Buffy: A Formal Language-Based Framework for
Network Performance Analysis

Amir Seyhani

University of Waterloo

David Walker

Princeton University

Abstract

Despite recent advances in using formal methods for analyz-
ing network performance, modeling network functionality
for performance analysis remains challenging. Existing tools
expect users to directly create the logical formulas corre-
sponding to the network functionality of interest. This is
often unintuitive, difficult to get right, and tightly coupled
with the specific encoding and reasoning engine one chooses
to use. Instead, we propose language abstractions that enable
users to model network functionality and analysis tasks in
an imperative solver-agnostic program, and a framework
to transform them into a representation that can be ana-
lyzed by the appropriate solver. We outline our progress so
far, demonstrating the potential of our approach through
preliminary case studies and directions for future work.

CCS Concepts

+ Networks — Network performance analysis; « Theory
of computation — Logic and verification; - Software
and its engineering — Domain specific languages.

Keywords

Network Performance Analysis, Formal Verification,
Domain-Specific Programming Languages

ACM Reference Format:

Amir Seyhani, Junyi Zhao, Aarti Gupta, David Walker, and Mina
Tahmasbi Arashloo. 2024. Buffy: A Formal Language-Based Frame-
work for Network Performance Analysis . In The 23rd ACM Work-
shop on Hot Topics in Networks (HOTNETS °24), November 18-19,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HOTNETS °24, November 18-19, 2024, Irvine, CA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-1272-2/24/11
https://doi.org/10.1145/3696348.3696854

Junyi Zhao

Princeton University

Aarti Gupta

Princeton University

Mina Tahmasbi Arashloo

University of Waterloo

2024, Irvine, CA, USA. ACM, New York, NY, USA, 8 pages. https:
//doi.org/lO.l145/3696348.3696854

1 Introduction

Network verification is an active area of research with con-
siderable academic and industry impact [22, 23, 25, 26, 32].
Most existing efforts focus on analyzing a network’s func-
tional correctness, particularly its routing and forwarding.
More recently, FPerf [8] and CCAC [9], for example, have
shown promising results using formal methods for analyzing
performance-related properties of network components.

Unfortunately, while showing tantalizing promise, these
performance-analysis tools are difficult to use, even for ex-
perts in the field. One of the key problems is that the first
step in any analysis is to model the network component of
interest — e.g., a scheduler or traffic shaper. However, these
tools offer no abstractions for doing so: The semantics of ev-
ery computation and movement of packets between queues
must be coded directly with low-level logical connectives
(and, or, not). This leads to 100s of lines of logical variables,
conjunctions and disjunctions, as if one were implementing
low-level hardware for the computation. Such encodings are
error-prone, hard to debug, difficult to maintain, and impossi-
ble to reuse. Without a higher-level solver-agnostic interface,
creating models will remain a significant barrier to the use
of formal network performance analysis tools in practice.

We believe language abstractions and compiler technology
are essential in bridging the gap between general, high-level
performance-oriented models for network components, and
low-level logical engines capable of automated reasoning
about them. Indeed, when it comes to routing and forward-
ing, we have already seen a number of successful language
abstractions that provide high-level interfaces for human
users and translate them into lower-level reasoning engines.
For instance, NetKAT [7] can express data plane models and
specifications and will translate them into automata for its
decision procedures. Zen [11] allows users to specify route-
processing functions and will translate them into logical
formulae or BDDs for analysis.

In this paper, inspired by the success of existing
(verification-oriented) languages, we propose Buffy, a

https://doi.org/10.1145/3696348.3696854
https://doi.org/10.1145/3696348.3696854
https://doi.org/10.1145/3696348.3696854

HOTNETS 24, November 18-19, 2024, Irvine, CA, USA

language-based framework for modeling and analyzing
network performance. The Buffy language contains the
conventional constructs of a simple imperative language
(variables, assignments, conditionals, and loops) as well as a
number of special built-in abstractions for managing and
reasoning about packet buffers. These programs specify
how packets move between (sets of) buffers in a network,
any assumptions about network traffic and state, as well as
performance queries of interest. Buffy will be able to compile
these high-level programs into one or more backends (e.g.
Z3 [14], FPerf [8], Dafny [30]) for automated reasoning.
We have designed Buffy with flexibility in mind, both for
supporting various levels of “precision” in buffers and vari-
ous range of verification and reasoning approaches as back-
ends. We show the potential of Buffy in creating a high-level
unified interface for network performance analysis through
preliminary case studies based on FPerf [8] and CCAC [9].
We envision that Buffy will provide a flexible platform for
network performance analysis, enabling experimentation
with various abstractions, backend solvers, and verifiers.

2 Motivation and Overview

In this section, we use a (buggy) packet scheduler as a moti-
vating example for our proposed approach. The scheduler
is inspired by FQ-CoDel [21], Linux’s default queuing disci-
pline, and is one of the main use cases in FPerf [8].

2.1 A Fair-Queuing Packet Scheduler

Our example scheduler services queues in a (mostly)
round-robin fashion, but prioritizes the first few packets
of new flows so that they are not blocked by longer flows
if they are short and latency-sensitive. Incoming packets
are classified and assigned to one of several packet queues.
The scheduler keeps two lists of pointers to queues: queues
with newly started flows (new_queues) and other queues
with outstanding packets (old_gueues). Suppose that the
incoming packet belongs to g;. If g; is not in either of the lists,
a pointer to g; is added to the end of new_queues. Otherwise,
q; will remain in its current list. On dequeue, if new_queues
is not empty, the queue at the head of that list, g, will
send a packet. If g5 becomes empty, it is be removed from
new_queues and marked as inactive. If it has already sent a
quantum of bytes and is no longer considered a short flow
but is not empty, it is inserted into old_queues. Otherwise, it
is placed at the end of new_queues. If new_queues is empty,
the head of old_queues will get to send a packet next.

The bug. Our scheduler has a subtle bug — When a queue in
new_queues becomes empty, it is immediately deactivated.
So, next time it gets a packet, it is placed in new_queues again.
Given that new_queues are prioritized, this can potentially
cause starvation for queues in old_queues. The FQ-CoDel
RFC [21] warns against this bug: “the queue could reappear

Amir Seyhani, Junyi Zhao, Aarti Gupta, David Walker, and Mina Tahmasbi Arashloo

// T: number of time steps we are modeling
// ins[N]: The N input packet queues
// ng and oq: new_queues and old_queues
// gq->elem[i][t]: ith element of queue q at time t
// g->enqgs[i][t]: ith element to be enqueued in queue q
for (int t = 0; t < T; t++){
expr nq_head = ng->elem[0][t];
for (int i = 0; i < N; i++) {
expr gi_transmits = (nq_head.valid && nqg_head.val == i);
expr qi_not_empty = ins[i]->elem[1][t].valid
[| ins[i]->enqgs[@][t].valid;
expr to_add = og->enqs[0][t]
expr eng_in_oq = to_add.valid && to_add.val == i;
expr ¢ = implies(gi_transmits &% qi_not_empty, enq_in_oq);
add_to_solver(c);}?}

Figure 1: Queue demotion logic in FPerf

(the next time a packet arrives for it) before the list of old
queues is visited; this can go on indefinitely, even with a
small number of active flows, if the flow [...] transmits at just
the right rate” The RFC proposes a change to the deactivation
process to avoid this problem. In this paper, we use the buggy
version as our motivating example.

2.2 Modeling and Analysis Challenges

Ensuring the absence of undesirable performance issues such
as the mentioned bug requires formal modeling and reason-
ing. Despite recent advances in formal analysis tools for
network performance [8, 9], this remains a challenging task.
Creating models. The enqueue and dequeue processes of
our scheduler are not overly complex — they look at the
head of two lists, new_queues and old_queues to decide which
packet queue will transmit next. Yet, modeling such behavior
directly using logical formulas is not particularly intuitive
and can get complicated and error-prone.

To see why, consider how FPerf models this scheduler. It
uses the C++ API provided by Z3 [14], a Satisfiability Modulo
Theories (SMT) solver, to create Boolean and integer vari-
ables, and logical formulas. The (simplified) code snippet in
Figure 1 shows how deciding whether to demote a queue
from new_queues to old_queues is modeled in FPerf. Modeling
the demotion logic in FPerf involves directly constructing for-
mulas with logical operators (&&, ||, implies, etc.) for each time
step and for each possible value of the head of new_queues.
There are dozens of other similar code snippets that directly
construct formulas to enumerate all possible distinct scenar-
ios for all the possible states of the input packet queues and
the internal lists of pointers to queues in every time step and
to update the queues accordingly for the next time step. The
complete FPerf implementation of scheduling logic alone is
~200 lines of code (see [1]) and there are 100s of lines of
code creating additional scheduler-agnostic constraints that
model the internal operations of the packet queues and lists.

Creating models at the level of individual formulas is not
only tedious, but also error-prone, and difficult to navigate,

https://github.com/all-things-networking/fperf/blob/1cf959afe3639180335cf8a9b5c9f05ded00d3f0/src/qms/buggy_2l_rr_qm.cpp#L38

Buffy: A Formal Language-Based Framework for Network Performance Analysis

maintain, and debug. As anecdotal evidence, a few under-
graduate students have tried using FPerf to add/modify use
cases in research projects, and it has sometimes taken weeks
to get some of the use cases to work, citing the above reasons
as the main barrier for using such formal analysis tools.
Using other solvers/verifiers. To make matters worse, to
use a reasoning engine other than FPerf, such as Dafny [30]
for checking annotations, or a model checker such as
CBMC [13] to find bugs, a significant effort is needed to
create a new model from scratch. In particular, FPerf can
synthesize a set of input packet traffic sequences that satisfy
a given query. But, a user may be interested in simpler
tasks, e.g., checking if a given input workload (modeled as
an input assumption in Dafny) satisfies the given query.
For these simpler tasks, we can model the scheduler in an
imperative programming language (e.g., Boogie for Dafny, C
for CBMC), which is more intuitive but, as we show in §6,
this requires code transformations and annotations. We aim
to provide a single front-end language for the user to describe
their network functionality of interest and support different
verification tasks using multiple back-end solvers/verifiers.
Changing the level of abstraction. There is a well-known
trade-off between a model’s “precision” and its analysis effi-
ciency. For example, FPerf models a packet queue as a list,
creating separate variables to represent each element of each
queue at each time step. CCAC [9], on the other hand, uses
a single integer variable to represent the number of bytes
present in the queue, abstracting away the boundaries and
details of individual elements. However, no one size fits all.
We aim to support different levels of modeling abstraction,
in the style of abstract data types with common methods
but potentially different implementations. That is, while we
provide a unified set of operations over the buffers in the lan-
guage regardless of the abstraction level, we support backend
implementations with different levels of precision.
Modular analysis for scalability. Existing efforts perform
a monolithic performance analysis on the whole system. For
example, in FPerf, the formulas grow larger with more com-
ponents,more queues, and more time steps — this leads to
scalability limitations. One motivating goal for our work is
to develop modular techniques for performance analysis. To
this end, we aim to support modularity in our front-end lan-
guage, to enable users create models of network functionality
as a set of modules composed via packet buffers.

2.3 Buffy Overview

Buffy aims to provide language abstractions for modeling
and reasoning about network performance. It includes an
imperative solver-agnostic language with special constructs
for packet buffers. As shown in Figure 2, we envision users
writing a program that describes the network functionality of
interest, potential assumptions about input traffic, network

HOTNETS ’24, November 18-19, 2024, Irvine, CA, USA

Buffy

Program

Intermediate
Representations

Backend
Verifiers

Figure 2: Buffy overview

state, and their queries in the Buffy language. Buffy would
then transform the program into one of the several possi-
ble intermediate representations (IRs) that can be further
analyzed by different back-end solvers.

We discuss the Buffy language in §3, our vision for Buffy’s
IRs and backends in §4, supporting modular analysis in §5,
and our preliminary results through two case studies in §6.

3 Buffer-Centeric Abstractions

The main feature of Buffy’s language, in addition to the con-
ventional constructs of imperative programming languages,
is special abstractions of packet buffers. We believe packet
buffers play a central role in network performance analysis.
Performance problems happen when there is contention for
a shared resource, e.g., when multiple traffic streams need
to share the same outgoing link. Many major performance
problems arise when network queues do not drain as fast as
expected and build up beyond acceptable thresholds, result-
ing in increased latency or packet drops. That is why there
is ongoing interest in the networking community in moni-
toring or analyzing packet queues [9, 12, 29, 35], factoring
in the impact on packet queues in designing new protocols
and algorithms [4, 5, 20, 31, 34]. As a result, buffers can be
thought of as a central part of network performance analysis.
That is why we have made buffers first-class citizens in
the Buffy language and provide abstract operations on top
of them as language constructs. This way, users can focus on
modeling their functionality of interest and not worry about
modeling buffers or their operations.
Buffy programs. At its core, a Buffy program describes
how data move between buffers in a “time step”, i.e., a single
execution of the program. It takes in one or more buffers as
input and one or more write-only buffers as output. Using
an imperative C-like language, users can specify how to
move data from the input buffers to the output buffers. The
granularity of time can change depending on the network
functionality that is being modeled. For a scheduler, this can
be an enqueue and a dequeue operation. For a congestion
control algorithm, it can be a round-trip time (RTT).
Syntax overview. Figure 3 shows a subset of Buffy’s syntax,
highlighting the buffer-centric constructs. Buffy supports
simple standard types (integers and booleans), conventional
arithmetic and boolean expressions, assignments, and con-
trol flow constructs such as conditionals and bounded loops.

HOTNETS 24, November 18-19, 2024, Irvine, CA, USA

n in Integer; o in Bool; x in Var;
f in FieldName; 1 in Lists; b in Buffers;

F ::= f ==n //Filters

B ::=b | B |>F //Buffers
//Expressions

E::=x | o]| n | E binop E | uop E

| B | backlog-p(B) | backlog-b(B)
| ECE] | l.has(E) | l.empty()

//Commands
C ::= move-p(b, b, E) | move-b(b, b, E)
| x = 1.pop_front() | 1.push_back(E)
| x =E | if (E) {C} else {C}
| for (i in ©..n) do {C} | C; C |decls

Figure 3: A subset of Buffy’s syntax

We opt for an imperative language to let users write pro-
grams in a more familiar format. Buffy also supports simple
data structures, particularly arrays and lists.

Buffers. What sets Buffy apart is its special constructs for
packet buffers. We have designated buffers as a special con-
struct to represent network queues and have Bufty programs
specify how data move between buffers.

We have carefully designed the expressions and com-
mands over buffers to be (1) abstract enough, such that it
would be possible to “plug-in” models for them at various
precision levels, yet (2) expressive enough to allow Buffy
programs to describe the desired network functionality. In
particular, we allow the following operations on the buffers:
(1) backlog-p(B)/backlog-b(B), which returns number of packet-
s/bytes in the buffer B, (2) B |> F, which returns a buffer with
elements of B that pass filter F, and (3) move-p(b, b, E)/move-b(b,
b, e), which moves E packets/bytes from some input buffer
(first argument) to some output buffer (second argument).
Example. Figure 4 shows how the scheduler from our mo-
tivating example can be implemented in Buffy. It specifies
how the scheduler operates in one “time step”, which, simi-
lar to FPerf, is defined as the time between two consecutive
dequeue operations. It declares two “global” variables, nq
and oq, for new_queues and old_queues respectively. Global
variables are maintained across time steps. The scope of local
variables, on the other hand, is within a single time step. The
scheduler first checks if any “inactive” input buffers have
received traffic and updates nq accordingly. It then checks
nq and oq to decide which input buffer should transmit next.
It uses the move-p function to specify how many packets
should move from which input buffer to the output buffer.

Recall from §2 that the FPerf model of this scheduler has
100s of lines of code to directly generate the corresponding
SMT formulas. Using Bufty, this scheduler can be described
using 18 lines of imperative code and in a much more intu-
itive manner. Buffy would then transform the program into

Amir Seyhani, Junyi Zhao, Aarti Gupta, David Walker, and Mina Tahmasbi Arashloo

1 fg(buffer[N] ibs, buffer ob){

2 global list nqg; global list oq;

3 // update new queues

4 for (i in 0..N) do{

5 if (backlog-p(ibs[i]) > 0 & 'og.has(i) & !ng.has(i))
6 ng.enq(i);}

7 // decide which input queue should transmit

8 local bool dequeued; local int head;

9 local dequeued = false;

10 for (i in ©0..N) do {

11 if (!dequeued) {

12 head = -1;

13 if (!ng.empty()) { head = nqg.pop_front();?}
14 else {

15 if (log.empty()) { head = oqg.pop_front();3}}
16 if (head != -1) {

17 if (backlog-p(ibs[head]l) > 1) {

18 og.push_back(head);}

19 if (backlog-p(ibs[head]) > 0) {

20 move-p(ibs[head], ob, 1);

21 dequeued = true;}}3}}}

Figure 4: Our (buggy) scheduler (§2) in Buffy

a form that can be efficiently analyzed by the user’s back-
end solver of choice. Table 1 shows the LoC comparison of
modeling some packet schedulers in Buffy and FPerf.
Buffer models with varying precision. We envision Buffy
to have a library of buffer models that implement buffer
operations (e.g., move, backlog, and filter) at varying levels
of precision that users can try without changing their Buffy
programs. We have a preliminary prototype of modeling
a buffer as a list of packets and plan to add more in the
future, including modeling a buffer as sets of integers each
representing the total number of packets or bytes the buffer
contains from different traffic classes.

Different buffer models can be useful in different circum-
stances. For instance, suppose in the FQ scheduler example
(Figure 4), we are interested in a query that asks whether
the number of packets moved from one input buffer to the
output can be much larger than the others. In this specific
case, packet contents do not matter since we only care about
how many packets from each input buffer are moved to
the output. Thus, there is no need to differentiate between
packets inside a single buffer. As such, we can potentially
perform the analysis by modeling each buffer as an integer
representing its size (in packets or bytes). On the other hand,
this may not be sufficient if packet contents and/or order are
important for analyzing the modeled functionality or query.

For instance, suppose we use the number i to represent a
packet from the i-th input buffer. The sequences [1, 1, 1, 2, 2,
2] are [1, 2, 1, 2, 1, 2] are two possible packet sequences en-
tering some output buffer. They both have an equal number
of packets from input buffers 1 and 2. So, a model keeping
track of just packet counts cannot distinguish between them

Buffy: A Formal Language-Based Framework for Network Performance Analysis

if our query centers around packet ordering in a fine-grained
manner, and we would need to model ordering also.
Composition. Thanks to their buffer-centric interface, Buffy
programs lend themselves quite naturally to composition.
Suppose program O; is an output buffer in program Py, and I;
is an input buffer in program P,. P; and P, can be composed
by “connecting” O; and I;. Semantically, this means at the
end of the time step ¢, the contents of O; will be flushed into
I;. At the beginning of ¢ + 1, I;’s updated state will reflect
the modifications incurred from receiving packets from O;
and potential move operations in time step ¢ in P,. Note that
the user does not need to add extra code to perform these
updates. By specifying that the two buffers are connected,
Buffy will augment programs to implement the mechanics
of the composition. For example, in the CCAC case study,
we modularize the CCAC model into 3 Buffy programs, with
communication handled by input and output buffers.
Assumptions and queries. Users can declare global vari-
ables as “monitors”, which are ghost code that do not change
the program’s behavior and just observe it to track per-
formance metrics of interest. These can be statistics about
buffers (e.g., buffer size, buffer drain rate) or program-specific
state (e.g., window size changes in congestion control algo-
rithms). Users can then use assert(E) statements, where E
is a boolean expression, in the program to check if these
monitors have acceptable values at various points during the
execution of the program and across time steps. Similarly,
users can use assume(E) statements to specify assumptions
about buffers or program state. Input traffic is a sequence
of packets that are flushed into the input buffers every time
step, so users can use a similar approach to specify assump-
tions about input traffic patterns. We will explain the usage
of assumptions and queries in our case studies in §6.

4 Multiple Back-Ends

We aim to support multiple solver and verifier back-ends in
Bufty, so users can choose among them depending on the
verification task at hand, and also to provide a platform for
comparing different approaches for the same analysis tasks.
Back-end for Z3 and FPerf. Users may want to fully spec-
ify the assumptions and the program and use Z3 to check
whether the query would be satisfied. Or, users may want to
use FPerf to synthesize the assumptions on the input traffic
that would cause the query to be satisfied. In both cases,
the IR would comprise SMT formulas, including symbolic
variables and constraints. For generating SMT formulas from
Buffy programs, we can leverage standard program transfor-
mations such as loop unrolling, function inlining, and Static
Single Assignment (SSA) form [3]. We also plan to explore
customized transformations, especially for buffer-related lan-
guage constructs. The SMT problem can be written in the
standard SMT-LIB format [10] supported by different SMT

HOTNETS ’24, November 18-19, 2024, Irvine, CA, USA

Program FPerf (LoC) Buffy (LoC)
Fair-Queue 197 18
Round-Robin 60 10
Strict-Priority 33 7

Table 1: FPerf vs Buffy LoC comparison

solvers (including Z3), or it can be constructed by using
solver APIs. In future work, we plan to investigate the use
of frameworks such as Zen [11] that provide high-level C++
APIs for the programmatic construction of SMT problems.
Back-end for Dafny. We would like to leverage Dafny [30],
a popular modeling and verification framework. Dafny is an
annotation checker, i.e., it requires all loop invariants and
interface specifications (requires/ensures clauses) for each
method to be provided by the user. Although it is straight-
forward to translate a Buffy program to a Dafny program,
directly trying to verify it with Dafny may not work. As
we will show in our case studies (§6), coming up with loop
invariants and interface specifications for network programs
with multiple buffers is not easy. Instead, we use loop un-
rolling and function inlining in Bufty programs where we do
not have easily available loop invariants and interface speci-
fications. In addition, we use customized transformations to
enforce workload assumptions on input traffic buffers.
Back-end for model checkers. To use a symbolic model
checker, Buffy can transform the program into a transition
system as the IR. Although we have not tried this yet in our
case studies, we plan to translate a program into a system
of Constrained Horn Clauses (CHC), to explore the use of
the Spacer tool [27], which has been applied successfully for
modular verification of programs.

5 Modular Analysis

One of Buffy’s main goals is to support modular analysis,
which is crucial for enhancing scalability on large systems
and longer time intervals. For instance, we can leverage
the existing modular verification techniques in Dafny for
analyzing Buffy programs. In one of our case studies, a prior
work [9] has identified many interface specifications of a
component that models network paths, which helped us
add interface specifications at the boundary of the Buffy
program modeling that component and efficiently check the
correctness of the discovered corner case without having to
perform much inlining.

In future work, we plan to explore techniques to synthe-
size interface specifications at the boundary of Buffy pro-
grams and assumptions on input workloads. First, we will
develop grammars with suitably expressive predicates on
buffers that can capture interface specifications of interest for
performance analysis. It has been seen that SyGuS (Syntax-
Guided Synthesis) approaches with domain-specific gram-
mars [6] are often more effective than pure solver-based

HOTNETS 24, November 18-19, 2024, Irvine, CA, USA

ing Jib,
in tib, FQ ob, out
iny iby Scheduler

Figure 5: Schematic of the buffers for the FQ Scheduler

approaches for synthesis. We will use guess-and-check tech-
niques, where an iterative procedure guesses some candidate
guided by our grammars, and checks the candidate using a
verifier. Specifically, we would like to use the Houdini algo-
rithm [15] with Dafny to iteratively refine guesses of inter-
face specifications. We would also like to develop CHC-based
synthesis techniques, in the style of the Spacer tool [27] (§4).

6 Case Studies

FPerf [8] and CCAC [9] use Z3 as the back-end solvers. To
demonstrate the benefits of Buffy, we have written Buffy
programs to model one use case from each paper and used
Dafny [30] as the back-end solver to check their correctness.
We manually transformed Buffy to Dafny, and plan to auto-
mate the process in future work. The code samples of our
Dafny implementations are available on the Github [2].

6.1 FPerf - FQ Scheduler

Figure 4 shows the Buffy implementation of FPerf’s FQ sched-
uler, and Figure 5 shows a schematic of the buffers used in
the Buffy model. The scheduler moves packets from input
buffers ib; to the output buffer 0by. The input traffic at each
time step is specified using the buffers in; and is flushed into
the input buffer ib; of the scheduler. In this case study, we
manually translated this program to a Dafny method. We
had to apply several transformations, described later on, to
make our program suitable for Dafny to analyze.

FPerf’s query for the FQ scheduler checks for starvation -
whether a buffer can take much more than its fair share of
the bandwidth - and it uses the total number of dequeued
packets from a buffer in a bounded (T) number of time steps
as a metric. As such, we augment our program to keep track
of that metric, cdeq, as ghost variables (monitors), and add
assert(cdeq[T - 1] >= T/2) as the query. Moreover, FPerf synthe-
sizes a set of conditions on the input traffic, a.k.a workload,
that will satisfy the query. Dafny is an annotation checker.
So, we use Dafny’s havoc variables to specify symbolic input
traffic (i.e., any input is possible) and use assume statements
to restrict them to FPerf’s synthesized traffic pattern.

Loop unrolling and method inlining. Dafny requires loop
invariants and pre/post conditions for each method. In our
initial Dafny implementations, the Buffy program was trans-
lated to a method that specified the scheduler’s functionality

Amir Seyhani, Junyi Zhao, Aarti Gupta, David Walker, and Mina Tahmasbi Arashloo

. 600

2 @ 450

S 2 300

£ E

gF 101 21s 425 40s

7 9 1 13 15
Timesteps
Figure 6: Dafny Verification Time

Arrival Serviced
Packets Packets

Figure 7: Buffy Model of CCAC

for a single timestep. Within that method, there were sev-
eral bounded loops. There was also a loop to execute the
scheduler method for T time steps. Writing loop invariants
and method pre/post conditions proved quite challenging
as they would have to capture the scheduler’s functionality
as a set of complex predicates. Instead, we unfold the loops
and inline the scheduler and other sophisticated methods to
streamline the translation from Buffy to Dafny.

Symbolic inputs. Dafny supports havocs — symbolic vari-
ables with non-deterministic values that can be constrained
using assume statements. However, using havoc for com-
plex data types such as seq<int> (which we use to model
packet buffers) proved to be difficult for Dafny to analyze. In-
stead, we had to transform our traffic variables to “structured”
havoc variables — sequences of fixed shape and size with in-
teger havoc variables inside. That is, even though Dafny is
a C-like imperative language, several standard (unrolling
and inlining) and customized transformations (structured
havocs) were needed to make the FQ scheduler model suit-
able for analysis in Dafny. Buffy’s goal is to relieve users of
having to perform such solver-specific transformations.
Scalability. As shown in Figure 6, unfolding the loops and
inlining methods resulted in the verification time increasing
exponentially with increasing the total time steps (T). So,
while unrolling and inlining helped streamline the transla-
tion, without modules and the right invariants and conditions
at the boundaries, scalability will remain an issue, motivating
our future work on modular analysis.

6.2 CCAC - AIMD Ack Burst Scenario

CCAC models how congestion control algorithms (CCAs)
behave over Internet paths. It models Internet paths as a path
server, which is a generalized and non-deterministic token
bucket filter, followed by a fixed delay. To reproduce CCAC’s
model in Buffy, we decomposed it into three programs: the

https://github.com/all-things-networking/hotnets24-buffy

Buffy: A Formal Language-Based Framework for Network Performance Analysis

CCA, the path server, and a fixed delay server. We composed
these programs by connecting their buffers (see §3).

Figure 7 demonstrates this composition: The CCA has two
input buffers, cing for input data and cin; for acks coming
back from delay server. The content of output buffer cout is
then flushed into input buffer pin, of the path server. Path
server forwards the serviced packets into the output buffer
pob, and sends the acks into pob;. Acks are then flushed into
the dib, of the delay server, and will go back to the CCA.

We use havoc and assume statements to create the ack burst
condition discovered by CCAC and use assert statements to
check that the query (occurrence of loss) is satisfied. Here, to
make our program suitable for Dafny, we needed to unroll
some of the loops. However, CCAC describes several con-
ditions and invariants about its path server that we could
supply for Dafny to help with the analysis. This is in contrast
with the previous case study, where we had to do several
forms of transformations to account for the absence of user-
provided invariants and conditions. As mentioned before, in
our future work, we hope to augment such user-provided
annotations with automatically generated ones.

7 Discussion

We enforce some limitations at the language level to ensure
efficient analysis of Buffy programs with current solvers. The
flexibility of separating the modeling and backend solvers in
our approach allows us to remove thse constraints if solvers
become better at analyzing more complex code.

Bounded loops. We envision that Buffy programs need to
loop over input buffers or data structures, and it is reasonable
to assume some constant bounds for them at compile time.
Moreover, a loop invariant is needed to analyze loops with
variable bounds, and finding the proper loop invariant is
undecidable in the general case. Thus, Buffy currently only
allows loops with a constant bound. One way of program
analysis in presence of loops is to have the user provide the
proper loop invariant. Limiting the loops by a constant allows
us to unroll the loops during the analysis, hence avoiding
the need for invariants. However, with loop invariants for
the loop that executes the program over many timesteps as
annotations, we could scale Buffy’s analysis to an arbitrarily-
bounded time horizon, an improvement over tools like FPerf.
We aim to explore synthesizing such invariants in the future.
Bounded arrays. Buffy requires all data structures (e.g.,
arrays) to have a constant upper bound on their size. This
allows us to avoid using expensive SMT solver theories such
as array theory, e.g., by flattening arrays, hence making the
analysis simpler.

Primitive data types. Currently, Buffy only supports inte-
gers, boolean, and buffers, and array and list data structures.
To keep Buffy minimal, we only added the data types and
structures required by the problems and examples we have

HOTNETS ’24, November 18-19, 2024, Irvine, CA, USA

experimented with so far. However, if needed in the future,
we do not foresee fundamental challenges in extending the
Buffy framework to more data types and data structures.

8 Related Work

Performance-related and quantitative reasoning. FPerf
[8] and CCAC [9] have demonstrated promising results in
using formal methods to reason about network performance.
Other work has focused on reasoning about quantities such
as link loads and hop counts [24, 28, 36], as well as prob-
abilistic reasoning about networks [17, 18]. While these
works provide a range of approaches for analyzing various
performance-related and quantitative aspects of networks,
we focus on creating a unified, high-level, and flexible pro-
gramming language for modeling network functionality and
a framework to support multiple analysis backends.
Language-based frameworks for network verification.
Our work is inspired by prior efforts in language-based frame-
works that support network modeling and verification. Exam-
ples include NetKAT [7] for data plane verification, NV [19]
for control plane verification, Batfish [16] for network analy-
sis and simulation, Zen [11] for programmatically generating
SMT formulas. Finally, there is prior work [33] that uses a
language-based approach to model and analyze a particular
scheduling paradigm, a tree of PIFO queues.

Verification back-ends. As described earlier, multiple back-
ends in Buffy are related to and leverage advanced solver-
s/tools that have been successfully applied in software ver-
ification. These include Z3 [14], Dafny [30], Spacer [27],
SyGuS-based techniques [6]. As shown in our case studies,
using these methods requires some customization for buffer-
based abstractions in Buffy, and we aim to further improve
automation to reduce user burden where possible.

9 Conclusion

Modeling network functionality for performance analysis is
a challenging task, especially if users are required to directly
create low-level logical formulas. We have proposed Bufty,
a high-level solver-agnostic imperative language centered
around buffer abstractions for users to specify network func-
tionality, and a framework that will automatically generate
solver-friendly representations. We envision our framework
will lower the barrier for utilizing formal methods for perfor-
mance analysis and enabling experimentation with different
abstractions and reasoning approaches.

Acknowledgments

We thank Carol Duan for early exploration of language ab-
stractions and the anonymous reviewers for their helpful
feedback. This work was supported in part by an NSERC Dis-
covery grant and NSF grants CNS-2312539 and CCF-2107138.

HOTNETS 24, November 18-19, 2024, Irvine, CA, USA

References

[1] 2023.

[11

[12

[13

(14

(15

(16

(17

[21

—

—

—_

=

= =

]

—

FPerf Github Repository. https://github.com/all-things-
networking/fperf/tree/main. Accessed: 2024-06.

2024. Buffy Github Repository. https://github.com/all-things-
networking/hotnets24-buffy. Accessed: 2024-06.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers:
Principles, Techniques, and Tools. Addison-Wesley.

Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Pad-
hye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. 2010. Data center tcp (dctep). In ACM SIGCOMM.
Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick
McKeown, Balaji Prabhakar, and Scott Shenker. 2013. pFabric: Minimal
near-optimal datacenter transport. In ACM SIGCOMM.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin,
Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-
guided synthesis. In FMCAD.

Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jean-
nin, Dexter Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT:
Semantic Foundations for Networks. In ACM SIGPLAN POPL.

Mina Tahmasbi Arashloo, Ryan Beckett, and Rachit Agarwal. 2023.
Formal methods for network performance analysis. In USENLX NSDL
Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed, Mohammad
Alizadeh, and Hari Balakrishnan. 2021. Toward formally verifying
congestion control behavior. In ACM SIGCOMM.

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2017. The SMT-LIB
Standard: Version 2.6. Technical Report. Department of Computer
Science, The University of lowa. Available at www.SMT-LIB.org.
Ryan Beckett and Ratul Mahajan. 2020. A General Framework for
Compositional Network Modeling. In The ACM Workshop on Hot Topics
in Networks (HotNets).

Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, Ori
Rottenstreich, Steven A Monetti, and Tzuu-Yi Wang. 2019. Fine-grained
queue measurement in the data plane. In ACM CoNEXT.

Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for
Checking ANSI-C Programs. In Proceedings of the Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS)
(Lecture Notes in Computer Science, Vol. 2988). Springer.

Leonardo De Moura and Nikolaj Bjgrner. 2008. Z3: An Efficient SMT
Solver. In In Proceedings of the Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS).

Cormac Flanagan, Rajeev Joshi, and K. Rustan M. Leino. 2001. Anno-
tation inference for modular checkers. Inform. Process. Lett. (2001).
Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh
Govindan, Ratul Mahajan, and Todd Millstein. 2015. A General Ap-
proach to Network Configuration Analysis. In USENIX NSDL

Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt,
and Alexandra Silva. 2016. Probabilistic NetKAT. In European Sympo-
sium on Programming.

Timon Gehr, Sasa Misailovic, Petar Tsankov, Laurent Vanbever, Pascal
Wiesmann, and Martin Vechev. 2018. Bayonet: Probabilistic inference
for networks. In ACM SIGPLAN PLDL

Nick Giannarakis, Devon Loehr, Ryan Beckett, and David Walker. 2020.
NV: An Intermediate Language for Verification of Network Control
Planes. In ACM SIGPLAN PLDL

Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,
Andrew W Moore, Gianni Antichi, and Marcin Wojcik. 2017. Re-
architecting datacenter networks and stacks for low latency and high
performance. In ACM SIGCOMM.

Toke Heeiland-Jeergensen, Paul McKenny, Dave Taht, Jim Gettys,
and Eric Dumazet. 2018. The Flow Queue CoDel packet scheduler

Amir Seyhani, Junyi Zhao, Aarti Gupta, David Walker, and Mina Tahmasbi Arashloo

and active queue management algorithm. RFC 8290.
editor.org/rfc/rfc8290.txt

[22] Alex Horn, Ali Kheradmand, and Mukul Prasad. 2017. Delta-Net:
Real-time network verification using atoms. In USENIX NSDL

[23] Karthick Jayaraman, Nikolaj Bjerner, Jitu Padhye, Amar Agrawal,
Ashish Bhargava, Paul-Andre C Bissonnette, et al. 2019. Validating
datacenters at scale. In ACM SIGCOMM.

[24] Garvit Juniwal, Nikolaj Bjorner, Ratul Mahajan, Sanjit Seshia, and
George Varghese. 2016. Quantitative network analysis. Technical
report (2016).

[25] Peyman Kazemian, George Varghese, and Nick McKeown. 2012.
Header space analysis: Static checking for networks. In USENLX NSDL

[26] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and

P Brighten Godfrey. 2013. Veriflow: Verifying network-wide invariants

in real time. In USENIX NSDL

Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. 2016. SMT-

based model checking for recursive programs. Formal Methods in

System Design (2016).

Kim G Larsen, Stefan Schmid, and Bingtian Xue. 2017. WNetKAT: A

weighted SDN programming and verification language. In International

Conference on Principles of Distributed Systems (OPODIS).

[29] Jean-Yves Le Boudec and Patrick Thiran. 2001. Network calculus: a

theory of deterministic queuing systems for the internet. Springer.

K. M. Leino. 2017. Accessible Software Verification with Dafny. IEEE

Software (nov 2017). https://doi.org/10.1109/MS.2017.4121212

Yuliang Li, Rui Miao, Honggiang Harry Liu, Yan Zhuang, Fei Feng,

Lingbo Tang, Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Al-

izadeh, et al. 2019. HPCC: High precision congestion control. In ACM

SIGCOMM.

Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar,

P Brighten Godfrey, and Samuel Talmadge King. 2011. Debugging the

data plane with Anteater. In ACM SIGCOMM.

Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias Kappé, and Dex-

ter Kozen. 2023. Formal abstractions for packet scheduling. In ACM

OOPSAL.

[34] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah,

and Hans Fugal. 2014. Fastpass: A centralized" zero-queue" datacenter

network. In ACM SIGCOMM.

The P4.org Application Working Group. 2024. In-band Network

Telemetry (INT) Dataplane Specification. https://p4.org/p4-spec/

docs/INT_v2_1.pdf.

Ying Zhang, Wenfei Wu, Sujata Banerjee, Joon-Myung Kang, and

Mario A Sanchez. 2017. SLA-verifier: Stateful and quantitative verifi-

cation for service chaining. In IEEE INFOCOM.

https://rfc-

[27]

[28]

[30]

[31]

[32]

[33]

[35]

[36]

https://github.com/all-things-networking/fperf/tree/main
https://github.com/all-things-networking/fperf/tree/main
https://github.com/all-things-networking/hotnets24-buffy
https://github.com/all-things-networking/hotnets24-buffy
https://rfc-editor.org/rfc/rfc8290.txt
https://rfc-editor.org/rfc/rfc8290.txt
https://doi.org/10.1109/MS.2017.4121212
https://p4.org/p4-spec/docs/ INT_v2_1.pdf
https://p4.org/p4-spec/docs/ INT_v2_1.pdf

	Abstract
	1 Introduction
	2 Motivation and Overview
	2.1 A Fair-Queuing Packet Scheduler
	2.2 Modeling and Analysis Challenges
	2.3 Buffy Overview

	3 Buffer-Centeric Abstractions
	4 Multiple Back-Ends
	5 Modular Analysis
	6 Case Studies
	6.1 FPerf - FQ Scheduler
	6.2 CCAC - AIMD Ack Burst Scenario

	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

