
Linear Logic, Heap-shape Patterns and Imperative Programming

Limin Jia
Princeton University
ljia@cs.princeton.edu

David Walker
Princeton University

dpw@cs.princeton.edu

Abstract
In this paper, we propose a new programming paradigm designed to
simplify the process of safely creating, manipulating and disposing
of complex mutable data structures. In our system, programmers
construct data structures by specifying the shapes they want at a
high level of abstraction, using linear logical formulas rather than
low-level pointer operations. Likewise, programmers deconstruct
data structures using a new form of pattern matching, where the
patterns are again drawn from the syntax of linear logic. In order
to ensure that algorithms for construction, inspection and decon-
struction of heap values are well-defined and safe, we analyze the
programmer’s linear logical specifications using a mode analysis
inspired by similar analysis used in logic programming languages.
This mode analysis is incorporated into a broader type system that
ensures the memory safety of the overall programming language.

1. Introduction
One of the most important and enduring problems in programming
languages research involves verification of programs that construct,
manipulate and dispose of complex heap-allocated data structures.
Any solution to this difficult problem can be used to guarantee
memory safety properties and as a foundation for the verification
of higher-level program properties.

Over the last several years, great progress has been made on
this problem by using substructural logics to specify the shape of
heap-allocated data structures [19, 12, 17]. The key insight is that
these logics can capture aliasing properties in a substantially more
concise notation than is possible in conventional logics. This new
notation makes proofs more compact, and easier to read, write and
understand. One notable example is O’Hearn, Reynolds, Yang and
others’ work on separation logic [19]. These authors specify heap-
shape invariants using a variant of the logic of bunched implica-
tions (BI) [18]. They then include the BI specifications in a Hoare
logic, which they use to verify the correctness of low-level pointer
programs.

O’Hearn’s process is a highly effective way of verifying existing
pointer programs. However, if one needs to construct new software
with complex data structures, there are opportunities for simpli-
fying and improving the combined programming and verification
process. In particular, writing low-level pointer programs remains
tricky in O’Hearn’s setting. Verifying the data structures one has
created using separation logic provides strong safety and correct-
ness guarantees at the end of the process, but it does not simplify,
speed up, or prevent initial mistakes in the programming task.

In this paper, we propose a new programming paradigm de-
signed to simplify the combined process of constructing data struc-
tures and verifying that they meet complex shape specifications. We
do so by throwing away the low-level pointer manipulation state-
ments, leaving only the high-level specifications of data structure
shape. So rather than supporting a two-step program-then-verify
paradigm, we support a one-step correct-by-construction process.

More specifically, programmers create data structures by spec-
ifying the shapes they want in linear logic (a very close relative
of O’Hearn’s separation logic).1 These linear logical formulas are
interpreted as algorithms that allocate and initialize data struc-
tures desired by the programmer. To use data, programmers write
pattern-matching statements, somewhat reminiscent of ML-style
case statements, but where the patterns are again formulas in lin-
ear logic. Another algorithm takes care of matching the linear logi-
cal formula against the available storage. To update data structures,
programmers simply specify the structure and contents of the new
shapes they desire. The run-time system reuses heap space in a pre-
dictable fashion. Finally, a ”free” command allows programmers to
deallocate data structures as they would in an imperative language
like C. In order to ensure that algorithms for construction, inspec-
tion and deconstruction of heap values are well-defined and safe,
we analyze the programmer’s linear logical specifications using a
mode analysis inspired by similar analysis used in logic programs.
This mode analysis is incorporated into a broader type system that
ensures the safety of the overall programming language.

In summary, this paper makes the following contributions:

1. It develops novel algorithms used at run time to interpret linear
logical formulas as programs to allocate and manipulate com-
plex data structures.

2. It develops a new mode analysis for linear logical formulas
that helps guarantee these algorithms are safe – they do not
dereference dangling pointers.

3. It shows how to incorporate these run-time algorithms and static
analysis into a safe imperative programming language.

Overall, the result is a new programming paradigm in which lin-
ear logical specifications, rather than low-level pointer operations,
drive safe construction and manipulation of sophisticated heap-
allocated data structures.

The rest of the paper is organized as follows: In Section 2 we
give an informal overview of our system, show how to define the
shape invariants of recursive data structures using linear logic, and
explain the basic language constructs that construct and deconstruct
heap shapes. Next, in Section 3, we delve into the details of the
algorithmic interpretations of the logical definitions for heap shapes
and the mode analysis for preventing illegal memory operations. In
Section 4, we introduce the formal syntax, semantics, and the type
system for the overall language. Finally, in the last two sections, we
discuss related and future work.

2. System Overview
The main idea behind our system is to give programmers the power
of using linear logic to define and manipulate recursive data struc-

1 The differences between our logic, which we call “linear,” due to its dual-
zone (unrestricted and linear) proof theory, and the corresponding fragment
of O’Hearn’s separation logic appear largely cosmetic.

1 2006/7/14

H

H1

2 3 200
100

2 5 300
200

H2

2 7 0
300

H3

$s $x

Figure 1. Memory containing a linked list.

tures. Compared to C, where the type definition for a singly linked
list is no different from that of a circular list, our language allows
programmers to capture aliasing constraints and shape invariants of
the recursive data structures.

In this section, first, we introduce the program heap and its basic
describing formulas. Then, we explain how to define recursive data
structures using linear logic. Next, we show how to use the logical
definitions to manipulate data structures in our language. Finally,
we explain the invariants that keep our system memory safe. We
only give a brief introduction to our system, but defer precise
explanation of the technical details to later in the paper.

2.1 The Heap

The program heap is a finite partial map from locations to tuples
of integers. Locations are themselves integers, and 0 is the special
NULL pointer. Every tuple consists of a header word followed by
some data. The header word stores the size (number of elements)
of the rest of the tuple. We often use the word heaplet to refer to a
fragment of a larger heap. Two heaplets are disjoint if their domains
have no locations in common.

As a simple example, consider the heap H in Figure 1, which
we will refer to throughout this section. It is composed of three
disjoint heaplets: H1, H2, and H3. Heap H1 maps location 100 to
tuple (2, 3, 200), where the integer 2 in the first field of the tuple
indicates the size of the rest of the tuple.

We use dom(H) to denote the set of locations in H, and ¯dom(H)
to denote the set of starting locations of each tuple in H. We write
H(l) to represent the value stored in location l, and H̄(l) to repre-
sent to tuple stored at location l. For example, for H in Figure 1,

¯dom(H) = {100, 200, 300}, and H̄1(100) = (3, 200). We use
H1] H2 to denote the union of two disjoint heaplets H1 and H2.
It is undefined if H1 and H2 are not disjoint.

2.2 Basic Descriptions

Programmers describe heaps and heaplets using a collection of
domain-specific predicates together with formulas drawn from
linear logic. In order to describe individual tuples, programmers
use the predicate struct x T, where x is the starting address
of the tuple and T is the tuple of heap contents. For example,
(struct 100 (3, 200)) describes heaplet H1. To describe larger
structures, programmers use a multiplicative conjunction (identi-
cal to Separation Logic’s multiplicative conjunction “∗”) written
“,” . Formula (F1, F2) describes a heap composed of two disjoint
heaplets H1 and H2 such that H1 can be described by F1, and H2

can be described by F2. For example, heap H can be described
by (struct 100 (3, 200), struct 200 (5, 300), struct 300

(7, 0)). Programmers use additive disjunction, written “;”, to
combine multiple possible descriptions. Formula (F1; F2) describes
a heap that can be described by either F1 or F2. Programmers may
also describe finer-grained properties of their data structures using
equality and inequality constraints over integers.

In addition to using these primitive descriptions, programmers
can create new definitions to describe heap shapes. In the next
section, for instance, we will show how to define lists, queues and
trees.

2.3 Logical Shape Signatures

A logical shape signature is a set of definitions that collectively de-
fines algorithms for run-time manipulation of complex data struc-
tures and proof rules for compile-time checking. Each shape sig-
nature contains three basic elements: inductive definitions, which
define shape structure and run-time algorithms; axioms, which give
relations between shapes used during compile-time type checking;
and type and mode declarations, which constrain the kinds of in-
ductive definitions allowed so as to ensure the corresponding run-
time algorithms are both safe and well-defined. In the following
subsections we explain each part of the signature in turn.

Inductive Definitions. In order to define the basic shapes of data
structures, we borrow technology and notation from the field of
linear logic programming [10, 15]. Hence, the inductive definitions
are written down as a series of clauses that mimic a linear logic pro-
gram. Each clause is composed of a head (a predicate such as list
X), followed by the inverted linear implication “o-,” and followed
by the body of the clause (a basic description that references the
head or other newly defined predicates). Free variables appearing
in the head may be viewed as universal parameters to the defini-
tion; free variables appearing in the body are existentially quanti-
fied. Definitions are terminated with a period.

As an example, consider defining a null-terminated non-circular
singly linked list starting from address X. The principal clause for
list X is given by the following statement:

list X o- (X = 0); (struct X (D, Y), list Y).

The body is the additive disjunction of two cases. The first case says
that 0 is a list pointer; the second one says that X is a list pointer
if it points to a pair of values D and Y such that Y is a list pointer.
Notice that the head and the tail of the list are separated by “,”;
therefore, they are two disjoint pieces of the heap. This constraint
guarantees the list will be non-circular.

A closely related definition, listseg X Y, can be used both
to reason about lists and to help us define a more complex data
structure, the queue. The definition for listseg X Y describes a
non-circular singly linked list segment starting from location X and
ending at Y.

listseg X Y o-
(X = Y);
not (X = Y), struct X (D, Z), listseg Z Y.

The base case states that listseg X X is always true; the second
case states that if X points to a pair of values D and Z such that
between Z and Y is a list segment, then between X and Y is also a list
segment. The inequality of X and Y together with the disjointness
of the head and tail of the list segment guarantees non-circularity.

The next example makes use of the listseg predicate to define
a queue.

queue X Y o-
((X = 0), (Y = 0));
(listseg X Y, struct Y (D,0)).

The predicate queue X Y describes a queue whose head is X and
tail is Y. In the clause above, the first line describes the case where
the queue is empty and both the head and tail pointers are 0. The
second case describes the situation in which there is at least one
element in the queue (pointed to by Y). Between the head and the
tail of the queue is a listseg. For example, the heap H in Figure 1
can be viewed as a queue whose head pointer is 100, and tail pointer
is 300 (queue 100 300).

Defining tree-shaped data is no more difficult than defining list-
shaped data. As an example, consider the following binary tree
definition.

btree X o-
(X = 0);
(struct X (D, L, R), btree L, btree R).

2 2006/7/14

Axioms. Each shape signature can contain many inductive defi-
nitions. For instance, the listshape signature we will be using as
a running example through this paper will contain both the defini-
tions of list and listseg. In order to allow the system to rea-
son about the relationships between these various definitions, the
programmer must write down additional clauses, which we call ax-
ioms. For example, the following axiom relates list to listseg.

list Y o- listseg Y Z, list Z.

Without this axiom, the type system cannot prove that shape pat-
terns, such as (listseg x y, list y), have the desired shapes
(list x). While the syntax of axioms is very similar to that for
inductive definitions, the axioms are used for compile time reason-
ing only, not generation of algorithms for construction and decon-
struction of data structures. Hence, the form that axioms can take
is slightly more liberal than that of inductive definitions.

Type and Mode Declarations. All built-in and user-defined pred-
icates are given both types and modes. The purpose of the types
should be familiar to all programmers: they constrain the sorts of
data (e.g., either pointers or integers) that may appear in particular
fields of a data structure. The purpose of the modes is to ensure that
the heap-shape pattern-matching algorithm is safe and effective.

To understand the purpose of mode declarations and mode anal-
ysis, consider the problem of matching the predicate struct X

(77,34) against the contents of some heap H. Logically, the goal
of the matching algorithm is to find an address l such that H̄(l)

= (77,34). However, without any additional information, it would
seem the only possible algorithm would involve examining the con-
tents of every address in H until one that satisfies the constraint is
found. But of course, in general, attempting to use such an algo-
rithm in practice is hopelessly inefficient.

On the other hand, suppose we are given a specific address
l’ and we would like to match the formula (struct l’ (D,X),

struct X (77,34)) against some heap H. Can we do it? Yes. Sim-
ply look up l’ in H. Doing so will determine precise values for D
and X. The value of X subsequently used to determine whether H̄(X)
= (77,34). We also need to ensure the value of X is not equal to
l’ (otherwise the linearity constraint that l’ and X point to disjoint
heaplets would be violated).

When a value such as l’ or, X is known, it is referred to as
ground. Mode declarations specify, among other things, expecta-
tions concerning which variables are ground in which positions.
Finally, mode analysis is a syntactic analysis, much like type check-
ing, that can determine whether the mode declarations are correct.

In our system, the modes for specifying groundness conditions
are the standard ones found in many logic programming languages.
In particular, the input mode (+) specifies that a term in that position
must be ground before evaluation of the predicate. The output mode
(-) specifies the term in that position must be ground term after
the predicate is evaluated. The last mode (*) indicates we do not
care about this position. Now, to guarantee it is possible to evaluate
the predicate struct X (...) in constant time, we give the first
position (X) the input mode (+). Once the first argument of the
struct predicate has been constrained to have input mode, other
definitions that use it are constrained in turn. For example, the first
arguments of list X and queue X Y must also be inputs.

Ensuring pointers are ground before lookup provides a guaran-
tee that lookup will occur in constant time. However, it does not
guarantee that the pointer in question points to a valid heap ob-
ject. For example, when the matching algorithm attempts to match
predicate struct l (...) against a heap H, l may be ground,
but not necessarily a valid address in H. A second component of
our mode analysis characterizes pointers as either yes (definitely
not dangling) or no (possibly dangling) and thereby helps guaran-

listshape {
struct : (+,yes,yes) ptr(listshape)

-> - int
-> (-,yes,yes) ptr(listshape)
-> o.

listshape : (+,yes,yes) ptr(listshape) -> o.
list : (+,yes,yes) ptr(listshape) -> o.
listseg : (+,yes,yes) ptr(listshape)

-> (+,no,yes) ptr(listshape)
-> o.

listshape X o- list X.

list X o- (X = 0); (struct X (D,Y), list Y).

listseg X Y o-
(X = Y);
not (X = Z),struct X (D, Y), listseg Y Z).

with
list Y o- listseg Y Z, list Z.

}

Figure 2. Singly Linked List Shape Signature

tee the matching algorithm does not go wrong. In general, we use
s to range over either yes or no modes.

The complete mode for arguments of pointer type is a tuple
(g, sin, sout), where g describes the argument’s groundness prop-
erty, and sin and sout describe its safety property at the time just
prior to execution of the predicate and just after execution of the
predicate respectively. Integers are not dereferenced and hence their
modes consist exclusively of the groundness condition g.

Only certain combinations of the pointer’s tuple of modes are
valid. When g is don’t care (*), the safety properties are not rele-
vant, so we set both sin and sout to no. When g is an output, only
sout is relevant (as the pointer’s value isn’t known on input). When
g is an input, the pair sin and sout can either both be yes, both be
no, or be (no,yes). The last possibility being a situation in which
the evaluation of the predicate has allowed us to learn that a partic-
ular pointer is safe. As an example, the combined type and mode
declaration for lists follows. It states that the list predicate must be
supplied with a single ground, non-dangling pointer argument.

list : (+,yes,yes) ptr(listshape) -> o.

Putting the Declarations Together. Figure 2 is the full shape
signature for listshape. It contains the definition of list and
listseg as well as a top-level definition for the overall structure
called listshape. The axioms are separated from the inductive
definitions by the keyword with.

The Meanings of the Logical Rules The shape signature essen-
tially defines a linear logic program. Just as a logic programming
language has a three-fold interpretations of the meanings of the
rules [24, 14]— proof-theoretic, model-theoretic, computational
definitions—the shape signature also defines a proof-theoretic
meaning which is used during type checking, a model-theoretic
meaning which is used to capture the memory-safety invariants pre-
served through execution, and a computational definitions meaning
used to derive a pattern-matching algorithm at run time.

2.4 The Programming Language

In the previous subsection, we showed how to define data struc-
ture shapes using linear logic; in this section we will explain how
to incorporate these logical definitions into a safe, imperative pro-
gramming language.

2.4.1 Basic Language Structure

A program is composed of a collection of shape signatures and
function definitions. Program execution begins with the distin-

3 2006/7/14

guished “main” function. Within each function, programmers de-
clare, initialize, use and update local imperative variables (also re-
ferred to as “stack variables”). Each such variable is given a basic
type, which may be an integer type (int), a shape type, or a pointer
type. The shape types, such as listshape, are named by the shape
signatures. The pointer types, such as ptr(listshape), specify
the specific shape a pointer points to. In order to distinguish the
logical names X, Y, Z, etc. introduced via logical pattern matching,
from the imperative variables, we precede the names of imperative
variables with a $ sign. We use $s to range over shape variables and
$x to range over integer or pointer variables.

2.4.2 Operations on Shapes

As discussed earlier, formulas describing the heap serve both to
help programmers create new shapes and to deconstruct, or disas-
semble, existing shapes.

Creating Shapes. Creating data structures with certain shapes is
done using the shape assignment statement as shown below.

$s:= [root a1,
struct a1 (3, a2),
struct a2 (5, a3),
struct a3 (7, 0)]

The right-hand side of a shape assignment describes the shape to
be created and the left-hand side specifies the imperative shape
variable to be assigned. In this case, we will assume the shape
variable $s has listshape type (see Figure 2).

Assuming variables a1, a2, and a3 are not currently in scope
at the site of this assignment, the system must find values to bind
to them that will make the right-hand side a valid listshape.
The system achieves this goal by allocating three new tuples of
storage. The size of each tuple is determined by examining the type
declaration of the struct predicate in the shape signature. Each
variable is subsequently bound to the address of the corresponding
tuple.2 In general, a shape assignment will always allocate new
space in this way in order to generate locations to bind to fresh
pointer variables.

Once space has been allocated, the integer data fields are initial-
ized with the constant values appearing in the shape description.
Finally, the location specified by the root predicate is stored into
the imperative variable $s. This special root predicate must always
appear in the shape on the right-hand side of a shape assignment.

Deconstructing Shapes and Reusing Deconstructed Shapes. To
deconstruct a shape, we use a pattern-matching notation. For exam-
ple, to deconstruct the list contained in the imperative variable $s,
we might use the following pattern:

$s:[root r, struct r (d, next), list next]

This pattern, when matched against the heaplet reachable from $s,
may succeed and bind r, next and d to values, or it may fail. If
it succeeds, r will be bound to the pointer $s, d will be bound to
integer data from the first cell of the list, and next will be bound to
a pointer to the next element in the list.

Pattern matching does not deallocate data. Consequently, it is
somewhat similar to the unrolling of a recursive ML-style datatype,
during which we change our view of the heap from an abstract
shape (e.g., a listshape), to a more descriptive one (e.g., a pointer
to a pair of values d and next, where next points in turn to a list.
More formally, the unrolling corresponds to the revealing that the
heaplet in question satisfies the following elaborate formula:

2 In our formal presentation, we explicitly quantify over the shape’s free
variables. We omit the variable bindings in our examples as they may be
inferred using the type of the imperative variable being assigned and its
shape signature. Any free variables may be assumed to be bound at the top-
level.

∃r:ptr(listshape).∃d:int.∃next:ptr(listshape).
(root r, struct r (d, next), list next)

Pattern matching normally occurs in the context of an if state-
ment or a while loop in our language. Here is an example in the
context of an if statement.

if $s:[root r, struct r (d, next), list next]
then free r;

$s := [root next, list next]
else print ‘‘list is empty’’

In evaluating the if statement, first we evaluate the conditional ex-
pression. If the conditional is true, then a substitution for the bound
variables is returned, the substitution is applied on the true branch,
and evaluation of the true branch continues. If the conditional ex-
pression is false, then the false branch is taken. The variables in the
condition are not in scope in the false branch. Suppose $s points to
the first tuple in the H displayed in Figure 1. When the conditional
expression is evaluated, r will be bound to 100, d will be bound to
3, and next will be bound to 200, and execution will proceed with
evaluation of the true branch. In the true branch, we free the first
tuple of the list, then reconstruct a list using the rest of the old list.
The predicate root next indicates that the root of this new shape
is next. Operationally, the run-time value of next, 200, is stored
in the variable $s.

2.5 What Could Go Wrong

Adopting a low-level view of the heap and using linear logic to de-
scribe recursive data structure gives our language tremendous ex-
pressive power. However, the expressiveness calls for an equally
powerful type system to deliver memory safety guarantees. We
have already mentioned some of the elements of this type system,
including mode checking for logical declarations, and the use of in-
ductive definitions and axioms to prove data structures have the ap-
propriate shapes. In this section, we summarize several key proper-
ties of the programming language’s overall type system, what could
go wrong if these properties are missing, and what mechanisms we
use to provide the appropriate guarantees.

Safety of Deallocation. Uncontrolled deallocation can lead to
double freeing and dereferencing dangling pointers. We must make
sure programmers do not use the deallocation command too soon
or too often. To provide this guarantee, our type system keeps track
of and describes (via linear logical formulas) the accessible heap
memory, in much the same way as O’Hearn’s separation logic or its
closely related type systems [26, 27, 4, 1, 28]. In all cases, linear-
ity constraints separate the description of one data structure from
another to make sure that the effect of deconstruction and recon-
struction of shapes is accurately represented. In our system specifi-
cally, when a data structure is deconstructed via a shape pattern, the
formula describing the pattern appears in the typing context and de-
scribes the accessible portion of memory. Moreover, heap location
v can be freed only if formula (struct v tm) appears in the typing
context, which means that the tuple starting at v is a valid heaplet
of the program heap. After v is freed, the predicate is deleted, and
the linear constraints guarantee v can never again be accessed.

Safety of Dereferencing Pointers. Pointers are dereferenced
when a shape pattern-matching statement is evaluated. The algo-
rithm could potentially dereference dangling pointers by querying
ill-formed shape formulas. Consider the following program:

4 2006/7/14

1 ptr(listshape) $p := 0;

· · ·
2 if $s: [root r, struct r (d, next), list next]
3 then $p := r;
4 free r;
5 $s := [root next, list next]
6 else print ‘‘list is empty’’

7 if $s: [root r1, struct $p (d1, next1),
8 listseg r1 $p, list next1]
9 then · · ·
10 else · · ·

The first if statement on line 2 frees the head of the list and reassem-
bles the shape using the rest of the list. Notice that stack variable
$p is assigned the value of the freed location. This assignment itself
is legal. However, the shape pattern in the second if statement will
go ahead and dereference the location stored in $p, which was al-
ready freed. The solution is to use mode and type analysis to make
sure that predicate struct requires a valid run-time pointer as its
first argument. We can obtain valid run-time pointers from the set
of locations reachable from the root of a well-formed shape.

Termination for Heap Shape Pattern Matching As we saw in the
examples, the operational semantics invokes the pattern-matching
procedure to check if the current program heap satisfies certain
shape formulas. It is crucial to have an efficient and tractable al-
gorithm for the pattern-matching procedure. In our system, this
pattern-matching procedure is generated from the inductive defini-
tions in the logic signature, and uses a bottom-up, depth-first algo-
rithm. However, if the programmer defines a predicate Q as Q X o-

Q X, then the decision procedure will never terminate. To guarantee
termination, we place a well-formedness restriction on the induc-
tive definitions that ensures a linear resource is consumed before
the decision procedure calls itself recursively. Our restriction rules
out the bad definition of Q and other like it.

2.6 Three Additional Caveats

For the system as a whole to function properly, programmers are
required to check the following three properties themselves.

Closed Shapes. A closed shape is a shape from which no dan-
gling pointers are reachable. For example, lists, queues and trees
are all closed shapes. On the other hand, the listseg definition
given earlier is not closed—if one traverses a heaplet described
by a listseg, the traversal may end at a dangling pointer. Shape
signatures may contain inductive definitions like listseg, but the
top-level shape they define must be closed. If it is, then all data
structures assigned to shape variables $s will also be closed and all
pattern-matching operations will operate over closed shapes. This
additional invariant is required to ensure shape pattern matching
does not dereference dangling pointers.

Soundness of Axioms. For our proof system to be sound with
regard to the semantics, the programmer-defined axioms must be
sound with respect to the semantics generated by the inductive def-
initions. Like in separation logic, checking properties of different
data structures requires different axioms and programmers must
satisfy themselves of the soundness of the axioms they write down
and use. We have proven the soundness of all the axioms that ap-
pear in this paper (and others relating to trees that do not).

Uniqueness of Shape Matching. Given any program heap and a
shape predicate with a known root location, at most one heaplet
should match the predicate. For example, given the heap H in Fig-
ure 1, predicate list 200 describes exactly the portion of H that is
reachable from location 200, ending in NULL (H2, H3). Without this
property, the operational semantics would be non-deterministic.

Term tm : := x | n | −tm | tm + tm
Arith Pred Pa : := tm = tm | tm > tm
Arith Formula A : := Pa | not Pa
State Pred Ps : := struct tm1 tm
User-Defined Pred Pu : := P tm
Literals L : := A | Ps | P
Formulas F : := emp | L, F
Inductive Def I : := (F (Pu)
Axiom Ax : := (F (Pu)
Groundness g : := + | − | ∗
Safety Qualifier s : := yes | no
Mode m : := g | (g, sin, sout)
Arg Type argtp : := g int | (g, sin, sout) ptr(P)
Pred Type pt : := o | argtp → pt
Pred Type Decl pdecl : := P : pt

Shape Signature SS : := P{ pdecl; (F (P x). I. Ax}
Pred Typing Ctx Ξ : := · | Ξ,P:pt
SS Context Λ : := · | Λ,P:Ξ
Logical Rules Ctx Υ : := · | Υ, I | Υ, Ax

Figure 3. Syntax of Logical Constructs

Again, programmers must verify this property themselves by hand.
Once again, it holds for all shapes described in this paper.

These requirements are not surprising. In order to reason about
loops, separation logic also contains an axiom which is the same as
the one relating list and listseg in our system. The soundness
of that particular axiom is required for the soundness of all the work
on verification using separation logic. The uniqueness of shapes
requirement is very similar to the precise predicate in the work on
separation and information hiding [20]. These requirements could
well be the common invariants these logical systems should have
when used in program verification.

One of the strength of our framework is that we identified all
the constraints on the logical definitions for the whole system to be
sound. Programmers can supply any definition that complies with
the constraints and obtain a sound system.

In the future, we would like to devise mechanisms to check
these properties automatically. If we succeed, the result is likely
to contribute to the automatic checking of those constraints for
separation logic as well. For now, we view them as orthogonal to
the definition of the rest of the system.

3. Logical Shape Signatures
In this section, we first introduce the syntactic constructs for
defining shape signatures. Next, we explain the logical deduction
rules and the semantics generated from the signatures. Finally, we
present the pattern-matching procedure and the mode and type
checking rules.

3.1 Syntax

The syntactic constructs of our logic are listed in Figure 3. Through-
out the paper we use the overbar notation x to denote a vector of
the constructs under the bar. We use tm to range over terms. The
arithmetic predicates are the equality and partial order of terms.
Arithmetic formulas include arithmetic predicates and their nega-
tions. The state predicate struct tm tm describes a heaplet start-
ing at tm with contents tm. In previous examples, we used tuples to
describe the contents of the heap. To simply the core language, in
the formal syntax, we use a curried style instead. We use P to range
over user-defined predicate names such as list, and Pu to range
over fully applied user-defined predicates. A literal L can be either
a arithmetic formula or a state predicate or a user-defined predicate.
We use F to range over formulas which are either emp (the empty
heap) or the conjunction of a literal and another formula.

5 2006/7/14

• H � emp iff H = ∅.
• H � A iff H = ∅, and A is a valid arithmetic formula.
• H � struct v v1 · · · vn iff v 6= 0, dom(H) = {v, v + 1, · · · v + n},
H(v) = n, and for all i ∈ [1, n], H(v + i) = vi.

• H � F1, F2 iff H = H1] H2, such that H1 � F1, and H2 � F2.
• H � F1; F2 iff H � F1 or H � F2.
• H � P v iff ∃n st. H � Pn v
• H � P0 v iff Υ(P) = P x o- F, and ∃i st. H � Fi [v / x],

and @P ∈ dom(Fi). where the free variables in Fi are considered
existentially quantified.

• H � Pn v iff Υ(P) = P x o- F, and ∃i st. ∃P′ ∈ dom(Fi).
H � Fi [v / x] and n − 1 is the maximum of the index number of
P′ in Fi.

Figure 4. Selected Rules of the Semantics for Formulas

The head of a clause is a user-defined predicate and the body
is a formula. For the ease of type checking, we gather the clause
bodies of the same predicate into one definition I. The notation F

means the additive disjunction of all the Fi in F. Axioms are also
clauses. They have very a different role in generating proof system
and semantics than the inductive definitions.

The argument type of a predicate is the mode followed by the
type of the argument. A fully applied predicate has type o.

Context Ξ contains all the predicate type declarations in one
shape signature. Context Λ maps each shape name to a context Ξ.
Lastly, context Υ contains all the inductive definitions and axioms
defined in the program.

3.2 Store Semantics

We present the formal definition of the store semantics of our logic
in Figure 4. We use H �

Υ F to mean that heap H can be described
by formula F, under the inductive definitions in Υ. Since Υ is fixed
throughout, we omit it from the judgments. We use the notation
Υ(P) to denote the inductive definitions for P. The semantics of
arithmetic formulas require the heap to be empty. Heap H satisfies
struct v v1 · · · vn , if the domain of H contains exactly the
n + 1 consecutive locations starting from v, and the first location
of H stores the size of the tuple, and values v1 through vn match the
contents of the heap.

For the user-defined predicates, we use an index number n to
indicate the number of unrollings of the inductive definitions. This
index number is closely related to the size of the heap. For example,
the heaplet H3, (H2] H3), H in Figure 1 can be described by list1

300, list2 200, list3 100 respectively. When a clause body is
composed of only the arithmetic formulas and the state formulas,
the index number is 0. This is the base case where we start to build
a recursive data structure. For list x, list0 0 is the base case.
For the inductive case, the index number of Pu is the maximum of
the index numbers for formulas in its body increased by 1, since the
body is the one step unrolling of the head. This is the case where
we build up larger data structures from smaller ones. Notice that the
semantics does not reference the axioms and is solely determined
by the inductive definitions.

3.3 Logical Deduction

Type checking requires reasoning in linear logic with the induc-
tive definitions and axioms the user has defined. A formal logical
deduction in our system has the form: Ω |Γ; ∆ =⇒ F. Context Ω
contains the free variables in this judgment. Γ is the unrestricted
context (hypotheses may be used any number of times) and ∆ is
the linear context. Initially, Γ will be populated by the inductive
definitions and axioms from the shape signatures.

One important property of the proof system is the soundness
of logical deduction. We proved that our logical deduction system

σ(tm) 6= 0 and σ(tm) /∈ S H̄(σ(tm)) = (v1, · · · , vn)
MP(H; S; tm1 = v1;σ) = (S, σ1)

· · ·
MP(H; S; tmn = vn;σn−1) = (S, σn)

MP(H; S; struct tm tm1 · · · tmn;σ) = (S ∪ {σ(x), · · · , σ(x) + n}, σn)

Υ(P) = (F (P y) ∀i ∈ [1, k], MP(H; S; Fi [tm / y];σ) = NO

MP(H; S;P tm;σ) = NO

Υ(P) = (F (P y) ∃i ∈ [1, k], MP(H; S; Fi [tm / y];σ) = (Si, σi)

MP(H; S;P tm;σ) = (Si, σi)

MP(H; S; L;σ) = NO

MP(H; S; (L, F); σ) = NO

MP(H; S; L;σ) = (S′, σ′) MP(H; S′; F; σ′) = R

MP(H; S; (L, F); σ) = R

Figure 5. Selected Rules of MP

is sound with regard to the semantics modulo the soundness of
axioms.

Lemma 1 (Soundness of Logical Deduction)
If Υ = ΥI ,ΥA such that ΥA is sound with regard to ΥI , and Ω |Υ; ∆ =⇒

F, and σ is a grounding substitution for Ω, and H �
ΥI σ(∆), then H �

ΥI F.

3.4 Pattern-Matching Algorithm

The pattern-matching algorithm (MP) determines if a given program
heap satisfies a formula. We implements MP using an algorithm
similar to Prolog’s depth-first, bottom-up proof search strategy.
When a user-defined predicate is queried, we try all the clause
bodies defined for this predicate in order. In evaluating a clause
body, we evaluate the formulas in the body in left-to-right order as
they appear.

Figure 5 is a list of selected rules of MP; the complete set of rules
is defined in Appendix A. MP takes four arguments: the heap H, a set
of locations S that are not usable; a formula F, which may contain
uninstantiated variables, and a substitution σ for free variables in F.
It either succeeds and returns a substitution for all the free variables
in F, and the locations used in proving F, or fails and returns NO. The
set of locations is used to deal with linearity and make sure that no
piece of the heap is used twice.

For the rest of this section, we will explain the mechanisms that
guarantee the termination, correctness, and the memory safety of
the pattern-matching algorithm.

3.4.1 Termination Restriction

In order for MP to terminate, we require that some linear resources
are consumed when we evaluate the clause body so that the heap
gets smaller when we call MP on the user-defined predicates in the
body. More specifically, in the inductive definitions for predicate
P, there has to be at least one clause body that contains only
arithmetic formulas and state predicates, and for clauses whose
body contains user-defined predicates, there has to be at least one
state predicate that precedes the first user-defined predicate in the
body. The above restrictions are also sufficient for the inductive
definitions to generate well-founded semantics. We statically check
these restrictions at compile time.

3.4.2 Mode Analysis

The mode analysis is also a compile time static check. In the mode
analysis, we use context Π to keep track of both the groundness
and the safety properties of arguments. The definition of Π is given
below. We use var to range over stack variables $x and variables

6 2006/7/14

x. Π contains ground integer arguments and pairs of ground pointer
terms and their safety properties.

Ground Ctx Π : := · | Π, var | Π, (var, s) | Π, (n, yes)

We define Π(tm) to be the safety property associated with tm
in Π. If tm is an integer and not in the domain of Π, then Π(tm) is
no. We use notation Π∪̄{(tm, s)} to represent a context that is the
same as Π except that the safety property associated with tm is the
stronger of s and Π(tm) (yes is stronger than no). If tm is not in
Π, then it is a simple union operation. We use s1 ≤ s2 to denote
that s1 is stronger or equal to s2.

The type and mode judgment for formulas has the form Ξ; Ω; Π `
F : (pt, Π′). Context Ξ maps predicate names to their types. Con-
text Ω maps free variables in the judgment to their types. All the
terms in Π are ground before proving F. Furthermore, if the pair
(tm, yes) is in Π, then tm is a valid pointer on the heap. pt is
the type of F. Context Π′ keeps track of the groundness and safety
properties of arguments after the execution of F. During mode anal-
ysis, we also check that the predicates are supplied with arguments
of the right types, consequently, the mode analysis uses the typing
judgments for expressions (Ω `e e : t) to type-check arguments.
The typing rules for expressions are standard, and can be found
in Appendix F. In addition, for the unification to be well-defined,
a term at an output position must be either an integer or a vari-
able. The special judgment Ω `v e : t is the same as the that for
expressions, except that it restricts e to be either a number or a
variable.

The complete list of mode checking rules is in our Appendix B.
Here we explain a few key rules.

Built-in Predicates Now we explain the mode analysis for the
built-in predicate equality and struct.

We listed the rules for equality below The first argument is
always an output and the second argument is an input. The first
rule is when both of the arguments are integers. Since the second
argument is an input, we check that all the free variables in tm2

are in the Π context (tm2 is ground before the evaluation). The Π′

context contains the free variable of tm1, since tm1 is unified with
tm2 and is ground after the execution.

The last two rules are when both of the arguments have pointer
types. There are two cases. The first one is when tm1 is not in Π
context. We check that tm2 is ground, and we add tm1 to have the
same safety property as tm2 into the Π′ context. The second case is
when tm1 is in the Π context: then the safety property of tm1 and
tm2 should both be updated to the stronger of the two.

Ω `v tm1 : int Ω `e tm2 : int FV(tm2) ⊂ dom(Π)

Ξ;Ω; Π ` tm1 = tm2 : (o, Π ∪ {FV(tm1)})

Ω `v tm1 : ptr(P) Ω `e tm2 : ptr(P)
Π(tm2) = s tm1 /∈ dom(Π)

Ξ;Ω; Π ` tm1 = tm2 : (o, Π ∪ {(tm1, s)})

Ω `v tm1 : ptr(P) Ω `e tm2 : ptr(P)
Π(tm1) = s1 Π(tm2) = s2 s = max(s1, s2)

Ξ; Ω;Π ` tm1 = tm2 : (o, Π∪̄{(tm1, s)}∪̄{(tm2, s)})

The modes for struct is declared by the programmer, since
the number of fields is defined by the programmer. However, we
do check that the mode for the first argument is (+,yes,yes), which
specifies that the starting address has to be safe. The strongest form
of mode declaration for struct is one in which all the arguments
but the first one are output and the pointer arguments are safe. One
example is the mode declaration of struct in Figure 2. Such strong
declaration is safe because the arguments are read from a heap
that has a “closed shape”. Recall that pointers read from the heap
of closed shapes are valid. This strong form is crucial in making
programs pass static checks for memory safety. For example, a

typical pattern [root r, struct r (d, next), list next]
would require next to be a valid pointer after proving struct r
(d, next) and before proving list next. However, we do not
restrict the mode declaration of struct to take the strongest form.
As long as the program passes the static checks, all is happy.

In the mode-checking rule for struct below, we check that
the input arguments are in Π, and the safe pointer arguments are
associated with the yes property in Π. Π′ is the union of Π and the
output integer arguments, and the pair of argument and the specified
safety property for output pointer arguments. For the argument of
mode (+, no, yes), Π′ should update its safety property to be safe.

Ξ(struct) = ((+, yes, yes) ptr(P)) → (m1 t1) · · · → (mn tn) → o
∀i ∈ [1, n],
8

<

:

Ω `e tmi : int, FV(tmi) ∈ Π mi ti = + int

Ω `e tmi : ptr(P), Π(tmi) ≤ s1 mi ti = (+, s1, s2) ptr(P)
Ω `v tmi : ti mi = − or (−, s1, s2)

Π′ = Π ∪ {FV(tmj) |mj tj = − int}
∪̄{(tmk, s2) |mk = (−, s1, s2)}
∪̄{(tmi, yes) |mi = (+, no, yes)}

Ξ; Ω;Π ` struct tm tm1 · · · tmn : (o, Π′)

User-defined Predicates The rules for checking user-defined
predicate are straightforward. We check that Π contains all the
input arguments and associates pointer arguments with the right
safety property. The Π′ context is produced in the same way as the
rule for struct. Note that this rule is used under the assumption
that the declared modes for user-defined predicates are correct. The
real check of the correctness of these mode declarations is done
when we mode-check the clauses, which we will explain shortly.

Conjunction Since the execution order is from left to right, we
check the second formula in a multiplicative conjunction with the
Π′ generated by checking the first one.

Ξ; Ω;Π ` L : (o, Π′) Ξ;Ω; Π′ ` F : (o, Π′′)

Ξ;Ω; ;Π ` L, F : (o, Π′′)

Clause As we mentioned earlier, to check the correctness of the
mode declarations for user-defined predicates, we need to mode-
check the inductive definitions, the rule for which is as follows.

Ξ(P) = pt Ω = infer(P x)
Π = {xj |ptj = + int} ∪ {(xj , sin)|ptj = (+, sin, sout) ptr(P)}

Ξ;Ω; Π ` P x : (o, Π′)
∀i ∈ [1, n], Ω′ = infer(Fi)

Ξ;Ω′, Ω;Π ` Fi : (o, Π′′) Π′′ < Π′

Ξ ` ((F1 ; · · · ; Fn) (P x) OK

We use pti to denote the type of the ith curried argument in
pt. The arguments’ types are easily inferred from the type declara-
tion of the predicates. We use infer(F) to denote the inferred type
bindings of the free variables in F. The Π and Π′ context come di-
rectly from the mode declaration of P, and they contain the ground
integer arguments and the pairs of ground pointer argument and its
declared safety property before and after the evaluation of P re-
spectively. When predicate P is executed, the bodies of P are exe-
cuted, and the declared output arguments of P have to be provided
by the execution of its bodies. Therefore, we need to check that
Π′′, which contains the groundness and safety properties obtained
from the evaluation of the body of the clause, is compatible with
Π, which contains the declared modes after the evaluation of the
predicate P. We use a subtyping relation (Π′′ < Π′) to describe the
compatibility between the two contexts. The subtyping relationship
means that all the ground terms in Π′, have to be in Π′′, and all the
safe pointers in Π′ have to be safe in Π′′.

3.4.3 Formal Results

In this section we present the formal properties of MP.

7 2006/7/14

We proved the following theorem that states that MP ter-
minates if the inductive definitions are well-formed. Judgment
` I well − formed checks the termination constraints.

Theorem 2 (Termination of MP)
If for all I ∈ Υ, ` I well − formed, then MP(Υ) always terminates.

We also proved the correctness of MP. Notice that MP only im-
plements partial backtracking; we try all the clause bodies for one
predicate, but we do not backtrack for a second solution. We can
afford to do so because we take advantage of the Uniqueness of
Shape Matching requirement, which requires that given a heap, the
heap described by the predicate of top-level shape name is unique
(Section 2.6). This requirement yields the result that the unifica-
tion for uninstantiated existential variables for any predicate that is
defined in the shape signature and has ground input arguments, is
unique. The following requirement is the generalized formal defi-
nition of the one introduced in Section 2.6. Intuitively it means that
the input arguments of a predicate determines the shape described
by that predicate.
Requirement: Uniqueness of Shape Matching

If Ξ; Ω;Π ` L : (o, Π′), and ∀x ∈ dom(Π). x ∈ dom(σ) and
H1 � σ1(L), and H2 � σ2(L), and σ ⊆ σ1, and σ ⊆ σ2, and H1 ⊂ H, and
H2 ⊂ H, then H1 = H2, and σ1 = σ2.

We proved that MP is complete and correct with regard to the se-
mantics if all the user-defined predicates comply with the unique-
ness restriction.

Theorem 3 (Correctness of MP)
If Ξ;Ω;Π ` F : (o, Π′), and ∀x ∈ dom(Π). x ∈ dom(σ), and
S ⊂ dom(H) then

• either MP(H; S; F;σ) = (S′, σ′) and S′ ⊂ dom(H), σ ⊂ σ′, and H′ �

σ′(F), and dom(H′) = (S′ − S), ∀x ∈ dom(Π′). x ∈ dom(σ′),
• Or MP(H; S; F; σ) = NO, and there exists no H′, dom(H′) ⊂ (dom(H)−

S), and σ′, σ ⊂ σ′, such that H′ � σ′(F)

Finally, we proved that if the heap has a closed shape, the
inductive definitions are well-formed, the goal formula is well-
moded under Π, all the input arguments in Π are ground, and all
the safe pointers in Π are valid pointers on the heap, then MP never
dereferences dangling pointers when traversing the heap.

Theorem 4 (Safety of MP)
If for all I ∈ Υ, ` I well − formed, P is a closed shape, and Ξ =
Λ(P), H1 � P(l), Ξ;Ω;Π ` F : (o, Π′), and ∀var ∈ dom(Π).
var ∈ dom(σ), and S ⊂ dom(H1), and ∀tm such that Π(tm) = yes,
σ(tm) ∈ ¯dom(H1) or σ′(tm) = 0 then

• either MP(Υ)(H1] H2; S; F;σ) = (S′, σ′), and MP will not access
location l if l /∈ dom(H1), and ∀var ∈ dom(Π′). var ∈ dom(σ′),
and ∀tm such that Π′(tm) = yes, then σ′(tm) ∈ ¯dom(H1) or
σ′(tm) = 0

• Or MP(Υ)(H1] H2; S; F; σ) = NO, and MP will not access location l if
l /∈ dom(H1).

Since the program heap often contains many data structures, Theo-
rem 4 takes the frame property into account: MP is safe on a larger
heap. Intuitively, MP is safe because it only follows pointers reach-
able from the root of a “closed shape”. The termination of MP is
crucial since the proof is done by induction on the depth of the
derivation of MP. If MP does not terminate, then the induction on the
depth of the derivation would not be well-founded.

4. The Programming Language
In this section, we explain how to embed the mode analysis and
proof system into the type system, the pattern-matching algorithm

Basic Types t : := int | ptr(P)
Regular Types τ : := t | P
Fun Types τf : := (τ1 × · · · × τn) → P

Vars var : := $x | x
Exprs e : := var | n | e + e | −e
Args arg : := e | $s
Shape Forms Shp : := root v, F
Shape Patterns pat : := : [Shp] | ?[Shp]
Atoms a : := A | $s pat
Conj Clauses cc : := a | cc, cc
Branch b : := {x:t} (pat → stmt)
Branches bs : := b | b ′|′ bs
Statements stmt : := skip | stmt1 ; stmt2 | $x := e

| if {x:t} cc then stmt1 else stmt2

| while {x:t} cc do stmt

| switch $s of bs | $s := {x:t} [Shp]
| free v | $s := f (arg)

Fun Bodies fb : := stmt1 ; fb | return $s
Local Decl ldecl : := t $x := v | P $s
Fun Decl fdecl : := P f(x1 : τ1, · · ·xn : τn) { ldecl; fb }
Program prog : := SS; fdecl
Values v : := x | n | $s

Figure 6. Syntax of Language Constructs

into the operational semantics, and thereby integrate the verifica-
tion technique into the language. First, we introduce various syn-
tactic constructs in our language, then we define the formal opera-
tional semantics, next we explain the type system. Lastly, we show
an example of a function that inserts a key into an ordered list.

4.1 Syntax

A summary of the syntax of our core language is shown in Figure 6.
The basic types are the integer type and the pointer type. Functions
take a tuple of arguments and always returns a shape type.

We use x to range over variables bound in formulas, $x to range
over stack variables, and $s to range over shape variables. Shape
variables live on the stack and store the starting address of data
structures allocated on the heap. We use e to denote expressions
and arg to denote function arguments which can either be expres-
sions or shape variables. Shape formulas Shp are the multiplicative
conjunction of a set of predicates, the first of which is the special
root predicate indicating the starting address of the shape. A shape
pattern pat can be either a query pattern (? [Shp]) or a deconstruc-
tive pattern (:[Shp]). We have seen the deconstructive pattern in the
examples in Section 2. When we only traverse, and read from the
heap, but don’t perform updates, we use the query pattern (? [Shp]).
These two patterns are treated the same operationally, but differ-
ently in the type system. The deconstructive patterns generate for-
mulas describing accessible portions of the heap, but the query pat-
terns don’t. The conditional expressions in if statements and while
loops are composed of variable bindings and a conjunctive clause
cc, which describes the arithmetic constraints and the shape pat-
terns of one or more disjoint data structures. The free variables in
cc are bound in the variable bindings. cc is the multiplicative con-
junction of atoms a, which can either be arithmetic formulas A, or
shape patterns ($s pat).

The statements include skip, statement sequences, expres-
sion assignments, if statements, while loops, switch statements,
shape assignments, free, and function calls. The switch statement
branches on shape variables against shape patterns.

A function body is a statement followed by a return instruction.
A program consists of shape signatures and a list of function dec-
larations. Lastly, the values in our language are integers, variables,
and shape variables.

8 2006/7/14

(E; H; stmt) 7−→ (E′; H′; stmt′)
free (E; H; free v) 7−→ (E; H1; skip)

where H = H1] H2 and H2(v) = n,
dom(H2) = {v, v + 1, · · · , v + n}

assign-shape (E; H; $s := {x:ptr(P)} [root (v), F])
7−→ (E[$s := v′]; H′; skip)
where (H′, v′) =

CreateShape(H, {x:ptr(P)} [root (v), F],P)
If-t (E; H; if {x:t} cc then stmt1 else stmt2)

7−→ (E; H;σ(stmt1))
if J cc KE = (F, σ′) and MP(H; F; ∅; σ′) = (SL; σ)

If-f (E; H; if {x:t} cc then stmt1 else stmt2)
7−→ (E; H; stmt2)
if J cc KE = (F, σ) and MP(H; F; ∅; σ) = NO

while-t (E; H; while {x:t} cc do stmt)
7−→ (E; H; (σ(stmt1) ; while {x:t} cc do stmt))
if J cc KE = (F, σ′) and MP(H; F; ∅; σ′) = (SL; σ)

while-f (E; H; while {x:t} cc do stmt) 7−→ (E; H; skip)
if J cc KE = (F, σ) and MP(H; F; ∅;σ) = NO

switch-t (E; H; switch $s of {x:t} ([root (xi), F] → stmtk)
|bs) 7−→ (E; H; σ(stmtk))

if MP(H; E(F); ∅; {E($s)/xi}) = (SL;σ)
switch-f (E; H; switch $s of {x:t} ([root (xi), F] → stmtk)

| bs) 7−→ (E; H; switch $s of bs)
if MP(H; E(F); ∅; {E($s)/xi}) = NO

fail (E; H; switch $s of {x:t} ([root (xi), F] → stmtk))
7−→ (E; H; fail)
if MP(H; E(F); ∅; {E($s)/xi}) = NO

Figure 7. Selected Operational Semantics

4.2 Operational Semantics

In this section, we will formally define the operational semantics of
our language. Most rules are straightforward. We focus on explain-
ing the interesting ones that dereference the heap using pattern-
matching procedure or update the heap via logical formulas. The
complete set of rules or operational semantics, and other auxiliary
definitions can be found in a summary in Appendix E.

The machine state for evaluating statements other than the
function call statement is a tuple: (E; H; stmt). Environment E
maps stack variables to their values. H is the program heap, and
stmt is the statement being evaluated. We write (E; H; stmt) 7−→
(E′; H′; stmt′) to denote the small-step operational semantics for
these statements. Figure 7 is a list of selected rules.

We write E($x) and E($s) to denote the value E maps $x
and $s to, and we also call this value the run-time value of these
variables. We write E(F) to denote the formula with run-time
values substituted for the stack variables.

To deallocate a tuple, programmers supply the free statement
with the starting address v of that tuple. The heaplet to be freed is
easily identified, since the size of the tuple is stored in v.

To create a data structure, programmers use the shape assign-
ment statement. During the evaluation of this statement, the heap
is updated according to the shape formulas in the assignment state-
ment. In the end, the root of the new shape is stored in the shape
variable $s. The core procedure is CreateShape, which takes the
current heap, the shape formula, and the shape name P as ar-
guments, and returns the updated heap and the root of the new
shape. To explain how CreateShape works, we first define a few
macros. We use size(P, struct) to denote the size of the each
for a heap of shape P. The size is decided by the type declara-
tion of struct in P’s signature. For example, for listshape in
Figure 2, size(listshape, struct) = 2. We define the macro
alloc(H, k) to allocate a tuple of size (k+1) on H, store k in the
first location, initialize all other fields to be 0, and return the new

heap and the starting address of the tuple. The definition of the
CreateShape procedure is given below.
CreateShape(H, {x:ptr(P)}(root n, F),P) = (H′, v′)

1. k = size(P, struct)
2. (H1, l1) = alloc(H, k), · · · , (Hn, ln) = alloc(Hn−1, k)
3. F′ = F [l1 · · · ln / x1 · · ·xn]
4. H′ = H[v + i := vi] for all (struct v v1 · · · vk) ∈ F′

5. return (H′, n [l / x])
In this procedure, we allocate a tuple on the heap for each bound

variable. The addresses returned by alloc are bound to the vari-
ables as their run-time values. Then, we modify the heap according
to the shape formula F′, which results from substituting the run-
time values for the bound variables in F. For each struct v0 v in
F′, the heap cell at location v0 + i is updated to store value vi.

When an if statement is evaluated, the pattern-matching proce-
dure is called to check if the conditional expression is true. If MP
succeeds and returns a substitution σ, we continue with the evalu-
ation of the true branch with σ applied. If MP returns NO, the false
branch is evaluated. Notice that the conditional expression is not
in the form of a logical formula; therefore, we need to convert the
conditional expression to its equivalent formula Fcc, before invoke
the pattern-matching procedure MP. We define J cc KE to extract Fcc

and a substitution σ from cc. Intuitively, Fcc is the conjunction of
all the shape formulas with the run-time values substituted for the
stack variables and the root predicate dropped. For example, if
E($s) = 100, then

J $s : [root r, struct r (d, next), list next] KE
= ((struct r (d, next), list next), {100/r}).

The substitution σ = {100/r} comes from the fact that the starting
address of this shape is r, and at run time, this address is stored in
$s. Therefore, r should be unified with E($s), which is 100. MP is
called with the current program heap, an empty set (all the locations
are usable), the formula Fcc, and the substitution σ from J cc KE .

The while loop is very similar to the if statement. If the con-
ditional expression is true then the loop body is evaluated and the
loop will be re-entered; otherwise, the loop is exited.

The shape patterns in switch statements are special cases of
conditional expressions in that the shape variable being branched
on is the only shape being considered. MP is called the same way.
If the current shape pattern succeeds, the branch body is evaluated;
otherwise the next branch is considered. If the pattern of the last
branch failed, then the run-time statement fail is evaluated.

4.3 Type System

As we briefly mentioned in Section 2, our type system is a linear
type system. The contexts in the typing judgments not only keep
track of the types of the variables, but also describe the current
status of program state: what are the valid shapes, and what is the
structure of the accessible heap.

Below are the contexts used in the typing judgments:

Variable Ctx Ω : : = · | Ω, var:t
Initialized Stack Variable Ctx Γ : : = · | Γ, $s:P
Uninitialized Shape Variable Ctx Θ : : = · | Θ, $s:P
Heap Ctx ∆ : : = · | ∆, Pu | ∆, Ps

Context Ω maps variables to their types. Both Γ and Θ map
shape variables to their types. The difference between Γ and Θ
is that Γ contains the initialized shape variable, while Θ contains
the uninitialized shape variables. Context ∆ is a set of formulas
that describe the accessible portions of the heap. Context Γ and
∆ describe the entire program heap. The intuitive meaning of Γ
is that each shape variable $s in Γ holds the starting address of a
distinct piece of heap that has the shape Γ($s). For example, if Γ =
$s:listshape, ∆ = struct 400 (11, 0), and the environment
is E = $s 7→ 100, then the current heap must satisfy formula
(listshape 100, struct 400 (11,0)).

9 2006/7/14

The main judgments in our type system are listed below:
Expression typing Ω `e e : t

Conj Clause typing Ω;Γ `cc cc : (Γ′; Θ;∆)
Conj Clause Modes checking Ω;Γ; Π ` cc : Π′

Statement typing Ω;Γ; Θ;∆ ` stmt : (Γ′; Θ′;∆′)

For simplicity, we omit the contexts for shape signatures Λ, ax-
ioms Υ, and function type bindings Φ, from the above judgments.
A complete list of the typing rules is listed in Appendix F. Here we
focus on explaining the statement typing rules.

Conjunctive Clause Typing The typing judgment of conjunctive
clauses, which is used in type checking if statements and while
loops, has the form Ω; Γ `cc cc : (Γ′;Θ;∆). The interesting rule is
when cc is a deconstructive shape pattern.

Γ = Γ′, $s:P, Ω |Υ; FA, F =⇒ P(y) FV(F) ∩ Ω$s = ∅

Ω;Γ ` $s : [root y, FA, F] : (Γ′; $s:P; F)

Here, shape variable $s is deconstructed by shape pattern
(root y, FA, F), where FA are the arithmetic formulas. If the pat-
tern matching succeeds, then there exists some substitution σ such
that the heaplet pointed to by $s can be described by σ(FA, F).
Therefore, in the postcondition, F appears in the ∆ context pro-
viding describing formulas to access the heap $s points to; shape
variable $s becomes uninitialized, and the type binding of $s is in
the Θ context. The condition that no stack variables appear free in
F makes sure that the formulas are valid descriptions of the heap
regardless of imperative variable assignments. Finally, the logical
derivation checks that the shape formulas entails the desired shape.
By the soundness of logical deduction, we know that any heaplet H
matched by the shape formula also satisfies P v, where v is the run-
time value of $s. Since the heaplet H′ that $s points to before the
pattern matching also has shape P v, by the uniqueness of shapes
we know that H is exactly the same as H′.

Conjunctive Clause Mode Checking At run time, MP is called on
the conjunctive clauses. So we have to apply mode analysis on con-
junctive clauses for the memory safety of MP. The mode checking
for conjunctive clauses cc uses the mode checking for formulas
and treats cc as the multiplicative conjunction of the formulas in
each atom in cc. The rule for checking the deconstructive pattern
is shown below.

Γ($s) = P Λ(P) = Ξ Ξ;Ω;Π∪̄{x:yes} ` F : (o, Π′)

Ω;Γ;Π ` $s : [root x, F] : Π′

Since $s points to a valid shape on the heap, its root pointer is an
valid pointer on the current heap. Therefore the argument of the
root predicate is added as a safe pointer argument in the ground
context Π while checking the formula in the shape pattern.

Statement Type Checking The typing judgment for statements
has the form Ω; Γ; Θ; ∆ ` stmt : (Γ′; Θ′; ∆′). A selected set of
typing rules is listed in Figure 8.

The rule for if statements first collects the typing information
of the bound variables into a new context Ω′. We assume alpha-
renaming is applied whenever necessary. Then we type check the
conjunctive clause cc. The true branch is taken when cc is proven
to be true, and at that point the describing formulas from examining
cc are proven to be valid; hence the true branch is checked under
the new state resulting from checking cc. The false branch is
checked under the original state. The end of the if statement is
a program merge point, so the true and the false branch lead to
the same state. The mode checking of cc guarantees that when MP
is called on cc it won’t access dangling pointers. The Π context,
which contain groundness and safety properties of the arguments
when cc is evaluated, depends on the variable context Ω, and is
denoted by ground(Ω). Before evaluating a statement, the run-time

values should already have been substituted for the bound variables.
Therefore, all the variables in Ω are ground before we evaluate cc.
We have no information on the validity of the pointer variables, so
they are considered unsafe. ground(Ω) is defined below.

ground(Ω) = {var |Ω(var) = int}
∪{(var, no) |Ω(var) = ptr(P)}

Since the only safe pointers we assume before evaluating cc are
the root pointers of valid shapes, the memory safety of MP when
evaluating cc is guaranteed through the safety of MP (Theorem 4).

While loops are similar to if statements. After type checking the
conjunctive clause, the loop body is checked against the new states.
The resulting states should be the same as the original states, so that
the loop can be re-entered. This means that the states under which
the while loop is type checked are in effect loop invariants.

The rule for shape assignment first checks that the shape vari-
able $s to be assigned to is uninitialized to prevent memory leaks.
All the shape variables in Γ point to a valid shape in the heap, so
assigning $s to point to another shape makes us lose the pointer to
the shape $s originally points to. The logical judgment checks that
the shape formula entails the shape we want. The rest of the judg-
ments means that the union of the formulas used to construct this
shape and the leftover formulas in ∆′ should be the same as the for-
mulas given at the beginning in ∆ plus the new locations allocated.
It looks complicated because we allow updates to the heap cells
during construction. For example, if capability struct l (5,0)
is available, then we allow struct l (10, 0) to be used in the
shape assignment. This means that the heap cell that used to contain
5 now contains 10.

The rule for switch statement requires that each branch results in
the same program state. Each branch can be viewed as a simplified
if statement with only a true branch, and the conditional expression
only considers one shape pattern.

The rule for free checks that the location to be freed is among
the accessible portion of the heap. After freeing, the formula de-
scribing the freed heaplet is deleted from the context, and can never
be accessed again.

4.4 A More Complicated Example

Now we will demonstrate the expressiveness of our language
through an insert function in Figure 9 which inserts an integer
into a list and maintains the ascending order of its keys.

Function insert is an implementation of an algorithm that uses
pointer $p to traverse the list until it reaches the end of the list or
the data field under $p is greater than or equal to the key to be
inserted. A second pointer $pre points to the parent of $p. The new
node should be inserted between $pre and $p. The first argument
of insert, $s, has listshape type and holds the starting address
of the ascending list. The second argument, $k, is the integer to be
inserted. The local stack variables are the two traversing pointers,
$p and $pre. The if statement between line 4 and 6 initializes
both $p and $pre to point to the head of the list. The while loop
from line 7 through 11 traverses the list. The conditional expression
between keywords while and do examines the heaplet pointed
to by $s to see if between the head of the list and the traversing
pointer $p is a list segment, and $p points to a pair of values key
and next such that next points to a list and key is less than $k.
The body of the while loop advances the traversing pointers. The
switch statement between line 12 and 20 inserts the key into the
list. After the while loop, there are two possibilities. One is that the
key should be inserted before the head of the list and $pre and $p
both point to the head of the list. The other is that $pre is the parent
of $p, and key should be inserted between these two pointers. The
switch statement branches on these two cases and update the heap
appropriately.

10 2006/7/14

Ω′ = x:t dom(Ω′) ⊂ FV(cc) Ω′, Ω;Γ ` cc : (Γ′, Θ′,∆′)
Ω′,Ω; Γ′; Θ,Θ′;∆, ∆′ ` stmt1 : (Γ′′; Θ′′; ∆′′)

Ω;Γ; Θ;∆ ` stmt2 : (Γ′′; Θ′′;∆′′)
Π = ground(Ω) Ω′, Ω;Γ;Π ` cc : Π′

∀xi ∈ dom(Ω′), xi ∈ dom(Π′)

Ω; Γ;Θ;∆ ` if {x:t} cc then stmt1 else stmt2

: (Γ′′ ;Θ′′; ∆′′)

if

Ω′ = x:t dom(Ω′) ⊂ FSV(cc)
Ω′, Ω;Γ ` cc : (Γ′, Θ′,∆′)

Ω′, Ω;Γ′; Θ,Θ′; ∆,∆′ ` stmt : (Γ; Θ;∆)
Π = ground(Ω) Ω′,Ω;Γ; Π ` cc : Π′

∀xi ∈ dom(Ω′), xi ∈ dom(Π′)

Ω;Γ; Θ;∆ ` while {x:t} cc do stmt : (Γ; Θ;∆)
while

Ω′ = x:ptr(P) Θ = Θ′, ($s : P)
Ω′,Ω |Υ; F =⇒ P(v)

∆x = {struct xi e | struct xi e ∈ F}
∆ = ∆′,∆′′ F = ∆x,∆F ∀Pu, Pu ∈ ∆′′ iff Pu ∈ ∆F

∀Ps = struct tm e, Ps ∈ ∆′′ iff struct tm e′ ∈ ∆F

Ω;Γ; Θ;∆ ` $s := {x:ptr(P)}[root (v), F]
: (Γ′, ($s:P); Θ′;∆′)

assign-shape

For all i, 1 ≤ i ≤ n, Ω;Γ; Θ;∆ `$s b i : (Γ′;Θ′;∆′)

Ω;Γ;Θ; ∆ ` switch $s of bs : (Γ′;Θ′;∆′)
switch

Ω′ = x:t Γ($s) = P Ξ = Λ(P)
Ξ;Ω′, Ω;Γ; ground(Ω)∪̄{xi:yes} ` F : Π

∀xi ∈ dom(Ω′), xi ∈ dom(Π)
Ω′,Ω |Υ; F =⇒ P(xi)

Ω′,Ω; Γ;Θ;∆ ` stmt : (Γ′;Θ′; ∆′)

Ω;Γ; Θ;∆ `$s {x:t} ?[root (xi), F] → stmt : (Γ′; Θ′;∆′)
pat-?

Ω′ = x:t Γ = Γ′, $s:P
Ξ = Λ(P) Shp = root (xi), FA, F

Ξ; Ω;Ω′; Γ; ground(Ω)∪̄{xi:yes} ` F : Π
∀xi ∈ dom(Ω′), xi ∈ dom(Π)

Ω′, Ω |Υ; FA, F =⇒ P(xi) FV(F) ∩ Ω$ = ∅
Ω′, Ω;Γ′; Θ, $s:P;∆, F ` stmt : (Γ′′;Θ′; ∆′)

Ω; Γ;Θ;∆ `$s {x:t} :[Shp] → stmt : (Γ′′; Θ′;∆′)
pat-:

∆ = (struct v e1 · · · ek), ∆′

Ω; Γ;Θ;∆ ` free (v) : (Γ; Θ;∆′)
free

Figure 8. Selected Statement Typing Rules

4.5 Progress and Preservation

The machine state for evaluating function bodies requires an ad-
ditional control stack S, which is a stack of evaluation contexts
waiting for the return of function calls. The typing judgment for
machine state has the form ` (Es; H; S; fb) OK. We proved the
following progress and preservation theorem for our language.

Theorem 5 (Progress and Preservation)
if ` (E; H; S; fb) OK then either (E; H; S; fb) = (•; H; •; halt)
or exists E′, H′, S′, fb′ such that (E; H;S; fb) 7−→ (E′; H′;S′; fb′) and
` (E′; H′;S′; fb′) OK

5. Related Work
Several researchers have used declarative specifications of complex
data structures to generate code and implement pattern-matching
operations. For example, Klarlund and Schwartzbach used 2nd-
order monadic logic to describe graph types, a generalization of
ML-style data types [13]. Similarly, Fradet and Le Métayer devel-
oped shape types [5] by using a notation based on context-free

1 listshape insert(listshape $s, int $k){

2 ptr(listshape) $pre := 0;
3 ptr(listshape) $p := 0;

4 if $s?[root x, list x]
5 then {$pre := x; $p := x};
6 else skip

7 while ($s?[root x, listseg x $p,
8 struct $p (key, next), list next,
9 $k > key])
10 do {$pre := $p; $p := next};

11 switch $s of [root x, list x,
12 ($pre = x), ($pre = $p)]
13 -> $s := [root n, struct n ($k, x), list x]

14 | [root x, y = $pre, listseg x y,
15 struct y (key, next), list next]
16 -> $s : = [root x, listseg x y,
17 struct y (key, n),
18 struct n ($k, next),
19 list next]
20 }

Figure 9. list insert

grammars. Both of these works were highly inspirational to us.
However, space reserved for one of Klarlund’s graph types can not
be reused in construction of another type, nor can graph types be
deallocated. Fradet’s shape types, while interesting, did not come
with a facility for expressing relations between different shapes
similar to our axioms, and consequently it appears that they cannot
be used effectively inside while loops or other looping constructs.
Perhaps more important than the differences in expressive power, is
the fact that our language has the promise of synergy with new ver-
ification techniques based on substructural logics and with modern
type systems for resource control, including those in Vault [3] and
Cyclone [7, 9].

More generally, there are many, many different varieties of
static analysis aimed at verifying programs that manipulate point-
ers. Some of them use logical techniques and some of them do not.
These analysis range from standard alias analysis to data flow anal-
ysis to abstract interpretation to model checking to shape analysis
(see Sagiv et al.’s work [22], for example). We distinguish ourselves
from this large and important volume of work by noting that we do
not verify low-level statements that explicitly dereference pointers.
Instead, we aim to replace low-level pointer manipulation, which
requires verification, with higher-level data structure specification,
which is “correct by construction.”

As noted in the introduction, we follow in the intellectual foot-
steps of O’Hearn, Reynolds, Yang and others, who have developed
the theory and implementation of separation logic and used it to
verify low-level pointer programs [21, 11, 12]. However, we chose
to pursue our research starting with a foundation in linear logic as
opposed to the logic of bunched implications, which underlies sep-
aration logic. One motivating factor for doing so was the presence
of readily available linear logic programming languages [10, 15]
and automated theorem provers [2, 16], which we have used to ex-
periment with ideas and to implement a prototype for our language.

The fragment of linear logic that we choose to use as the
base logic to describe shapes has the same no-weakening and no-
contraction properties as the multiplicative fragment of separation
logic (linear logic and the logic of bunched implications [18], the
basis for separation logic coincide exactly on this fragment). We
call our logic “linear” since it’s proof theory uses two contexts
(one the linear and one unrestricted) and hence it shares the same
structure as Girard’s work [6]. Bunched implications and separa-

11 2006/7/14

tion logic have an additive implication and an additive conjunction,
which do not appear in our logic. We can simulate the additives
when they are used to manipulate “pure formulas” (those formu-
las and that do not refer to the heap), but not when they are used
to describe storage (which can be useful to describe certain alias-
ing patterns). In the future, we plan to explore extending the system
with either linear logic’s additive conjunction or related ideas found
in linear type systems [25, 3, 23, 27, 8, 17, 28].

6. Current and Future Work
We are currently working on an implementation of our system, and
up to now, the prototype works for singly linked lists.

One important piece of future work is to identify the necessary
conditions for programmer-defined inductive definitions to gener-
ate a decidable proof system for compile-time checking. In the pro-
totype implementation, we use Lolli [10] to check the proofs. Be-
cause the algorithm deployed by Lolli is a naive bottom-up proof
search, the type checker could run into infinite loop if the shape
formulas are not written carefully. For specific shapes like list and
trees, we have checked termination results by hand, just as is done
in separation logic. However, we are looking for a more general
theorem concerning termination of linear logic programs without
function symbols.

For the memory safety of the run-time system, we impose cer-
tain well-formedness requirements on the shape signatures. At this
point, programmers have to check these requirements by hand, but
we believe that these requirements can be checked automatically,
or at least semi-automatically.

In the longer term, we would like to develop a whole-program
verification process by integrating the research presented here with
concurrent work on the development of separation logic.

7. Conclusion
We developed a new programming paradigm that uses linear logi-
cal formulas as specifications for defining and manipulating heap-
allocated recursive data structures. A key component of the new
system is an algorithm for heap-shape pattern matching, derived
in part from an understanding of the operation of linear logic pro-
gramming languages. To ensure the safety of pattern matching, we
extended the mode analysis found in many logic programming lan-
guages to check for dangling pointer. Lastly, we integrated all these
new ideas into an imperative programming language, for which we
are developing a prototype interpreter and type checker. Our new
language will facilitate safe construction, deconstruction and deal-
location of sophisticated heap-allocated data structures.

References
[1] A. Ahmed, L. Jia, and D. Walker. Reasoning about hierarchical

storage. In IEEE Symposium on Logic in Computer Science, pages
33–44, Ottawa, Canada, June 2003.

[2] K. Chaudhuri and F. Pfenning. A focusing inverse method prover
for first-order linear logic. In 20th International Conference on
Automated Deduction (CADE-20), July 2005.

[3] R. Deline and M. Fähndrich. Enforcing high-level protocols in low-
level software. In ACM Conference on Programming Language
Design and Implementation, pages 59–69, Snowbird, Utah, June
2001. ACM Press.

[4] M. Fähndrich and R. Deline. Adoption and focus: Practical
linear types for imperative programming. In ACM Conference on
Programming Language Design and Implementation, June 2002.

[5] P. Fradet and D. L. Métayer. Shape types. In POPL ’97, 1997.

[6] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[7] D. Grossman. Safe Programming at the C Level of Abstraction. PhD
thesis, Cornell University, 2003.

[8] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.
Region-based Memory Management in Cyclone. In ACM Conference
on Programming Language Design and Implementation, Berlin, June
2002. ACM Press.

[9] M. Hicks, G. Morrisett, D. Grossman, and T. Jim. Experience
with safe manual memory-management in cyclone. In International
Symposium on Memory Management, pages 73–84, Oct. 2004.

[10] J. S. Hodas and D. Miller. Logic programming in a fragment of
intuitionistic linear logic. In Papers presented at the IEEE symposium
on Logic in computer science, pages 327–365, 1994.

[11] S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable
data structures. In POPL’01, Jan. 2001.

[12] C. C. Josh Berdine and P. O’Hearn. Symbolic execution with
separation logic. In APLAS, pages 52–68, 2005.

[13] N. Klarlund and M. Schwartzbach. Graph types. In Twentieth ACM
Symposium on Principles of Programming Languages, pages 196–
205, Charleston, Jan. 1993.

[14] J. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

[15] P. López, F. Pfenning, J. Polakow, and K. Watkins. Monadic
concurrent linear logic programming. In PPDP ’05, 2005.

[16] H. Mantel and J. Otten. linTAP: A tableau prover for linear logic.
Lecture Notes in Computer Science, 1617, 1999.

[17] G. Morrisett, A. Ahmed, and M. Fluet. L3: A linear language with
locations. In Seventh International Conference on Typed Lambda
Calculi and Applications, Apr. 2005.

[18] P. O’Hearn and D. Pym. The logic of bunched implications. Bulletin
of Symbolic Logic, 5(2):215–244, 1999.

[19] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about
programs that alter data structures. In Computer Science Logic,
number 2142 in LNCS, pages 1–19, Paris, 2001.

[20] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and
information hiding. In POPL ’04: Proceedings of the 31st ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 268–280, 2004.

[21] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings of the 17th Annual IEEE Symposium on
Logic in Computer Science, pages 55–74, 2002.

[22] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. In Twenty-Sixth ACM Symposium on Principles of
Programming Languages, pages 105–118, San Antonio, Jan. 1999.

[23] F. Smith, D. Walker, and G. Morrisett. Alias types. In European
Symposium on Programming, pages 366–381, Berlin, Mar. 2000.

[24] J. D. Ullman. Principles of Database and Knowledge-Base Systems.
Computer Science Press, Rockville, MD, 1988.

[25] D. Walker. Substructural Type Systems, chapter 1. MIT Press, 2005.

[26] D. Walker, K. Crary, and G. Morrisett. Typed memory management
in a calculus of capabilities. ACM Transactions on Programming
Languages and Systems, 22(4):701–771, May 2000.

[27] D. Walker and G. Morrisett. Alias types for recursive data structures.
In Workshop on Types in Compilation, Montreal, Sept. 2000.

[28] D. Zhu and H. Xi. Safe Programming with Pointers through Stateful
Views. In Proceedings of the 7th International Symposium on
Practical Aspects of Declarative Languages. Springer-Verlag LNCS
vol. 3350, January 2005.

12 2006/7/14

A. Pattern Matching Algorithm
FV(e1) ⊂ dom(σ) FV(e2) ⊂ dom(σ) σ(e1) = σ(e2)

MP(H; S, e1 = e2, σ) = (S, σ)

FV(e1) ⊂ dom(σ) FV(e2) ⊂ dom(σ) σ(e1) 6= σ(e2)

MP(H; S, e1 = e2, σ) = NO

x /∈ dom(σ) FV(e2) ⊂ dom(σ) v = σ(e2)

MP(H; S, x = e2, σ) = (S, σ ∪ {v/x})

FV(e1) ⊂ dom(σ) FV(e2) ⊂ dom(σ) σ(e1) > σ(e2)

MP(H; S, e1 > e2, σ) = (S, σ)

FV(e1) ⊂ dom(σ) FV(e2) ⊂ dom(σ) σ(e1) ≤ σ(e2)

MP(H; S, e1 > e2, σ) = (S, σ)

MP(H; S,A, σ) = NO

MP(H; S, not A,σ) = (S, σ)

MP(H; S,A, σ) = (S, σ)

MP(H; S, not A,σ) = NO

σ(tm) ∈ S or σ(tm) = 0

MP(H; S, struct tm tm1 · · · tmn), σ) = NO

σ(tm) 6= 0 σ(tm) /∈ S H̄(σ(tm)) = (v1, · · · , vn)
MP(H; S; tm1 = v1;σ) = (S, σ1)

· · ·
MP(H; S; tmk = vk;σk−1) = NO

MP(H; S; struct tm tm1 · · · tmn; σ) = NO

σ(tm) 6= 0 and σ(tm) /∈ S H̄(σ(tm)) = (v1 , · · · , vn)
MP(H; S; tm1 = v1;σ) = (S, σ1)

· · ·
MP(H; S; tmn = vn;σn−1) = (S, σn)

MP(H; S; struct tm tm1 · · · tmn; σ) = (S ∪ {σ(x), · · · , σ(x) + n}, σn)

Υ(P) = (F (P y) ∀i ∈ [1, k], MP(H; S; Fi [tm / y];σ) = NO

MP(H; S;P tm;σ) = NO

Υ(P) = (F (P y) ∃i ∈ [1, k], MP(H; S; Fi [tm / y];σ) = (Si, σi)

MP(H; S;P tm; σ) = (Si, σi)

MP(H; S; L; σ) = NO

MP(H; S; (L, F); σ) = NO

MP(H; S; L;σ) = (S′, σ′) MP(H; S′; F;σ′) = R

MP(H; S; (L, F); σ) = R

B. Mode Analysis and Related Definitions

Π∪̄{(tm, s)} = Π′

(Π, (var, no))∪̄{(var, s)} = Π, (var, s)
Π∪̄{(n, no)} = Π

(Π, (tm, yes))∪̄{(tm, s)} = Π, (tm, yes)
Π∪̄{(tm, s)} = Π, (tm, s) if tm /∈ dom(Π)

Ξ; Ω; Π ` F : (pt, Π′)

Ω `v tm1 : int Ω `e tm2 : int FV(tm2) ⊂ dom(Π)

Ξ;Ω; Π ` tm1 = tm2 : (o, Π ∪ {FV(tm1)})

Ω `v tm1 : ptr(P) Ω `e tm2 : ptr(P)
Π(tm2) = s tm1 /∈ dom(Π)

Ξ;Ω;Π ` tm1 = tm2 : (o, Π∪̄{(tm1, s)})

Ω `v tm1 : ptr(P) Ω `e tm2 : ptr(P)
Π(tm1) = s1 Π(tm2) = s2 s = max(s1 , s2)

Ξ;Ω; Π ` tm1 = tm2 : (o, Π∪̄{(tm1s)}∪̄{(tm2, s)})

Ω `e tm1 : int Ω `e tm2 : int

FV(tm1) ⊂ dom(Π) FV(tm2) ⊂ dom(Π)

Ξ;Ω;Π ` tm1 > tm2 : (o, Π)

Ξ; Ω;Π ` Pa : (o, Π)

Ξ;Ω; Π ` not Pa : (o, Π)

Ξ(struct) = ((+, yes, yes) ptr(P)) → (m1 t1) · · · → (mn tn) → o
∀i ∈ [1, n],
8

<

:

Ω `e tmi : int, FV(tmi) ∈ Π mi ti = + int

Ω `e tmi : ptr(P), Π(tmi) ≤ s1 mi ti = (+, s1, s2) ptr(P)
Ω `v tmi : ti mi = − or (−, s1, s2)

Π′ = Π ∪ {FV(tmj) |mj tj = − int}
∪̄{(tmk, s2) |mk = (−, s1, s2)}
∪̄{(tmi, yes) |mi = (+, no, yes)}

Ξ; Ω;Π ` struct tm tm1 · · · tmn : (o, Π′)

Ξ;Ω; Π ` P : (Ξ(P), Π)

Ξ; Ω;Π ` Pu : ((− int) → pt, Π′) Ω `v tm : int

Ξ;Ω; Π ` Pu tm : (pt,Π′ ∪ FV(tm))

Ξ;Ω; Π ` Pu : ((+ int) → pt,Π′)
FV(tm) ⊂ dom(Π) Ω `v tm : int

Ξ;Ω; Π ` Pu tm : (pt,Π′)

Ξ; Ω;Π ` Pu : ((∗ int) → pt,Π′) Ω `v tm : int

Ξ;Ω; Π ` Pu tm : (pt,Π′)

Ξ;Ω;Π ` Pu : (((−, no, no) ptr(P)) → pt, Π′)
Ω `v tm : ptr(P)

Ξ;Ω; Π ` Pu tm : (pt,Π′∪̄{(FV(tm), no)})

Ξ; Ω;Π ` Pu : (((−, yes, yes) ptr(P)) → pt, Π′)
Ω `v tm : ptr(P)

Ξ;Ω; Π ` Pu tm : (pt,Π′ ∪ {(tm, yes)})

Ξ; Ω;Π ` Pu : (((+, no, no) ptr(P)) → pt,Π′)
Ω `v tm : ptr(P) FV(tm) ∈ dom(Π)

Ξ;Ω;Π ` Pu tm : (pt,Π′)

Ξ; Ω;Π ` Pu : (((+, yes, yes) ptr(P)) → pt,Π′)
Ω `v tm : ptr(P) Π(tm) = yes

Ξ;Ω; Π ` Pu tm : (pt,Π′)

Ξ;Ω; Π ` Pu : (((+, no, yes) ptr(P)) → pt,Π′)
Ω `v tm : ptr(P) FV(tm) ∈ Π

Ξ;Ω; Π ` Pu tm : (pt,Π′∪̄{(tm, yes)})

Ξ;Ω;Π ` Pu : (((∗, no, no) ptr(P)) → pt,Π′)
Ω `v tm : ptr(P)

Ξ;Ω; Π ` Pu tm : (pt,Π′)

Ξ; Ω;Π ` L : (o, Π′) Ξ;Ω; Π′ ` F : (o, Π′′)

Ξ;Ω; ;Π ` L, F : (o, Π′′)

• Π′′ < Π′ iff

∀var ∈ dom(Π′), var ∈ dom(Π′′)

∀(tm, yes) ∈ Π′, (tm, yes) ∈ Π′

13 2006/7/14

∀(tm, no) ∈ Π′, (tm, no) ∈ Π′′, or (tm, yes) ∈ Π′′

Ξ ` I OK

Ξ(P) = pt Ω = infer(P x)
Π = {xj |ptj = + int} ∪ {(xj , sin)|ptj = (+, sin, sout) ptr(P)}

Ξ;Ω; Π ` P x : (o, Π′)
∀i ∈ [1, n], Ω′ = infer(Fi)

Ξ;Ω′,Ω;Π ` Fi : (o, Π′′) Π′′ < Π′

Ξ ` ((F1; · · · ; Fn) (P x) OK

Ξ ` I well − formed

∃i ∈ [1, n] such that ∀j ∈ [1, i],
and ∀L ∈ Fj , L = A or L = Ps

∀k ∈ [i + 1, n], and Fk = L1, · · · Lm

if ∃s ∈ [1,m], such that Ls = Pu and
∀t ∈ [1, s), Ls = A or Ps,

then ∃y ∈ [1, s) such that Ly = Ps
Ξ ` I OK

Ξ ` (F1 ; · · · ; Fn) (P tm well − formed

` SS : (Λ; Υ)

` pdecl : Ξ ∀Ii ∈ I, Ξ ` Ii well − formed

∀Axi ∈ Ax, Ξ ` Axi OK

Ξ ` F (P x OK

` P{pdecl.
F (P x.
I.
Ax} :
((P : Ξ); ((F (P x), I, Ax))

C. Summary of System Requirements
Closed Shape

P describes a cloded shape, if for all H such that H � P(l),
H = H1] · · ·] Hk, and for all i ∈ [1, k], there exists v, v1, · · · ,
vn such that Hi � struct v (v1, · · · , vn) ∀pti = m ptr(P),
vi = 0 or vi ∈ ¯dom(H). where Λ(P) = Ξ, Ξ(struct) = pt,
n = size(P, struct)

Soundness of Axioms ΥA is sound with regard to ΥI if for all
Ax ∈ ΥA, ∅ �

ΥI Ax.

Uniqueness of Shape Matching

If Ξ; Ω; Π ` L : (o, Π′), and ∀x ∈ dom(Π). x ∈ dom(σ) and
H1 � σ1(L), and H2 � σ2(L), and σ ⊆ σ1, and σ ⊆ σ2, and
H1 ⊂ H, and H2 ⊂ H, then H1 = H2, and σ1 = σ2.

D. Summary of the Lemmas in the Logical
System

Lemma 6 (Soundness of Logical Deduction)
If Υ = ΥI , ΥA such that ΥA is sound with regard to ΥI , and
Ω |Υ; ∆ =⇒ F, and σ is a grounding substitution for Ω, and
H �

ΥI σ(∆), then H �
ΥI F.

Theorem 7 (Termination of MP)
If for all I ∈ Υ, ` I well − formed, then MP(Υ) always termi-
nates.

Proof: By induction on the size of (dom(H) − S). �

Π [tm / var] = Π′

(Π, var) [tm / var] = Π ∪ FV(tm)
(Π, (var, s)) [tm / var] = Π∪̄{(tm, s)}
Π [tm / var] = Π if var /∈ dom(Π)

Lemma 8 (Substitution)
If Ξ; Ω, var:t; Π ` F : (pt, Π′), and Ω′ `v tm : t

then Ξ; Ω ∪ Ω′; Π [tm / var] ` F [tm / var] : (pt, Π1) and
Π1 < Π′ [tm / var]

Theorem 9 (Correctness of MP)
If Ξ; Ω; Π ` F : (o, Π′), and ∀x ∈ dom(Π). x ∈ dom(σ), and
S ⊂ dom(H) then

• either MP(H; S; F; σ) = (S′, σ′) and S′ ⊂ dom(H), σ ⊂ σ′,
and H′ � σ′(F), and dom(H′) = (S′ − S), ∀x ∈ dom(Π′).
x ∈ dom(σ′),

• Or MP(H; S; F; σ) = NO, and there exists no H′, dom(H′) ⊂
(dom(H) − S), and σ′, σ ⊂ σ′, such that H′ � σ′(F)

Lemma 10 (Safety of MP)
If for all I ∈ Υ, ` I well − formed, P is a closed shape, and
Ξ = Λ(P), H1 � P(l), Ξ; Ω; Π ` F : (o, Π′), and ∀x ∈ dom(Π).
x ∈ dom(σ), and S ⊂ dom(H1), and ∀tm such that Π(tm) = yes,
σ(tm) ∈ ¯dom(H1) or σ′(tm) = 0 then

• either MP(Υ)(H1] H2; S; F; σ) = (S′, σ′), and MP will not
access location l if l /∈ dom(H1), and ∀x ∈ dom(Π′). x ∈
dom(σ′), and ∀tm such that Π′(tm) = yes, then σ′(tm) ∈

¯dom(H1) or σ′(tm) = 0
• Or MP(Υ)(H1] H2; S; F; σ) = NO, and MP will not access

location l if l /∈ dom(H1).

E. Summary of Operational Semantics
Runtime Constructs

Runtime stmt stmt : : = fail | halt
Eval Ctxt Ce : : = []e | Ce + e | v + Ce | −Ce

Cstmt : : = []stmt | Cstmt ; stmt | $x := Ce

| $s := f (v1, · · · vk, Ce, ek+2, · · ·)
Ccall : : = []stmt | Ccall ; stmt

Environment E : : = · | E, $x 7→ n | E, $s 7→ n
Env Stack Es : : = • | E � Es
Control Stack S : : = • | Cstmt[$s := •] � S

J cc KE = (F, σ)

J A KE = (E(A), ·)
J $s?[root x, F] KE = (E(F), {E($s)/x})
J $s:[root x, F] KE = (E(F), {E($s)/x})
J cc1, cc2 KE = ((F1, F2), σ1 ∪ σ2) if J cci KE = (Fi, σi)

Operational Semantics for Expressions

var (E; $x) 7−→ E($x)
sum (E; v1 + v2) 7−→ v where v = v1 + v2

ctx (E; Ce[e]) 7−→ Ce[e
′] if (E; e) 7−→ e′

Operational Semantics for Statements

14 2006/7/14

(E; H; stmt) 7−→ (E′; H′; stmt′)
seq (E; H; (skip ; stmt)) 7−→ (E; H; stmt)

assign-exp (E; H; $x := v) 7−→ (E[$x := v]; H; skip)
free (E; H; free v) 7−→ (E; H1; skip)

where H = H1] H2 and H2(v) = n,
dom(H2) = {v, v + 1, · · · , v + n}

assign-shape (E; H; $s := {x:ptr(P)} [root (v), F])
7−→ (E[$s := v′]; H′; skip)
where (v′ , H′) =

CreateShape(H, {x:ptr(P)} [root (v), F],P)
If-t (E; H; if {x:t} cc then stmt1 else stmt2)

7−→ (E; H;σ(stmt1))
if J cc KE = (F, σ′) and MP(H; F; ∅; σ′) = (SL; σ)

If-f (E; H; if {x:t} cc then stmt1 else stmt2)
7−→ (E; H; stmt2)
if J cc KE = (F, σ) and MP(H; F; ∅; σ) = NO

while-t (E; H; while {x:t} cc do stmt)
7−→ (E; H; (σ(stmt1) ; while {x:t} cc do stmt))
if J cc KE = (F, σ′) and MP(H; F; ∅; σ′) = (SL; σ)

while-f (E; H; while {x:t} cc do stmt) 7−→ (E; H; skip)
if J cc KE = (F, σ) and MP(H; F; ∅;σ) = NO

switch-t (E; H; switch $s of {x:t} ([root (xi), F] → stmtk)
|bs)

7−→ (E; H;σ(stmtk))
if MP(H; E(F); ∅; {E($s)/xi}) = (SL;σ)

switch-f (E; H; switch $s of {x:t} ([root (xi), F] → stmtk)
| bs)

7−→ (E; H; switch x of bs)
if MP(H; E(F); ∅; {E($s)/xi}) = NO

fail (E; H; switch $s of {x:t} ([root (xi), F] → stmtk))
7−→ (E; H; fail)
if MP(H; E(F); ∅; {E($s)/xi}) = NO

ctxt-e (E; H;Cstmt[e]) 7−→ (E′; H′; Cstmt[e′])
if (E; e) 7−→ e′

ctxt-fail (E; H;Cstmt[stmt]) 7−→ (E′; H′; fail)
if (E; H; stmt) 7−→ (E′; H′; fail)

ctxt-stmt (E; H;Cstmt[stmt]) 7−→ (E′; H′;Cstmt[stmt′])
if (E; H; stmt) 7−→ (E′; H′; stmt′)

Operational Semantics for Function Bodies

(E; H;S; fb) 7−→ (E′; H′;S′; fb′)
fun-call (E; H; S; (Cstmt; fb)[$s := f (v1 . . . vn)])

7−→ (Ef ; H; (Cstmt; fb)[$s := •] � S; fbf)
if Φ(f) = ([x1 . . . xn]ldecls; fbf)
Ef = (ldecls, x1 7→ E(v1), · · · , xn 7→ E(vn)) � E.

fun-ret (E � Es; H; (Cstmt; fb)[$s := •] � S; return $s1)
7−→ (Es[$s := E($s1)]; H;S; (Cstmt; fb)[skip])

halt (•; H; •; return v) 7−→ (•; H; •; halt)
fail (E; H; S; (fail ; fb)) 7−→ (•; H; •; halt)
skip (E; H; S; (skip ; fb)) 7−→ (E; H; S; fb)

context-stmt (E; H; S; (stmt ; fb)) 7−→ (E; H; S; (stmt′ ; fb))
if (E; H; stmt) 7−→ (E′; H′; stmt′)

F. Summary of Typing Rules

Ω `e e : t

Ω `e var : Ω(var) Ω `e n : int Ω `e n : ptr(P)

Ω `v e : t

Ω `e e : t e = x or e = $x or e = n

Ω `v e : t

Ω; Γ `cc cc : (Γ′; Θ; ∆)

Ω; Γ `cc A : (Γ; · ; ·)

Γ($s) = P Ω |Υ; F =⇒ P(y)

Ω;Γ ` $s?[root y, F] : (Γ; ∅; ∅)

Γ = Γ′, $s:P Ω |Υ; FA, F =⇒ P(y) FV(F) ∩ Ω$ = ∅

Ω;Γ ` $s:[root y, FA, F] : (Γ′; $s:P; F)

Ω;Γ1 ` cc1 : (Γ′

1;Θ′

1;∆′

1) Ω; Γ2 ` cc2 : (Γ′

2; Θ′

2;∆
′

2)

Ω;Γ1,Γ2 ` cc1, cc2 : (Γ′

1, Γ′

2; Θ
′

1, Θ′

2; ∆
′

1,∆′

2)

Ω; Γ; Π ` cc : Π′

·; Ω; Π ` A : Π′

Ω;Γ; Π ` A : Π′

Γ($s) = P Λ(P) = Ξ Ξ;Ω; Π∪̄{x:yes} ` F : (o, Π′)

Ω;Γ; Π ` $s?[root x, F] : Π′

Γ($s) = P Λ(P) = Ξ Ξ;Ω; Π∪̄{x:yes} ` F : (o, Π′)

Ω; Γ;Π ` $s : [root x, F] : Π′

Ω;Γ; Π ` cc1 : Π′ Ω;Γ; Π′ ` cc2 : Π′′

Ω;Γ; Π ` cc1, cc2 : Π′′

Ω; Γ; Θ `a arg : (t; Γ′; Θ′)

Ω;Γ; Θ `e e : t

Ω;Γ;Θ `a e : (t; Γ;Θ)

Γ = Γ′, $s:P

Ω;Γ;Θ `a $s : (P; Γ′; Θ, $s:P)

Ω ` ldecl : (Ω′; Θ)

Ω `e e : int

Ω ` int $x := e : (Ω, $x:int; ·) Ω ` P $s : (Ω; $s:P)

Ω ` ldecl : (Ω1;Θ1) Ω1 ` ldecl : (Ω2; Θ2) dom(Θ1) ∩ dom(Θ2) = ∅

Ω ` ldecl ldecl : (Ω2; (Θ1,Θ2))

Ω; Γ; Θ; ∆ ` stmt : (Γ′; Θ′; ∆′)

Ω;Γ; Θ;∆ ` skip : (Γ; Θ; ∆)
skip

Ω;Γ; Θ;∆ ` stmt1 : (Γ′; Θ′;∆′)
Ω; Γ′;Θ′;∆′ ` stmt2 : (Γ′′;Θ′′;∆′′)

Ω;Γ;Θ; ∆ ` stmt1 ; stmt2 : (Γ′′; Θ′′; ∆′′)
seq

Ω′ = x:t dom(Ω′) ⊂ FV(cc) Ω′,Ω; Γ ` cc : (Γ′,Θ′,∆′)
Ω′,Ω; Γ′;Θ, Θ′;∆,∆′ ` stmt1 : (Γ′′;Θ′′;∆′′)

Ω;Γ;Θ; ∆ ` stmt2 : (Γ′′;Θ′′;∆′′)
Π = ground(Ω) Ω′,Ω; Γ;Π ` cc : Π′

∀xi ∈ dom(Ω′), xi ∈ dom(Π′)

Ω; Γ;Θ;∆ ` if {x:t} cc then stmt1 else stmt2

: (Γ′′; Θ′′; ∆′′)

if

Ω′ = x:t dom(Ω′) ⊂ FSV(cc)
Ω′, Ω;Γ ` cc : (Γ′,Θ′,∆′)

Ω′,Ω; Γ′;Θ, Θ′;∆, ∆′ ` stmt : (Γ; Θ; ∆)
Π = ground(Ω) Ω′, Ω;Γ; Π ` cc : Π′

∀xi ∈ dom(Ω′), xi ∈ dom(Π′)

Ω;Γ;Θ; ∆ ` while {x:t} cc do stmt : (Γ; Θ;∆)
while

Ω `e $x : t Ω `e e : t

Ω;Γ; Θ;∆ ` $x := e : (Γ; Θ;∆)
assign-exp

15 2006/7/14

Ω′ = x:ptr(P) Θ = Θ′ ∪ ($s : P)
Ω′, Ω |Υ; F =⇒ P(v)

∆x = {struct xi e | struct xi e ∈ F}
∆ = ∆′, ∆′′ F = ∆x] ∆F

∀Pu, Pu ∈ ∆′′ iff Pu ∈ ∆F

∀Ps = struct tm e, Ps ∈ ∆′′ iff struct tm e′ ∈ ∆F

Ω;Γ; Θ;∆ ` $s := {x:ptr(P)}[root (v), F]
: (Γ′ ∪ ($s:P); Θ′;∆′)

assign-shape

For all i, 1 ≤ i ≤ n, Ω;Γ; Θ;∆ `$s b i : (Γ′;Θ′;∆′)

Ω;Γ;Θ; ∆ ` switch $s of bs : (Γ′;Θ′;∆′)
switch

Ω′ = x:t Γ($s) = P Ξ = Λ(P)
Ξ;Ω′, Ω;Γ; ground(Ω)∪̄{xi:yes} ` F : Π

∀xi ∈ dom(Ω′), xi ∈ dom(Π)
Ω′,Ω |Υ; F =⇒ P(xi)

Ω′,Ω; Γ;Θ;∆ ` stmt : (Γ′;Θ′; ∆′)

Ω;Γ; Θ;∆ `$s {x:t} ?[root (xi), F] → stmt : (Γ′; Θ′;∆′)
pat-?

Ω′ = x:t Γ = Γ′, $s:P
Ξ = Λ(P) Shp = root (xi), FA, F

Ξ;Ω;Ω′; Γ; ground(Ω)∪̄{xi:yes} ` F : Π
∀xi ∈ dom(Ω′), xi ∈ dom(Π)

Ω′,Ω |Υ; FA, F =⇒ P(xi) FV(F) ∩ Ω$ = ∅
Ω′,Ω;Γ′;Θ, $s:P; ∆, F ` stmt : (Γ′′;Θ′;∆′)

Ω;Γ;Θ; ∆ `$s {x:t} :[Shp] → stmt : (Γ′′;Θ′; ∆′)
pat-:

∆ = (struct v e1 · · · ek), ∆′

Ω; Γ;Θ;∆ ` free (v) : (Γ; Θ;∆′)
free

Φ(f) = (τ1 × · · · × τn → P)
Ω; Γ;Θ `a a1 : (τ1; Γ1;Θ1)

Ω;Γ1;Θ1 `a a2 : (τ2 ; Γ2;Θ2)
· · ·

Ω;Γn−1;Θn−1 `a an : (τn; Γn;Θn)
Θn = Θ, $s:P

Ω;Γ; Θ;∆ ` $s := f (a1, · · · , an) : ((Γn, $s:P; Θ;∆)
fun-call

Ω; Γ; Θ; ∆ ` fb : P

Ω;Γ; Θ;∆ ` stmt : (Γ′;Θ′; ∆′) Ω;Γ′; Θ′;∆′ ` fb : P

Ω;Γ;Θ; ∆ ` stmt ; fb : P
seq

Ω; $s:P; Θ; · ` return $s : P
return

Φ ` fdecl : (τ1 × · · · × τn) → P

$x1:τ1, · · · $xn:τn ` ldecl : (Ω; Θ) Ω; ·;Θ; · ` fb : τs

Φ ` P f(x1 : τ1, · · ·xn : τn) { ldecl; fb } : ((τ1 × · · · τn) → P)

` fdecl : Φ

for all fdecli ∈ fdecl, Φ ` fdecl : Φ(f)

` fdecl : Φ

J Γ KE = F J · KE = emp

JΓ, $s:P KE = J Γ KE,P(E($s))

` progOK

` SS : (Λ; Υ) Λ;Υ ` fdecl : Φ

` SS fdeclOK

` (Es; H; S; fb) OK

` (•; H; •; halt) OK

` E : Ω H � J Γ KE ⊗ ∆ Ω;Γ; Θ;∆ ` fb : τ

` (E � •; H; •; fb) OK

` E : Ω H = H1] H2

H1 � J Γ KE ⊗ ∆ ·; Γ;Θ; ∆ ` fb : P

∀H′ such that H′ � P(l) and H′#H2

` (Es[$s := l]; H′] H2; S;Ccall[skip]) OK

` (E � Es; H;Ccall[$s := •] � S; fb) OK

G. Summary of the Lemmas in Proving Progress
and Preservation Theorem

Lemma 11 (Substitution)
• If Ω, x:t |Υ; ∆ =⇒ F, and ` v : t then Ω |Υ; ∆ [v / x] =⇒
F [v / x]

• If Ω, x:t ` e : t, and ` v : t, then Ω ` e [v / x] : t

• If Ω, x:t; Γ; Θ; ∆ ` stmt : (Γ′; Θ′; ∆′), and ` v : t, then
Ω; Γ; Θ; ∆ [v / x] ` stmt [v / x] : (Γ′; Θ; ∆′ [v / x]),

Lemma 12 (Unique Decomposition)
1. If Ω$ ` e : t then either e is a value or e = Ce[redex]

where redex = $x | v + v
2. If Ω$; Γ; Θ; ∆ ` stmt : (Γ′; Θ′; ∆′)

then either stmt = skip or fail or stmt = Cstmt[redex]
where redex = skip ; stmt | $x := v

| free v | $s := {x:t} Shp
| if {x:t} cc then stmt1 else stmt2

| while {x:t} cc do stmt
| switch x of bs | $x | v + v

or stmt = Ccall[x := f (v1, · · · , vn)]

Lemma 13 (Context properties)
1. If Ω ` e : t1 and Ω ` Ce[e] : t2 then for all e′ such that

Ω ` e′ : t1, Ω; Γ ` Ce[e
′] : t2

2. If Ω ` e : t1 and Ω; Γ; Θ;∆ ` Cstmt[e] : (Γ′; Θ′; ∆′) then
for all e′ such that Ω ` e′ : t1, Ω; Γ; Θ; ∆ ` Cstmt[e

′] :
(Γ′; Θ′; ∆′)

3. If Ω; Γ; Θ; ∆ ` stmt : (Γ1; Θ1; ∆1) and Ω; Γ; Θ; ∆ `
Cstmt[stmt] : (Γ2; Θ2; ∆2) then for all stmt′ such that
Ω; Γ′; Θ′; ∆′ ` stmt′ : (Γ1; Θ1; ∆1), Ω; Γ′; Θ′; ∆′ `
Cstmt[stmt

′] : (Γ2; Θ2; ∆2)
4. if Ω ` Ce[e] : t then there exists t1 such that Ω ` e : t1.
5. if Ω; Γ; Θ; ∆ ` Cstmt[e] : (Γ′; Θ′; ∆′) then there exists t1

such that Ω; Γ ` e : t1.
6. if Ω; Γ; Θ; ∆ ` Cstmt[stmt] : (Γ2; Θ2; ∆2) then exists Γ1,

Θ1, ∆1 such that Ω; Γ; Θ; ∆ ` stmt : (Γ1; Θ1; ∆1).

Lemma 14 (Frame Properity)
If (E; H; stmt) 7−→ (E′; H′; stmt′), and H = H1] H2, and
Ω$; Γ; Θ; ∆ ` stmt : (Γ′; Θ′; ∆′), ` E$: Γ$, H1 � (J Γ KE) ⊗
∆, then (E; H1; stmt) 7−→ (E′; H′1; stmt

′), such that H′ = H′1]H2

shape(cc, E, Γ) = F

shape(A,E, Γ) = emp
shape($s?[Shp], E, Γ) = P(l) if Γ($s) = P, and E($s) = l
shape($s:[Shp], E, Γ) = P(l) if Γ($s) = P, and E($s) = l
shape((cc1, cc2), E,Γ) = (F1, F2) if shape(cci, E, Γ) = Fi

ctx(cc, Γ) = Γ′

16 2006/7/14

ctx(A, E, Γ) = · ctx($s?[Shp], Γ) = $s:Γ($s)
ctx($s:[Shp], Γ) = $s:Γ($s)
ctx((cc1, cc2), Γ) = (Γ1, Γ2) if ctx(cci, Γ) = Γi

Lemma 15 (Conjunctive Clauses)
• If Ω; Γ ` cc : (Γ′; Θ; ∆) and ctx(cc, Γ) = Γcc , then

Γ′ = Γ′

1, Γ
′

2 such that Γcc, Γ
′

1 = Γ.
• If Ω; Γ ` cc : (Γ′; Θ; ∆), and J cc KE = (Fcc, σ

′) and
ctx(cc, Γ) = Γcc, and Γ′ = Γ′

1, Γ
′

2 such that Γ = Γcc, Γ
′

1,
and H � σ(Fcc), and σ′ ⊂ σ,then H = H1] H2 such that
H1 � J Γ′

2 KE , and H2 � σ(∆).

Lemma 16 (Safety of CC)
If Ω; Γ; Π1 ` cc : Π2, and shape(cc, E, Γ) = F, and H1 � F,
and J cc KE = (Fcc, σ), and σ ⊆ σ′, and S ⊆ dom(H1), and for
all x such that x ∈ dom(Π1), x ∈ dom(σ′), for all tm such that
Π1(tm) = yes, σ′(tm) ∈ ¯dom(H1) or σ′(tm) = 0, or tm = $x,
and E($x) ∈ ¯dom(H1) or E($x) = 0, then

• either MP(H1] H2; S; F; σ′) = (S′, σ′′), and MP will not access
location l if l /∈ dom(H1), and ∀x ∈ dom(Π2). x ∈ dom(σ′′),
for all tm such that Π2(tm) = yes, σ′′(tm) ∈ dom(H1) or
σ′′(tm) = 0.

• Or MP(H1] H2; S; F; σ′) = NO, and MP will not access location
l if l /∈ dom(H1).

Theorem 17 (Progress and Preservation)
1. if Ω$ ` e : t and ` E$: Γ$ then either e = n or exists e′

such that (E; e) 7−→ e′, and Ω; Γ ` e′ : t
2. if Ω$; Γ; Θ; ∆ ` stmt : (Γ′; Θ′; ∆′), ` E$: Γ$, H �

J Γ KE ⊗ ∆ then either
• stmt = skip or fail or
• stmt = Ccall[x := f (v1, · · · , vn)] or
• exists stmt′, E′, H′ such that (E; H; stmt) 7−→ (E′; H′; stmt′),

and exists Γ′′, Θ′′, ∆′′ such that Ω$; Γ
′′; Θ′′; ∆′′ ` stmt′ :

(Γ′; Θ′; ∆′), and ` E′

$: Γ′′

$, H′ � (JΓ K′′E′) ⊗ ∆′′, and for
all $s ∈ dom(Γ ∪ Θ), (Γ ∪ Θ)($s) = (Γ′′ ∪ Θ′′)($s).

3. if` (E; H; S; fb) OK then either (E; H; S; fb) = (•; H; •; halt)
or exists E′, H′, S′, fb′ such that (E; H; S; fb) 7−→ (E′; H′; S′; fb′)
and ` (E′; H′; S′; fb′) OK

17 2006/7/14

