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Abstract explicitly: (¢ — 3) A (¢' — 3) A (£ # ¢'). As the complex-
ity of the spatial properties increases, the classical formulas
In this paper, we develop a new substructural logic that become less and less wieldy. For example, as the number
can encode invariants necessary for reasoning ather- of locations in a formula grows linearly, the number of in-
archical storage We show how the logic can be used to equalities needed to specify that all locations are disjoint
describe the layout of bits in a memory word, the layout grows quadratically.
of memory words in a region, the layout of regions in an In this paper, we develop a new substructural logic that
address space, or even the layout of address spaces in grovides simple but general connectives for reasoning about
multiprocessing environment. We provide a semantics forhierarchical storage We show how the logic can be used
our formulas and then apply the semantics and logic to the to describe the layout of bits in a memory word, the lay-
task of developing a type system for Mini-KAM, a simpli- out of memory words in aegion [27], and the layout of
fied version of the abstract machine used in the ML Kit with regions in an address space. We then combine connectives
regions. that describe these hierarchical relationships with other sub-
structural formulas that describe separation and adjacency
of memory locations. We provide a semantics for our for-
1 Introduction mulas and apply the semantics and logic to the task of devel-
oping a type system for Mini-KAM, a simplified version of

The problem of establishing that programs allocate, ini- the abstract machine used in the ML Kit with regions [26].

tialize, use and deallocate memory safely has plagued pro- o
gramming language researchers for decades. Moreover, th@ Preliminary Development
relatively recent development of proof-carrying code [14,

15] and typed assembly language [13] and the widescale \ve develop our logic from first principles following the
deployment of low-level safe virtual machines [10, 25] has methodology set out by Martindf [11] and Frank Pfen-
provided still more incentive to study the wide variety of ning[18, 19]. The details of our logic were directly inspired
invariants that can be used to ensure safe memory managepy Cardelli and Gordon’s ambient logic [3], and O’Hearn
ment. and Pym’s logic of bunched implications (BI) [16].

One of the most promising trends in this area is the use of  \We begin by considering not oniyhethera formula is
substructural logics rather than conventional classical logicstrue but alsavhereit is true. Hence the primary judgmeit
to describe the state of a computation [23, 8]. The expres-of our logic has the fornk’ @ p whereF' is a logical formula
sive connectives of a substructural logic are able to cap-andp is a place where that formula may or may not be true.
ture the spatial orientation of a data structure in a conciseFor the purposes of the current paper, places are nodes in
fashion without having to rely upon the series of auxiliary an edge-labeled tree, as in the ambient logic. We use the
predicates needed by conventional logics. For instance, IshMetavariable: to range over edge names and we use paths
tiag, O’Hearn and Reynolds have used the multiplicatives from the raot ¢) to refer to places.
of bunched logic to capturgpatial separatiorproperties in Path/Place
data structures. Their formul@d — 3) x (¢/ — 3) de-
scribes twaseparatdocations? and/’ that both contain the With these primitive concepts in hand, we may proceed
integer 3. Similar information can be captured in a classi- to develop a logic capable of expressing three main spatial
cal formula, but only at the expense of having to introduce properties:
additional predicates that represent inequality information

p = x|pmn

e Containmenbdf one place in another.



e Separationor disjointedness of one object from an- single judgment labeled with a variable® We treat these
other. trees of hypotheses as equivalent up to associativity and

« Adjacencyof one object to another. commutativity of the “,” separator and regard as the left

and right identity for “,”. However, these contexts are not
subject to contraction or weakening.

Containment. We say that one place containsanother Our new hypothetical judgments obey the following lin-
placep’ whenp’ = p.n for some edge. Our logic internal- ear substitution principle, wheté is a context containing
izes the notion of containment with a formutéF], which a single hole and’(A) is notation for filling the hole il
is defined by the following rules. with the contextA. We considef’(A) to be undefined if
I" andA have any variableg in common. In our final log-
FFQpn [l FnlFl@p JE ical system, this substitution principle can be proven as a
Fn[F]|Qp FFQ@pn lemma.

As a preliminary check on the consistency of these rules, . . o
we note that the elimination rule is locally sound and com- Principle 1 (Substitution)
plete with respect to the introduction rule. Local soundnessf A F F@p and T'(w:F @p) = F'@p' then T'(A) F
ensures that the elimination rules for a connective are notF’ @p'.
too strong: it is impossible to gain extra information simply

by introducing the connective and then immediately elimi-  TO internalize the notion of separation, we introduce a
nating it. Local soundness of the above rules is witnessedMultiplicative conjunctiont’y ® F» (pronounced; tensor
by the following local reduction=£-,.). Fy).
D All—Fl@p Azl—Fg@p ®|
FEFQp.n D A1, A+ (F1 ® F2)@p
HL[F]@anE o mE@pn AF(Fi®F)Qp T(u:F; @ FQp)FFa@
Frapn " (FL®F)@p T(uiFiOp, ulGp)F Fap

L(A)F Fap
Local completeness ensures that the elimination rules are
not too weak: given an arbitrary proof of the connective, we  The only thing to distinguish this connective from Bl’'s
can recover enough mformatlon. through eliminations to be multiplicative conjunction is the presence of the pattm
able to reintroduce the connective. Local completeness Ofourjudgments. Since the path is everywhere the same, our

the rules above is witnessed by the following local expan- multiplicative combines two separate objects in a particular

sion ). . . ) ) .
&) ¢ place into a pair of objects in that place. As before, itis easy
—_— to verify that the elimination is locally sound and complete
£ Fn[FlQp . . .

—_— - ——n with respect to the introduction.

Fn[F|Qp e FFQpn . .
——n As an example of our new connective, consider the for-
Fn[Fl@Qp

mular[¢[int] ® ¢'[int]], which asserts that “region con-

To illustrate the use of this simple connective, we assumetains two separate locatiorisand/’ that both contain inte-
the presence of a collection of logical predicatesvhich ~ gers”. The formular[([int]] @ r[¢'[int]] makes the same
can be interpreted as saying that “a value with typis assertion.
here.” For example, the formuldint] says “an integer is
in the location/.” The judgmentp[r[bool]] @« says that  Adjacency. The last main concept in our logic is adja-
at the root, the processcontains a regiom that contains  cency. To model adjacency at the level of judgments, we
a boolean.” extend our hypothetical context one more time with an ad-
jacency separator “;".

Separation. Separation is most easily defined by extend-
ing our basic judgments to depend upon linear contexts with
the following form.

Contexts A ::= .| A1; A
We extend the equivalence relation on contexts so that “;"
is associative, has the empty contexXtds its identity but,

unlike “,” is notcommutative. Neither separator distributes

We define contexts as a tree of hypotheses rather than £Ver t_he other. In_summary, th_e equivalen_c_e relation on con-
more conventional list of hypotheses in anticipation of fur- texts is the reflexive, symmetric and transitive closure of the

ther extensions for reasoning about adjacency. The nodes ir];OIIOWIng axioms.

these trees are labeled Wit_h the (linear) separator “". The 1We label hypotheses with distinct variableso facilitate the proof of
leaves of these trees are either empty (denoted®yf a the substitution principle (Principle 1).

Contexts A ::= | (uJ)| A, A




1. ,AEA 4. (Al,Az),Angh(Az,Ag)
2. ~;AEA 5. (A1;A2);A35A1;(A2;A3)
3. A;- =A 6. Al,AQEAQ,Al

7. T(A)=T(A)if A=A

We internalize adjacency with an ordered conjunction
(calledfuse.

A1|_F1@p AQ}_F2@p
Al;AQ = (Fl OFQ)@p

o

AF (FioF)@Qp T'(ui:F1Qp; ua:FoQp) - FQp £
(A F Fap °

Rules for the quantification connectives are given in Fig-
ure 1, along with rules for additive conjunctio&) and its
unit (T), and additive disjunctiong) and its unit Q). Our
logic extends readily to handle linear, left-ordered and right-
ordered implications{o, —, —) though we do not describe
these here in the interest of space.

Our latest hypothetical judgments obey all the principles
described thus far as well as the following variable substi-
tution principle. We use the metavariabléto range over
sorts,z to range over variables in general amdo range
over objects of each different sort.

Our ordered conjunction allows us to specify a sequencePrinciple 3 (Variable Substitution)

of objects lined up one next to the other. For example, we
can specify a sequence of 32 bits in a word at locatias
£[0[bit]o  [bit]o- - -0 31 [bit]] where0 through31 are the

names of the bit locations; or we can specify three objects in

sequence on the top of the stacksas:k [l [int]ol3[bool]o
l3]int] o tail] where the formulaasl describes the tail of the
stack.

Adjacent locations are not only next to one another they

are also separate from one another. Formally, adjacenC))

and separation are related by the following principle, which
states that we may view a proof BfA;, A;) - F@pasa
proof of I'(A1; Ap) - F@p.2

Principle 2 (Disorder)
IfF(Al, AQ) + F@p then F(Al, Ag) F F@p

The ordered and linear conjunctions gnd ®, respec-
tively) share a single identitydefined by familiar inference
rules.

AFl@p T()FFQp

A Fap  E

-F1@p 1

Quantifiers and Other Connectives. Our logic includes
formulae for universal and existential quantification that
have the fornvo.F' and3b.F', respectively. The bindings
in quantification formulae describe the sort (integgrath

P, typeT, formulaF, or nameN) of the bound variable.

b

Bindings @l | p:P | a:T | ¢:F | m:N

To support universal and existential quantification we ex-
tend the judgments of our logic to additionally depend on a
variable contex®. The final form of the basic judgment of
ourlogicis® || A - F @ p where© describes the variables

that appear free if\, F', orp.

Variable Contexts ©

16,0

2Unlike our Substitution Principle, the Disorder Principle cannot be

proven as a lemma in our final system unless we add the corresponding

structural inference rule. We choose not to add an explicit structural rule,
but implicitly include one sort of proof for another wherever necessary in a
derivation, following a similar idea in Pfenning and Davies’ development
of modal logic [19].

If0,2:K || A+ FQp then for all a€ K, O || Ala/z] F
Fla/z]Qpla/x].

Summary of Logical Formulae and Deduction Rules
The syntax of formulae in our logic is summarized below.
The simplest formulae are predicatgesThus far we have
only encountered predicates of the formwhich can be
jnterpreted as “a value of typeis here.” Additional predi-
cates will be introduced in Section 3.2.

Predicates ¢
Formulae F

T|

q|n[F]|1|Fi@F| FioF|
TIR&FR|0|FaF,|

¢ | Vb.F | Ib.F

The natural deduction rules of our logic are collected in
Figure 1.

3 Store Semantics

In this section, we describe a model for our logic based
on hierarchical stores.

3.1 Stores

We assume the existence of an abstract set of valugés
A store is a partial map from pathso valuesv.

Stores s € Path — Val

Values will be given types via a judgment of the form
FY v : 7, whereU is an abstract type assignment.

In order to discuss adjacent places, we assume the ex-
istence of a partial functiosucc : Path — Path, which
maps a pathp to the path that immediately follows it. We
write adj(p, p’) whenp’ = succ(p). We usep + ¢ andp(i)
as syntactic sugar faucc?(p) andp — i for the pathp’ such
thatp = succ’(p’). We define the relatior< in terms of
succ as follows:p < p’ iff there exists a natural number
such thasucct(p) = p’. We say that a se® C Path is or-
deredif and only if it can be organized in a total order given
by the relation<. Otherwise we say tha? is unordered

We use the following notation to manipulate stores.



O||AFFap Additive Conjunction and Unit

O|AFF@p O|AFFap

Hypothesis Tl

H O|AFTap OAF (P &Fy)ap
O|wFQpk FQp yp (1)
O AF (P &F)ap OlAF (&R Gy
Containment ©fArF@p OAFFQp
olarFapn O AFnF]Qp n[|E Additive Disjunction and Unit
O AFn[FlQ@p O||AFF@pn
O AF0Qp
Linear and Ordered Unit O ArFap
== 1 O AFF Q@ O AFFQ
O -F1ap l 12p In l 2 =P w12
OAF (FLoF)ap O|AF (R @R ap
O||Arl1@p O T()FFap
O T(A)F Fap OAF(FoR)ap
@ H F(ulel @p) I J @ H F(UQZFQ @p) I J E
®
Linear Conjunction 0Tk J

@ H A1 "Fl@p @ H AQ}_FQ@p
(S || A1,A2 = (F1®F2)@p
O||AF(Fi®F)Qp O I'(u:F1Qp,us:F,Qp) - FQp
O T(A)F Fap

Universal Quantification
O,:K || A+ FaQp
®E O Ak (Vz:K.F)Qp
O Ak (VoK. F)Qp a€ K
Ordered Conjunction O Ak Fla/z]Qp
@ || A1 |—F1@p 6 H AQ |—F2@p
(S H A1;A2 = (F1 OFQ)@p
O A (FioF)@Qp O I'(ui:FiQpjus:Fr@Qp) - FQp £
O T(A)FFap °

Existential Quantification

O||AF Fla/z]Qp a€ K
O At (Zu:K.F)Qp

O AF (K. F)Qp O,z:K || T'(wFQp)kJ

o

O T(A)FJ e
Figure 1. Natural Deduction Rules

e dom(s) denotes the domain of the store adj("dom(s1)7,Ldom(s2)J) or one of s; or so
e s(p) denotes the value stored at path is empty.
e s[p:=v] denotes a store’ in which p maps tov but

is otherwise the same as If p ¢ dom(s) thens’ = 3.2 Semantics of Judgments

sU{p—uv}
e Given an ordered set of patt§ C Path, "X is the We use judgments to describe stores and wite:?

greatest member (tr&ipremurjof the setand X  is F @p when the judgment’ @ p describes the store The

the relation<. Given any unordered sét C Path, more—. The judgmentr @ p describes a store with a sin-
rY.j and_Y _ are undefined. @™ and.{)_ are also un- gle placep that holds a value of type. The judgments
defined. more @ p andmore— @ p describe an infinite sequence of

e 517 sz indicates that the stores ands, have disjoint  adjacent places to the left (and right, respectively) of some
domains place contained ip. When we develop a type system for

e s, W sy denotes the union of disjoint stores; if the do- Mini-KAM in section 4, we will usemore™ to indicate that
mains of the two stores are not disjoint then this oper- the stack may be grown to the left, antdre™ to indicate
ation is undefined. that heap regions may be grown to the right.

e s1©sy, denotes the union of disjoint The formulan[F] @ p describes a storeif and only if s
stores with the additional caveat that either may be described by the formula@ p.n. To illustrate the



semantics of the containment connective we consider thes ¥ F @p if and only if

stores = {*.ny1.ng— 5}. The judgmen{n; [ns[int]]) Q %
describess, as do the judgmentény[int]) @ * .n; and
int @ % Mni1.no.

The semantics of the multiplicative conjunctiéh @ F;
follows from the work of Ishtiag and O’Hearn [8]: A store
s can be described byF; ® Fy) @p if and only if there
exist s1, s9, such thats; E¥ Fy@p ands, EY F,@p
ands = s; W s;. To get accustomed to some of the
properties of tensor and to contrast it with fuse, we will

reason about the following stores which contain locations

in the set{x.m.n; | 0 < 7 < k} where each path in
this set is adjacent to the next in sequence (i.e., foi,all
adj(x.m.n;, *.m.n;41)).

Store Domain Describing Judgment
S1 {x.m.ni,xmmnz} FQx

S2 {x.m.ng,xmmneg} FrQx

S3 {x.m.na} F3 @ %

S4 @ F, Q%

S5 {x.m.nz} FsQx.m

S6 {*x.m.ne} Fs @Qx*x.m

The stores = s; U so U s3 can be described by the judg-
ment((F; ® Fy) ® F3) @« sinces can be broken into two
disjoint parts,s; U sy and s3, which satisfy the subfor-
mulae (F; ® F3) @x and F5 @ x respectively. The store
s also satisfies the judgment$’; ® (F> ® F3)) @« and
(F3 ® (F» ® F1)) @ since it is defined in terms of the as-
sociative and commutative disjoint union operator.

For fuse, we have FY (F} o F3)@p if and only if
s can be divided into twadjacentparts, s; and s, such
thats; EY [, Qp ands, EY F,@p. More formally,
we requires = s; © so. Now consider our example from
above. The store; U so may be described using the judg-
ment(F}; o F3) @ x since the supremum @f is adjacent to

the infimum ofs,. This same store cannot be described by

(Fy o F1) @+« — fuse is not generally commutative. On the
other hands; can be described by eithéF; o F;) @ * or
(Fyo Fy)@xsinces; = s1©0 = () ®s;. Since neither the
supremum nor the infimum af; is adjacent to the infimum
or supremum, respectively, af or sy we cannot readily

use fuse to describe the relationship between these memo-

ries. Finally, the supremum @}, is adjacent to the infimum
of s5 andssy U s5 can be described byFy o m[F5]) @ *.

To see how fuse interacts with the containment connec-

tive, consider the stores; andsg. The supremum ofg
is adjacent to the infimum of; so it follows that the store
s¢ U s5 can be described bifF; o F5) @ x .m. Moreover,
this same stores U s5 can be described by [Fg o F5] @ x
and also by(m[Fs] o m[Fs]) @*. The interaction between
tensor and containment is analogodgU s5 satisfies both
m[Fs ® Fg] @« and (m[F5] @ m[Fs]) @+. The fact that

e F =randdom(s) = {p}ands(p) =vand-¥ v: 7
e "= more™ and there exists a non-empty sétsuch that
dom(s) = {p.z|r€X}andvze X. Jyedom(s). adj(y, p.x)

e "= more™ and there exists a non-empty sétsuch that
dom(s) = {p.x | z€X} andvzeX. Jycdom(s). adj(p.z, y)

F =n[F']ands EY F'@p.n

F =1anddom(s) =0

e ['= F; ® F» and there existy, sz, such that = s; W so
ands; EY Fy @pands, EY Fob@p

e F' = F} o I, and there existy, s2, such thak = s; © s»
and51 ':\1/ 1 @p and32 ’:\I’ F> @p

F = T (and no other conditions need be satisfied)
e F=F &FandsEY Fi@pands EY F,@p
F = 0 and false (this formula can never be satisfied)
F = F; @ F; and either
1. seY [ @p, or
2. sEY F,@p.

o F=VYu:K.F' ands EY F'[a/z] Qp for all ac K

e [ = 3Jz:K.F’ and there exists somec K such that
sEY F'la/z]@p

Figure 2. Semantics of Judgments

The semantics for the rest of the formulae are collected
in Figure 2. In the semantics of quantifiers, we use the no-
tation X [a/b] to denote capture-avoiding substitutioncf
for the variable irb in the objectX. The objects substituted
for variables must have the correct sort (integer, path, type,
formula, or name) or else the substitution is undefined.

3.3 Semantics of Contexts & Soundness

Like individual formulae, contexts can describe stores.
The semantics of contexts appears below. Notice that the
semantics of the ordered separatdriirrors the seman-
tics of fuse whereas the semantics of the linear separgtor “
mirrors the semantics of tensor.

s E& Aifand only if

A = anddom(s) =0

A=wF@pandskEY F@p

A= Al, As ands = s W so andsy ':g A1 andsso ':g As
A= A1; As ands = s; © so ands; ':g A1 andss ':g Ao

We have proven the following lemma which states that
deduction is sound with respect to our semantic model. The
proof follows by induction on the derivation that|] A F
Fa@np.

the same store satisfies both these judgments is a point ok€Mma 4 (Soundness of Logical Deduction)

departure from the ambient logic [3].

IfsE Aand- | A+ FQp, thens EY FQp.



4 Mini-KAM 4.1 Syntax

In this section, we present the syntax and the static and__ V& Will be reasoning about several different sorts of
valuesv including integers € Int, code locations: €

erljamlc .sem?nglci_o;ll\)/llm-KAl\l;/l, i.s'm%“f'ed g.nd r|1de|<a/|||-_ Codeloc, which contain executable code, places or paths
ized version of the Kit Abstract Machine [6] used in the p € Path, and two special valuesive anddead that are

Kit with regions [26]. Mini-KAM is a stack-based machine sefy| for reasoning about whether or not an existing region
that consists of three registers: two general-purpose regisis safe to access. Therefore, the set of vallieg (which
tersaccl andacc2, and a stack pointesp that pointstothe  was left abstract in Section 3.1) may be defined as follows.
last allocated cell at the top of the stack. In addition to the

stack and registers, Mini-KAM has a setiofinite regions. Val = IntU PathU CodelocU {live} U {dead}

Infinite regions are so named to distinguish them fiforite .

regions [26]. The latter are regions whose maximum size is There are four main components of a program. A code re-

knowna priori, which means that they can be allocated on gion C'is a finite partial map from code values to blocks
the stack of codeB. Each block is a sequence of instructianer-

We model Mini-KAM using the hierarchical stores we minated by a jump instruction. Finally, the operands that

introduced in Section 3.1. Figure 3 illustrates the store hier- appear in instructions are simply values

T . N o The state> of the Mini-KAM is a 3-tuple containing a
archy in Mini-KAM. The three registers are “contained” in code regionC, a stores, and the block of code that is

the root ¢), as is the stack (namedack) and a set of (in- ¢yyrrently being executed. The store hierarchy must match
finite) regionsr;. The stack in Mini-KAM grows with de-  that shown in Figure 3.

creasing addresses and contains an infinite set of locations

n; that correspond to memory cells. The regions, on the Values v = i|pl|c|live|dead
other hand, contain an infinite set of increasing locations, Instructions ¢ ::=  immed1 (v) | immed2 (v) | swap |
starting with the distinguished location namert — i.e., add | sub | push | pop |

selectStack (4) | storeStack (i) |
select (i) | store (4) |
letRgnFin (i) | letRgnInf |

x.1r.start is the path to the first location in region
By comparison, the KAM has an infinite number of

fixed-size pages each of which is contained in either the endRgnInt | alloc ()
free listor in an allocated region. We could easily model pgjgcks B ::= jmp |uB

the KAM by adding an extra level to our store hierarchy, Code Region C ::= -|C,c— B

such that regions contain pages which in turn contain lo- Machine State ¥ ::= (C,s,B)

cations, and also maintain a free list contained in redt (

that contains similar pages. The KAM also has a notion of
region pointerswhich are special in that the two least sig- 4.2 Operational Semantics
nificant bits are used to indicate whether the region is finite
or infinite, and whether allocation should be performed at
the top or the bottom (overwrite mode) of the region. The

remaining 30 bits store the actual pointer to the region. We ™ . . ; .
g P g scribe the instructions here. Readers desiring further de-

could imagine yet another level in our store hierarchy, such . . . .
. . . . tails should consult the formal operational semantics given
that locations each contain 32 bits as we sketched out in. "~
) . in Figure 4.
an example in Section 2. We have chosen to abstract away _
some of these details in this short paper. e immed1l andimmed?2 load the operand into the reg-
istersaccl and acc2 respectively, whileswap swaps

the contents of these two registers.

e add andsub assume thatccl andacc2 contain inte-
ger operands and place the resultiml.

e push stores the value imccl at the top of the stack
and increments the stack pointer, whilep pops the
value at the top of the stack and places itim1.

e selectStack (i) loads the contents op,, + ¢
(wherep,, is the top of the stack) intaccl, while
storeStack (7) stores the value inccl atp,,, + 4.

e select (i) loads the contents of + i (wherep is the
address iruccl) into accl, while store (i) stores the
value inaccl atp + 1.

We define execution of our abstract machine using a
small-step operational semantiEs— Y’. We briefly de-

Figure 3. Mini-KAM Store Hierarchy



(C,s,B) — X where

If B = thenX =

immed1 (v); B’ C, s [*.accl:=v|, B")

immed?2 (v); B C, s [*.acc2:=v|, B")

swap; B’ C, s [*.accl :=s(*x.acc2)| [*.acc2 = s(x. accl)] D)

add; B’ C, s [*.accl = s(x.accl) + s(x.acc2)], B

sub; B’ C, s [*.accl :=s(*.accl) — s(*.acc2)|, B )

push; B’ C, s [p:=s(x.accl)] [*.sp :=p|, B") wherep = s(x.sp) — 1

selectStack (i); B’ | (C,s[*.accl :=s(s(x.sp) +1)], B')

storeStack (i); B’ C,slp:= s(*.accl)} ") wherep = s(x.sp) + i

select (z); B C, s [*.accl:=s(p)], B") wherep = s(*.accl) + i and3r,n.p = x.r.n A s(x.r) = live
store (i); B’ C,slp:=s(x. acc?)], B’) wherep = s(*.accl) +iand3r,n.p = x.r.n A s(x.r) = live
C, s [*.sp:=5(*.sp) — i] [*.accl :=s(x.sp) — i], B)

—~|—

(
(
(
(
E
pop; B’ EG s Fﬁ-accl =5(s(x.sp))] [*.5p := s(s.5p) + 1], B')
(
(
(
(

letRgnFin (i); B’

letRgnInf ; B’ (C, s [*.r:=1live] [*.r.start + j :=0] [pl :=x.r.start] [p2 = x.r.start] [*.sp :=s(x.sp) — 2], B) forall j > 0
wherepl = s(x.sp) — 1,p2 = s(x.sp) — 2, *.r ¢ dom(s) andvn. x .r.n ¢ dom(s)

endRgnInf ; B’ (C, s [*.r :=dead] [*.sp :=s(*.sp) + 2|, B') wheres(s(x.sp) + 1) = *.r.start

alloc (i); B (C, s[p=s(p) + i| [*.accl:=s(p) + 1], B") wherep = s(*.accl) and3r,n. s(p) = *.r.n A s(x.r) = live

jmp (C, s, B") whereC(s(*.accl)) = B”

Figure 4. Operational Semantics

e letRgnFin (i) allocates a finite region of sizeon the The type system for Mini-KAM is defined by the following
stack; it simply decrements the stack pointeritand ~ judgments.
places a pointer to the beginning of the finite region in

accl. FY v Valuev has typer
e © | JFY.:J Instruction: requires a contex® || J and
e letRgnInf andendRgnInf allocate and free infinite yields.J’
regions, whilealloc (i) allocates consecutive mem- © | J+-" Bok Block B is well-formed in contex® || J
ory locations in an existing infinite region. We shall | .y Code regiorC' has type¥
describe these instructions in detail when we discuss ¥ ok StateX is well-formed

their typing rules in Section 4.3.
The static semantics is given in Figures 5 and 6. Once

4.3 Types and Typing Rules again, although judgments for operands, instructions and
blocks are formally parameterized By we normally omit
this annotation.

We use abbreviations for the following common for-
mulae: 3Ji:l.S(i) is abbreviatedint; Ja:T.n[a] is
abbreviatedn[_]; 3In:N.3Ja:T.n[a]) is abbreviatedns;
mq[ma - [mg[F]]- -] is abbreviatedn,.ms. - - - .my[F].

In this section, we describe the typing rules for Mini-
KAM, with an emphasis on how we use the store logic to
describe the state of the abstract machine. Formal typing
rules appear in Figures 5 and 6.

We give integers, pathdive anddead singleton types
which identify them exactly. For example, the integeray
be given the typ&(i). Code locations are given code types Definitions (Lookup and Update)
as described by a code context. These code types have theur typing rules make extensive use of an operatidodé
form (F@p) — 0, where F@p is a judgment that de-  ypthe formula describing the contents at a place offset by an
scribes requirements that must be satisfied by the state ofndex (p()) inajudgmentr’ @ p. To facilitate this operation
the abstract machine before it is safe to jump to the code.we use the notatiod (p(i)) which is defined as follows.

Code can only “return” by explicitly jumping to a continu-

ation (a return address) that it has been passed as an arguk(p.n(i)) = Fi if - || J F (T@(n[Foloni[Fi]o---on;[F])) @p
ment and therefore our code types do not have proper return
types. Abstract typea arise through existential or univer-
sal quantification in formulae. The syntax of types is as

Let us take a closer look at the above definition. Assume
thats is the subset of the store that satisfieFy] onq [Fi]o

follows. ---on;[F;]) @ p. Notice that in the above definition, the for-
mulaT “consumes” everything in the store that is notin
Types T = a|S()|(FQp)—0 This allows us to ignore parts of the store that are not rel-

Code Contexts W ::= - [W,c:(F@p) —0 evant to the information we want to look up. For instance,



FY o7
W(c) = (F@p) —

0
d
Fc:(F@Qp)—0 (code)

(v ¢ Codeloc)

Fo:S(v)

(O Fapt Bok|

J(x.acc1)=(J)—0 O JFJ (imp)
-jm
O | JF jmp ok Jmp
O JrFuJ O JFBok
(b-instr)
O JF; Bok

O || (n[more™ o F1]® F)Q@p - B ok
O || (n[more” onso F1]® F)@p+ B ok

(b-stackcut)

O || (n[more” onso F1]® F)@p + B ok
O || (n[more™ o F1] ® F)Qp+ B ok

O || (n[Fionsomore” | ® F)@p+ B ok
O || (n[Fyomore™”]| ® F)Qp+ B ok

©,b| Fapt Bok

(b-stackgrow)

(b-regiongrow)

(b-unpack)
O .FQAQptF Bok
OJrJ | JF Bok
(b-weaken)
O | J+ Bok

dom(C) = dom ()

Ve € dom(C). ¥(c) = (FQp) —0
implies - || F@Qp Y C(c) ok

SRy (codergn)
FC:U  sEYFQ * - || F@x Y Bok
(state)
F (C,s, B) ok

Figure 5. Static Semantics (except instrs.)

any objects immediately to the right of are simply con-
sumed byT. We shall use the abbreviatiof(p) for the
lookup J (p(0}).
We updatethe type of a path(i) in a judgment/ using
the notationJ [p(i) := 7] which is defined as follows.
J [xpn(i):=1] =
(F1 ® (Fy op[n[ro] oni[ri] o+ ony[7]] o F3)) @x
if - ||JF (F1® (Faopln[r]oni|r]o---on;[r]]o F3))Qx
where p is a sequence of names.

Block Typing. The basic block typing rules afginstr,
which processes one instruction in a block and then the rest
of the block, andb-jmp which types the jump instruction
that ends a block.

Block typing also includes rules to extend our view of
the stack I§-stackgrow), retract our view of the stack{
stackcut) or extend our view of a regionb{regiongrow).
Typically, when we wish to push more data on the stack,
we will first use theb-stackgrow rule (as many times as nec-
essary), and thepush data onto the stack. Similarly, to
allocatei new cells in an infinite region, typically we would
first use theb-regiongrow rule i times and then perform an
alloc (). To pop the stack, we reverse the order, using
pop one or more times, followed by as many uses of the
b-stackcut rule.

Instruction Typing. Instruction typing is performed in a
context in which the free variables are described=bsnd

the current state of the store is described by the input judge-
mentJ. An instruction will generally transform the state of
the store and result in a new state described by the judge-
ment.J’. For instance, if the initial state is described by
J and we can verify that v : 7, then the instruction
immed1 (v) transforms the store so that the new state is de-
scribed byJ [x.accl:=7]. The rule for typingimmed?2 is
identical. The rule for swapping the contentsaet1 and
acc2 makes use of our judgment lookup operation. In gen-
eral, the lookup operatioii(p) = F suffices to verify that

the pathp exists in the store an# @ p describes some por-
tion of the store. The rules for integer addition and subtrac-
tion are similar to that foswap .

To type check thepush instruction, if sp points to
the locationn in stack and we can verify that somgor-
tion of the current store can be described by the judgment
(n'[-]on[-]) @ x.stack, then after the stack pointer has been
decremented it should point tostack.n’. We can come to
this conclusion even though we do not know exactly which
locationsn andrn’ we're dealing with. The fuse operator
allows us to conclude thaidj(*.stack.n’, *.stack.n). In
this way, we can replace arithmetic reasoning (that is, rea-
soning about incrementing and decrementing pointers) with
reasoning about adjacency within our logic. The typing rule
for pop is almost identical to that fgsush .

Typing selectStack (i) and storeStack (i) requires
reasoning similar to that fgsush : the stack pointer points
atx.stack.ng and we can verify that some part of the store is
described byng[_Joni[_]o---on;[_]) @ *.stack, allowing
us to conclude that the result of addiitp the stack pointer

State Typing. The rule for typing code is the standard rule would be the path.stack.n;.

for a mutually recursive set of functions. The rule for typ-

To type checkselect andstore (which involve ac-

ing an overall machine state requires that we type check ourcessing a region other than the stack)gdé1 points to an
programC' and then check the code we are currently ex- address in region, then we must verify that regionis live

ecuting (B) under the assumptioi, which describes the
current stores.

— i.e., we check that/(x.r) = S(1ive). The rest of the
reasoning for these instructions is similar to that for their



O JFe:J
Fv:r (immed1) Fv:r (immed2)

O || J F immed1 (v) : J [*.accl :=7] O || J F immed2 (v) : J [*.acc2:=7]
J(*.accl) =1 J(*.acc2) = 1o

O || J & swap : J [*.accl = To] [*.acc2:=T71] (swap)
J(*.accl) = int J(*.acc2) = int J(*.accl) = int J(*.acc2) = int
. (add) - (sub)
O | JF add : J[x.accl:=int] © || J F sub : J[*.accl:=int]
J(*.accl) =71 J(*.sp) = S(*.stack.n) J(x.stack) = n'[_] on[_] (push)
us
© || J + push : J [*.sp :=S(x.stack.n’)] [*.stack.n’ =7 P
J(x.sp) = S(x.stack.n’) J(x.stack) = n'[1] on|_]
0
O || J F pop : J [*.sp :=S(x.stack.n)] [*.accl :=7] (Pop)
J(*.sp) = S(*.stack.no) J(x.stack) = no[-] oni[-] o+ 0ony[7]
- (selectStack)
© || J I selectStack (i) : J [x.accl:=7]
J(x.sp) = S(x.stack.no) J(x.accl) =71 J(x.stack) = no[-]oni[-] o omny-] (storeStack)

O || J - storeStack (i) : J [*.stack.n; :=7]

J(*.accl) = S(*.r.ng) J(*.r) = S(live) ® (no[-] oni[-] o -+ o n;i[7])
O || J F select (i) : J [*x.accl:=T]

(select)

J(*.accl) = S(*.r.no) J(*.acc2) =T J(x.r) = S(1live) ® (no[-] o ni[-]o---on;[-])
© || J & store (i) : J [*.r.n; :=7]

(store)

J(x.sp) = S(x.stack.n;) J(x.stack) = no[-]oni[-]o---ony[]

letRgnFi
© || J - letRgnFin (i) : J [*.sp :=S(x.stack.ng)] [*.accl :=S(x.stack.ng)] (IetRgnFin)

e|JrJ J' = F1 ® (F» o (stack[no[-] o ni1[-] o n2[7]]) o F3) ® sp[S(x.stack.n2)] @ * (r¢ FV(J")

O || J - letRgnInf : Ir. Fy ® (F o (stack[no[S(x.1.start)] o ni[S(x.r.start)] o na[7]]) o F3)  (IletRgninf)
® sp[S(*.stack.ng)] @ r[S(live) ® (start[-] o more™)] @«

J(x.sp) = S(x.stack.no) J(x.r) = S(live)
J(*.stack) = no[S(x.7.Neurr)] 0 N1 [S(x.1.start)] o na[-]

© || J - endRgnInf : J [x.sp :=S(*.stack.n2)] [*.r :=S(dead)]
J(*.accl) = S(p) J(p) = S(*.r.ng) J(x.r) = S(live) ® (no[.] o ---ony[.])

(endRgninf)

[
O || J F alloc (3) : J [*.accl :=S(*.r.n1)] [p:=S(*.r.n;)] (alloc)
Figure 6. Static Semantic (Instructions)
stack counterparts. of each instruction describe the state of the store after that

instruction has been executed. The annotatioif that fol-
lows some instructions indicates that the instruction should
>}Je performed times.

To allocate a finite region of sizeon the stack we sim-
ply verify that that there are locations to the left of the
current top of the stack and decrement the stack pointer b
1, using fuse to reason about adjacency as in the rule for
selectStack. Registeraccl is updated with a pointer to
the beginning of the finite region.

Allocating a new infinite region is the only operation in
Mini-KAM that involves extending the existing store. This
means that the typing rule faretRgnInf is very differ-

We illustrate how some of the above instructions may be ent from the rules we have considered till now. Figure 8
used through an example. The code sequence in Figure depicts the situations before and after we allocate an infi-
storesi values { throughv,;_; of typesr, throughr;_) nite region. When an infinite region is allocatedstart
on the stack, uses these values in some computdtiand pointer that points to the beginning of the region aralia
then pops them off the stack. The judgments to the right rentpointer that points to the last allocated cell in the region



Code Describing Judgment

(T ® accl]-] ® stack[more™ on|[T] o F1]| ® sp[S(x*.stack.n)]) Qx*

(b-stackgrow) x ¢ (T ® accl].] ® stack[more™ onso---onson|[r]o F1] ® sp[S(x.stack.n)]) Q

(b-unpack) x 4 (T ® accl|-] ® stack[more™ omng[-]o---on;—1][-] o n[r] 0 F1] ® sp[S(x.stack.n)]) @ x

letRgnFin (7) (T ® accl]-] ® stack[more™ ong[-]o---omn;_1[-]on[r] o F1] ® sp[S(x*.stack.ng)]) @ x

immed1 (vo) (T ® accl|ro] ® stack[more™ omngl-]o---on;_1[-]on[r] o F1] ® sp[S(x.stack.ng)]) @ *

storeStack (0) (T ® accllrg] ® stack[more™ ong[mp] o ---omn;—1[-] on[r] o F1] ® sp[S(x.stack.ng)]) Qx*

immed1 (v;_1) (T ® accl[ri—1] ® stack[more™ omnglrg] 0 - -+ o nj_o[r;—2] on;—1[-] o n[r] o F1] ® sp[S(*.stack.ngp)]) @
storeStack (i — 1) (T ® accllri—1] ® stack[more™ omng[ro] o« 0on;_1[ri—1] o n[T] 0 F1] ® sp[S(x*.stack.ng)]) Q *

% BEGIN Computation A

selectStack (j) (T ® acclrj] ® stack[more™ ong[ro] 0 ---onj[r;] o---oni_1[r—1] on[r] 0 F1] @ sp[S(x.stack.ng)]) Q=
(where0 < j < 17)

% END Computation A

pop (T ® accl|ro] ® stack[more™ onsomni[ri]o---omn;_1[ri—1] on[r] o F1] ® sp[S(*.stack.n1)]) @ *
pop (T ® accl|ri—1] ® stack[more™ onso---onson[r] o F1] ® sp[S(*.stack.n)]) @ *
(b-stackcut) x @ (T ® accllri—1] ® stack[more™ o n[r] o F1] ® sp[S(x.stack.n)]) Q

Figure 7. Saving Values on the Stack

are added to the top of the stack, so the typing rule must ver- To deallocate an infinite region we must first verify that
ify that there exist two locations immediately to the left of the region is live and that the current pointer(n..,,..) and
the top of the stack. Operationally, to create the new regionstart pointer £.r.start) for the region are at the top of the
r we add«.r — live to the store to indicate that the region stack. We deallocate regionby updating the contents of
islive. We also extend the store with the infinite sequence of x.r with the valuedead and popping the current and start
adjacent paths.r.start, x.r.start+1, ..., mapped to some  pointers off the stack.

initial value, say0. The operational semantics requires that  \yhen we allocate memory in a region we must make
+.r and paths of the form.r.n (wheren is a name) do not  gyre that the current pointer for the region (which we saved
appear in the domain of the original store. We give atype to o the stack when we created the region) is updated cor-
this operation by existentially quantifying the region name rectly. As illustrated in Figure 9, thelloc instruction

rin the conclusion of the typing rule and by requiring that assymes that registercl contains the address of the lo-

r not appear free in the premise. The new portion of the cation where the current pointer is stored. To type check
store is described by{S(1ive) ® (start[.] o more™)] @« allocation, if the current pointer points tor.ng, we must

— the judgment describing the transformed state in the typ-yierify that regionr is live, and that there exists a sequence
ing rule reflects this extension. This judgment also reflects o ; 4 1 contiguous locations in region starting withn,.

the fact that a start pointex (-.start) and a current pointer  pyrihermore, the transformed state should be described by

(alsox.r.start at this point) are pushed onto the stack and the initial judgment/ altered to reflect the fact that the cur-
the stack pointer is decremented by two.

Figure 8. letRgninf : Before and After Figure 9. alloc(i) : Before and After



rent pointer on the stack is incremented dbgnd register In the area of memory management, Tofte and Talpin’s
accl is updated with a pointer to the beginning of the mem- original work on region-based memory management [27]
ory just allocated. helped pave the way for this research. Their regions act as
a fixed one-level hierarchy. Our logic extends the idea of
regions to the general case of a multi-level hierarchy. More
recent work on region-based memory management has con-
sidered integration of ideas from linear logic and linear type
Theorem 5 (Preservation) sys_tems with regio_ns [29, 5, 31], but no one has considered
If+ (C,s,B) ok and (C,s,B) — (C,s',B') then I- regions together with adjacency before and no one has con-

Soundness. To demonstrate that our language is sound we
have proven standard progress and preservation lemmas.

(C, ', B') ok. sidered a general memory containment type constructor.
Theorem 6 (Progress) Separation. Immediately after Girard developed linear
It (C, s, B) ok then (C, s, B) — (C, s', B'). logic [7], researchers rushed to investigate computational
interpretations of the logic that take advantage of its sep-
5 Related Work aration properties to safely manage memory [9, 28, 4].

These projects used linear logic or some variant as a
type system for a lambda calculus with explicit allocation
and deallocation of memory. More recently, a new ap-
roach was suggested by Reynolds [23] and Ishtiag and
'Hearn [8]. Rather than using a substructural logic to
ype lambda terms, they use a logic to describe the shape

Our logic and type system was inspired by a humber of
previous efforts to handle explicit memory management in
a safe language. However, as far as we are aware, this is th
first time a logic or type system has been used to describe

. . . . t
a general memory hierarchy. It is also the first time that
the concepts of containment, separation and adjacency hav
been combined in a single logic. We break down related
work in terms of these three central concepts.

of the store. They have focused on using O’'Hearn and
Bym’s bunched logic with multiplicatives and additives, but
not ordered or containment connectives. Smith, Walker and
Morrisett [24, 30] have worked out related ideas in a type-
theoretic framework and we borrow their idea of using sin-
Containment. Cardelli and Gordon's ambient logic [3] gleton types to reason about pointer aliasing.

was a direct source of inspiration for this work, but our two

logics differ considerably:

e Their logic is classical and is presented as a sequentAdjacency. Morrisett et al. [12] developed an algebra of
calculus whereas our logic is intuitionistic and is given lists to reason about adjacent locations on the stack. How-

in natural deduction. ever, this discipline is quite inflexible when compared with
e Their logic contains negation and modal necessity, but our logic and it is impossible to use Morrisett's stack types
they do not consider adjacency. to reason about regions.
e They use processes as a model for their logic whereas Polakow and Pfenning’s ordered linear logic [21, 22, 20]
we use a hierarchical store. allows them to reason about the ordering of objects in mem-

e Their semantics for containment formulae differ Ofy- Polakow and Pfenning have applied their logic to
slightly from ours. As a result, they may have two the problem of reasoning about continuations allocated and

ambients with the same name in the same locationdéallocated on a stack. Petersen et al. [17] further observed
(for instance,m[F]|m[F], which is not equivalent that Polakow and Pfenning’s mobility modality could be in-
to m[F | F]), whereas we only ever have one region terpreted as pointer indirection and their fuse connective
with a given name in any location (that isy[F;] ® could join two adjacent structs. These observations allow
m[F,] @pis equivalent ton[F; @ F] @p). them to use ordered logic as a type system for a language
with explicit data layout. Petersen et al. do not consider
Recently, Cardelli, Gardner and Ghelli [2] have devel- dependency, which would allow them to reason accurately
oped a related spatial logic for reasoning about trees and@bout aliasing, or the properties of separation or contain-
graphs. They have used this logic to develop a query lan-ment.
guage for semi-structured data such as XML or web docu- In a related paper [1] we presented a fragment of this
ments. Our logic, on the other hand, is intended to be usedogic with adjacency and separation connectives, but not
in a proof-carrying code system. Once again, there are acontainment. We used the logic to provide a type system
variety of differences between the connectives and the sefor a stack-based assembly language, but were unable to
mantics of our two logics. capture region-based memory management in that system.
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