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Abstract
Many applications use the file system as a simple persistent data
store. This approach is expedient, but not robust. The correctness
of such an application depends on the collection of files, directo-
ries, and symbolic links having a precise organization. Furthermore
these components must have acceptable values for a variety of file
system attributes such as ownership, permissions, and timestamps.
Unfortunately, current programming languages do not support doc-
umenting assumptions about the file system. In addition, actually
loading data from disk requires writing tedious boilerplate code.

This paper describes Forest, a new domain-specific language
embedded in Haskell for describing directory structures. Forest de-
scriptions use a type-based metaphor to specify portions of the file
system in a simple, declarative manner. Forest makes it easy to
connect data on disk to an isomorphic representation in memory
that can be manipulated by programmers as if it were any other
data structure in their program. Forest generates metadata that de-
scribes to what degree the files on disk conform to the specifica-
tion, making error detection easy. As a result, the system greatly
lowers the divide between on-disk and in-memory representations
of data. Forest leverages Haskell’s powerful generic programming
infrastructure to make it easy for third-party developers to build
tools that work for any Forest description. We illustrate the use of
this infrastructure to build a number of useful tools, including a vi-
sualizer, permission checker, and description-specific replacements
for a number of standard shell tools. Forest has a formal semantics
based on classical tree logics.

1. Introduction
Databases are an effective, time-tested technology for storing struc-
tured and semi-structured data. Nevertheless, many computer users
eschew the benefits of structured databases and store important
semi-structured information in collections of conventional files
scattered across a conventional file system instead. For example,
the Princeton Computer Science Department stores records of un-
dergraduate student grades in a structured set of directories and
uses scripts to compute averages and study grading trends. Simi-
larly, Michael Freedman collects sets of log files from CoralCDN,
a distributed content distribution network [5, 6]. The logs are orga-
nized in hierarchical directory structures based on machine name,
time and date. Freedman mines the logs for information on system
security, health and performance. At Harvard, Vinothan Manoha-
ran, a physics professor, stores his experimental data in sets of
files and extracts information using python scripts. At AT&T, vast
structured repositories contain networking information, phone call
detail and billing data. And there are many other examples across
the computational sciences and social sciences, in computer sys-
tems research, in computer systems administration, and in industry.

Users choose to implement ad hoc databases in this manner for
a number of reasons. A key factor is that using databases often
requires paying substantial up-front costs such as: (1) finding and
evaluating the appropriate database software (and possibly paying

for it); (2) learning how to load data into the database; (3) possibly
writing programs that transform raw data so it may be loaded;
(4) learning how to access the data once it is in the database;
and (5) interfacing the database with a conventional programming
language to support applications that use the data. Finally, it may be
the case that the database optimizes for a pattern of use not suited
to the actual application, which makes paying the overhead of the
database system even less desirable.

Rather than paying these costs, programmers often store data
in the file system, using a combination of directory structure, file
names and file contents to organize the data. We will call such
a representation of a coherent set of data a filestore. The “query
language” for a filestore is often a shell script or conventional
programming language.

Unfortunately, the informality of filestores can have negative
consequences. First, there is generally no documentation, which
means it can be hard to understand the data and its organization.
New users struggle to learn the structure, and if the system admin-
istrator leaves, knowledge of the data organization may be lost. Sec-
ond, the structure of the filestore tends to evolve: new elements are
added and old formats are changed, sometimes accidentally. Such
evolution can cause hacked-up data processing tools to break or
return erroneous results; it also further complicates understanding
the data. Third, there is often no systematic means for detecting
data errors even though data errors can be immensely important.
For example, for filestores containing monitoring information, er-
rors can signal that some portion of the monitored system is broken.
Fourth, analyses tend to be built from scratch. There is no auxiliary
query or tool support and no help with debugging. Tools tend to
be “one-off” efforts that are not reuseable. Fifth, dealing with large
data sets, which are common in this setting, imposes extra difficul-
ties. For example, standard tools such as ls fail when more than
256 files appear on the command line. Hence, programmers must
break up their data and process it in smaller sets, a tedious task.

In this paper, we propose a better way: A novel type-based
specification language, programming environment and toolkit for
managing filestores. This language, called Forest, is an embedded
domain-specific language in Haskell. Forest allows programmers to
describe the expected shape of a filestore and to lazily materialize it
as format-specific Haskell data structures with the goal of making
programming with filestores as easy and robust as programming
with any other Haskell data structure. Furthermore, Forest lever-
ages Haskell’s support for generic programming to make it easy to
define tools that work for any filestore with a Forest description.

Forest descriptions provide executable documentation that can
be used to check whether a given filestore conforms to its specifica-
tion. For example, Unix file systems should be laid out as described
by the Filesystem Hierarchy Standard Group in an informal stan-
dards document [2]. In addition, the standard requires that certain
directories contain only the specified files, presumably for secu-
rity reasons. Forest provides a language for writing such standards
precisely and a checker that allows users to verify that their in-
stallation conforms to the standard. As another example, the Pads
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website [16] contains a complex set of scripts and data files to im-
plement an online demo. Unless all of the required data files, direc-
tories, and symbolic links are configured correctly, the web demo
fails with an inscrutable error message. Forest allows the Pads web-
master to precisely document all of these requirements and to detect
specification violations, making it easy to find and repair errors.

In exchange for writing a Forest specification, programmers
obtain a number of benefits. These benefits include (1) a set of
type declarations to represent the filestore in memory, (2) a set of
type declarations that capture errors and file system attributes for
the filestore, (3) a loading function to populate these in-memory
structures, and (4) type class instance declarations that make it
possible for programmers to query, analyze, and transform filestore
data using generic functions.

To illustrate the power of the generic programming infrastruc-
ture and to increase the value of writing a Forest specification, we
built a number of tools that work for any filestore with a Forest
specification. These tools include a filestore visualizer, a permis-
sion checker, and filestore-specific versions of standard command-
line tools such as grep and tar. Using this same infrastructure,
we built a tool to infer a Forest specification for the directory struc-
ture starting at a given path, which means programmers do not have
to start from scratch when writing a specification for their filestores.

In summary, this paper makes the following contributions.

• Conceptual: We propose the idea of extending a modern pro-
gramming language with tightly integrated linguistic features
for describing filestores and for automatically generating pro-
gramming infrastructure from such descriptions.
• Language Design: We present the design of Forest and illus-

trate its use on real-world examples. The design is expressive,
concise and smoothly integrated into Haskell. It is supported by
a formal semantics inspired by classical tree logics.
• Tool Generation: We describe how third-party developers can

use Haskell’s generic programming infrastructure to generate
filestore-specific tools generically.
• Case Study in Domain-Specific Language Design: Forest is

fully implemented and its design serves as a case study in ex-
tensive, practical, domain-specific language design in modern
languages by combining a number of experimental features of
Haskell such as quasi-quoting and Template Haskell. Moreover,
our Forest design and implementation experience has had prac-
tical impact on the Haskell implementation itself: the Haskell
team modified and extended Template Haskell and the quasi-
quoting mechanism in response to our needs. These modifica-
tions are available in the most recent release of Haskell.

2. Example Filestores
In this section, we present two example filestores. We will use these
examples to motivate and explain the design of Forest.

The first filestore contains information about students in Prince-
ton’s undergraduate computer science program. The faculty use the
information in the filestore to decide on undergraduate awards and
to track grading trends. As it has evolved over time, there have been
a few slight changes in format – typical for ad hoc filestores. Natu-
rally, any description needs to cope with the variation.

Figure 1 shows a snippet of the (anonymized) student file-
store designed to illustrate its structure. At the top level, there are
three directories: classof11 (seniors), classof12 (juniors)
and graduates (students who have graduated). There is also a
README file containing a collection of notes. Inside graduates,
there is set of directories named classofYY where YY dates back
to 92. Inside each classofYY directory, there are at least the
two degree subdirectories ABYY and BSEYY as the computer sci-
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Figure 1. Anonymized snippet of Princeton computer science un-
dergraduate data. Red notes denotes an error—i.e., missing files.

ence department gives out both Arts and Science and Engineer-
ing degrees. Optionally, there are also subdirectories for students
who withdrew from Princeton or transferred to another program.
Within any degree subdirectory, there is one text file per student
that records the courses taken and the corresponding grades. Each
such directory can also contain a template file named sss.txt (or
something similar) for creating new students.

The second filestore contains log files for CoralCDN [5, 6]. To
monitor the performance, health, and security of the system, the
hosts participating in CoralCDN periodically send usage statistics
back to a central server. These statistics are collected in a filestore
with a top-level logs directory containing a set of subdirectories,
one for each host. Each such host directory contains another set of
directories, labeled by date and time. Finally, each of these directo-
ries contains one or more compressed log files. For the purposes of
this example, we will focus on the coralwebsrv.log.gz log
file, which contains detailed information about the web requests
made on the host during the preceding time period.

3. Forest Design
Forest is a domain-specific language embedded within Haskell us-
ing the Quasiquote mechanism [14]. In a typical Forest description,
Forest declarations are interleaved with ordinary Haskell declara-
tions. To introduce new Forest declarations, the programmer simply
opens the Forest sublanguage scope:

[forest| ... forest declarations ... |]

Forest uses a type-based metaphor to describe directory struc-
tures, so once within the Forest sublanguage, the programmer
writes declarations that look and feel very much like extended
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data Forest_md = Forest_md
{ numErrors :: Int
, errorMsg :: Maybe ErrMsg
, fileInfo :: FileInfo
}

data FileInfo = FileInfo
{ fullpath :: FilePath
, owner :: String
, group :: String
, size :: COff
, access_time :: EpochTime
, mod_time :: EpochTime
, read_time :: EpochTime
, mode :: FileMode
, isSymLink :: Bool
, kind :: FileType
}

Figure 2. Forest metadata types.

Haskell type declarations. Each such type declaration serves three
purposes: (1) it describes a fragment of the file system, (2) it spec-
ifies the structure of the in-memory representation that will be
constructed when the fragment is (lazily) loaded into a Haskell pro-
gram, and (3) it specifies the structure of the in-memory metadata
that will be generated when the fragment loaded. Such metadata
includes error information (missing file, insufficient permissions,
etc.) as well as file system attributes (owner, size, etc.). As we ex-
plain the design of Forest, readers should keep these three different
aspects in mind. The effectiveness of the Forest language comes in
part from the fact that these three elements can all be specified in a
single compact description.

Every Forest description is defined relative to a current path
within the file system. As Forest matches a description against the
file system, it adjusts the current path to reflect its navigation.

At its core, Forest is a simple dependent type system in which
base types denote files of various flavors and record types describe
directories. Forest also includes a list type to describe collections
of files that all share some type. We use a variety of other type con-
structors to build more refined structures from these basic building
blocks. We discuss each of these constructs in turn in the remain-
der of this section. A note on terminology: we use the term “file
system object” or more simply “object” to denote either a file, or a
directory, or a symbolic link.

3.1 Files
Forest provides a small collection of base types for describing
files: Text for ASCII files, Binary for binary files, and Any for
arbitrary files. As with all Forest types, each of these types specifies
a representation type, a metadata type, and a loading function. The
in-memory representation for an ASCII file is a Haskell String;
for binary and arbitrary files, it is a ByteString. For all three file
types, the metadata type pairs file-system metadata with metadata
describing properties of the file contents. The file-system metadata
has type Forest_md, shown in Figure 2. This structure stores two
kinds of information: (1) the number and kind of any errors that
occurred while loading the file and (2) the attributes associated with
the file. File-content metadata typically describes errors within the
file, but can be used for other purposes. For these three file types,
there is no meaningful content metadata and so this type is the unit
type. Leveraging Haskell’s laziness, the loading functions create
the in-memory representations and set the metadata on demand.

Of course, there are many kinds of files, and the appropriate
representation and content metadata type for each such file varies.
Possible examples include XML documents, Makefiles, source files

in various languages, shell scripts, etc. To support such files, Forest
provides a plug-in architecture, allowing third party users to define
new file base types by specifying a representation type, a metadata
type, and a corresponding loading function.

A common class of files are ad hoc data files containing semi-
structured information, an example of which is the Princeton stu-
dent record file format. In such cases, Forest can leverage the
Pads/Haskell data description language to define format-specific in-
memory representations, content metadata, and loading functions.
Pads/Haskell is a recently developed version of Pads [3, 4, 15]. Like
Forest, Pads/Haskell is embedded in Haskell using quasiquotation.
For example, the following code snippet begins the Pads specifica-
tion of the Princeton student record format:

[pads|
data Student (name :: String) = < pads decl >

|]

This description is parameterized by the name of the student whose
data is in the file; the complete description appears in the ap-
pendix. From this specification, the Pads compiler generates an in-
memory representation type Student, a content metadata type
Student_md, and a parsing function.

Forest provides the File type constructor to lift Pads types to
Forest file types. For example, the declaration

[forest|
type SFile (n::String) = File (Student n)

|]

introduces a new file type named SFile whose format is given
by the Pads type Student. As with the Pads type, SFile is
parameterized by the name of the student.

Using Pads/Haskell descriptions in Forest not only helps spec-
ify the structure of ad hoc data files, but it also generates a struc-
tured in-memory representation of the data, allowing Haskell pro-
grammers to traverse, query and otherwise manipulate such data.
Indeed, Pads/Haskell and Forest were designed to work seamlessly
together. From the perspective of the Haskell programmer travers-
ing a resulting in-memory data structure, there is effectively no dif-
ference between iterating over files in a directory or structured se-
quences of lines or tokens within a file.

While Pads/Haskell is independently interesting, the rest of this
paper focuses on Forest. Henceforth, any unadorned declarations
occur within the Forest scope [forest|...|] unless otherwise
noted. Any declarations prefixed by > are ordinary Haskell decla-
rations.

3.2 Optional Files
Sometimes, a given file (or directory or symbolic link) may or may
not be present in the file system, and either situation is valid. Forest
provides the Maybe type constructor for this situation. If T is a For-
est type, then Maybe T is the Forest type denoting an optional T.
In particular, Maybe T succeeds and returns representation None
when the current path does not exist in the file system. Maybe T
also succeeds and returns Just v for some v of type T when the
current path exists and matches T. Maybe T registers an error in
the metadata when the current path exists but the corresponding
object does not match T.

3.3 Symbolic Links
When symbolic links occur in a described file system fragment,
Forest follows the symbolic link to its target, mimicking standard
shell behavior. In addition, however, it is possible for programmers
to specify explicitly that a particular file is a symbolic link using the
base type SymLink. The in-memory representation for an explicit
symbolic link is the path that is the target of the link. It is possible
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to use constraints (Section 3.6) to specify desired properties of the
link target, such as requiring it to be to a specific file.

In Forest, any file system object may be described in multiple
ways. Hence, in the case of a symbolic link, it is possible to use
one declaration to specify that the object is a symbolic link and a
second to specify the type of the link target. We will see such a
specification in the next subsection.

3.4 Directories
Forest directories are record-like datatype constructors that allow
users to specify directory structures. For example, to specify the
root directory of the student repository in Figure 1, we might
use the following declaration. This declaration assumes that we
have already defined Class y, a parameterized description that
specifies the structure of a directory holding data for the class of
year y, and Grads, a description that specifies the structure of the
directory holding all graduated classes.

type PrincetonCS_1 = Directory
{ notes is "README" :: Text
, seniors is "classof11" :: Class 11
, juniors is "classof12" :: Class 12
, grads is "graduates" :: Grads
}

Each field of the record describes a single file system object.
It has three components: (1) an internal name (e.g., notes or
seniors) that must be a valid Haskell record label, (2) an exter-
nal name specified as a value of type String (e.g., "README" or
"classof11") that gives the name of the object on disk, and (3)
a Forest description of the object (e.g., Text or Class 11).

When the external name is itself a valid Haskell label, users may
omit it, in which case Forest uses the label as the on-disk name:

type PrincetonCS_2 = Directory
{ notes is "README" :: Text
, classof11 :: Class 11
, classof12 :: Class 12
, graduates :: Grads
}

We could not abbreviate the notes field because labels must start
with a lowercase letter in Haskell.

Matching. For a file system object to match a directory descrip-
tion, the object must be a directory and each field of the record must
match. A field f matches when the object whose path is the con-
catenation of the current path and the external name of f matches
the type of f.

It is possible for the same file system object to match multiple
fields in a directory description at the same time. For example, if
"README" were actually a symbolic link, it is possible to docu-
ment that fact by mentioning it twice in the directory description,
once as a text file and once as a symbolic link:

type PrincetonCS_3 = Directory
{ link is "README" :: SymLink
, notes is "README" :: Text
, ... }

It is also possible for a directory to contain objects that are
unmatched by a description. We allow extra items because it is
common for directories to contain objects that users do not care
about. For example, a directory structure may contain extra files
or directories related to a version control system, and a description
writer may not want to clutter the Forest specification with that
information. As we will see shortly, it is possible to specify the
absence of file system objects using constraints.

As suggested by the syntax, the in-memory representation of
a directory is a Haskell record with the corresponding labels. The

type of each field is the representation type of the Forest type for
the field. The metadata has a similar structure. The metadata for
each field has two components: file-system attribute information
of type Forest_md and field-specific metadata whose type is
derived from the Forest type for the field. In addition, the direc-
tory metadata contains an additional value of type Forest_md
that summarizes the errors occurring in directory components and
stores the FileInfo structure for the directory itself. When load-
ing a directory, Forest constructs the appropriate in-memory rep-
resentation for each field that matches and puts the corresponding
metadata in the metadata structure. For fields that do not match,
Forest constructs default values and marks the metadata with suit-
able error information.

Computed Paths The above descriptions are a good start for
our application, but neither is ideal. Every year, the directory for
graduating seniors (i.e., classof11) is moved into the graduates
directory, the juniors are promoted to seniors and a new junior
class is created. As it stands, we would have to edit the description
every year. An alternative is to parameterize the description with
the current year and to construct the appropriate file names using
Haskell functions:

> toStrN i n = (replicate(n - length(show i)) ’0’)
++ (show i)

> mkClass y = "classof" ++ (toStrN y 2)

type PrincetonCS (y::Integer) = Directory
{ notes is "README" :: Text
, seniors is <|mkClass y |> :: Class y
, juniors is <|mkclass (y+1)|> :: Class <|y+1|>
, graduates :: Grads
}

The bracket syntax <|...|> provides an escape so that we may
use Haskell within Forest code to specify arbitrary computations.
This example also illustrates abstraction: any Forest declaration
may be parameterized by specifying a legal Haskell expression
identifier and its type. The types of the fields for seniors and
juniors illustrate the use of parameterized descriptions. When
an argument is a constant or variable, it may be supplied directly.
When an argument is more complex, however, it must be written in
brackets to escape to Haskell.

Approximate Paths As filestores evolve, naming conventions
may change. Additionally, directory structures with multiple in-
stances may have minor variations in the names of individual files
across instances. For example, in each Princeton class directory,
there may (or may not) be some number of students that have with-
drawn from the program, transferred to a different program, or
gone on leave. Over the years, slightly different directory names
have been used to represent these situations.

To accommodate this variation, Forest includes the matching
construct to approximate file names. We can use this mechanism to
describe the class directory:

> transRE = RE "TRANSFER|Transfer"
> leaveRE = RE "LEAVE|Leave"
> wdRE = RE "WITHDRAWN|WITHDRAWAL|Withdrawn"

type Class (y::Integer) = Directory
{ bse is <|"BSE" ++ (toString y)|> :: Major
, ab is <|"AB" ++ (toString y)|> :: Major
, trans matches transRE :: Maybe Major
, withd matches wdRE :: Maybe Major
, leave matches leaveRE :: Maybe Major
}

A field with the form <label> matches <regexp> :: T
finds the set of paths in the files system that match currentPath/
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<regexp>. If there are zero or one such files, the matches form
acts just as the is form. If more than one file matches, one of the
matches is selected non-deterministically, a multiple match error
is registered in the metadata, and matching continues as it would
with the is form. In addition to regular expressions, the matching
construct also allows glob patterns, (i.e., patterns such as *.txt),
to specify the names of files on disk.

3.5 List Comprehensions
Record directories allow programmers to specify a fixed number of
file system objects, each with its own type. List comprehensions, on
the other hand, allow programmers to specify an arbitrary number
of file system objects, each with the same type. As an example, we
can use a list comprehension to specify the Grads directory from
Figure 1:

> getYear s =
> toInteger (reverse (take 2 (reverse s)))
> cRE = RE "classof[0-9][0-9]"

type Grads =
[c :: Class <|getYear c|> | c <- matches cRE]

In this specification, Grads is a directory fragment containing
a number of Class subdirectories with names c that match the
regular expression cRE. The Haskell function getYear extracts
the last two digits from the name of the directory, converts the
string digits to an integer year, and passes the year to the underlying
Class specification. More generally, comprehensions have the
following form.

[path :: T | id <- gen, pred]

Here, id is bound in turn to each of the file names generated by
gen, which may be a matches clause (used to match against the
files at the current path as in the previous section) or a list com-
puted in Haskell. These generated ids are filtered by the optional
predicate pred. For each such legal id, there is a corresponding
expression path, which Forest interprets as extending the current
path. The object at each such path should have the Forest type T.
The identifier id is in scope in pred, path, and T.

The in-memory representation of a comprehension is a list con-
taining pairs of the name of a matching object and its representa-
tion. The metadata is a list of the metadata of the matching objects
paired with a summary metadata structure of type Forest_md.

Representation Transformations Although the list representa-
tion for comprehensions is useful, it can be desirable to use a more
sophisticated data structure to represent such collections. To sup-
port this usage, Forest allows programmers to prefix a list compre-
hension with any type constructor that belongs to a container type
class that supports operations to convert between the list represen-
tation and the desired container representation.

As an example, consider the specification of the Major direc-
tory. Each such directory contains a list of student files and an ad-
ditional template file named either sss.txt or sxx.txt. The
declaration below specifies the collection of student files by match-
ing with a glob pattern and filtering to exclude template files. It
uses the Map type constructor to specify that the data and metadata
should be collected in a Map rather than a list.

> template s = s ‘elem‘ ["sss.txt", "sxx.txt"]
> txt = GL "*.txt"

type Major = Map
[ s :: File (Student <|dropExtension s|>)
| s <- matches txt, <|not (template s)|>]

[forest|
data PrincetonCS (y::Integer) = Directory
{ notes is "README" :: Text
, seniors is <|mkClass y |> :: Class y
, juniors is <|mkclass (y+1)|> :: Class <|y+1|>
, graduates :: Grads
}

data Class (y::Integer) = Directory
{ bse is <|"BSE" ++ (toString y)|> :: Major
, ab is <|"AB" ++ (toString y)|> :: Major
, trans matches transRE :: Maybe Major
, withd matches wdRE :: Maybe Major
, leave matches leaveRE :: Maybe Major
}

type Grads =
[c :: Class <|getYear c|> | c <- matches cRE]

type Major = Map
[ s :: File (Student <|dropExtension s|>)
| s <- matches txt, <|not (template s)|>]

|]

Figure 3. Forest description of Princeton filestore. (Associated
Haskell and Pads code appears in the appendix.)

3.6 Attributes and Constraints
Every file system object has a number of attributes associated with
it, such as the file owner and size. In general, if a Forest identifier
id refers to a path, the attributes for the object at that path are avail-
able through the identifier id_att, which has type Forest_md
(Figure 2). Forest defines accessor functions such as get_modes
(get permissions), get_kind (get ascii/binary/directory charac-
teristics) and others to inspect these attributes.

Constrained types make use of attributes. For example, the type
PrivateText specifies a text file accessible only by its owner.

type PrivateFile =
Text where <|get_modes this_att == "-rw-------"|>

The keyword where introduces a constraint on the underlying
type. If a constraint is false, an error is registered in the metadata.
Within the constraint, this refers to the representation of the un-
derlying object, this_att refers to its attributes and this_md
to its complete metadata.

Using attributes, we can write a universal directory description,
which is sufficiently general to describe any directory:

type Universal = Directory
{ asc is [ f :: Text

| f <- matches (GL "*"),
<| get_kind f_att == AsciiK |> ]

, bin is [ b :: Binary
| b <- matches (GL "*"),
<| get_kind b_att == BinaryK |> ]

, dir is [ d :: Universal
| d <- matches (GL "*"),
<| get_kind d_att == DirectoryK |> ]

, sym is [ s :: SymLink
| s <- matches (GL "*"),
<| get_sym s_att == True |> ]

}

The description requires recursion to describe the directory case,
which Forest supports. In the case that a symbolic link creates a
cycle in the file system by pointing to a parent directory, the Haskell
in-memory representation is a (lazy) infinite data structure.

We can also use constraints to specify that certain files do not
appear in certain places. As an example, we might want to require
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[forest|
data Log = Directory
{ log is coralwebsrv :: Gzip (File CoralLog) }

type Site = [ d :: Log | d <- matches time ]
type Coral = [ s :: Site | s <- matches site ]

|]

Figure 4. Forest CoralCDN description. Associated Haskell and
Pads code appears in the appendix.

Load Functions:

log_load :: FilePath -> IO (Log, Log_md),
site_load :: FilePath -> IO (Site, Site_md)
coral_load :: FilePath -> IO (Top, Top_md),

Representation Types:

data Log = Log {log :: CoralLog}
newtype Site = Site [(String, Log)]
newtype Coral = Coral [(String, Site)]

Metadata Types:

data Log_inner_md =
Log_inner_md {log_md :: (Forest_md, CoralLog_md)}

type Log_md = (Forest_md, Log_inner_md)
type Site_md = (Forest_md, [(String, Log_md)])
type Coral_md = (Forest_md, [(String, Site_md)])

Figure 5. Coral load functions, representation and metadata types

that no binaries appear in a directory given to an untrusted user as
scratch space. The description below flags an error if a binary file
exists in the directory.

type NoBin =
[ b :: Binary | b <- matches (GL "*"),

<| get_kind b_att == BinaryK |> ]
where <|length this == 0|>

3.7 Gzip and Tar Type Constructors
Some files need to be processed before they can be used. A typical
example is a compressed file such as the gzipped log files in Coral-
CDN. Forest provides processing-specific type constructors to de-
scribe such files. For example, if CoralInfo is a Pads/Haskell
description of a CoralCDN log file then

type CoralLog = Gzip (File CoralInfo)

describes a gzipped log file. Likewise, suppose logs.tar.gz is
a gzipped tar file and that the type Coral describes the directory
of log files that logs.tar expands to when untarred. Such a
situation can be described using a combination of the Tar and
Gzip type constructors:

type Coral = Gzip (Tar Coral)

3.8 Putting it all together
The previous subsections give an overview of the Forest design.
Figures 3 and 4 show Forest specifications for our two running
examples, minus the associated Pads/Haskell and Haskell declara-
tions. The complete descriptions of these filestores and additional
descriptions are available in the appendix, including descriptions of
the Pads website, a Gene Ontology filestore, and the CVS reposi-
tory structure.

4. Programming with Forest
Most Forest programs work in two phases. In the first phase they
use Forest to load relevant portions of the file system into memory,
and in the second phase they use an ordinary Haskell function to
traverse the in-memory representation of the data (or its associated
metadata) and compute the desired result.

To facilitate this style of programming, the Forest compiler gen-
erates several Haskell functions and types from every Forest de-
scription. It generates a load function, which traverses the file sys-
tem and reads the files, directories, and symbolic links mentioned
in the description into a structured object in memory; it generates
a Haskell type for the in-memory representation of the data pro-
duced by the load function; and it generates a Haskell type for the
metadata associated with the representation. For example, from the
descriptions for CoralCDN logs in Figure 4, the compiler generates
the load functions, the representation types, and the metadata types
presented in Figure 5. Note that the structure of each of these arti-
facts mirrors the structure of the Forest description that generated
them. This close correspondence makes it easy for programmers to
write programs using these Forest-generated artifacts.

As a simple example, consider the Coral description in Fig-
ure 4. The coral_load function takes a path as an argument and
produces the representation and metadata obtained by loading each
of the site directories contained in the directory at that path:

(rep,md) <- coral_load "/var/log/coral1"

Because Coral is a comprehension, both rep and md are lists.
More specifically, rep has the form

Coral [("planetab2.eecs.wsu.edu", Site [...]),
("planetlab3.williams.edu",Site [...]),...]

where the list contains pairs of names of subdirectories and repre-
sentations for the data loaded from those directories. The metadata
is a pair consisting of a generic header of type Forest_md and a
list of pairs of names of subdirectories and their associated meta-
data. The header records aggregate information about any errors
encountered during loading as well as the file system attributes of
each file, directory, or symbolic link loaded from the file system:

Forest_md
{ numErrors = 0,
errorMsg = Nothing,
fileInfo = FileInfo
{ fullpath = /var/log/coral,
owner = alice, group = staff, size = 102,
access_time = Fri Nov 19 01:47:09 2010,
mod_time = Thu Nov 18 20:42:37 2010,
read_time = Fri Nov 19 01:47:28 2010,
mode = drwxr-xr-x, isSymLink = False,
kind = Directory } },

[("planetlab2.eecs.wsu.edu", Forest_md {...}),
("planetlab3.williams.edu", Forest_md {...}), ...]

Using these functions and types, it is easy to formulate many useful
queries as simple Haskell programs. For instance, to count the
number of sites we can simply compute the length of the nested
list in rep:

num_sites = case rep of Coral l -> List.length l

More interestingly, since the internals of the web log are specified
using Pads/Haskell (see the appendix for details), it is straightfor-
ward to dig in to the file data and combine it with file metadata or
attributes in queries. For example, to calculate the time when statis-
tics were last reported for each site, we can zip the lists in rep and
md together and project out the site name and the mod_time field
from each element in the resulting list of pairs:
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get_site = fst
get_mod (_,(f,_)) = mod_time . fileInfo $ f
sites_mod () =
case (rep,md) of (Coral rs, (_,ms)) ->
map (get_site *** get_mod) (zip rs ms)

These simple examples show how Forest blurs the distinction
between data represented on disk and in memory. After writing
a suitable Forest description, programmers can write programs
that work on file system data as if it were in memory. Moreover,
because Forest uses lazy I/O operations, many simple programs
do not require constructing an explicit representation of the entire
directory being loaded in memory—a good thing as the directory
of CoralCDN logs contains approximately 1GB of data! Instead,
the load functions only read the portions of the file system that are
needed to compute the result—in this case, only the site directories
and not the gzipped log files contained within them.

As a final example, consider a program that computes the top-k
requested URLs from all CoralCDN nodes by size. The Coral-
CDN administrators compute this statistic periodically to help
monitor and tune the performance of the system [5]. We define
the analogous function in Haskell using helper functions such as
get_sites to project out components of rep:

topk k =
take k $ sortBy descBytes $ toList $
fromListWith (+)
[ (get_url e, get_total e)
| (site,sdir) <- get_sites rep,

(datetime,ldir) <- get_dates sdir,
e <- get_entries ldir,
is_in e ]

Reading this program inside-out, we see that it first uses a list
comprehension to iterate through rep, collecting the individual log
entries in the coralwebsrv.log.gz file for incoming requests
and projecting out the URL requested and the total size of the
request. It then sums the sizes of all requests for the same URL
using the fromListWith function from the Data.Map module.
Next, it sorts the entries in descending order. Finally, it returns the
first k entries of the list as the final result.

Overall, the main take-away from this section is how the Forest-
generated infrastructure and tight coupling to Haskell facilitates
construction of remarkably terse queries over the combination of
file contents, file attributes and directory structure. Exploratory data
analysis in this new programming paradigm is light-weight, easy
and highly effective.

5. Tools
Third-party developers can use generic programming [11] to gen-
erate tools that will work for any file system structure that has a
Forest description. As a proof of concept, we have written a num-
ber of such tools, which we describe in this section.

5.1 Generic Querying
One simple application of generic programming is querying meta-
data to find files with a particular collection of attributes. The
findFiles function

findFiles :: (ForestMD md) =>
md -> (FileInfo -> Bool) -> [FilePath]

takes as input any Forest metadata value (i.e., any value of type
md where md belongs to the Forest metadata class ForestMD)
and a predicate on FileInfo structures, and returns the list of
all FilePaths anywhere in the input metadata whose associated
FileInfo satisfies the predicate. For example, if cs_md is the
metadata associated with the Princeton computer science depart-
ment filestore, then the code

dirs = findFiles cs_md (\(r::FileInfo) ->
(kind r) == DirectoryK)

other = findFiles cs_md (\(r::FileInfo) ->
(owner r) /= "bwk")

binds dirs to the list of all directories in the data set and other
to all the directories and files not owned by user "bwk".

To implement the findFiles function, we use the generic
Haskell function listify:

findFiles md pred = map fullpath (listify pred md)

The return type of the polymorphic listify function is instan-
tiated to match the argument type of its predicate argument. We
map the fullpath function over the resulting list of FileInfo
structures to return only the FilePaths.

5.2 File System Visualization
ForestGraph generates a graphical representation of any direc-
tory structure that matches a Forest specification. We generated
the graph in Figure 1 using this tool. In the default configuration,
ForestGraph uses boxes to denote directories and ovals to de-
note files. Borders of varying thickness distinguish between ASCII
and binary files. Dashed node boundaries indicate symbolic links
and red nodes flag errors.

The core functionality of ForestGraph lies in the Haskell
function mdToPDF:

mdToPDF :: ForestMD md =>
md -> FilePath -> IO (Maybe String)

The function takes as input any metadata value and a filepath that
specifies where to put the generated PDF file. It optionally returns
a string (Maybe String); if the option is present, the string
contains an error message. The IO type constructor indicates that
there can be side effects during the execution of the function. A use
of this function to generate the graph for the Princeton computer
science department filestore looks like:

do { (cs_rep,cs_md) <- CS_load "facadm"
; mdToPDF cs_md "Output/CS.pdf" }

Note that this code needs only the metadata to generate the graph;
laziness means Forest will not load the representation in this case.

The related function mdToPDFWithParams takes an addi-
tional argument that allows the user to specify how to draw the
nodes and edges in the output graph. Among other things, this pa-
rameter specifies how to map a value of type Forest_md into
GRAPHVIZ [7, 8] attributes. By appropriately setting the param-
eter, a user can customize the formatting of each node accord-
ing to its owner, group, or permissions, etc., as well as specify
global properties of the graph such as its orientation and size.
ForestGraph uses the Haskell binding of the GRAPHVIZ library
to layout and render the graphs, so all customizations provided by
GRAPHVIZ are available.

The listify function is at the heart of the implementation
of this tool; we use it to convert the input metadata to the list of
FileInfos in the metadata. We then convert this list into a graph
data structure suitable for use with the GRAPHVIZ library.

5.3 Permission Checker
The permission tool is designed to check the permissions on the
files and directories in a Forest description on a multi-user machine.
In particular, it enables one user to determine which files a second
user can read, write, or execute. If the second user cannot access a
file in a particular way, the tool also reports the names of the files
and directories whose permissions have to change to allow the ac-
cess. The tool is useful when trying to share files with a colleague.
It helps the first user ensure that all the necessary permissions have
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been set properly to allow the second user access. The key to the
implementation of this tool is again applying the listify func-
tion to the metadata for the Forest description.

5.4 Shell Tools
We have implemented analogs of many shell tools that work over a
file system fragment defined by a Forest description:

ls :: (ForestMD md) => md -> String -> IO String
grep :: (ForestMD md) => md -> String -> IO String
tar :: (ForestMD md) => md -> FilePath -> IO ()
cp :: (ForestMD md) => md -> FilePath -> IO ()

All of these functions work by extracting the relevant file names
from the argument metadata structure using listify and then
calling out to a shell tool to do the work. For ls, the second argu-
ment gives the command-line arguments to pass to the shell version
of ls, and the result is the resulting output. The implementation
uses xarg to lift the restriction on the number of files that can be
passed to ls. For grep, the second argument is the search string
and result is the output of the shell version of grep. For tar, the
second argument specifies the location for the resulting tarball. The
implementation uses a file manifest to allow tar to work regard-
less of the number of files involved. The cp tool uses the tar tool
to move the files mentioned in the metadata to the location specified
by the second argument while retaining the same directory struc-
ture. The module that implements these tools is 80 lines of Haskell
code.

5.5 Description Inference Tool
This tool allows the user to generate a Forest description from the
contents of the file system. The function

getDesc :: FilePath -> IO String

takes as an argument the path to the root of the directory structure to
infer. It returns a string containing the generated representation. For
example, below we show a fragment of the results when getDesc
is invoked on the classof11 directory:

data classof11 = Directory {
aB11 is "AB11" :: aB11,
bSE11 is "BSE11" :: bSE11,
tRANSFER is "TRANSFER" :: tRANSFER,
wITHDREW is "WITHDREW" :: wITHDREW

}
data tRANSFER = Directory {

bEAUCHEMINtxt is "BEAUCHEMIN.txt" :: File Ptext,
vERSTEEGtxt is "VERSTEEG.txt" :: File Ptext

}
...

The description is not perfect: the label names are generated from
the file name, for example. Nevertheless, the tool improves pro-
grammer productivity as it is easier for a programmer to edit a gen-
erated description than to start from scratch. Our first tool in this
vein is simple; a more sophisticated variant would collapse records
of files into comprehensions when a width limit was exceeded
or other criteria were met. Another variant might collapse deeply
nested directories into a universal directory description when a
depth limit was exceeded. The getDesc function works by us-
ing the universal description to load the contents of the file sys-
tem starting from the supplied path. It then walks over the resulting
metadata to generate a Forest parse tree, which it then pretty prints.

6. Implementation
We have fully implemented the Forest language and anticipate
making it publicly available within the next few months. Haskell

provides powerful language features and libraries that greatly fa-
cilitated the implementation of Forest. The most obvious of these
features is the quasi-quoting [14] mechanism that we used to em-
bed Forest into Haskell. This mechanism allowed us to enjoy the
benefits of being an embedded domain-specific language with-
out having to sacrifice the flexibility of defining our own syn-
tax. To use quasi-quoting, we defined a Haskell value forest
of type QuasiQuoter which specifies how to convert an in-
put string representing a Forest declaration into the Template
Haskell [17] data structures that represent the syntax of the cor-
responding collection of Haskell declarations. The quasi-quoting
syntax [forest| <input> |] is legal anywhere the identifier
forest is in scope. When the Haskell compiler processes this
declaration, it first passes <input> as a string to the forest
quasi-quoter, and then it compiles the resulting Template Haskell
data structures as if the corresponding Haskell code had appeared in
the input at the location of the quasi-quote. Early versions of quasi-
quoting supported quoting only expression and pattern forms. Si-
mon Peyton Jones extended the mechanism to permit declaration
and type quasi-quoting partly to enable the Forest implementation.
We used this same approach to implement Pads/Haskell, which we
built concomitantly.

Parsing. We used the parsec 3.1.0 parser combinator library [12]
to implement the Forest parser. One key element of the Forest de-
sign is to allow arbitrary Haskell expressions in various places in-
side Forest descriptions. We did not want to reimplement the gram-
mar for Haskell expressions, which is quite complicated. Instead,
we structured the Forest grammar so we could always determine
the extent of any embedded Haskell code. We then used the Haskell
Source Extension package [9] to parse these fragments. The data
structure that this library returns is unfortunately not the data struc-
ture that Template Haskell requires, so we used yet another library,
the Haskell Source Meta package [10], that provides this transla-
tion.

Type checking. We would like to give users high-quality error
messages if there are type errors in their Forest declarations. At the
moment, typechecking occurs, but only after the Forest declarations
have been expanded to the corresponding Haskell code. Although
these error messages can be quite informative, it is sub-optimal to
report errors in terms of generated code. Type checking the Forest
source is complicated by the embedded fragments of Haskell. As
with the syntax, we do not want to reimplement the Haskell type-
checker! There is an active proposal [19] to extend the Template
Haskell infrastructure with functions that would enable us to ask
the native Haskell typechecker for the types of embedded expres-
sions and to extend the current type environment with type bind-
ings for new identifiers. With this combination of features, we will
be able to type check Forest sources directly.

7. A Core Calculus for Forest
We have defined an idealized core calculus that captures the essence
of Forest. This calculus helped us to design various aspects of the
language and provides a compact way of describing the central fea-
tures of the language in a precise way. It is inspired by classical
(i.e., not separating, substructural or ambient) unordered tree log-
ics, customized slightly to our application domain.

File system model and specification syntax. Figure 6 presents
the formal file system model. File paths r are sequences of string
names1 and file systems F are finite partial maps from paths to

1 For simplicity, we ignore the special path elements “..” and “.”. It is easy
to add these features, although the semantics becomes more complicated
because path expressions must be normalized.
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Strings n ∈ Σ∗

Paths r, s ::= • | r /n

Attributes a ::= . . .

Filesystem T ::= File(n)
Contents | Dir({n1, . . . , nk})

| Link(r)

Filesystems F ::= {| r1 7→ (a1, T1), . . . rk 7→ (ak, Tk) |}
Values v ::= a | n | r | True | False | () | (v1, v2)

| Just(v) | Nothing | {v1, . . . , vk}
Expressions e ::= x | v | . . .

Environments E ::= • | E, x 7→ v

Specifications s ::= kτm
τr
| Adhoc(bτm

τr
) | e :: s | 〈x:s1, s2〉

| {s | x ∈ e} | Pred(e) | s?

Figure 6. File systems and their specifications

pairs of file attributes a and file system contents T . We leave the at-
tribute records abstract; they should include the usual fields: owner,
group, date modified, etc. We write adefault for a default attribute
record where necessary. The contents T of a node in the file sys-
tem may be a file File(n) (with underlying string contents n), a
directory Dir({n1, . . . , nk}) (with contents named n1, . . . , nk) or
a symbolic link Link(r) (where r is the path pointed to by the link).

A file system model F is well-formed if it is tree-shaped, with
directories forming internal nodes and files and symbolic links at
the leaves. In addition, these conditions must hold:

• The domain of F must be prefix-closed.
• If F (r) = (a,Dir({n1, . . . , nk})) then for i = 1, . . . , k,
r /ni ∈ dom(F ).
• If F (r) = (a,File(nr)) or (a, Link(r′)) then there does not

exist n such that r /n ∈ dom(F ).

Figure 6 also presents the syntax of a simple computation lan-
guage e and our file system specifications s. The computation lan-
guage e contains values v, variables x, and other operators, which
we leave unspecified. An environment E maps variables to values.
The semantic function evalτ (E , F, r, e) evaluates an expression e
in an environment E and file system F with respect to a current
path r, yielding a value v of type τ .

The simplest file system specifications are constants k, which
range over basic specifications such as those for files (F), text files
(T), binary files (B), or any file system contents at all (A).

Pads/Haskell specifications are modeled as Adhoc(bτm
τr

) where
bτm
τr

is a parser—i.e., a total function from pairs of environments
and strings to pairs of type τr × τm, where the first element is
the representation for the parsed data and the second element is its
metadata.

Forest’s surface syntax combines specifications for records and
paths into a single construct (and similarly for comprehensions and
paths). The calculus models (dependent) records, paths, and com-
prehensions as independent, orthogonal constructs. Record speci-
fications are written 〈x:s1, s2〉, where x may appear in s2. Path
specifications are written e :: s, where e is a path name (to be
appended to the current path) and s specifies a fragment of the
file system at that path. Comprehension specifications are written
{s | x ∈ e}, where e is a set of values, x is a variable, and s,
which may depend on x, specifies a fragment of the file system
for each value of x. Forest’s combined record-and-path construct
{c is "c.txt" :: C, d is "d.txt" :: D c} is en-

E ;F ; r |= kτm
τr
 ck(kτm

τr
, F, r)

F (r) = (a,File(n)) bτm
τr

(E,n) = v, d

E ;F ; r |= Adhoc(bτm
τr

) v, (valid(d), (d, a))

F (r) = (a, T ) T 6= File(n) bτm
τr

(E, ε) = (v, d)

E ;F ; r |= Adhoc(bτm
τr

) v, (False, (d, a))

r 6∈ dom(F ) b(E, ε) = (v, d)

E ;F ; r |= Adhoc(bτm
τr

) v, (False, (d, adefault))

E ;F ; evalpath(E,F, r, r / e) |= s v, d

E ;F ; r |= e :: s v, d

E ;F ; r |= s1  v1, d1

E [x 7→ v1, xd 7→ d1];F ; r |= s2  v2, d2

E ;F ; r |= 〈x:s1, s2〉 (v1, v2), (valid(d1) ∧ valid(d2), (d1, d2))

eval(τ set)(E , F, r, e) = {v1, . . . , vk}
S = {(v, d) | v′ ∈ {v1, . . . , vk} and E [x 7→ v′];F ; r |= s v, d}

E ;F ; r |= {s | x ∈ e} π1 S, (
^

valid(π2 S), π2 S)

E ;F ; r |= Pred(e) (), (evalbool(E,F, r, e), ())

r 6∈ dom(F )

E ;F ; r |= s? Nothing, (False,Nothing)

r ∈ dom(F ) E ;F ; r |= s v, d

E ;F ; r |= s? Just(v), (valid(d), Just(d))

Figure 7. Forest calculus semantics

coded in the calculus as 〈x:("c.txt" ::C), ("d.txt" ::D x)〉.
Similarly, Forest’s comprehension [x :: s | x <- e] is en-
coded as the composition of the calculus constructors {s1 | x ∈ e}
and s1 = x :: s.

Predicate specifications Pred(e) succeed when e evaluates
to True and fail when e evaluates to False under the current
environment. A Forest constraint of the form s where e is
encoded in the calculus as a dependent pair with a predicate:
〈x:s,Pred(e[x/this])〉

Finally, maybe specifications are written as s? in the calculus.

Calculus Semantics. The semantics of the calculus is organized
into three separate definitions, one for each of the three artifacts
generated by the Forest compiler. These definitions are spelled out
in Figures 7 and 8.

The first semantic judgement has the form E ;F ; r |= s v, d.
This judgement captures the behavior of the load function. Intu-
itively, it states that in environment E and file system F , speci-
fication s matches the file system fragment at current path r and
produces the representation v and metadata d. This judgement may
also be viewed as a total function from E , F , r and s to the pair v
and d. The judgement is total because when file system fragments
fail to match the given specification, defaults are generated for the
representation v and errors are recorded in the metadata d. This de-
sign is preferable to failing as it allows a programmer to explore a
file system fragment even when it contains errors, as is common in
filestores.
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s R[[s]] = M[[s]] =
kτm
τr

τr τm md
Adhoc(bτm

τr
) τr (τm × att) md

e :: s R[[s]] M[[s]]
〈x:s1, s2〉 R[[s1]]×R[[s2]] (M[[s1]]×M[[s2]]) md
{s | x ∈ e} R[[s]] list (M[[s]] list) md
Pred(e) unit unit md
s? R[[s]] option (M[[s]] option) md

Figure 8. Forest calculus data and metadata types

The rule for constants depends upon an auxiliary function ck
(pronounced “check”) that interprets the constants. For example,
the ck function for the (F) construct, which describes any file (but
not symbolic links or directories), is defined as follows:

ck(Fatt
string, F, r) = (n, (True, a)), ifF (r) = (a,File(n))

ck(Fatt
string, F, r) = ("", (False, a)), ifF (r) = (a, T ), T 6= File(n)

ck(Fatt
string, F, r) = ("", (False, adefault)), otherwise

The rule for Pads/Haskell parsers, and several of the other rules,
use the function valid(d). This function extracts a boolean from
the metadata structure d, returning True if there are no errors in the
structure and False otherwise.

The second and third semantic judgements specify the represen-
tation and metadata types for a given specification. They have the
form R[[s]] = τ andM[[s]] = τ , respectively. Note here that att
is the type for file attribute records and the md type is defined as
follows.

τ md = header × τ
header = bool

The three sets of definitions obey the following basic coherence
property, where ` v : τ states that the value v has type τ .

Proposition 1
If E ;F ; r |= s  v, d and R[[s]] = τR and M[[s]] = τM then
` v : τR and ` d : τM

8. Related Work
The work in this paper builds upon ideas developed in the Pads
project [3, 4]. Pads uses extended type declarations to describe
the grammar of a document and simultaneously to generate types
for parsed data and a suite of data-processing tools. The obvious
difference between Pads (and other parser generators) and Forest
is that Pads generates infrastructure for processing strings (the
insides of a single file) whereas Forest generates infrastructure
for processing entire file systems. Forest (and Pads/Haskell) is
architecturally superior to previous versions of Pads in the tight
integration with its host language and in its support for third-party
generic programming and tool construction.

More generally, Forest shares high-level goals with other sys-
tems that seek to make data-oriented programming simpler and
more productive. For example, Microsoft’s LINQ [13] extends the
.NET languages to enable querying any data source that supports
the IEnumerable interface using a simple, convenient syntax.
LINQ differs in that it does not provide support for declaratively
specifying the structure of, and then ingesting, filestores. Type
Providers [18], an experimental feature of F#, help programmers
materialize standard data sources equipped with predefined schema
(such as XML documents or databases) in memory in an F# pro-
gram. Type Providers and Forest descriptions are complementary
language features. In fact, it may be possible to define a new F#
Type Provider capable of interpreting Forest file system schema and

ingesting the described data, thereby making any Forest-described
data available in F#.

In the databases community, a number of XML-based descrip-
tion languages have been defined for specifying file formats, file
organization and file locations. One example of such a language is
XFiles [1]. XFiles has many features in common with Forest. It can
describe file locations, permissions, ownership and other attributes.
It can also specify the name of an application capable of parsing
the files in question. The main difference between a language like
XFiles and Forest is that Forest is tightly integrated into a general-
purpose, conventional programming language. Forest declarations
generate types, functions and data structures that materialize the
data within a surrounding Haskell program. XFiles does not inter-
operate directly with conventional programming languages.

9. Conclusions
In this paper, we present the design of Forest, an embedded domain-
specific language for describing filestores. A Forest description
concisely specifies a collection of files, directories, and symbolic
links as well as expected file system attributes such as owners
and permissions. From a description, the Forest compiler gener-
ates code to lazily load the on-disk data into an isomorphic in-
memory representation, lowering the divide between on-disk and
in-memory data. Forest also generates type class instances that
make it easy for third-party tool developers to use Haskell’s generic
programming infrastructure. We have used this infrastructure our-
selves to define a number of useful tools. In addition, the language
has a formal semantics based on classical tree logics and is fully
implemented. On the latter point, our work serves as an extensive
case study in domain-specific language design, and, as such, has
inspired changes in the design of Template Haskell. We anticipate
releasing the source code for Forest shortly.
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A. Appendix
This appendix contains contains Forest descriptions of a variety of different filestores. Please note that this appendix is best viewed
electronically. Some of the graphs generated are very large, but shrunk down to fit on a single page. They will not display well when
printed. However, reviewers may zoom in electronically on the PDF to view the details.

B. Pads Web Site Description
This Forest description describes the Pads web site. The description starts with Pads descriptions of files that contain information that
impacts the directory structure. The configuration file supplies the paths where various components of the website should be located. The
SourceNames file lists the names of the data files available for the demo. Each user directory will have a subdirectory for each file listed
in SourceNames. Each user is logged in the file UserEntries. For each user in this file, there is a directory with a corresponding name
containing all of the information relevant to that user. A graph of the Pads website, generated using the ForestGraph tool follows the
description.

[pads|
-- Configuration file for learning demo web site; contains paths to various web site components.
data Config_f = {

header :: [Pstringln] with term length of 13,
"$host_name =", host_name :: Config_entry_t, --Name of machine hosting web site
"$static_path =", static_path :: Config_entry_t, --URL prefix for static content
"$cgi_path =", cgi_path :: Config_entry_t, --URL prefix for cgi content
"$script_path =", script_path :: Config_entry_t, --Path to directory of scripts in live web site
"$tmp_root =", tmp_root :: Config_entry_t, --Path to directory for demo user data
"$pads_home =", pads_home :: Config_entry_t, --Path to directory containing pads system
"$learn_home =", learn_home :: Config_entry_t, --Path to directory containing learning system
"$sml_home =", sml_home :: Config_entry_t, --Path to directory containing SML executable
"$install_src =", install_src :: Config_entry_t, --Path to directory containing learning demo website source
"$static_dst =", static_dst :: Config_entry_t, --Path to directory for static content in live web site
"$cgi_dst =", cgi_dst :: Config_entry_t, --Path to directory for cgi content in live web site site

trailer :: [Pstringln]
}

type Config_entry_t = Line (" \"", Pstring ’\"’, "\";")
type Header_t = [Pstringln] with term length of 13

{- File listing data sources for web site -}
type SourceNames_f = [Pstringln]

{- Information related to a single user’s use of the web site -}
type UserEntries_f = [Line UserEntry_t] with term Eor

{- Each visitor gets assigned a userId that is passed as a ? parameter in URL.
Security considerations preclude using user-modifiable values as part of file paths.
Thus, we map each userId to a corresponding dirId.
The dirId names the directory containing the associated user’s data.
A userEntry_t contains a single such mapping.
A file with type userEntries_t describes a collection of such mappings.

-}
data UserEntry_t = {

"id.", usrId :: Pint,
",id.", dirId :: (Pint, ’.’, Pint) where <| usrId == fst dirId |>

}

{- Log of requests. Used to prevent denial of service attacks. -}
type LogFile_f = [LogEntry_t]

{- Request entry. -}
data LogEntry_t = {
userId :: Pint, ’,’, --user making request
ip :: IP_t, ’,’, --IP address of requestor
script :: Pstring ’ ’, ’ ’, --script to be executed
userDir:: Pstring ’ ’, ’ ’, --directory to put results, corresponds to user
padsv :: Pstring ’ ’, ’ ’, --version of PADS used
sml :: PstringSE(RE " "), --version of SML used
msg :: Maybe Pstringln --optional message

}

type IP_t = (Pint, ’.’, Pint, ’.’, Pint, ’.’, Pint)
|]
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[forest|
{- Files with various permission settings. -}
type BinaryRO = Binary where <| get_modes this_att == "-rw-r--r--" |>
type BinaryRX = Binary where <| get_modes this_att == "-rwxr-xr-x" |>
type TextRX = Text where <| get_modes this_att == "-rwxr-xr-x" |>
type TextRO = Text where <| get_modes this_att == "-rw-r--r--" |>

{- Optional binary file with read/execute permission. -}
type OptBinaryRX = Maybe BinaryRX

{- Files with PADS descriptions -}
type Config = File Config_f where <| get_modes this_att == "-rw-r--r--" |>
type SourceNames = File SourceNames_f where <| isReadOnly this_att |>
type UserEntries = File UserEntries_f where <| isReadOnly this_att |>
type LogFile = File LogFile_f where <| isReadOnly this_att |>

{- Directory of image files -}
type Imgs_d = Directory {

logo is "pads_small.jpg" :: BinaryRO,
favicon is "favicon.ico" :: BinaryRO

}

{- Directory of static content -}
type Static_d = Directory {
style_sheet is "pads.css" :: TextRO,
intro_redir is "learning-demo.html" :: TextRO,
title_frame is "atitle.html" :: TextRO,
logo_frame is "top-left.html" :: TextRO,
top_frame is "banner.html" :: TextRO,
empty_frame is "nothing.html" :: TextRO,
images is "images" :: Imgs_d where <| get_modes images_md == "drwxr-xr-x" |>

}

{- Directory of dynamic content -}
type Cgi_d = Directory {

config’ is "PLConfig.pm" :: TextRO,
perl_utils is "PLUtilities.pm" :: TextRO,
intro is "learning-demo.cgi" :: TextRX,
intro_nav is "navbar-orig.cgi" :: TextRX,
select_data is "pads.cgi" :: TextRX,
result_nav is "navbar.cgi" :: TextRX,
format_chosen is "data-results.cgi" :: TextRX,
gen_desc is "build-description.cgi" :: TextRX,
get_user_data is "build-roll-your-own.cgi" :: TextRX,
gen_desc_usr is "genData.cgi" :: TextRX,
build_lib is "build-library.cgi" :: TextRX,
build_accum is "build-accum.cgi" :: TextRX,
build_xml is "build-xml.cgi" :: TextRX,
build_fmt is "build-fmt.cgi" :: TextRX

}
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{- Directory of shell scripts invoked by CGI to run learning system -}
type Scripts_d = Directory {

rlearn :: TextRX, --Shell script for running PADS comiler on stock format
rlearnown is "rlearn-own" :: TextRX, --Shell script for running PADS compiler on user format
raccum is "r-accum" :: TextRX, --Shell script to generate and run accumulator
rxml is "r-xml" :: TextRX, --Shell script to generate and run XML converter
rfmt is "r-fmt" :: TextRX, --Shell script to generate and run formating program
rlibrary :: TextRX --Shell script to build PADS library

}

{- Directory containing administrative files used by demo web site -}
type Info_d = Directory {

sources is "sampleFiles" :: SourceNames, --List of source data files whose formats can be learned
users is "userFile" :: UserEntries, --Mapping from userIDs to associated directory names
logFile is "logFile" :: LogFile --Log of server actions

}

{- Collection of files named by sources containing actual data. -}
type DataSource_d(sources :: [String]) = [ s :: Text | s <- sources ]

{- Type of a symbolic link with pointing to source-}
type SymLink_f (path :: FilePath) = SymLink where <| this == path |>

{- Directory of optional links to source data files -}
type Data_d ((root,sources) :: (FilePath, [String])) = Directory {

datareps is [s :: Maybe Text | s <- sources],
datalinks is [s :: Maybe (SymLink_f <| root++"/"++ s |>) | s <- sources]

}

{- Directory that stores the generated machine-dependent output for data source named source -}
type MachineDep_d (source :: String) = Directory {
pads_c is <| source ++ ".c" |> :: TextRO, --Generated C source for PADS description
pads_h is <| source ++ ".h" |> :: TextRO, --Generated C header for PADS description
pads_o is <| source ++ ".o" |> :: BinaryRO, --Compiled library for PADS description
pads_pxml is <| source ++ ".pxml" |> :: TextRO, --PADS description in xml syntax
pads_xsd is <| source ++ ".xsd" |> :: TextRO, --Xschema of XML syntax for source description
pads_acc is <| source ++ "-accum"|> :: OptBinaryRX, --Optional generated accumulator program
pads_fmt is <| source ++ "-fmt" |> :: OptBinaryRX, --Optional generated formatting program
pads_xml is <| source ++ "-xml" |> :: OptBinaryRX --Optional generated XML conversion program

}

{- Directory that stores the generated output for data source named "source". -}
type Example_d (source :: String) = Directory {

pads_p is <| source ++ ".p" |> :: TextRO, --PADS/C description of data source
pads_pml is <| source ++ ".pml" |> :: Maybe TextRO, --PADS/ML description of data source
vanilla is "vanilla.p" :: TextRO, --input tokenization
makefile is "GNUmakefile" :: Text, --Makefile
machine is <| envVar "AST_ARCH"|> :: Maybe (MachineDep_d source), --Platform dependent files
accum_c is <| source ++ "-accum.c" |> :: Maybe TextRO, --Template for accumulator program
accum_out is <| source ++ "-accum.out"|> :: Maybe TextRO, --ASCII Accumulator output
accum_xml_out is <| source ++ "-accum_xml.out"|> :: Maybe TextRO, --XML Accumulator output
xml_c is <| source ++ "-xml.c"|> :: Maybe TextRO, --Template for XML converter
xml_out is <| source ++ "-xml.out"|> :: Maybe TextRO, --XML representation of source
xml_xsd is <| source ++ ".xsd" |> :: Maybe TextRO, --Xschema for XML representation of source
fmt_c is <| source ++ "-fmt.c" |> :: Maybe TextRO, --Template for formatting program
fmt_out is <| source ++ "-fmt.out" |> :: Maybe TextRO --Formatted representation of source

}

{- Directory that stores all information for one user. -}
type User_d(arg@ (r, sources) :: (FilePath, [String])) = Directory {

dataSets is "data" :: Maybe (Data_d arg),
runExamples is [ s :: Maybe (Example_d s) | s <- sources]

}
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{- Collection of directories containing temporary information for all users. -}
type Users_d((r,info) :: (FilePath, Info_d)) =

[userDir :: User_d <|(r, getSources info) |> | userDir <- <| userNames info |> ]

{- Top-level of PADS website. -}
type Website_d(config::FilePath) = Directory {
c is config :: Config, --Configuration file with locations of other components
static_content is <| gstatic_dst c |> :: Static_d, --Static web site content
dynamic_content is <| gcgi_path c |> :: Cgi_d, --Dynamic web site content
scripts is <| gscript_path c |> :: Scripts_d, --Shell scripts invoked by cgi to run learning system
admin_info is <| gstatic_dst c |> :: Info_d, --Administrative information about website
data_dir is <| (glearn_home c)++"/examples/data" |> --Stock data files for website

:: DataSource_d <|(getSources admin_info)|>,
usr_data is <| gtmp_root c |> :: Users_d <|(get_fullpath data_dir_md, admin_info)|> --User info
}
|]

{- HASKELL HELPER FUNCTIONS -}
isReadOnly md = get_modes md == "-rw-r--r--"

{- Function userName gets the list of user directorn names from an info structure. -}
userNames info = getUserEntries (users info)
getUserEntries (UserEntries (UserEntries_f users)) = map userEntryToFileName users
userEntryToFileName userEntry = pairToFileName (dirId userEntry)
pairToFileName (Pint n1, Pint n2) = "id."++(show n1)++"."++(show n2)

{- Helper functions to convert a Config entry to a FilePath -}
cToS (Config_entry_t (Pstring s)) = s
ghost_name (Config c) = cToS $ host_name c
gstatic_path (Config c) = cToS $ static_path c
gcgi_path (Config c) = cToS $ cgi_path c
gscript_path (Config c) = cToS $ script_path c
glearn_home (Config c) = cToS $ learn_home c
gtmp_root (Config c) = cToS $ tmp_root c
gstatic_dst (Config c) = cToS $ static_dst c
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Sites

pads.css

learning-demo.html

atitle.html

top-left.html

banner.html

nothing.html

images

cgi-bin

sampleFiles

userFile

logFile

PLConfig.PM

pads_small.jpg

favicon.ico

PLConfig.pm

PLUtilities.pm

learning-demo.cgi

navbar-orig.cgi

pads.cgi

navbar.cgi

data-results.cgi

build-description.cgi

build-roll-your-own.cgi

genData.cgi

build-library.cgi

build-accum.cgi

build-xml.cgi

build-fmt.cgi

rlearn

rlearn-own

r-accum

r-xml

r-fmt

rlibrary

gen

data

ai.3000

asl.log

boot.log

crashreporter.log

crashreporter.log.modified

ls-l.txt

netstat-an

page_log

quarterlypersonalincome

railroad.txt

scrollkeeper.log

windowserver_last.log

yum.txt

1967Transactions.short

MER_T01_01.csv

id.1192115633.7

id.1192203213.2

id.1192217814.8

id.1192719006.2

id.1192720640.6

data

ai.3000

ai.3000

ai.3000.p

vanilla.p

GNUmakefile

darwin.i386

ai.3000-accum.c

ai.3000-xml.c

ai.3000-fmt.c

ai.3000.c

ai.3000.h

ai.3000.o

ai.3000.pxml

ai.3000.xsd

data

ai.3000

asl.log

boot.log

crashreporter.log

ls-l.txt

MER_T01_01.csv

ai.3000

asl.log

boot.log

crashreporter.log

ls-l.txt

MER_T01_01.csv

ai.3000.p

vanilla.p

GNUmakefile

darwin.i386

ai.3000-accum.c

ai.3000-xml.c

ai.3000-fmt.c

ai.3000.c

ai.3000.h

ai.3000.o

ai.3000.pxml

ai.3000.xsd

asl.log.p

vanilla.p

GNUmakefile

darwin.i386

asl.log-accum.c

asl.log-xml.c

asl.log-xml.out

asl.log.xsd

asl.log-fmt.c

asl.log.c

asl.log.h

asl.log.o

asl.log.pxml

asl.log.xsd

asl.log-xml

boot.log.p

vanilla.p

GNUmakefile

darwin.i386

boot.log-accum.c

boot.log-xml.c

boot.log-fmt.c

boot.log.c

boot.log.h

boot.log.o

boot.log.pxml

boot.log.xsd

crashreporter.log.p

vanilla.p

GNUmakefile

darwin.i386

crashreporter.log-accum.c

crashreporter.log-accum.out

crashreporter.log-xml.c

crashreporter.log-xml.out

crashreporter.log.xsd

crashreporter.log-fmt.c

crashreporter.log-fmt.out

crashreporter.log.c

crashreporter.log.h

crashreporter.log.o

crashreporter.log.pxml

crashreporter.log.xsd

crashreporter.log-accum

crashreporter.log-fmt

crashreporter.log-xml

ls-l.txt.p

vanilla.p

GNUmakefile

darwin.i386

ls-l.txt-accum.c

ls-l.txt-xml.c

ls-l.txt-fmt.c

ls-l.txt.c

ls-l.txt.h

ls-l.txt.o

ls-l.txt.pxml

ls-l.txt.xsd

MER_T01_01.csv.p

vanilla.p

GNUmakefile

darwin.i386

MER_T01_01.csv-accum.c

MER_T01_01.csv-xml.c

MER_T01_01.csv-fmt.c

MER_T01_01.csv.c

MER_T01_01.csv.h

MER_T01_01.csv.o

MER_T01_01.csv.pxml

MER_T01_01.csv.xsd

data

crashreporter.log

crashreporter.log

crashreporter.log.p

vanilla.p

GNUmakefile

darwin.i386

crashreporter.log-accum.c

crashreporter.log-accum.out

crashreporter.log-xml.c

crashreporter.log-xml.out

crashreporter.log.xsd

crashreporter.log-fmt.c

crashreporter.log.c

crashreporter.log.h

crashreporter.log.o

crashreporter.log.pxml

crashreporter.log.xsd

crashreporter.log-accum

crashreporter.log-xml

data

crashreporter.log

crashreporter.log

crashreporter.log.p

vanilla.p

GNUmakefile

darwin.i386

crashreporter.log-accum.c

crashreporter.log-accum.out

crashreporter.log-xml.c

crashreporter.log-xml.out

crashreporter.log.xsd

crashreporter.log-fmt.c

crashreporter.log-fmt.out

crashreporter.log.c

crashreporter.log.h

crashreporter.log.o

crashreporter.log.pxml

crashreporter.log.xsd

crashreporter.log-accum

crashreporter.log-fmt

crashreporter.log-xml

data

crashreporter.log

crashreporter.log

crashreporter.log.p

vanilla.p

GNUmakefile

darwin.i386

crashreporter.log-accum.c

crashreporter.log-xml.c

crashreporter.log-xml.out

crashreporter.log.xsd

crashreporter.log-fmt.c

crashreporter.log.c

crashreporter.log.h

crashreporter.log.o

crashreporter.log.pxml

crashreporter.log.xsd

crashreporter.log-xml
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C. Students.hs Description
This section includes the Forest description of the Princeton Computer Science Department filestore. The following is the initial portion of a
student record, shown here to illustrate the format.

KESSEL, PHIL BSE ’11
- - - - - - - - - - - - - - - - - - -
Type Yr Course Grade

1 A+ to F
d 2 P ( Pass )
t D p 3 INC
o . . 4 Dept xxx N (Not Avail)
- - - - - - - - - - - - - - - - - - -
d . . 1 COS 101 C
o . . 1 HOC 101 A
o . . 1 GOL 599 A+
...

-- Auxiliary Haskell functions for PADS description
ws = RE "[ �]+"
ows = RE "[ �]*"
junk = RE ".*"
space = ’ ’
quote = ’´’
comma = ’,’

-- PADS description of Princeton CS Student Record Format
[pads|
type Grade = Pre "[ABCD][+-]?|F|AUD|N|INC|P"

data Course =
{ sort :: Pre "[dto]", ws
, departmental :: Pre "[.D]", ws
, passfail :: Pre "[.p]", ws
, level :: Pre "[1234]", ws
, department :: Pre "[A-Z][A-Z][A-Z]", ws
, number :: Pint where <| 100 <= number && number < 600 |>, ws
, grade :: Grade, junk
}

data Middle_name = {space, middle :: Pre "[a-zA-Z]+[.]?" }

data Student_Name(myname::String) =
{ lastname :: Pre "[a-zA-Z]*" where <| toString lastname == myname |>, comma, ows
, firstname :: Pre "[a-zA-Z]*"
, middlename :: Maybe Middle_name
}

data School = AB | BSE

data Person (myname::String) =
{ fullname :: Student_Name myname, ws
, school :: School, ws, quote
, year :: Pre "[0-9][0-9]"
}

type Header = [Line (Pre ".*")] with term length of 7
type Trailer = [Line (Pre ".*")] with term Eof
data Student (name::String) =

{ person :: Line (Person name)
, Header
, courses :: [Line Course]
, Trailer
}

|]
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-- Auxiliary Haskell functions for Forest description
template s = s ‘elem‘ ["SSSS.txt", "SSS.txt", "sxx.txt", "sss.txt", "ssss.txt"]
not_template = not . template

getYear :: String -> Integer
getYear s = read (reverse (take 2 (reverse s)))
toStrN i n = (replicate (n - length (show i)) ’0’) ++ (show i)
mkClass y = "classof" ++ (toStrN y 2)

transferRE = RE "TRANSFER|Transfer"
leaveRE = RE "LEAVE|Leave"
withdrawnRE = RE "WITHDRAWN|WITHDRAWAL|Withdrawn|Withdrawal|WITHDREW"
cRE = RE "classof[0-9][0-9]"
txt = GL "*.txt"

-- FOREST description of Princeton CS Department Database
[forest|
-- Root of the hierarchy
type PrincetonCS (y::Integer) = Directory
{ notes is "README" :: Text
, seniors is <|mkClass y |> :: Class y
, juniors is <|mkClass (y + 1)|> :: Class <| y + 1 |>
, graduates :: Grads
}

-- Collection of directories containing graduated students
type Grads =

Map [ c :: Class <| getYear c |> | c <- matches cRE ]

-- Directory containing all students in a particular year
type Class (y :: Integer) = Directory
{ bse is <|"BSE" ++ (toStrN y 2)|> :: Major
, ab is <|"AB" ++ (toStrN y 2)|> :: Major
, transfer matches transferRE :: Maybe Major
, withdrawn matches withdrawnRE :: Maybe Major
, leave matches leaveRE :: Maybe Major
}

-- Collection of files containing all students in a particular major.
type Major = Map
[ s :: File (Student <| dropExtension s |>)
| s <- matches txt, <| (not . template) s |> ]

|]
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C.1 Generated Description
Here follows a description generated from a small sample of the student directory data using the description inference tool.

data transfer = Directory {
}
data wITHDREW = Directory {

fingertxt is "finger.txt" :: File Ptext
}
data tRANSFER = Directory {

bEAUCHEMINtxt is "BEAUCHEMIN.txt" :: File Ptext,
vERSTEEGtxt is "VERSTEEG.txt" :: File Ptext

}
data bSE11 = Directory {

transfer is "transfer" :: transfer,
bOZAKtxt is "BOZAK.txt" :: File Ptext,
kESSELtxt is "KESSEL.txt" :: File Ptext,
ssstxt is "sss.txt" :: File Ptext

}
data aB11 = Directory {

kADRItxt is "KADRI.txt" :: File Ptext,
mACARTHERtxt is "MACARTHER.txt" :: File Ptext,
oRRtxt is "ORR.txt" :: File Ptext,
sSSStxt is "SSSS.txt" :: File Ptext

}
data classof11 = Directory {

aB11 is "AB11" :: aB11,
bSE11 is "BSE11" :: bSE11,
tRANSFER is "TRANSFER" :: tRANSFER,
wITHDREW is "WITHDREW" :: wITHDREW

}
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D. Coral.hs Description
This section gives the PADS and Forest descriptions for the CoralCDN Log repository. A graph of the CoralCDN repository, generated like
the graph above using the ForestGraph tool from the description and (a subset of) the actual repository follows.

-- Auxiliary Haskell definitions for PADS description
comma_ws = RE ",[ �]*"
status_re = RE "[0-9]+"

-- PADS description of CoralCDN Webserver Log Format
[pads|
type Time = (Pint, ".", Pint)

type Byte = constrain x :: Pint where <| 0 <= x && x <= 256 |>

type IP_Port =
{ ’"’,

ip :: (Byte,’.’,Byte,’.’,Byte,’.’, Byte), ":",
port :: Pint, ’"’ }

type Status = PstringME(status_re)

type Statistics =
{ stats_size :: Pint, comma_ws
, stats_proxy :: Pre "[01]", comma_ws
, stats_level :: Pint, comma_ws
, stats_lookup :: Pint, comma_ws
, stats_xfer :: Pint, comma_ws
, stats_total :: Pint }

type NoQuote = PstringME (RE "[ˆ\"]*")

type Generic = (’"’,NoQuote,’"’)

type Url = Generic

data Header =
{ version :: Maybe (Pre "[12],[ \t]*")
, time :: Time }

data Request =
{ src :: IP_Port, comma_ws
, dst :: IP_Port, comma_ws
, url :: Url }

data InData =
{ "\"IN\"", comma_ws
, in_req :: Request, comma_ws
, in_status1 :: Status, comma_ws
, in_status2 :: Status, comma_ws
, in_stats :: Statistics }

data OutData =
{ "\"OUT\"", comma_ws
, out_remote :: Pre "\"(REM|LOC)\"", comma_ws
, out_req :: Request, comma_ws
, out_referrer :: Url, comma_ws
, out_status :: Status, comma_ws
, out_stats :: Statistics, comma_ws
, out_forwarded :: Generic, comma_ws
, out_via :: Generic }

data InOut = In InData | Out OutData

data Entry =
{ header :: Header, comma_ws
, payload :: InOut
, Eor }

type Entries = [Entry] with term Eor

type Coral = (Entries, Eof)
|]
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-- Forest description of CoralCDN Log Repository
[forest|
-- Directory containing log files
type Log = Directory
{ web is "coralwebsrv.log.gz" :: Gzip (File Coral),

dns is "coraldnssrv.log.gz" :: Maybe (Gzip (File Ptext)),
prb is "probed.log.gz" :: Maybe (Gzip (File Ptext)),
dmn is "corald.log.gz" :: Maybe (Gzip (File Ptext)) }

-- Directory containing dates
type Site = [ d :: Log | d <- matches (RE "[0-9]{4}_[0-9]{2}_[0-9]{2}-[0-9]{2}_[0-9]{2}") ]

-- Directory containing sites
type Top = [ s :: Site | s <- matches (RE "[ˆ.].*") ]

|]
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-- Load function for CoralCDN description
(rep,md) = unsafePerformIO $ top_load "/var/log/coral"

-- Helpers: deconstruct representations
get_sites :: Top -> [(String,Site)]
get_dates :: Site -> [(String,Log)]
get_entries :: Log -> [Entry]

-- Helpers: project fields
get_stats :: Entry -> Statistics
get_total :: Entry -> Int
get_date :: String -> String
get_url::Entry -> String
string_of_url :: Url -> String
is_in :: Entry -> Bool
is_out :: Entry -> Bool

-- Helper: builds an association list
lmap f p tdir =

[ f host datetime e | (host,hdir) <- get_sites tdir,
(datetime,ldir) <- get_dates hdir,
e <- get_entries ldir,
p e ]

-- Uses of lmap
by_date = lmap (\h d e -> (get_date d, get_total e))
by_host = lmap (\h d e -> (h, get_total e))
by_url_bytes = lmap (\h d e -> (get_url e, get_total e))
by_url_counts = lmap (\h d e -> (get_url e, 1))

-- Helpers: fold down an association list
go_bins m p = fromListWith (+) (m p rep)

count_bins m = fromListWith (+) (fold (\ c l -> (c,1):l) [] m)

go_flat p =
sum [ (get_total e) | (host,hdir) <- get_sites tdir,

(datetime,ldir) <- get_dates hdir,
e <- get_entries ldir,
p e ]

-- Several useful queries
in_total = go_flat is_in
out_total = go_flat is_out
in_by_host = go_bins by_host is_in
out_by_host = go_bins by_host is_out
in_by_date = go_bins by_date is_in
out_by_date = go_bins by_date is_out
in_url_bytes = go_bins by_url_bytes is_in
out_url_bytes = go_bins by_url_bytes is_out
in_url_counts = go_bins by_url_counts is_in
out_url_counts = go_bins by_url_counts is_out
in_counts_urls = count_bins $ go_bins by_url_counts is_in
out_counts_urls = count_bins $ go_bins by_url_counts is_out
num_sites () = case load_logs () of Top l -> List.length l

-- Top-k URLs
topk k =
take k $ sortBy sortDown $ toList $
fromListWith (+)
[ (get_url e, get_total e)
| (site,sdir) <- get_sites rep,

(datetime,ldir) <- get_dates sdir,
e <- get_entries ldir,
is_in e ]
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E. Gene Ontology
This section presents a description of gene ontology data found here: http://www.geneontology.org/gene-associations/.
A graph generated using ForestGraph on a subset of the data follows the description.

This filestore is a web directory of gene association data files. The root directory contains a number of .gz files, a readme directory
and a submission directory. Each .gz file is the gene ontology (GO) data of the genes in one or more organism, and the file names have
the format "gene_association.XXX_YYY.gz", where XXX represents the name of the institute that provides the data and YYY is the
name of the organism. YYY is optional because some institute provides the data for only one organism.

The readme directory contains a set of .README files for a subset of the GO data in the root.
The submission directory contains a set of .gz files, their corresponding .conf files, and a paint sub-directory. The .gz files

are similar to the ones in root except they are older. The .conf file summarizes some attributes of the .gz file such as “the name of the
project”, “contact email”, etc. The paint sub-directory contains a further set of subdirectories of the form PTHRXXXXX, where XXXXX is a
5-digit number. These subdirectories each contain six text files and an XML file. These are the annotation inference of the gene ontology
using phylogenetic trees and the PAINT tool.

-- PADS descriptions of data file format.
[pads|
type Pfloat = (Pint, ’.’, Pint)
type Pdate = {mon :: Pint, ’/’, day :: Pint, ’/’, year :: Pint}
type Purl = ("http://", Pstringln)
type Version_t = ("!CVS Version: Revision: ", Pfloat, ws, ’$’)
type Valid_date_t = ("!GOC Validation Date: ", Pdate, ws, ’$’)
type Sub_date_t = ("!Submission Date: ", Pdate)
type Project_name_t = ("!Project_name: ", Pstringln)
type URL_t = ("!URL: ", Purl)
type Email_t = ("!Contact Email: ", Pstringln)
type Funding_t = ("!Funding: ", Pstringln)
type Gaf_ver_t = ("!gaf-version: ", Pfloat)
type Organism_t = ("!organism:", ws, Pstringln)
type Date_t = ("date:", ws, Pdate)
type Note_t = (’!’, ws, Pstringln)

data Header_line_t =
Version Version_t
| Valid_date Valid_date_t
| Sub_date Sub_date_t
| Project_name Project_name_t
| URL URL_t
| Email Email_t
| Funding Funding_t
| Gaf_ver Gaf_ver_t
| Organism Organism_t
| Date Date_t
| Note Note_t
| Other (’!’, Pstringln)

type Other_line_t = Pstringln

type GA_f = ([Line Header_line_t], [Line Other_line_t] with term Eof)
|]

[pads|
data Pair_t = {key::Pstring ’=’, ’=’, val::Pstringln}
type Conf_f = [Line Pair_t] with term Eof

|]

[pads|
type Xml_header = ("<?xml ", Pstringln)
type XML_f = (Line Xml_header, [Line Pstringln])

|]
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-- Forest description of Gene Ontology filestore
[forest|
type Readme_d = Directory {
readmes is [rm :: Maybe Text | rm <- <|map get_readme_file (comb_source sources)|>]

}

type PTHR_d (name :: String) = Directory {
attr is <| name ++ ".save.attr" |> :: Text,
gaf is <| name ++ ".save.gaf" |> :: Text,
msa is <| name ++ ".save.msa" |> :: Text,
paint is <| name ++ ".save.paint" |> :: File XML_f,
sfan is <| name ++ ".save.sfan" |> :: Text,
tree is <| name ++ ".save.tree" |> :: Text,
txt is <| name ++ ".save.txt" |> :: Text,
wts is <| name ++ ".save.txt" |> :: Text
}

type Pre_sub_d = Directory {
pre_gz_files is [gz :: Maybe (Gzip (File GA_f)) | gz <- <|map get_gz_file (comb_source sources)|>],
pre_conf_files is [conf :: Maybe (File Conf_f) | conf <- <|map get_conf_file (comb_source sources)|>]

}

type Paint_d = Directory {
pthr_dirs is [dir_name :: PTHR_d (dir_name) | dir_name <- matches RE "PTHR[0-9]+"],
pre_sub is "pre-submission" :: Pre_sub_d

}

type Submission_d = Directory {
gz_files is [gz :: Maybe (Gzip (File GA_f)) | gz <- <|map get_gz_file (comb_source sources)|>],
conf_files is [conf :: Maybe (File Conf_f) | conf <- <|map get_conf_file (comb_source sources)|>],
paint_files is [cs :: Maybe (File Conf_f)

| cs <- <|map (\x -> get_conf_file ("paint" ++ x)) (comb_source sources)|>],
paint_d is "paint" :: Paint_d

}

type Top_d = Directory {
data_files is [gz :: Maybe (Gzip (File GA_f)) |

gz <- <|map get_gz_file (comb_source sources)|>],
readme is "readme" :: Readme_d,
sub is "submission" :: Submission_d

}
|]

-- Haskell code to generate graph corresponding to sample data set in filestore "Data/ga"
doImg = do
(rep,md) <- top_d_load "Data/ga"
; mdToPDF md "Examples/ga.pdf"
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-- Auxiliary Haskell Definitions
ws = RE "[ �]+"
title = "gene_association"
get_gz_file f = title ++ "." ++ f ++ ".gz"
get_readme_file f = f ++ ".README"
get_conf_file f = title ++ "." ++ f ++ ".conf"

{- each source is a pair (institute name, list of organisms the institute provides) -}
sources = [

("Compugen", [])
, ("GeneDB", ["Lmajor","Pfalciparum","Spombe","Tbrucei","tsetse"])
, ("PAMGO", ["Atumefaciens","Ddadantii","Mgrisea","Oomycetes"])
, ("aspgd", [])
, ("cgd", [])
, ("dictyBase", [])
, ("ecocyc", [])
, ("fb", [])
, ("goa", ["arabidopsis","chicken","cow","human","mouse","pdb","rat",

"uniprot","uniprot_noiea","zebrafish"])
, ("gramene", ["oryza"])
, ("jcvi", ["Aphagocytophilum","Banthracis","Cburnetii","Chydrogenoformans",

"Cjejuni","Cperfringens","Cpsychrerythraea","Dethenogenes","Echaffeensis",
"Gsulfurreducens","Hneptunium","Lmonocytogenes","Mcapsulatus","Nsennetsu",
"Pfluorescens","Psyringae","phaseolicola","Soneidensis","Spomeroyi",
"Vcholerae"])

, ("mgi", [])
, ("pseudocap", [])
, ("reactome", [])
, ("rgd", [])
, ("sgd", [])
, ("sgn", [])
, ("tair", [])
, ("wb", [])
, ("zfin", []) ]

comb_source [] = []
comb_source ((inst, organs):sources) =

let cl = case organs of
[] -> [inst]
_ -> map (\organism -> inst ++ "_" ++ organism) organs

in cl ++ (comb_source sources)

{- the GO files, when unzipped, contain a header like the following:
!CVS Version: Revision: 1.19 $
!GOC Validation Date: 01/27/2007 $
!Submission Date: 1/15/2007
-}

ga

gene_association.GeneDB_Lmajor.gz

gene_association.jcvi_Aphagocytophilum.gz

readme

submission

GeneDB_Lmajor.README

paint

PTHR10000

pre-submission

PTHR10000.save.attr

PTHR10000.save.gaf

PTHR10000.save.msa

PTHR10000.save.paint

PTHR10000.save.sfan

PTHR10000.save.tree

PTHR10000.save.txt
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F. CVS.hs Description
This section provides a generic description for CVS repositories.

-- PADS description of CVS file formats
[pads| type Repository_f = Line Pstringln

data Mode_t = Ext ":ext:" | Local ":local:" | Server ":server:"
data Root_t = { cvs_mode :: Maybe Mode_t

, machine :: Pstring ’:’, ’:’
, path :: Pstringln
}

type Root_f = Line Root_t
data Dentry_t = { "D/"

, dirname :: Pstring ’/’
, "////"
}

data Revision_t = Version (Pint, ’.’, Pint) | Added ’0’ | Removed ’-’
data TimeStamp_t = { ts :: PstringSE (RE "[/+]")

, conflict :: Maybe (’+’, Pstring ’/’) }

type Fentry_t = { "/"
, filename :: Pstring ’/’, "/"
, revision :: Revision_t, "/"
, timestamp :: TimeStamp_t, "/"
, options :: Pstring ’/’, "/"
, tagdate :: Pstringln
}

data Entry_t = Dir Dentry_t | File Fentry_t | NoDir ’D’
type Entries_f = [Line Entry_t] with term Eof

|]

-- Auxiliary Haskell functions
getEntries cvs = let (Entries_f l) = entries cvs in l
getDirName d = let (Pstring s) = dirname d in s
getFileName f = let (Pstring s) = filename f in s

isDir entry = case entry of Dir _ -> True; otherwise -> False
isFile entry = case entry of File _ -> True; otherwise -> False

getDirs cvs = map (\(Dir d) -> d) (filter isDir (getEntries cvs))
getFiles cvs = map (\(File f) -> f) (filter isFile (getEntries cvs))

-- FOREST description of CVS directory structure
-- Note that this description is recursive.
-- Note also that the collection of dirs and the
-- collection of files are determined from information in the cvs
-- directory.
[forest| type CVS_d = Directory

{ repository is "Repository" :: File Repository_f
, root is "Root" :: File Root_f
, entries is "Entries" :: File Entries_f
}

type CVS_Repository_d = Directory
{ cvs is "CVS" :: CVS_d
, dirs is [ n as <| getDirName d |> :: CVS_Repository_d | d <- <| getDirs cvs |> ]
, files is [ <| getFileName f |> :: Text | f <- <| getFiles cvs |> ]
} |]

-- Sample use of PADS and FOREST descriptions
meta_dir = "Examples/CVS"
entries_file = meta_dir ++ "/Entries"
doParseEntries = do {
(rep, md) <- parseFile entries_file
}

doLoadCVS = do {
(meta_rep, meta_md) <- cVS_d_load meta_dir

}
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G. Universal.hs Description
This section includes a universal data description. This universal description is used to drive some of our generic tools.

-- Universal Forest Directory Description
[forest|
type Universal_d = Directory

{ ascii_files is [ f :: Text | f <- matches (GL "*"), <| get_kind f_att == AsciiK |> ]
, binary_files is [ b :: Binary | b <- matches (GL "*"), <| get_kind b_att == BinaryK |> ]
, directories is [ d :: Universal_d | d <- matches (GL "*"), <| get_kind d_att == DirectoryK |> ]
, symLinks is [ s :: SymLink | s <- matches (GL "*"), <| get_isSym s_att == True |> ]
}

|]

-- Use of Universal directory
universal_dir = "Examples/data/universal"
doLoadUniverse = do {
(rep, md) <- universal_d_load universal_dir
}
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