ≺ π2 ⇔ π1 ⪯ π2 ∧ π1 ̸= π2. Node a advertises a route
to itself to nodes b, c and d, which then share these routes
with their neighbors. a’s neighbors all prefer to route via one
another rather than directly to a, which leads the network to
never converge to a stable solution.

Since there is no solution to BAD GADGET, there will be
no interface possible such that all fragments have a solution.
Suppose we cut e off from the rest of the network, and gave
the interface:

I = {de 7→ deca, ce 7→ ca, ec 7→ eca, ed 7→ eca}

Then the fragment containing e will have a solution that
precisely matches the interface routes, namely

L(c) = ca L(d) = deca L(e) = eca

But the fragment containing a, b, c and d will have no solution!
The problem stems from our guarantees: c must have a route
ca, which means it must not have been offered a route ba by
b; for that to be the case, b must have its more preferred route
bda; but that means that d’s route would have to be da, which
violates the guarantee that d’s route is deca! This captures the
same divergent routing behavior as in the monolithic network.

A similar problem occurs if the interface specifies the next-
best route at e:

I = {de 7→ da, ce 7→ cba, ec 7→ eda, ed 7→ eda}

The fragment containing e has a new solution now (again as
defined by the interface), but the larger fragment still diverges.
If d chooses the route da, then b will receive a route bda,
which it prefers over ba, and therefore c will select the route
ca, thereby breaking its guarantee to select the route cba.

2) SRPs with Multiple Solutions: SRPs with multiple so-
lutions can produce fragments with multiple solutions. To
illustrate this idea, consider the network shown in Figure 8, for
the DISAGREE example taken from [35]. Once again, routes
are paths. Node a advertises a route to itself to nodes b and c:
both b and c prefer routes via one another over routing directly
to a. As shown in [35], this network converges to two distinct
solutions:

Solution 1: L(a) = a L(b) = bca L(c) = ca

Solution 2: L(a) = a L(b) = ba L(c) = cba

Suppose we cut the DISAGREE network into two fragments
Ta and Tbc using the interface:

I1 = {ab 7→ a, ac 7→ a, ba 7→ bca, ca 7→ ca}

a

b cbca ≺ ba cba ≺ ca

a

Fig. 8: The DISAGREE SRP from [35]

a

b c

d

bca ≺ ba cba ≺ ca

a

da

Fig. 9: A fragment of the DISAGREE+1 SRP with two
solutions.

The resulting fragment Tbc containing nodes b and c has a
single solution: the first one given above. The second solution
to the monolithic network cannot satisfy the guarantees that
L(b) = bca and L(c) = ca. If we cut the network using a
different interface:

I2 = {ab 7→ a, ac 7→ a, ba 7→ ba , ca 7→ cba }

Then the resulting fragment again has a single solution, the
second one.

In both cases above, we obtained fragments with one
solution from a monolithic network with two solutions. This
was due to the interface fixing the routes at both nodes which
have multiple solutions in the monolithic network. Other net-
works and cuts can produce fragments with multiple solutions.
Suppose we had an alternative SRP “DISAGREE+1”, which
resembled the DISAGREE network, but with an additional node
d connected to node a, that like b and c seeks to route to a. We
may cut the network along the ad edge to produce a fragment
like the one shown in Figure 9. This fragment will have (at
most) two solutions (the two specified above), while its sibling
fragment (containing only a and d) will have (at most) one
(the path da).4

3) Properties of Fragment Solutions: Corollary IV.3 says
that a property of DISAGREE’s solutions modulo these inter-
faces holds on the corresponding solution(s) in the monolithic
network. In this example, the fragment has two different
solutions modulo the two interfaces I1 and I2. If we wanted to
check a property such as “all nodes in DISAGREE have a path
of at most 2 hops to a”, we could check that property against
both solutions by cutting DISAGREE once with I1 and again
with I2. We could then conclude that, since this property holds
on both possible fragments, it holds on both solutions of the
monolithic network.5 On the other hand, Corollary IV.4 says
that, if P does not hold on a fragment’s solution, then we know
that P also does not hold on the monolithic network. We can

4We qualify with “at most” since, if the interface is incorrect, then the
fragments will have no solution.

5In monolithic verification, when a network has multiple solutions, a
property that may hold on one solution may not hold for the others. We
must therefore be sure to have considered interfaces that capture all the
network’s solutions before arguing that a property holds on all solutions when
performing modular verification.

9

Algorithm 1 The fragment checking algorithm.

1: proc SOLVE(fragment T , property P)
2: M ← ENCODE(T) ▷ (6)
3: A←

∧
u∈V in

T
LT (u) = assT (u) ▷ (7)

4: G←
∧

u∈V out
T
LT (u) = guarT (u) ▷ (8)

5: Q←
∧

u∈V base
T ∪V out

T
P (u,LT (u)) ▷ property check

6: return ASKSAT(A ∧M ∧ ¬(G ∧Q))

7: proc CHECK(SRP S, property P , interface I)
8: T1, . . . , Tn ← CUT(S, I)
9: for i← 1, n do in parallel

10: r ←SOLVE(Ti, P)
11: if r ̸= UNSAT then
12: return r
13: return UNSAT

use an SMT solver to search for solutions to the fragments of S
such that the negated property ¬P holds for any fragment. We
present our technique for doing so in the following section.

V. CHECKING FRAGMENTS IN SMT

We now present our three-step modular verification method-
ology: (i) given an SRP S and an interface I , produce n
fragments using CUT(S, I); then (ii) in parallel, encode each
fragment to SMT and check its guarantees and a safety
property P under the given assumptions; and (iii) if any
guarantees fail, let the user refine I or correct network bugs.
If the SMT solver verifies P and all guarantees over S’s
fragments, we can conclude that it has verified P over S.
Our algorithm below can verify guarantees and properties of
networks with at most one solution for every output node: if
given a multi-solution network, this algorithm may report false
negatives (spurious counterexamples). These false negatives
represent cases where an output node has multiple solutions,
but the given interface’s guarantee can only capture one of
them. We discuss an alternative algorithm that does not suffer
from such false negatives in §VIII.

A. The Fragment Checking Algorithm

Algorithm 1 shows how we cut an SRP and check the three
constraints on open SRP solutions (described in §IV-A1) on
each of the fragments. We start in the CHECK procedure on
line 1.7. CHECK calls CUT(S, I) to cut S into fragments, and
then calls SOLVE (line 1.1) on each fragment, reporting any
SAT result it receives back from the solver. SOLVE encodes (6)
on line 1.2, (7) on line 1.3, (8) on line 1.4, and the check that P
holds on line 1.5. Since we want to know if G or P are ever
violated, our query formula conjoins M (i.e., ENCODE(T))
and A with the negation of G∧Q (line 1.6). ASKSAT asks an
SMT solver if this formula is satisfiable, and returns either SAT
with a model, or UNSAT. This model will be a counterexample
mapping L from VT to RT where the ENCODE(T) and
A constraints hold, but ∃u ∈ V out

T . LT (u) ̸= guarT (u)
(guarantee violation) or ∃u ∈ VT . LT (u) /∈ P (u) (property
violation). Otherwise, if the solver returns UNSAT, then the

guarantees and property always hold, or the network has no
solution.

B. Refining Interfaces

Assuming the network has a solution, if every fragment’s
guarantee check and property check return UNSAT, by The-
orem IV.1 we may conclude that our interface is correct (it
produces fragments which capture a monolithic solution), and
by Corollary IV.3 we have that P holds for this monolithic
solution since it holds for the fragments’ solutions. However,
if any fragment returns SAT, we must determine why our
guarantees or property were violated. For example, in §II,
we considered if our interface correctly captured the intended
network behaviour, but a bug in the network policy led to a
guarantee violation. If the reverse were true — our network
is configured correctly, but our interface is incorrect — we
must refine our interface to correct it. Both cases may be
common in practice, and point to the importance of checking
our interfaces: counterexamples provide users with insight into
why the network’s actual behavior does not conform to their
beliefs. Other annotation checking tools like Dafny [42] may
use a similar interactive process of refining interfaces as the
user identifies inconsistencies or bugs.

By Theorem IV.1, we know that any incorrect interface
will not define a solution in T1 and T2, meaning our check
in SOLVE will fail and return a counterexample. This coun-
terexample may then suggest a new interface we can provide
in a successive run of CHECK. Returning to our fattree
fragments in Fig. 4, suppose we used the same interface
except for an incorrect annotation I(c0a4) = ⟨ d, 1 ⟩. To
check the corresponding guarantee, we generate a constraint
Lspines(c0) = ⟨ d, 1 ⟩. SOLVE(Tspines, P) returns SAT, pro-
viding Lspines(c0) = ⟨ d, 2 ⟩ as a counterexample. We can
then inspect Tspines to see that ⟨ d, 1 ⟩ is not a possible route
given the assumptions on c0’s input nodes, and correct our
interface to specify ⟨ d, 2 ⟩ instead.

VI. IMPLEMENTATION

We built Kirigami on top of the NV language [23]. NV
represents routing protocols, such as BGP, OSPF and RIP,
using an SRP-like model and a toolbox of types and data
structures such as booleans, integers, tuples, records, maps
and non-recursive functions. Our Kirigami extension adds
partition and interface functions to NV: when we run
NV on a file that declares these functions, NV cuts the SRP
into fragments as described by Definition IV.3 of CUT. The
partition function maps each node to a fragment, while
the interface function defines the interface I .

Kirigami’s SMT encoding follows Algorithm 1, using NV’s
monolithic SRP encoding as the encoding function ENCODE.
Our implementation uses the OCaml Parmap library [43]
to parallelize fragment-specific work, including decomposing
properties and the embarrassingly-parallel SOLVE procedure.
The only limit on parallelism is the number of CPU cores.

10

VII. EVALUATION

We evaluated Kirigami on a variety of NV benchmarks
representing fattree, random and Internet topologies. Our ques-
tions focus on the scalability and performance of Kirigami
in comparison to NV, specifically: (i) does Kirigami improve
on NV verification time across topologies and properties, and
(ii) how do different cuts impact Kirigami performance? We
consider two metrics for verification time: the maximum time
reported to verify an SMT query encoding the monolithic
network or fragment using the Z3 [44] SMT solver;6 and the
“total time” of NV, which is the time taken by NV’s pipeline
of network transformations, partitioning (for cut networks),
encoding to SMT and solving the query or queries.

We ran each benchmark on a computing cluster node with a
2.4GHz CPU and up to 128GB of memory per CPU core. For
cut benchmarks, we parallelized partitioning and solving over
up to 32 cores.7 Each benchmark tested verification of either
the monolithic network or a cut network. We timed out any
benchmark that did not finish solving a Z3 query in 2 hours.8

A. Fattrees

To evaluate Kirigami’s performance for fattrees, we made
use of the shortest path policy SP and valley-free policy
FAT described in [23], along with two extensions: an all-edge
reachability policy AP and an original fault-tolerance policy
MAINT. Whereas SP checks reachability of a fixed prefix of
an edge layer node, AP verifies that all prefixes of edge layer
nodes are reachable using a symbolic variable for the set of
possible prefixes. MAINT extends SP by requiring that nodes
avoid routing through a non-destination node down which
is currently down for maintenance. We check this property
for any down node by encoding down as a symbolic value.
The set of routes R modelled routing using a combination of
eBGP, connected and static routes: for eBGP, we represented
its fields with bitvectors representing local preference, AS path
length, the multi-exit discriminator (MED), and a set of integer
BGP community tags; for connected and static routes, we
use integers representing the next hop; we model the choice
between eBGP, connected and static routing using 2 bits.

As in [23], we parameterize fattree designs by k, the number
of pods: we vary the topology size from k = 4 (20 nodes) to
k = 20 (500 nodes) to assess scalability.9 Furthermore, we
consider four different cuts of our fattree networks:

• Vertical: creates 2 fragments, each with half the spines
and half the pods (5k

2

8 nodes);
• Horizontal: creates 3 fragments: the pod containing the

routing destination (k nodes), the spines (k
2

4 nodes), and
all the other pods (k2 − k nodes);

6As we can solve each fragment SMT query independently, the maximum
query time is an upper bound on the total SMT solve time when we solve
every fragment in parallel.

7Benchmarks with i < 32 fragments ran in parallel on i cores. As each
core could use up to 128 GB of memory, the total memory available was
128i GB (up to 4 TB).

8Cut benchmarks call Z3 multiple times, and hence had a two-hour limit
on individual calls: total NV time could then exceed 2 hours.

9A k-fattree has 5
4
k2 nodes and k3 edges.

• Pods: creates k + 1 fragments (given k pods): the spine
nodes, and each pod (k nodes) in its own fragment; and

• Full: creates |V | fragments (given |V | nodes), with every
node in its own fragment.

To simplify the process of coming up with interfaces for
evaluating these parametric networks, we wrote a script to
generate interfaces for each of our policies. We computed
BGP AS path lengths for each node using graph algorithms,
and then generated the other route fields according to the
policy’s behavior.10 For SP, we only computed shortest paths.
For AP, we determined path lengths based on a node’s tier
relative to the symbolic destination node, as presented in
§II. For FAT, we replicated how the policy sets community
tags according to each pod’s tier to block down-up-down
routes (valleys) [45], [46]. For MAINT, we used Yen’s 2-
shortest paths algorithm [47]: this gives the shortest and
second-shortest path (taken if down lies on the shortest path)
to the destination from each node. We then assigned routes
conditioned on the length of the shortest path avoiding down.

We compare SMT verification time for monolithic bench-
marks versus their cut counterparts in Fig. 10. We plot the
number of nodes in the monolithic benchmark against the
maximum time spent by Z3 solving the SMT queries. Time
is shown on a logarithmic scale. All policies show extreme
improvements in SMT time as the number of fragments grows.
The maximum SMT time for a full cut fragment of our largest
SP benchmark is six orders of magnitude faster than the
monolithic time. The FAT policy’s SMT encoding is most
complex, leading to timeouts for the monolithic FAT16 and
FAT20 benchmarks: monolithic SMT solving also times out
for AP20 and MAINT20. Most fragments are proportionally
sized in terms of non-input nodes11, but fragments with more
input nodes such as spine fragments or with more complex
policies tend to take longer to solve.

Fig. 11 plots the times for end-to-end NV verification, again
on a logarithmic scale. These times include partitioning the
network and encoding queries to SMT. SMT encoding and
solving dominate all other operations in all benchmarks, except
for fully-cut benchmarks, where partitioning is the longest-
running operation (between 25–65% of NV time). Partitioning
takes up to 25% of NV time for the pods and horizontal cuts:
thanks to the reduced SMT time for these benchmarks, they see
the best speedup relative to the monolithic benchmarks, e.g.,
for k = 16 benchmarks, we see the pods cut finish 5–25 times
faster than the monolithic benchmark. The pods and full cut
benchmarks for FAT20 hit our memory limit with 128 GB per
core. We increased available memory while decreasing cores
(16 cores, 256 GB for pods; 8 cores, 512 GB for full) to handle
them (results in Fig. 11c). This does not affect Z3 times, but
NV times could improve with more available memory.

B. Random Networks
We next assess Kirigami with randomly-generated topolo-

gies of N nodes using the Erdős–Rényi–Gilbert model [48],

10We used Kirigami’s counterexamples to debug mistakes in our reasoning
when writing our script, as described in §V.

11The horizontal benchmark is a notable exception, where the “non-
destination pods” fragment is significantly larger.

11

0 200 400
≤ 10−2

100
102
104 SMT t/o

Nodes

SM
T

Ti
m

e
[s
]

(a) SP

0 200 400

Nodes

(b) AP

0 200 400

Nodes

(c) FAT

0 200 400

Nodes

(d) MAINT
mono.
vert.

horiz.
pods
full

Fig. 10: Largest SMT solve times for fattree benchmarks.

0 200 400

100

102

104

Nodes

N
V

Ti
m

e
[s
]

(a) SP

0 200 400

Nodes

(b) AP

0 200 400

Nodes

(c) FAT

0 200 400

Nodes

(d) MAINT
mono.
vert.

horiz.
pods
full

Fig. 11: NV times for fattree benchmarks.

24 27 210
10−2
100
102
104 timeout

Nodes

SM
T

Ti
m

e
[s
]

mono.
8

16
full

Fig. 12: Largest SMT solve times for random networks.

24 27 210

100
102
104 timeout

Nodes

N
V

Ti
m

e
[s
]

mono.
8

16
full

Fig. 13: NV times for random networks.

[49], where each edge has independent probability p of being
present. To assess scalability, we vary N and p in our
experiments according to a parameter x where N = 2x and
p = 22−x for x ∈ [4, 12]: these choices lead to networks
where 2–6% of nodes are disconnected from the others. We use
BGP routes and a pure shortest-path policy based on SP for
these networks, and check that nodes can reach the destination:
we then report counterexamples for disconnected nodes and a
positive verification result for connected nodes. Once again,
we used a script to generate interfaces using a shortest paths
algorithm. To choose cuts, we use a graph partitioning tool,
hMETIS [50], to compute i fragments for each network.
The computed fragments minimize the number of edges cut
between fragments, and capture clustering behavior of the
topology, while minimizing variance in fragment size. We
consider i = 8 and i = 16, and a full cut (i = |V |).

We show the maximal SMT solve times for these bench-

mono. 8 64 512
10−2

100
102

Fragments

SM
T

Ti
m

e
[s
]

B41
B174
B754

Fig. 14: Largest SMT solve times for TopologyZoo networks.

marks in Fig. 12 and NV times in Fig. 13.12 Monolithic
verification hits our Z3 timeout at N = 256; with 8 fragments,
verification times out on the 8 times larger N = 2048 network.
With 16 fragments, Z3 verifies N = 4096 in under 8 minutes,
and when fully partitioning, Z3 takes at most 0.4 seconds to
finish, with NV terminating for N = 4096 after 37 minutes.

C. Backbone Networks

We evaluated Kirigami with backbone network topologies
from the Internet Topology Zoo [51]. We consider three net-
works: a 41-node (50-edge) topology B41, a 174-node (205-
edge) topology B174 and a 754-node (895-edge) topology
B754. As before, we model BGP routing throughout. B41’s
policy enforces no-transit and drops routes transiting [45]
through AS customers or peers (relationships inferred from the
topology [52]). B174 and B754 use a shortest-path policy as
in SP. As for random networks, we compute i fragments using
hMETIS. We consider i = 2, 4, 7, 41 for B41, i = 2, 4, 20, 174
for B174, and i = 2, 4, 8, 25, 75, 754 for B754.

Fig. 14 and Fig. 15 show how the number of fragments
affects SMT solve time and NV time, respectively. Like other
benchmarks, larger cuts lead to greater reductions in SMT
solve time, while NV time is lowest for non-full cuts (i = 4
for B174 and i = 25 for B754).

12We included verification times for both connected and disconnected
fragments: we did not see significant differences between the two.

12

mono. 8 64 512
10−1

101

103

Fragments

N
V

Ti
m

e
[s
]

B41
B174
B754

Fig. 15: NV times for TopologyZoo networks.

VIII. CHECKING MULTI-SOLUTION FRAGMENTS

Theorems IV.1 and IV.2 respectively ensure that, given so-
lutions to our fragments, we have a solution to the monolithic
SRP, and that a solution to the monolithic SRP is also a
solution to our fragments. Practically speaking, it is easier to
reason over a network’s behavior when the network converges
to a single solution, and multiple solutions are hence usually
a sign that something is wrong in a network. That being said,
there is theoretical interest in understanding how to design
a verification procedure to check solutions of multi-solution
networks. Such a procedure, like our Algorithm 1, should be
able to check that a user’s interfaces are correct and that their
properties of interest hold.

We remarked in §V that Algorithm 1 is designed for
networks with at most one solution for every output node, and
may report spurious guarantee violations for multi-solution
networks. This is because the algorithm checks if there exists a
mapping that satisfies the assumptions and network semantics,
but violates its guarantees. In a fragment with a single solution,
this is sufficient to determine that the interface is incorrect,
as the counterexample mapping will correspond to the sole
solution of the fragment. But if there are multiple solutions
satisfying a fragment’s network semantics, there will always
exist an alternative solution that violates the guarantees.

To resolve this problem, we can modify our algorithm to let
users provide multiple interfaces. Given a fragment where a
particular choice of assumptions can satisfy multiple guaran-
tees, the algorithm should ask if there exists another mapping
that violates all of the guarantees specified so far, given this
choice of assumptions. When the solver finds that another
mapping (i.e., a counterexample) exists, the user can examine
it to decide if this counterexample represents (i) an unexpected
behavior (suggesting a bug), or (ii) another intended solution
the network converges to, but which none of the guarantees
considered. In the first case, we can debug the network as
before; in the latter case, the user could rerun verification
with an additional interface representing this intended solution.
This process resembles an ALL-SMT enumeration of the
fragments’ solutions, which the user can terminate at any
point, once they have considered all the solutions of interest.

1) Fragment matrices: To check a choice of assumptions
against multiple guarantees at once, we need to group all the
fragments of our network by their assumptions ass. Different
fragments’ assumptions may differ, either in terms of (a) their
domain dom(ass), determined by which nodes are in the
fragment; and (b) their image, determined by the routes
assigned by the interfaces. We first group the fragments by
their assumptions’ domains, and then by their image. The first

grouping is straightforward from how the network is cut. If we
provide m interfaces that all cut the same set of edges of a
monolithic network N , after performing the m cuts there will
be m×n fragments in total. We call the entire group of m×n
fragments a fragment matrix. Each of the m rows of the matrix
represent all the fragments produced by one interface, while
each of the n columns represent all the annotations over one
“sub-topology” (Figure 16 shows four fragments that would
all belong in the same column). We refer to each column
of the fragment matrix as equal modulo interfaces: since we
used different interfaces over the same set of edges, by the
definition of CUT, all the fragments in the column have equal
components apart from their ass and guar functions.13

Definition VIII.1 (Fragment Equality Modulo Interfaces). Let
T1 and T2 be fragments. T1 is equal modulo interfaces to T2

if

G1 = G2 ∧R1 = R2 ∧ ⊕1 = ⊕2∧
trans1 = trans2 ∧ init1 = init2

For example, given three interfaces I1, I2 and I3 which
cut an SRP S into a “left” and “right” fragment, we cut S
with the interfaces to produce a 3-by-2 matrix T of six frag-
ments T1,1, T1,2, T2,1, T2,2, T3,1, T3,2. The columns T∗,1 =
(T1,1, T2,1, T3,1) and T∗,2 = (T1,2, T2,2, T3,2) of this matrix
then group together the “left” fragments and “right” fragments
respectively, such that every fragment in the column is equal
modulo interfaces I1, I2, I3.

Even though each column is equal modulo interfaces,
individual interfaces may assign different assumptions and
guarantees to the input and output nodes, so that the images
of ass and guar differ across fragments. Different assump-
tions ass can produce different routing behaviors: as such, to
check multiple guarantees, we want to identify each group of
identical assumptions that applies to one or more possibly-
different guarantees. To do so, we subdivide each column
of fragments into assumption groups, such that all fragments
in the assumption group also have equal ass. This ensures
that we verify all output routes resulting from each choice
of input assumptions. We can then check that each choice
of assumptions produces one of the provided guarantees in a
single SMT query.

For example, we have three fragments that are equal modulo
interfaces in column T∗,1 = (T1,1, T2,1, T3,1). Suppose that
ass1,1 = ass2,1, but ass1,1 ̸= ass3,1 and ass2,1 ̸= ass3,1. Then
the column subdivides into two assumption groups: T ass

1 =
{T1,1, T2,1} and T ass

2 = {T3,1}.
The multi-solution checking algorithm is shown in Algo-

rithm 2. Line 2.8 shows our CHECK procedure from before,
which now takes a variable number m of interfaces I1, . . . , Im
as input. CHECK requires that all interfaces have the same
domain, meaning they cut the same edges: dom(I1) =
dom(I2) = . . . = dom(Im). It then loops over the inter-
faces to construct the fragment matrix T on line 2.10. Next,

13Under the usual extensional meaning of function equality, i.e., two
functions f : A → B and g : C → D are equal iff A = C, B = D
and ∀x ∈ A, f(x) = g(x).

13

Algorithm 2 The multi-solution fragment checking algorithm.

Require: ∀T1, T2 ∈ T a. ass1 = ass2
1: proc SOLVE(assumption group T a, property P)
2: T ← choose representative T ∈ T a

3: M ← ENCODE(T) ▷ (6)
4: A←

∧
u∈V in

T
LT (u) = assT (u) ▷ (7)

5: G←
∨

Ti∈Ta

∧
u∈V out

T
LT (u) = guarTi

(u) ▷ (8)
6: Q←

∧
u∈V base

T ∪V out
T

P (u,LT (u)) ▷ property check
7: return ASKSAT(A ∧M ∧ ¬(G ∧Q))

Require: dom(I1) = dom(I2) = . . . = dom(Im)
8: proc CHECK(SRP S, property P , interfaces

I1, I2, . . . , Im)
9: for i← 1,m do in parallel

10: Ti,1, . . . , Ti,n ← CUT(S, Ii) ▷ fragment matrix
11: for j ← 1, n do in parallel
12: T a

1 , T
a
2 , . . . , T

a
o ← ASSUMPTIONGROUPS(T∗,j)

13: for k ← 1, o do in parallel
14: r ←SOLVE(T a

k , P)
15: if r ̸= UNSAT then
16: return r
17: return UNSAT

each column T∗,j (corresponding to all fragments over the
same subgraph) is subdivided by the ASSUMPTIONGROUPS
procedure on line 2.12, which partitions the column into
o assumption groups T a

1 , T
a
2 , . . . , T

a
o . We use a modified

SOLVE procedure to check each assumption group on line 2.1.
Since all the fragments in the assumption group are equal
apart from their guarantees guar, SOLVE arbitrarily picks a
“representative” fragment T from the group to encode the
network semantics as a formula M (line 2.3) assumptions as
a formula A (line 2.4) and property check as a formula Q
(line 2.6) exactly as in Algorithm 1. The change is on line 2.5:
we modify the guarantee formula G to take the disjunction
of all fragments’ guarantees guari for all Ti ∈ T a. We can
then check each group T a with a single SMT query (line 2.7):
given the network semantics encoding M and the assumptions
A, does there exist a solution LT which satisfies M and A
but violates all fragments’ guarantees or the property P ? Our
total number of SMT queries is the number of fragments
times the number of distinct (non-equal) assumptions given
per fragment, |{assT | T ∈ CUT(S, Ij), 1 ≤ j ≤ m}|, which
is upper bounded by n×m.

2) Checking Guarantees with Algorithm 2: Let’s explore
how our algorithm works by using the DISAGREE network
presented earlier in §IV-D. Figure 16 presents the Tbc fragment
of the network (a is an input node, b and c are output nodes),
annotated with four different interfaces: two good interfaces I1
and I2, corresponding to solutions of the monolithic network;
and two bad interfaces I3 and I4, which do not correspond to
monolithic solutions.

a) One good interface: Suppose we cut the network us-
ing interface I1 shown in Figure 16a. This interface represents
one of the two possible solutions to the monolithic network,
but it is not the only one. We may ask the solver to find us

a

b c

a

ba cba

(a) Good interface I1

a

b c

a

bca ca

(b) Good interface I2

a

b c

a

ba ca

(c) Bad interface I3

a

b c

a

bca cba

(d) Bad interface I4

Fig. 16: The Tbc fragment of the DISAGREE SRP from [35],
annotated with four different interfaces. Interfaces I1 and I2
are “good” interfaces which capture solutions of the mono-
lithic network, while I3 and I4 are “bad” interfaces which do
not correspond to solutions of the monolithic network.

another solution to Tbc, such that L(b) ̸= ba or L(c) ̸= cba.
In this case, it returns the counterexample:

L(a) = a L(b) = bca L(c) = ca

which corresponds to interface I2 shown in Figure 16b. As
shown in §IV-D, this is the other monolithic solution!

b) All good interfaces: We can rerun verification using
both interfaces I1 and I2, asking the solver to find a solution
after blocking the earlier solutions, i.e.,

(L(b) ̸= ba ∨ L(c) ̸= cba) ∧ (L(b) ̸= bca ∨ L(c) ̸= ca)

This query is unsatisfiable, so the solver returns UNSAT,
allowing us to conclude that there does not exist any other
solution to the fragment.

c) Bad interfaces: Suppose instead that we called
CHECK with interface I3 (Figure 16c). This interface does not
correspond to a solution. When we provide it to the solver, we
once again receive a counterexample corresponding to one of
the two previous interfaces I1 or I2. Calling CHECK with I3
and the additional interface I4 (Figure 16d) produces a similar
response. We ask the solver for a solution to Tbc such that
(L(b) ̸= ba ∨ L(c) ̸= ca) ∧ (L(b) ̸= bca ∨ L(c) ̸= cba): the
solutions captured by I1 and by I2 both satisfy this formula,
so the algorithm again returns a counterexample.

d) Non-minimal interface sets: Observe that a limitation
of this algorithm is it does not identify whether any of
the given interfaces correspond to non-solutions, or suggest
whether the given set of interfaces can be “trimmed” to remove
non-solutions. For example, if we provided interfaces I2, I3, I4
to the algorithm, it will return the same counterexample

L(a) = a L(b) = ba L(c) = cba

just as if we’d given only I2, or I2 and I3, or I2 and I4 as
potential interfaces. We therefore should interpret a result of
UNSAT as stating that the given interfaces capture all solutions
of the monolithic network, and that the property holds on

14

them — but not that the given interfaces are the minimal such
set. Indeed, if a fragment has no solution, then, no matter
the property we provide, our procedure will return UNSAT—
much like any other verification procedure that searches for
property violations or behaviors that should not occur.

3) Checking Properties with Algorithm 2: Checking prop-
erties via Algorithm 2 works similarly to how it did in
Algorithm 1, but with the caveat that interfaces may poten-
tially constrain the solutions of the fragment relative to the
monolithic network, as discussed in §IV-D. For instance, in
the example here, the M and A constraints in SOLVE allow
for both a ba and a bca route at node b. Therefore, if we
supplied a property P to check that node b has a route ba
or bca — P (b,L(b)) ≡ L(b) = ba ∨ L(b) = bca, our SMT
query in SOLVE would ask if there exists a solution to our
fragment such that b does not have such a route. This property
holds regardless of the given interface — no interface could
constrain L(b) to be any other value such that ¬Q is satisfiable
— and we will hence be able to conclude that P is valid.

If on the other hand we supplied an incorrect property P ′

where P ′(b,L(b)) ≡ L(b) = ba, then our algorithm will
ask the solver if there exists a solution where b does not
have the route ba. In this case, the solver can find a property
counterexample where b’s route is bca. The exact counterex-
ample returned depends in part on the interfaces provided.
As line 2.6 shows, the solver may search for a guarantee
violation or a property violation, so bad interfaces may lead
to only guarantee violations, but can also produce guarantee
and property violations, e.g., calling CHECK with interface I4
violates the guarantees and the property L(b) = ba.

If we cut the Tbc fragment again to produce two fragments
Tb and Tc, Tb and Tc will have only one solution each,
depending on the choice of interface. For instance, if Tb

assumes a route L(c) = bca, L(b) is guaranteed to be ba.
Checking an interface akin to I2 will hence not reveal if
the property P ′ holds of all solutions of b in the monolithic
network. We must provide another interface where ass(c) = ca
and guar(b) = bca to cover b’s other monolithic solution.

IX. RELATED WORK

A. Data Plane Analysis

Much prior work has analyzed properties of the network
data plane [6]–[13]. These tools operate on snapshots of the
data plane — representing the global forwarding state at a
single point in time — and verify that forwarding properties
are satisfied.

Our approach most closely resembles the work of Ja-
yaraman et al. on SECGURU and RCDC [13]. SECGURU
verifies reachability using invariants it infers from specific data
center topologies: our work develops a formal theory to verify
arbitrary properties and invariants as specified by a user’s
interface, provides a framework for doing so automatically
and instead focuses on the control plane.

Another relevant work is that of Plotkin et al. [12]. They
demonstrate the use of bisimulations to relate simpler networks
and formulas to more complex ones, improving verification
scalability. Modular verification is recognized as a viable

direction but left as future work; we focus on using modular
verification in the control plane.

B. Control Plane Analysis

Our open SRP model builds on work on formal models of
control planes, in particular, Bonsai’s SRP model [19]. Other
prior work [35], [40], [41] considered properties of routing
algebras that are necessary to ensure networks converge to a
unique solution; we instead focus on checking safety prop-
erties of these networks’ solutions, irrespective of how many
solutions exist.

Two efforts closest to our own in modular control plane
verification are Lightyear [53] and Timepiece [54]. Lightyear
verifies safety properties for BGP networks using local in-
variant checks on a network’s nodes and edges. Invariants in
Lightyear are formulas rather than concrete routes, reducing
the annotation burden; however, it cannot verify reachabil-
ity properties and is restricted to BGP. Timepiece likewise
chooses different tradeoffs to Kirigami: while it also allows
users to specify arbitrary invariants, the user must provide
specific times for their invariants and reason over when routes
arrive, which may be difficult to do for complex networks.

Other control plane verification tools scale by abstract-
ing routing behaviors, rather than modularizing the network.
Bonsai [19] and Origami [20] compress concrete networks
to smaller abstract networks which soundly approximate the
original. Compression requires similar forwarding behavior
between nodes; our approach avoids this restriction.

Our SMT encoding is inspired by Minesweeper [15], al-
though we do not consider packet forwarding (only routing)
and Minesweeper cannot perform modular verification. Several
other tools [21]–[25], [28] use simulation-based techniques to
scale verification up to large networks, but make pragmatic
choices as to what arbitrary behaviors they can represent or
properties they can verify. For instance, Plankton [24] uses
explicit-state model checking to check a comparable set of
properties to Minesweeper. Plankton can analyze networks
with symbolic packets by using equivalence classes, but
appears to need additional support to model other routing
characteristics symbolically. None of these tools modularize
the network: one could potentially extend them with modular
techniques to improve their scalability. Other analyses also do
not consider modularizing the network, and many are more
restrictive than our approach: either limited to specific network
properties [16], [17] or to specific protocols [18].

C. Modular Verification

Our work borrows from the compositional verification tech-
nique of assume-guarantee reasoning [30], [55], [56]. Such
reasoning has been widely used in software, hardware and
reactive systems [29], [56], [57]. While [58] applies assume-
guarantee in network congestion control, it appears to be unex-
plored in analyzing routing. Instead of modeling processes, we
model network fragments, whose shared environment is their
input and output nodes. By requiring a partition’s assumptions
and guarantees to be equal, our reasoning avoids the common
pitfall of circularity by relying on the stability of an open

15

SRP’s solution. Work exists on improving SMT solver per-
formance by heuristically partitioning an SMT instance into
independent instances with distinct search spaces [59]. Our
approach is specifically for network fragments, where we focus
on generating already-partitioned SMT formulas. For large
formulas, we could additionally apply formula partitioning
techniques.

X. CONCLUSION

Networks are growing faster than SMT-based verification
can scale. Scalable and modular verification techniques can
harness the fact that operators build networks bottom-up using
local policies at each node. By providing interfaces describing
a network’s local invariants, operators can make their networks
more robust and easier to understand. We present a formal
model representing a network as a collection of fragments, and
show how our modular verification procedure uses this model
to catch bugs and check the correctness of users’ interfaces.
We prove our fragments capture the monolithic network’s
behavior and demonstrate our procedure with Kirigami, which
dramatically speeds up network verification.

REFERENCES

[1] P. Lapukhov, A. Premji, and J. Mitchell, “Use of BGP for routing in
large-scale data centers,” Internet draft, 2015.

[2] S. Sharwood, “Facebook rendered spineless by buggy audit code that
missed catastrophic network config error,” https://www.theregister.com/
2021/10/06/facebook outage explained in detail/, 2021.

[3] K. McCarthy, “BGP super-blunder: How verizon today sparked a
’cascading catastrophic failure’ that knackered cloudflare, amazon, etc,”
https://www.theregister.com/2019/06/24/verizon bgp misconfiguration
cloudflare/, 2019.

[4] Y. Sverdlik, “Microsoft: misconfigured network device led to azure
outage,” http://www.datacenterdynamics.com/content-tracks/servers-
storage/microsoft-misconfigured-network-device-led-to-azure-
outage/68312.fullarticle, 2012.

[5] T. Strickx and J. Hartman, “Cloudflare outage on June 21, 2022,” https:
//blog.cloudflare.com/cloudflare-outage-on-june-21-2022/, 2022.

[6] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King, “Debugging the data plane with anteater,” in SIGCOMM, 2011.

[7] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in NSDI, April 2012, https://www.usenix.
org/system/files/conference/nsdi12/nsdi12-final8.pdf.

[8] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. God-
frey, “Veriflow: Verifying network-wide invariants in real time,”
in NSDI, April 2013, https://www.usenix.org/system/files/conference/
nsdi13/nsdi13-final100.pdf.

[9] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in NSDI, April 2013, pp. 99–112, https://www.usenix.org/
system/files/conference/nsdi13/nsdi13-final8.pdf.

[10] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “NetKAT: Semantic foundations for
networks,” in POPL, 2014.

[11] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese,
“Checking beliefs in dynamic networks,” in NSDI, 2015, https://www.
usenix.org/system/files/conference/nsdi15/nsdi15-paper-lopes.pdf.

[12] G. D. Plotkin, N. Bjørner, N. P. Lopes, A. Rybalchenko, and G. Vargh-
ese, “Scaling network verification using symmetry and surgery,” in
POPL, January 2016.

[13] K. Jayaraman, N. Bjørner, J. Padhye, A. Agrawal, A. Bhargava, P.-A. C.
Bissonnette, S. Foster, A. Helwer, M. Kasten, I. Lee, A. Namdhari,
H. Niaz, A. Parkhi, H. Pinnamraju, A. Power, N. M. Raje, and P. Sharma,
“Validating datacenters at scale,” in Proceedings of the ACM Special In-
terest Group on Data Communication, ser. SIGCOMM ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 200–213.

[14] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein, “A general approach to network configu-
ration analysis,” in NSDI, October 2015, https://www.usenix.org/system/
files/conference/nsdi15/nsdi15-paper-fogel.pdf.

[15] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A general approach
to network configuration verification,” in SIGCOMM, August 2017.

[16] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan, “Fast
control plane analysis using an abstract representation,” in SIGCOMM,
August 2016.

[17] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. Millstein, V. Sekar, and
G. Varghese, “Efficient network reachability analysis using a succinct
control plane representation,” in OSDI, 2016, https://www.usenix.org/
system/files/conference/osdi16/osdi16-fayaz.pdf.

[18] K. Weitz, D. Woos, E. Torlak, M. D. Ernst, A. Krishnamurthy, and
Z. Tatlock, “Formal semantics and automated verification for the border
gateway protocol,” in NetPL, March 2016, https://www.dougwoos.com/
papers/bagpipe-netpl16.pdf.

[19] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “Control plane
compression,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, ser. SIGCOMM ’18.
New York, NY, USA: ACM, 2018, pp. 476–489.

[20] N. Giannarakis, R. Beckett, R. Mahajan, and D. Walker, “Efficient verifi-
cation of network fault tolerance via counterexample-guided refinement,”
in International Conference on Computer Aided Verification. Springer,
2019, pp. 305–323.

[21] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “Abstract interpreta-
tion of distributed network control planes,” Proceedings of the ACM on
Programming Languages, vol. 4, no. POPL, pp. 1–27, 2019.

[22] A. Abhashkumar, A. Gember-Jacobson, and A. Akella, “Tiramisu:
Fast multilayer network verification,” in 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20),
2020, pp. 201–219, https://www.usenix.org/system/files/nsdi20-paper-
abhashkumar.pdf.

[23] N. Giannarakis, D. Loehr, R. Beckett, and D. Walker, “NV: An interme-
diate language for verification of network control planes,” in Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI 2020. New York, NY, USA:
Association for Computing Machinery, 2020, p. 958–973.

[24] S. Prabhu, A. Kheradmand, B. Godfrey, and M. Caesar, “Predicting
network futures with plankton,” in Proceedings of the First Asia-Pacific
Workshop on Networking, ser. APNet’17, August 2017, pp. 92–98.

[25] F. Ye, D. Yu, E. Zhai, H. H. Liu, B. Tian, Q. Ye, C. Wang,
X. Wu, T. Guo, C. Jin, D. She, Q. Ma, B. Cheng, H. Xu,
M. Zhang, Z. Wang, and R. Fonseca, “Accuracy, scalability, coverage:
A practical configuration verifier on a global WAN,” in Proceedings
of the Annual Conference of the ACM Special Interest Group on
Data Communication on the Applications, Technologies, Architectures,
and Protocols for Computer Communication, ser. SIGCOMM ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
599–614, https://doi.org/10.1145/3387514.3406217. [Online]. Available:
https://doi.org/10.1145/3387514.3406217

[26] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook
of model checking. Springer, 2018, pp. 305–343.

[27] A. Gember-Jacobson, A. Akella, R. Mahajan, and H. H. Liu, “Automat-
ically repairing network control planes using an abstract representation,”
in Proceedings of the 26th Symposium on Operating Systems Principles,
2017, pp. 359–373.

[28] N. P. Lopes and A. Rybalchenko, “Fast BGP simulation of large data-
centers,” in International Conference on Verification, Model Checking,
and Abstract Interpretation. Springer, 2019, pp. 386–408, https:
//web.ist.utl.pt/nuno.lopes/pubs/fastplane-vmcai19.pdf.

[29] T. A. Henzinger, S. Qadeer, and S. K. Rajamani, “You assume, we
guarantee: Methodology and case studies,” in International Conference
on Computer Aided Verification. Springer, 1998, pp. 440–451.

[30] D. Giannakopoulou, K. S. Namjoshi, and C. S. Păsăreanu, “Composi-
tional reasoning,” in Handbook of Model Checking. Springer, 2018,
pp. 345–383.

[31] A. Abhashkumar, K. Subramanian, A. Andreyev, H. Kim, N. K. Salem,
J. Yang, P. Lapukhov, A. Akella, and H. Zeng, “Running BGP in data
centers at scale,” in 18th USENIX Symposium on Networked Systems
Design and Implementation, NSDI. USENIX Association, 2021, pp.
65–81.

[32] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in SIGCOMM, 2008.

[33] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “Dcell: A scalable
and fault-tolerant network structure for data centers,” in SIGCOMM,
2008.

https://www.theregister.com/2021/10/06/facebook_outage_explained_in_detail/
https://www.theregister.com/2021/10/06/facebook_outage_explained_in_detail/
https://www.theregister.com/2019/06/24/verizon_bgp_misconfiguration_cloudflare/
https://www.theregister.com/2019/06/24/verizon_bgp_misconfiguration_cloudflare/
http://www.datacenterdynamics.com/content-tracks/servers-storage/microsoft-misconfigured-network-device-led-to-azure-outage/68312.fullarticle
http://www.datacenterdynamics.com/content-tracks/servers-storage/microsoft-misconfigured-network-device-led-to-azure-outage/68312.fullarticle
http://www.datacenterdynamics.com/content-tracks/servers-storage/microsoft-misconfigured-network-device-led-to-azure-outage/68312.fullarticle
https://blog.cloudflare.com/cloudflare-outage-on-june-21-2022/
https://blog.cloudflare.com/cloudflare-outage-on-june-21-2022/
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final8.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final8.pdf
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final100.pdf
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final100.pdf
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final8.pdf
https://www.usenix.org/system/files/conference/nsdi13/nsdi13-final8.pdf
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-lopes.pdf
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-lopes.pdf
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-fogel.pdf
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-fogel.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-fayaz.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-fayaz.pdf
https://www.dougwoos.com/papers/bagpipe-netpl16.pdf
https://www.dougwoos.com/papers/bagpipe-netpl16.pdf
https://www.usenix.org/system/files/nsdi20-paper-abhashkumar.pdf
https://www.usenix.org/system/files/nsdi20-paper-abhashkumar.pdf
https://doi.org/10.1145/3387514.3406217
https://doi.org/10.1145/3387514.3406217
https://web.ist.utl.pt/nuno.lopes/pubs/fastplane-vmcai19.pdf
https://web.ist.utl.pt/nuno.lopes/pubs/fastplane-vmcai19.pdf

16

[34] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “BCube: A high performance, server-centric network architecture
for modular data centers,” in SIGCOMM, 2009.

[35] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths problem
and interdomain routing,” IEEE/ACM Trans. Networking, vol. 10, no. 2,
2002, https://ieeexplore.ieee.org/abstract/document/993304.

[36] T. Alberdingk Thijm, R. Beckett, A. Gupta, and D. Walker, “Kirigami,
the verifiable art of network cutting,” in 2022 IEEE 30th International
Conference on Network Protocols (ICNP). IEEE, 2022, pp. 1–12.

[37] R. Chandra, P. Traina, and T. Li, “BGP communities attribute,”
Internet Requests for Comments, RFC Editor, rfc 1997, 1996,
https://www.rfc-editor.org/rfc/rfc1997.txt. [Online]. Available: https:
//www.rfc-editor.org/rfc/rfc1997.txt

[38] Y. Rekhter, T. Li, S. Hares et al., “A border gateway protocol 4
(BGP-4),” Internet Requests for Comments, RFC Editor, RFC 4271,
2006, https://www.rfc-editor.org/rfc/rfc4271.txt. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc4271.txt

[39] J. a. L. Sobrinho, “An algebraic theory of dynamic network routing,”
IEEE/ACM Trans. Netw., vol. 13, no. 5, pp. 1160–1173, October 2005,
https://ieeexplore.ieee.org/abstract/document/1528502.

[40] T. G. Griffin and J. L. Sobrinho, “Metarouting,” in SIGCOMM, August
2005, pp. 1–12.

[41] M. L. Daggitt, A. J. Gurney, and T. G. Griffin, “Asynchronous con-
vergence of policy-rich distributed Bellman-Ford routing protocols,” in
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication. ACM, 2018, pp. 103–116.

[42] K. R. M. Leino, “Dafny: An automatic program verifier for functional
correctness,” in International Conference on Logic for Programming
Artificial Intelligence and Reasoning. Springer, 2010, pp. 348–370.

[43] M. Danelutto and R. Di Cosmo, “A “minimal disruption” skeleton
experiment: Seamless map & reduce embedding in ocaml,” Procedia
Computer Science, vol. 9, pp. 1837–1846, 2012, proceedings of
the International Conference on Computational Science, ICCS 2012.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1877050912003237

[44] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in TACAS,
March 2008.

[45] L. Gao, “On inferring autonomous system relationships in the internet,”
IEEE/ACM Transactions on networking, vol. 9, no. 6, pp. 733–745,
2001, https://ieeexplore.ieee.org/abstract/document/974527.

[46] I. Pepelnjak, “Valley-free routing in data center fabrics,”
https://blog.ipspace.net/2018/09/valley-free-routing-in-data-center.html,
ipSpace.net, 2018.

[47] J. Y. Yen, “Finding the k shortest loopless paths in a network,”
Management Science, vol. 17, no. 11, pp. 712–716, 1971.

[48] P. Erdös and A. Rényi, “On random graphs i,” Publicationes Mathemat-
icae (Debrecen), vol. 6, pp. 290–297, 1959, https://www.renyi.hu/∼p
erdos/1959-11.pdf.

[49] E. N. Gilbert, “Random graphs,” The Annals of Mathematical Statis-
tics, vol. 30, no. 4, pp. 1141–1144, 1959, https://www.jstor.org/stable/
2237458.

[50] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hyper-
graph partitioning: applications in VLSI domain,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 7, no. 1, pp. 69–79,
1999, https://ieeexplore.ieee.org/abstract/document/748202.

[51] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765–1775, 2011, https://ieeexplore.ieee.
org/abstract/document/6027859.

[52] M. Luckie, B. Huffaker, k. claffy, A. Dhamdhere, and V. Giotsas,
“As relationships, customer cones, and validation,” in ACM Internet
Measurement Conference (IMC), 2013-10, pp. 243–256.

[53] A. Tang, R. Beckett, K. Jayaraman, T. Millstein, and G. Varghese,
“LIGHTYEAR: Using modularity to scale BGP control plane verifi-
cation,” 2022, https://arxiv.org/abs/2204.09635.

[54] T. Alberdingk Thijm, R. Beckett, A. Gupta, and D. Walker, “Modular
control plane verification via temporal invariants,” 2022, https://arxiv.
org/abs/2204.10303.

[55] R. Alur and T. A. Henzinger, “Reactive modules,” Formal methods in
system design, vol. 15, no. 1, pp. 7–48, 1999.

[56] C. Flanagan and S. Qadeer, “Thread-modular model checking,” in
International SPIN Workshop on Model Checking of Software. Springer,
2003, pp. 213–224.

[57] O. Grumberg and D. E. Long, “Model checking and modular verifi-
cation,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 16, no. 3, pp. 843–871, 1994.

[58] A. Lomuscio, B. Strulo, N. Walker, and P. Wu, “Assume-guarantee
reasoning with local specifications,” in International conference on
formal engineering methods. Springer, 2010, pp. 204–219.

[59] A. E. Hyvärinen, M. Marescotti, and N. Sharygina, “Search-space
partitioning for parallelizing smt solvers,” in International Conference
on Theory and Applications of Satisfiability Testing. Springer, 2015,
pp. 369–386.

https://ieeexplore.ieee.org/abstract/document/993304
https://www.rfc-editor.org/rfc/rfc1997.txt
https://www.rfc-editor.org/rfc/rfc1997.txt
https://www.rfc-editor.org/rfc/rfc1997.txt
https://www.rfc-editor.org/rfc/rfc4271.txt
https://www.rfc-editor.org/rfc/rfc4271.txt
https://ieeexplore.ieee.org/abstract/document/1528502
https://www.sciencedirect.com/science/article/pii/S1877050912003237
https://www.sciencedirect.com/science/article/pii/S1877050912003237
https://ieeexplore.ieee.org/abstract/document/974527
https://blog.ipspace.net/2018/09/valley-free-routing-in-data-center.html
https://www.renyi.hu/~p_erdos/1959-11.pdf
https://www.renyi.hu/~p_erdos/1959-11.pdf
https://www.jstor.org/stable/2237458
https://www.jstor.org/stable/2237458
https://ieeexplore.ieee.org/abstract/document/748202
https://ieeexplore.ieee.org/abstract/document/6027859
https://ieeexplore.ieee.org/abstract/document/6027859
https://arxiv.org/abs/2204.09635
https://arxiv.org/abs/2204.10303
https://arxiv.org/abs/2204.10303

	Introduction
	Overview
	The Stable Routing Problem
	Modular SRP Verification

	Background on the Stable Routing Problem
	Cutting SRPs
	Open SRPs
	Open SRP Solutions

	Interfaces and Cutting SRPs
	Fragment Solutions
	Solutions Modulo Interfaces

	SRPs with No or Multiple Solutions
	Divergent SRPs
	SRPs with Multiple Solutions
	Properties of Fragment Solutions

	Checking Fragments in SMT
	The Fragment Checking Algorithm
	Refining Interfaces

	Implementation
	Evaluation
	Fattrees
	Random Networks
	Backbone Networks

	Checking Multi-Solution Fragments
	Fragment matrices
	Checking Guarantees with Algorithm 2
	Checking Properties with Algorithm 2

	Related Work
	Data Plane Analysis
	Control Plane Analysis
	Modular Verification

	Conclusion
	References

