
Incremental Update for a Compositional SDN Hypervisor

Xin Jin
Princeton University

xinjin@cs.princeton.edu

Jennifer Rexford
Princeton University

jrex@cs.princeton.edu

David Walker
Princeton University

dpw@cs.princeton.edu

ABSTRACT
To realize the vision of SDN—an “app store” for network-
management services—we need a way to compose applica-
tions developed for different controller platforms. For in-
stance, an enterprise may want to combine a firewall writ-
ten on OpenDaylight with a load balancer on Ryu and a
monitoring application on Floodlight. To make this vision
a reality, we propose a new kind of hypervisor that allows
multiple applications to collaborate in processing the same
traffic. Inspired by past work on Frenetic, our hypervisor
supports a flexible configuration language that can combine
packet-processing rules from different applications using se-
quential and parallel composition. A major challenge is ef-
ficiently combining updates to each prioritized list of Open-
Flow rules, based on the hypervisor policy. Our key insight
is that rule priorities form a convenient algebra that allows
the hypervisor to compute the correct relative priorities of
new rules incrementally, without shifting or rewriting the
priorities of existing rules. We prove the correctness of our
algorithms and show experimentally that these techniques
can reduce computational overhead by 4X and the number
of rule updates by 5X, compared to existing techniques.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network communications; C.2.3
[Computer-Communication Networks]: Network Op-
erations—Network management

Keywords
Network virtualization; software-defined networking; hyper-
visor; composition; network update

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotSDN’14, August 22, 2014, Chicago, Illinois, USA.
Copyright 2014 ACM 978-1-4503-2989-7/14/08 ...$15.00.
http://dx.doi.org/10.1145/2620728.2620731.

1. INTRODUCTION
In its full glory, Software-Defined Networking (SDN) should

allow network administrators to combine“best of breed”con-
troller applications from different software developers. For
example, a single network might run routing, access-control,
monitoring, and load-balancing applications written by dif-
ferent programmers, using different programming languages
and controller platforms. Each application can use Open-
Flow [1] as a lingua franca for expressing its part of the
network policy, and rely on an underlying hypervisor to me-
diate access to the switches. However, existing SDN hyper-
visors like FlowVisor [2] and OpenVirteX [3] split the traffic
into disjoint “slices,” each managed by a single application.
While effective for allowing multiple tenants to share a net-
work, slicing does not enable multiple applications to work
together to process the same traffic.

Instead, future SDN hypervisors should go beyond slicing
to support flexible policies for composing multiple applica-
tions, as shown in Figure 1. A network administrator should
be able to select multiple application components (e.g., load
balancing, routing, and monitoring). Each component gen-
erates a member policy represented as a prioritized list of
OpenFlow rules for each switch, and adapts its policy over
time in response to network events. Lying between the mem-
ber components and the underlying switches, the hypervisor
merges these rules as directed by a composition configuration
to produce a single list of rules for each switch.

Inspired by past work in the Frenetic project [4, 5, 6, 7], we
envision that the hypervisor can combine member policies
in parallel (+) or in series (�). For example, the hypervisor
in Figure 1 applies the following composition configuration:

load_balancing >> (routing + monitoring)

Packets are processed first by the load-balancer policy (e.g.,
rewriting the destination IP address as part of selecting a
backend server), and then simultaneously forwarded by the
routing policy (e.g., mapping each destination IP prefix to
an output port) and counted by the monitoring policy (e.g.,
counting traffic by source IP prefix). Based on the compo-
sition configuration, the hypervisor generates the rules for
each switch, and updates these rules whenever any member
policy changes.

The compositional hypervisor brings the benefits of com-
position without requiring programmers to adopt the Frenetic
programming environment. Frenetic is based on a declar-
ative (functional) API, where a function receives network
events as inputs and generates a global network policy as
an output. The Frenetic run-time system then compiles

Load	
Balancing	 Rou.ng	 Monitoring	

Hypervisor

Network

OF Rules OF Rules OF Rules

OF Rules

Figure 1: A compositional SDN hypervisor

the generated policy into OpenFlow rules that are sent to
switches. In contrast, the hypervisor API is imperative to
more closely match most other controller platforms such as
Floodlight [8], NOX [9], POX [10], Ryu [11], and Open-
Daylight [12]. When using an imperative interface, each
component issues a stream of OpenFlow rules (“flowmods”).
That is, components written in an imperative language can
populate prioritized lists of OpenFlow rules, and have the
hypervisor apply the functional composition operators on
their behalf.

Representing member policies as prioritized lists of Open-
Flow rules, rather than total functions, enables a surprising
optimization. To operate efficiently, the hypervisor should
not recompute and reinstall the switch-level rules from scratch
every time a member policy changes. Instead, we need an
incremental algorithm for computing small changes to the
existing rules. Our key insight is that the hypervisor can per-
form simple arithmetic on the rule priorities in the member
policies to compute the priorities for the switch-level rules.
Parallel composition amounts to “adding” the priorities of
the corresponding rules in the member policies, and sequen-
tial composition amounts to “concatenating” the priorities.
In addition to proving the correctness of our algorithm, we
show experimentally that these techniques can reduce com-
putation overhead by 4X and flowmods by 5X as compared
to a strawman solution that computes the switch-level rules
from scratch.

2. BACKGROUND: POLICY COMPOSITION
A policy is a prioritized list of rules with priority, pattern,

and action list.1 Applying a policy to a packet at a given
location produces a set of packets (0, 1, or more) at new loca-
tions. In our system, each application component generates
a member policy and the hypervisor combines these mem-
ber policies to produce a composed policy. In this section,
we review the parallel and sequential composition operators
introduced in [4, 5, 6, 7]. We discuss policy updates in the
next section.

2.1 Parallel Composition (+)
Parallel composition enables multiple policies to apply

concurrently on separate logical copies of the same packet.
Given two policies P and Q, for an arriving packet t, their
parallel composition P + Q produces the union of applying
P and Q to t separately. For example, suppose we have a

1In this paper, we limit the scope to OpenFlow 1.0 rules [13].

monitoring policy M , and a routing policy R, as shown in
Figure 2. M counts packets according to source IP prefix.
For instance, the first rule in the table has priority 1. It
counts packets with source IP prefix 1.0.0.0/24. R forwards
packets based on destination IP: packets with destination
IP 2.0.0.1 are forwarded to port 1, packets with destination
IP 2.0.0.2 are forwarded to port 2, and others are dropped.
Their parallel composition M +R acts as if we apply M and
R concurrently. Specifically, it both forwards and counts
packets with source IP prefix 1.0.0.0/24 and destination IP
2.0.0.1 or 2.0.0.2.

To calculate P +Q, we are essentially calculating the cross
product of the two policies. We iterate over (pi, qj) ∈ P ×Q
where pi and qj are rules taken from P and Q by priority in
decreasing order. If the intersection of their patterns is not
empty, we produce a rule in P + Q with the pattern being
the intersection of their patterns and the action list that
can produce the union of the packet sets by applying their
action lists separately. All the calculated rules are assigned
priority from top to down by decrement of 1. For example,
to calculate M +R, we first try m1 and r1. The intersection
of their patterns is {srcip = 1.0.0.0/24, dstip = 2.0.0.1} 6=
∅. So we generate the first rule in M + R with action list
{fwd(1), count}. Repeating this for all (mi, rj) gives the
composed policy M + R as in Figure 2.

2.2 Sequential Composition (�)
Sequential composition enables multiple policies to apply

one after another. Given two policies P and Q, for an arriv-
ing packet t, their sequential composition P � Q produces
packets that are equal to first applying P to t then applying
Q to each packet in the resulting packet set. We use the
sequential composition of a load-balancing policy L and a
routing policy R to illustrate this, as shown in Figure 2. L
matches on source IP and splits the traffic into two backend
servers (2.0.0.1 and 2.0.0.2) with ratio 1:3 by prefix splitting
on source IP address. R examines destination IP address
and forwards packets to the corresponding backend servers.
Their sequential composition L� R acts as if we first apply
L first then apply R. Specifically, for packets with source
IP prefix 0.0.0.0/2 and destination IP 3.0.0.0, it rewrites
destination IP to 2.0.0.1 and forwards to port 1. For other
packets with destination IP 3.0.0.0, it rewrites destination
IP to 2.0.0.2 and forwards to port 2. It drops all other pack-
ets.

Calculating P � Q is similar to calculating P + Q. We
also iterate over (pi, qj) ∈ P × Q where pi and qj are rules
taken from P and Q by priority in decreasing order. But
we don’t inspect the intersection of their patterns. Instead,
we inspect the intersection of qj ’s pattern and the pattern
computed by applying pi’s action list to pi’s pattern. A
nonempty intersection means packets after being applied pi
would match qj and we generate a rule in the composed
policy merging these two rules together. Finally, all the
calculated rules are assigned priority from top to down by
decrement of 1. For example, to calculate L � R, we first
try l1 and r1. By applying l1’s action list to l1’s pattern,
we get pattern {srcip = 0.0.0.0/2, dstip = 2.0.0.1}. The
intersection of this pattern and r1’s pattern is {srcip =
0.0.0.0/2, dstip = 2.0.0.1} 6= ∅. So we generate the first rule
in L � R with pattern {srcip = 0.0.0.0/2, dstip = 3.0.0.0}
and action list {dstip = 2.0.0.1, fwd(1)}. Repeating this for
all (li, rj) gives the composed policy L� R in Figure 2.

Monitoring M
1. srcip=1.0.0.0/24 → count
0. * → drop

Routing R
1. dstip=2.0.0.1 → fwd(1)
1. dstip=2.0.0.2 → fwd(2)
0. * → drop

Load-balancing L
3. srcip=0.0.0.0/2,dstip=3.0.0.0 → dstip=2.0.0.1
1. dstip=3.0.0.0 → dstip=2.0.0.2
0. * → drop

Parallel composition: M +R
5. srcip=1.0.0.0/24,dstip=2.0.0.1 → fwd(1),count
4. srcip=1.0.0.0/24,dstip=2.0.0.2 → fwd(2),count
3. srcip=1.0.0.0/24 → count
2. dstip=2.0.0.1 → fwd(1)
1. dstip=2.0.0.2 → fwd(2)
0. * → drop

Sequential composition: L� R
2. srcip=0.0.0.0/2,dstip=3.0.0.0 → dstip=2.0.0.1,fwd(1)
1. dstip=3.0.0.0 → dstip=2.0.0.2,fwd(2)
0. * → drop

Figure 2: Example of parallel and sequential composition, adapted from [6]

3. ARITHMETIC ON RULE PRIORITIES
Network management is a dynamic process: Each com-

ponent regulated by the hypervisor dynamically updates its
member policy by inserting, deleting, or modifying rules.
Whenever there is a change in a member policy, the hyper-
visor must update the composed policy accordingly. A naive
policy-update mechanism can incur large overhead even for
a single rule change in one member policy. In this section,
we first introduce a strawman solution that has high update
overhead. Then we describe a solution that enables efficient
updates using a simple algebra of rule priorities.

Strawman solution: A straightforward solution to the
policy update problem is to recalculate the entire composed
policy whenever there is a change in a member policy. After
obtaining the new composed policy, the hypervisor deletes
all the existing rules on switches and installs new rules. This
incurs tremendous switch overhead as even inserting one rule
in one member policy would lead to deleting all old rules and
installing the new rules. A quick fix is to calculate and in-
stall the difference between the old policy and the new one.
However, simply calculating the difference without changing
how we compute the composed policy has limited benefits.
The main drawback is due to the priority assignment. Con-
sider the table labelled “Routing R” in Figure 3 and assume
we insert the bold rule that matches dstip = 1.0.0.3 and
has action fwd(3). Most rules in the new composed policy
(Table M + R in Figure 3) have different priorities than in
the original policy (M + R in Figure 2) even if though they
have the same pattern and action list. Thus the delta (rules
in bold in M + R in Figure 3) includes 7 out of the 8 rules
in M + R. Consequently, we must delete the first 5 rules
in the old M + R policy and install the first 7 rules in the
new M + R policy. Only the last rule remains unchanged.
Therefore, the strawman solution has both (1) high compu-
tation overhead as it has to recompute the entire composed
policy and then decide the priority for each rule and (2) high
rule-update overhead as it may have to make changes to rule
priorities even if the rules it is generated from do not change.

The root cause of the inefficiency in the strawman solution
is its priority assignment. It assigns priorities for rules in R
based on the order they are computed. This unnecessarily
ties the priority of each rule to the other rules. Additions
or deletions of other rules may change the order of a rule in
the composed policy, and thus change its priority even if the
rules it is composed from do not change. Ideally, we would
like to calculate rule priorities in a way that is purely based
on the rules that the rule is composed from, so any changes
in other rules do not affect this rule. Based on this idea,

we give an algorithm for computing rule priorities. We also
prove it is correct and show how to use it to handle different
update operations.

3.1 Add for Parallel Composition
In a parallel composition P + Q, if rule rk is generated

from rule pi ∈ P and rule qj ∈ Q, we assign rk.priority to
be the sum of pi.priority and qj .priority, i.e.,

rk.priority = pi.priority + qj .priority. (1)

To illustrate this concept, we show how to compute table
A = M +R in Figure 4. Here, rule a1 in A is computed from
m1 and r1 in Figure 2, so it is assigned priority m1.priority+
r1.priority = 2. When we insert a new rule r3 that matches
dstip = 1.0.0.3 in to R (the rule in bold in routing table R in
Figure 3), we only need to compose this rule with the rules
in M . This results in two rules as shown in bold in Figure 4:
one is computed from r3 and m1, the other is computed from
r3 and m2. We only need to compute and install these two
rules on the switch for this update, because other rules do
not have any change in their content or priorities.

One may wonder whether such a simple algorithm could
introduce ambiguities or even faults into the composed pol-
icy. Consider the following example.

p1.priority=12 q2.priority=8 r1.priority=12+8=20
p2.priority=8 q1.priority=12 r2.priority=8+12=20

r1 is composed from p1 and q2 and is assigned priority 20; r2
is composed from p2 and q1 and is also assigned priority 20.
One may wonder whether a packet can match both r1 and r2,
and since they have the same priority, whether the composed
policy would be ambiguous. This is not possible. Recall that
the pattern of r1 is the intersection of p1 and q2 and that
the pattern of r2 is the intersection of the patterns of p2
and q1. Consequently, if a packet can match r1 and r2 then
it matches all of p1, q2, p2, q1. Hence the packet will also
match a rule in R with priority 24, which is produced during
the composition of rule p1 and q1. Formally, we can prove
that as long as the member policies are not ambiguous2, the
composed policy is also not ambiguous and is correct, as
stated in the following lemma.

Lemma 1. Let pi be the highest priority rule in P that
matches a packet t and qj be the highest priority rule in
Q that matches t. Let rk be composed from pi and qj in
R = P + Q with priority calculated by Equation 1. Then rk
is the highest priority rule in R that matches t.

2A policy is called ambiguous if there are two rules that can
match the same packet and have the same priority.

Monitoring M
1. srcip=1.0.0.0/24 → count
0. * → drop

Routing R
1. dstip=2.0.0.1 → fwd(1)
1. dstip=2.0.0.2 → fwd(2)
1. dstip=2.0.0.3 → fwd(3)
0. * → drop

Load-balancing L
3. srcip=0.0.0.0/2,dstip=3.0.0.0 → dstip=2.0.0.1
2. srcip=0.0.0.0/1,dstip=3.0.0.0 → dstip=2.0.0.3
1. dstip=3.0.0.0 → dstip=2.0.0.2
0. * → drop

Parallel composition: M +R
7. srcip=1.0.0.0/24,dstip=2.0.0.1 → fwd(1),count
6. srcip=1.0.0.0/24,dstip=2.0.0.2 → fwd(2),count
5. srcip=1.0.0.0/24,dstip=2.0.0.3 → fwd(3),count
4. srcip=1.0.0.0/24 → count
3. dstip=2.0.0.1 → fwd(1)
2. dstip=2.0.0.2 → fwd(2)
1. dstip=2.0.0.3 → fwd(3)
0. * → drop

Sequential composition: L� R
3. srcip=0.0.0.0/2,dstip=3.0.0.0 → dstip=2.0.0.1,fwd(1)
2. srcip=0.0.0.0/1,dstip=3.0.0.0 → dstip=2.0.0.3,fwd(3)
1. dstip=3.0.0.0 → dstip=2.0.0.2,fwd(2)
0. * → drop

Figure 3: Example of updating policy compositions. Inserted rules are in bold. Strawman solution unneces-
sarily updates rules that only change priorities.

Parallel composition: A = M +R
2. srcip=1.0.0.0/24,dstip=2.0.0.1 → fwd(1),count
2. srcip=1.0.0.0/24,dstip=2.0.0.2 → fwd(2),count
2. srcip=1.0.0.0/24,dstip=2.0.0.3 → fwd(3),count
1. srcip=1.0.0.0/24 → count
1. dstip=2.0.0.1 → fwd(1)
1. dstip=2.0.0.2 → fwd(2)
1. dstip=2.0.0.3 → fwd(3)
0. * → drop

Sequential composition: B = L� R
25. srcip=0.0.0.0/2,dstip=3.0.0.0 → dstip=2.0.0.1,fwd(1)
17. srcip=0.0.0.0/1,dstip=3.0.0.0 → dstip=2.0.0.3,fwd(3)
9. dstip=3.0.0.0 → dstip=2.0.0.2,fwd(2)
0. * → drop

Figure 4: Example of incremental update. By carefully assigning priorities in composed policies, only rules
that change their content are updated.

Proof. We prove this by contradiction. Suppose there is
a rule rk′ ∈ R that matches t and has a higher priority than
rk, i.e.,

rk′ .priority > rk.priority.

Let rk′ be computed by pi′ ∈ P and qj′ ∈ Q. Since rk′

matches t, so pi′ matches t and qj′ matches t. We have the
following two equations for their priorities.

rk.priority = pi.priority + qj .priority,

rk′ .priority = pi′ .priority + qj′ .priority.

Therefore, we have

pi′ .priority + qj′ .priority > pi.priority + qj .priority

With this inequality, we can derive that either

pi′ .priority > pi.priority or qj′ .priority > qj .priority.

But this contradicts the fact that pi is the highest priority
rule in P that matches t and qj is the highest priority rule
in Q that matches t.

3.2 Concatenate for Sequential Composition
In a sequential composition P � Q, if rk is composed

from pi ∈ P and qj ∈ Q, then we assign rk.priority to be
the concatenation of pi.priority and qj .priority, i.e.,

rk.priority = pi.priority ◦ qj .priority. (2)

In the equation, “◦” concatenates two priorities, where each
priority is represented as a fixed-width bit string. Doing so
enforces a lexicographic ordering on the pair of priorities.
Specifically, let a1 = b1 ◦ c1 and a2 = b2 ◦ c2, then a1 > a2

only if (b1 > b2, or b1 = b2 and c1 > c2), and a1 = a2 only
if b1 = b2 and c1 = c2.

In practice, we calculate “◦” as follows. Let qj be in the
range [0,MAXQ) where MAXQ − 1 is the highest priority
that Q may use3. Then we calculate rk.priority with the
following equation

rk.priority = pi.priority ·MAXQ + qj .priority. (3)

It implements “◦”. We illustrate the mechanism with
B = L � R. Let MAXR = 8. We calculate L � R
as shown in Figure 4. l1 and r1 generates b1 with priority
l1.priority × 8 + r1.priority = 25. Suppose we add a new
rule in L that directs traffic with source IP prefix 0.0.0.0/1
to backend server with dstip = 2.0.0.3. We compose it with
all rules in R in Figure 3. It generates the second rule b2 in
Figure 4 which is generated from from l2 and r3 with prior-
ity l2.priority · 8 + r3 = 17. As in the parallel composition,
the newly inserted rules do not affect the priorities of other
rules. We only need to compute and update this rule. Sim-
ilarly, we can prove that as long as the member policies are
not ambiguous, the composed policy is also not ambiguous
and is correct, as stated in the following lemma.

Lemma 2. Let pi be the highest priority rule in P that
matches a packet t and qj be the highest priority rule in Q
that matches the packet set after applying pi to t. Let rk
be composed from pi and qj in R = P � Q with priority
calculated by Equation 2. Then rk is the highest priority
rule in R that matches t.

Proof. We prove this by contradiction. Suppose there is
a rule rk′ ∈ R that matches t and has a higher priority than
rk, i.e.,

rk′ .priority > rk.priority

3In practice, because of the limited bits of priority, the hy-
pervisor must limit the priorities each component may use.

Let rk′ be constructed from pi′ ∈ P and qj′ ∈ Q. Since rk′

matches t, we know that pi′ matches t and qj′ matches the
packet set after applying pi′ to t. We have the following two
equations for their priorities.

rk.priority = pi.priority ◦ qj .priority,

rk′ .priority = pi′ .priority ◦ qj′ .priority.

Therefore, we have

pi′ .priority ◦ qj′ .priority > pi.priority ◦ qj .priority

With this inequality, we can derive that either

pi′ .priority > pi.proirity

or

pi′ .priority = pi.priority && qj′ .priority > qj .priority.

In the former case, it contradicts the fact that pi is the
highest priority rule in P that matches t. In the latter case,
pi′ .priority = pi.proirity implicates pi′ = pi because poli-
cies are unambiguous. Then qj′ becomes the highest priority
rule in Q that matches the packet set after applying pi to t.
This contradicts the fact that qj be the highest priority rule
in Q that matches the packet set after applying pi to t.

Remark 1. By lemma 1, lemma 2 and induction on the
structure of policies, we can generalize our algorithm to com-
pute compositions of more than two policies connected by
parallel and sequential operators, e.g., (P + Q)� (R + S).

Remark 2. The algorithm remains correct when member
policies are ambiguous. More specifically, when member poli-
cies are ambiguous it is straightforward to show that a packet
will match a rule generated from one of the rules with highest
priority in each member policy.

3.3 Processing Update Operations
Using the rule priority arithmetic described above, a hy-

pervisor can handle a variety of different kinds of member
policy updates. Let P and Q be two member policies and R
be the composed policy. We handle rule updates in P or Q
as follows.

Rule addition: When a rule p∗ is inserted in to P (or q∗

in to Q), the hypervisor will compose this rule with each
rule in Q (or P). For each computed new rule in R, it is
assigned priority according to Equation 1 or 2 depending on
the composition operator. The newly generated rules are
sent to switches. Existing rules are left untouched.

Rule deletion: When a rule p∗ is deleted from P (or q∗

from Q), the hypervisor locates all rules in R that are gen-
erated from this rule and deletes them from the switch. All
other rules are left untouched.

Rule modification: When a rule p∗ is modified in P (or q∗

in Q), the hypervisor will compose this rule with each rule
in Q (or P). For each (p∗, qi) pair (or (pi, q

∗) pair), there are
4 possibilities. (1) It generates a rule for R before but does
not generate a rule now (e.g., because of a pattern change):
we delete the old rule. (2) It generates a rule for R before
and generates a rule now: we modify the rule if it changes.
(3) It does not generate a rule for R before but generate a
rule now: we insert the new rule. (4) It does not generate
a rule for R before and does not generate a rule now: no
change is needed.

4. EVALUATION
In this section, we present a preliminary evaluation of our

incremental update algorithm and compare it against the
strawman solution. The experiments include policy updates
on two representative composition examples: (1) a parallel
composition of a monitoring policy and a routing policy, and
(2) a sequential composition of a load balancing policy and
a routing policy. We compare the following two metrics in
the experiments.

• Computation overhead: The number of rule pairs
examined by the algorithm while generating the new,
composed policy.

• Rule-update overhead: The number of flowmods
generated by the algorithm for the new, composed pol-
icy.

Parallel composition: In this experiment, we compose a
monitoring policy M and a routing policy R in parallel as
similar to Table 2. Initially, M and R have 50 rules each.
They are randomly generated. Then we randomly generate
5 to 15 update operations for each of M and R. Each up-
date operation either adds, deletes, or modifies a rule with
the same probability. We repeat the update 100 times and
show the average of computation overhead and rule-update
overhead in Figure 5(a). We can easily see that the incre-
mental update solution outperforms the strawman solution.
It reduces the computation overhead by 4X and rule-update
overhead by 5X. Moreover, we can see that the rule-update
overhead is higher than the computation overhead. For the
strawman solution, the reason is that it deletes almost all ex-
isting rules and then installs new rules. Thus, it almost dou-
bles the overhead. For the incremental update solution, the
reason is that it uses pointers to delete rules in the composed
policy that correspond to deleted rules in member policies,
and thus very little computation is incurred for deletion op-
erations.

Sequential composition: In this experiment, we compose
a load balancing policy L and a routing policy R sequen-
tially, as in Table 2. Similarly to the previous experiment,
initially we have 50 rules in each of L and R. They are
randomly generated. Then we randomly generate 5 to 15
update operations for each of L and R. Each operation
either adds, deletes or modifies a rule with the same prob-
ability. We repeat the update 100 times and present the
average of computation overhead and rule-update overhead
in Figure 5(b). Again our incremental update solution out-
performs the strawman solution. It reduces the computation
overhead by 4X and rule-update overhead by 5X. There are
also two other interesting observations. First, the overheads
are smaller than the ones in the parallel composition experi-
ment. This is because in sequential composition many pairs
of member rules do not generate a composed rule. Hence
there are fewer total rules in the composed policy than in the
parallel composition experiment. Second, the rule-update
overhead is smaller than the computation overhead, which
is different than in the parallel composition experiment. The
reason is also similar to the first observation. When there
is a member rule change, we have to compose this member
rule with all member rules in the other member policy, but
most of them do not generate a composed rule. Therefore,
the rule-update overhead is smaller than the computation
overhead.

 0

 1000

 2000

 3000

 4000

 5000

Computation Rule-update

#
 o

f
ru

le
 p

a
ir

s
/f

lo
w

m
o

d
s

Overhead

Strawman Incremental

(a) Parallel composition: monitoring + routing

 0

 1000

 2000

 3000

Computation Rule-update

#
 o

f
ru

le
 p

a
ir

s
/f

lo
w

m
o

d
s

Overhead

Strawman Incremental

(b) Sequential composition: load balancing � routing

Figure 5: Comparison of strawman solution and incremental update solution in updating policy compositions

5. CONCLUSION
A compositional network hypervisor can simplify network

management by allowing different applications written in
different languages, or on different platforms, to work to-
gether to process the same traffic. A major challenge that
arises when implementing such a hypervisor involves devel-
oping algorithms for correct, efficient, and real-time process-
ing of rule updates from different applications. This paper
presents a novel algorithm for such updates. Moreover, we
analyze the correctness of our algorithm and show exper-
imentally that it can significantly reduce update overhead
as compared to the strawman solution. There are many in-
teresting topics for future work, such as adding support for
rule timeouts, adding support for OpenFlow 1.3 [14], and
integrating the incremental update mechanism with consis-
tent update mechanisms to enable efficient, network-wide
updates that preserve consistency properties [15, 16, 17].

6. ACKNOWLEDGMENTS
We would like to thank Mojgan Ghasemi, Nanxi Kang,

Naga Katta, Srinivas Narayana, Cole Schlesinger, and the
anonymous HotSDN reviewers for their feedback on earlier
versions of this paper. This work was supported by NSF
grant TC-1111520 and DARPA grant MRC-007692-001.

7. REFERENCES
[1] N. McKeown, T. Anderson, H. Balakrishnan,

G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner, “OpenFlow: Enabling innovation in campus
networks,” SIGCOMM CCR, vol. 38, no. 2, 2008.

[2] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. Parulkar, “Can the
production network be the testbed,” in USENIX
OSDI, 2010.

[3] “OpenVirteX.” http://tools.onlab.us/ovx.html.

[4] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker, “Frenetic: A
network programming language,” in ACM ICFP, 2011.

[5] C. Monsanto, N. Foster, R. Harrison, and D. Walker,
“A compiler and run-time system for network
programming languages,” in ACM POPL, 2012.

[6] C. Monsanto, J. Reich, N. Foster, J. Rexford, and
D. Walker, “Composing software-defined networks,” in
USENIX NSDI, 2013.

[7] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin,
D. Kozen, C. Schlesinger, and D. Walker, “NetKAT:
Semantic foundations for networks,” in ACM POPL,
2014.

[8] “Floodlight OpenFlow Controller.”
http://floodlight.openflowhub.org/.

[9] “NOX OpenFlow Controller.”
http://www.noxrepo.org/.

[10] “POX OpenFlow Controller.”
http://www.noxrepo.org/pox/about-pox/.

[11] “Ryu OpenFlow Controller.”
http://osrg.github.io/ryu/.

[12] “OpenDaylight Platform.”
http://www.opendaylight.org/.

[13] “OpenFlow switch specification 1.0.0.”
https://www.opennetworking.org/images/stories/

downloads/sdn-resources/onf-specifications/

openflow/openflow-spec-v1.0.0.pdf.

[14] “OpenFlow switch specification 1.3.0.”
https://www.opennetworking.org/images/stories/

downloads/sdn-resources/onf-specifications/

openflow/openflow-spec-v1.3.0.pdf.

[15] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger,
and D. Walker, “Abstractions for network update,” in
ACM SIGCOMM, 2012.

[16] N. P. Katta, J. Rexford, and D. Walker, “Incremental
consistent updates,” in ACM SIGCOMM HotSDN
Workshop, August 2013.

[17] R. Mahajan and R. Wattenhofer, “On consistent
updates in software defined networks,” in ACM
SIGCOMM HotNets Workshop, 2013.

