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Abstract. Transient faults are single-shot hardware errors caused by high
energy particles from space, manufacturing defects, overheating, and
other sources. Such faults can be devastating for security- and safety-
critical systems. In order to mitigate these problems, software developers
can add redundancy in various ways to their software systems. However,
such redundancy is hard to reason about and corner cases are easy to
miss, leaving these systems vulnerable. To solve this problem, we have
developed a logic, based on Separation Logic, for reasoning about faults
as resources. We show how to use this logic as a language of assertions and
incorporate it into a Hoare Logic for verifying imperative programs. This
Hoare Logic is parameterized by a formal fault model and it can be used to
prove imperative programs correct with respect to that model. In addition
to developing this basic verification platform, we have designed a modal
operator that abstracts away the effects of individual faults, enabling mod-
ularization of proofs and greatly simplifying the reasoning involved. The
logic is proved sound and studied through a number of examples, includ-
ing a simplified version of the RSA Sign/Verify algorithm.

1 Introduction

Programmers almost always implement software under the assumption that
the underlying hardware is completely reliable. This is the right choice – imple-
menting software correctly is hard enough without worrying about hardware
reliability. Nevertheless, there are a number of important situations in which a
software engineer must face the fact that hardware faults can and do occur.

One such domain involves the implementation of cryptographic algorithms.
For years, software engineers assumed that, while faults in these algorithms
might occur, they would not reveal anything important about the embedded
cryptographic secrets. However, in 1997, Boneh, DeMillo and Lipton [1] showed
how a single fault in common implementations of RSA could be exploited to
discover the underlying secret key. Moreover, since that time, other researchers
have uncovered problems in DES, RC5 and AES. In related work, Govindava-
jhala and Appel showed how to exploit faults to break into a commercial Java
virtual machine running completely type safe code [2]. There is currently a rich
community dedicated to researching these threats and developing solutions.
Bar-El’s survey paper [3], provides an excellent overview of the area.
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In addition to worrying about faults in security-sensitive contexts, engi-
neers must also consider their ramifications when fully optimizing systems
for power and performance. For example, by decreasing hardware voltages
one can save power at the expense of occasionally incurring faults, and by
overclocking one can speed up performance, again at the expensive of the oc-
casional erroneous result. Hedge and Shanbhag [4] illustrate the advantages of
exploiting such tradeoffs in digital signal processing applications. Other con-
texts in which intermittent hardware faults have a significant overall impact
may include safety-critical applications, avionics, satellites, supercomputers,
and long-running simulations or experiments.

In situations such as these, conventional techniques for reasoning about
programs are no longer sound. Consequently, we have begun to develop a new
framework that will allow programmers to prove strong properties about their
programs despite the presence of faults. Our framework involves a relatively
simple and self-contained extension to a standard Hoare Logic for while pro-
grams. This extension allows programmers to reason about the faults that may
or may not have happened to their programs in typical Hoare style. Transient
faults appear explicitly as objects in the logic, and operators inspired by Sepa-
ration Logic are used to count, limit, and contain the faults.

In summary, the main contributions of the paper are: the development of a
logic for proving programs to be fault tolerant, the proof of soundness for this
logic, parameterization of the logic by one of multiple fault models, illustration
of logic’s use through examples in multiple application areas, the proof that
the logic supports the frame rule, the development of a modality that supports
concise proofs, and a weakest precondition Hoare rule for the extension of Hoare
Logic.

The rest of the paper is organized as follows. Section 3 discusses the pro-
gramming language, including a new instruction, fault, which introduces the
possibility of a fault at a specific program point. Section 4 extends standard
Hoare Logic with the rule for fault. Section 5 demonstrates the complexity of
dealing with fault functions explicitly in proofs and introduces a modality that
abstracts away the explicit fault functions. Section 6 illustrates the application
of the logic in security protocols, through a specification for a fault tolerant im-
plementation of the RSA Sign/Verify protocol. Section 7 describes a compilation
from programs and specifications in standard Hoare Logic into programs in our
logic with fault tolerance achieved through triple modular redundancy. Related
work is discussed in Section 8, and Section 9 concludes.

2 Modeling Faults

Before we can reason about faults, and indeed before programmers or hardware
designers can protect against faults, there must be some kind of model for when
and where faults can occur. Typical fault models dealt with in the literature
are fairly simple, limiting faults to one or a few occurrences per program run.
The most common models are the Single Event Upset (SEU) and Single Word
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Corruption (SWC) models. The SEU model allows a single bit flip in a single
register in one run of the program, as seen in the work of Chang, Reis, and
August; Shirvani, Saxena, and McCluskey; Bar-El, et al.; among others [5, 3, 6].
The SWC model allows arbitrary changes to a single register to occur once in
the program, as seen in Bar-El, et al. and Shirvani, Saxena, and McCluskey [3, 6].
The motivation behind these fault models is twofold: one, that the incidence of
faults is rare enough that programmers may ignore the negligible chance of two
occurring; and two, that the fault model defines a class of errors that is possible
to protect against without extreme performance degradation. For this reason,
we mainly focus on these two fault models. However, our logic supports other
fault models, including those allowing up to two faults to occur during a single
program run. Such a model is briefly examined in this paper.

3 The Programming Language

The programming language that we consider in this paper is the classic imper-
ative language of while programs extended with a single pseudo-instruction
that is used to specify where faults may occur within a program. For example,
consider a simple loop:

x := 0;

while x != 0 do

skip;

Here, the program variable x is assigned zero and the program loops endlessly,
testingx for inequality with zero. To reason about the execution of the program in
the presence of faults, the programmer or a static analysis inserts fault statements
at appropriate program points. For example:

x := 0; fault x;

while x != 0 do

{ skip; fault x; }

This allows faults to occur at two points in the program. Intuitively, the statement
fault x means that a fault may occur to program variable x at this point in the
computation. Hence, by inserting the fault x statement between every pair
of lines, the programmer considers the possibility that faults may occur at any
point in the program. 1 Thus, the programming language and the logic to be
introduced later in the paper are agnostic about where faults may occur in the
program. This allows the programmer to focus on protecting critical sections of
code.

If there are multiple program variables, each program variable must be
mentioned separately. For example:

1 The reader may note that in any fault model where any occurring fault is arbitrary
(such as the SWC model, or an n-word corruption model), it suffices to introduce a
fault statement for a variable x immediately before each time the variable’s value is
read. This is also true for any fault model allowing at most one fault (including both
the SWC and SEU models).
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x := 0; fault x;

y := 0; fault y;

while (x != 0) and (y != 0) do

{ skip; fault x; fault y; }

To abbreviate long sequences of fault statements, we normally write fault
x1,...,xn; in place of fault x1; ... fault xn;.

The observant reader will also notice that there is no syntax for faults that
may occur in the midst of a complex expression in a while loop bound, if
statement, or right-hand side of an assignment. To consider such faults, the
programmer must decompose the expressions into a series of statements:

x := 0; fault x;

y := 0; fault y;

flag1 := x != 0; fault flag1;

flag2 := y != 0; fault flag2;

flag1 := flag1 and flag2; fault flag1, flag2;

while flag1 do

{ skip; fault x, y, flag1, flag2;

flag1 := x != 0; fault flag1;

flag2 := y != 0; fault flag2;

flag1 := flag1 and flag2; fault flag1, flag2;

}

This example makes it clear that as programs get more complex, there is a
proliferation of fault instructions. On the one hand, this proliferation reveals
the inherent difficulty of reasoning about programs in a context with a rich
fault model. On the other hand, it demonstrates that a production verification
system should probably manage the insertion of fault instructions itself (e.g., by
having the static analysis engine insert them automatically). In this paper, we
leave the fault instructions in the syntax of the programming language because
doing so makes the formal development particularly clear, modular, and self-
contained. In a production environment, this language would correspond to an
intermediate language or a language used with a proof assistant.

3.1 Syntax

A summary of the syntax of the language we use in the paper is presented in
Figure 1. Here and throughout the rest of the paper, we let x range over program
variable names, n range over integers and f range over computable functions
from integers to integers. The specific set of integer and boolean expressions
we choose for the language is unimportant and hence we will freely use other
expressions in our examples as they require. Note that function variables do
not appear in the source language itself. They are only used in expressions that
appear in the program logic, to be described later.
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integer vars x integers n
function vars φ functions f
function exps G ::= φ | f
integer exps E ::= x | n | E1 + E2 | E1 mod E2 | G E | e
boolean exps B ::= E1 = E2 | not B | B1 and B2 | E1 < E2

statements S ::= skip | x := E | S1; S2 | if B then S1 else S2

| while B do S | fault x

Fig. 1. Syntax of Programs

3.2 Representation of Faults and Fault Models

When a fault x statement is executed, the value of xmay change. Such changes
can be represented by a function, f , on the integers. The function acts on the
variable x, causing the new value, f x, to be stored there. For example, if the
third bit of x is flipped, the function a bit flip function, written λy.y xor 22 as a
lambda expression 2, will represent this fault. Similarly, if x is unchanged, the
identity function will represent this trivial fault.

Over the course of a program run, we record the fault functions that have
occurred in the fault state but not the variables that they applied to. This is
because the effects of a fault spread wider than the initial variable affected
and we are not doing any calculations of information flow to track the effects.
Formally, fault states (F) are multi-sets and we use the notation F1+F2 to denote
multiset union of fault states. We also write F1 ⊆ F2 when F1 is a sub-multiset of
F2. As an example, the fault state {λx.x xor 23} represents a situation in which a
single fault has occurred and that fault has toggled the 4th bit of the associated
value. Over the course of a run, it is common for many trivial faults to occur
and this will lead to an accumulation of identify functions in the fault state. For
instance, the fault state {λx.x xor 23, λx.x, λx.x, λx.x} represents a situation in
which only one true fault has occurred, but three additional trivial faults have
been recorded in the fault state. 3

A judgment F okm defines the fault states F that are allowed by the fault
model m. Most of the rest of our development is independent of the particular
choice of fault model except for the restrictions that the empty fault state must
be valid and that validity must be preserved by subset ordering.

Definition 1 (Fault State Validity Criterion).

– {} okm.
– If F1 okm and F2 ⊆ F1 then F2 okm.

Using multisets of functions as our fault states is elegant and easy to work
with and yet allows us to reason about several different interesting fault models.

2 Note that mathematical functions, not lambda expressions, are part of our logic,
Lambda expressions are just used as a convenient representation.

3 Allowing the fault state to accumulate many trivial faults helps simplify our opera-
tional semantics slightly.
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In this paper, we will work with the following three fault models, each of which
maybe characterized according to its F okm relation, though the bulk of our work
should extend to related models. The models are characterized by their F okm

relations, each of which satisfies the Fault State Validity Criterion.

Definition 2 (SWC Fault Model). The SWC fault model demands that F okm if and
only if at most one function f drawn from F is not the identity function.

Definition 3 (SEU Fault Model). The SEU fault model demands that F okm if and
only if at most one function f drawn from F is not the identity function and that
non-identity function f has the form λx.x xor 2k for some k.

Definition 4 (DWC Fault Model). The DWC fault model demands that F okm if
and only if at most two functions f and g drawn from F are not the identity function.

3.3 Operational Semantics

A program state is a triple (F,V,Z) where F is the current fault state, V is the
current environment and Z is either a statement S to execute or − , indicating
execution is complete. We call states with the form (F,V, − ) final states. An
environment is a finite partial map from variable names to integer values. We
write V(x) to denote the contents of the map at x and we write V[x 7→ n] to
denote the map created by updating V at x with n.

The operational semantics of the language are presented in Figure 2. These
rules depend upon a conventional denotational semantics (see, for example,
Winskel, Chapter 5 [7]), which, given an environment, maps integer expressions
to integers and boolean expressions to 0 (false) or 1 (true). We write the semantic
functions [[E]]V and [[B]]V respectively.

The rules governing the standard statements (skip, assignment, if, and
while) leave the fault state untouched and behave in the usual way. The opera-
tional rule for the fault statement non-deterministically chooses a fault function
f that satisfies the given fault model, transforms the contents of the given vari-
able, and adds f to the fault state. Note that f may be the identity function,
meaning that a fault statement indicates a program point where a fault may
occur as opposed to where a fault must occur.

4 The Program Logic

Having described our programming language, we now present the program-
mer with the tools to reason about these programs. These tools consist of a
basic Hoare Logic with extensions to allow reasoning about faults in program
variables.

As a reminder, a Hoare triple is written {P}S{Q}. Following the rules of
partial correctness, the Hoare triple means that, if P describes the program state
immediately before S is executed and the execution of S terminates, then Q will
describe the resulting program state.
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Eskip
(F,V, skip) 7−→ (F,V, − )

Eassign
(F,V, x := E) 7−→ (F,V[x 7→ [[E]]V], − )

Eseq1
(F,V, S1) 7−→ (F′,V′,S′

1
)

(F,V, S1; S2) 7−→ (F′,V′,S′
1
; S2)

Eseq2
(F,V, S1) 7−→ (F′,V′, − )

(F,V, S1; S2) 7−→ (F′,V′,S2)

Eif1
[[B]]V = 1

(F,V, if B then S1 else S2) 7−→ (F,V, S1)

Eif2
[[B]]V = 0

(F,V, if B then S1 else S2) 7−→ (F,V, S2)

Ewhile1
[[B]]V = 0

(F,V, while B do S) 7−→ (F,V, − )

Ewhile2
[[B]]V = 1

(F,V, while B do S) 7−→ (F,V, S; while B do S)

Efault
F + { f } okm

(F,V, fault x) 7−→ (F + { f },V[x 7→ f (V(x))], − )

Fig. 2. Operational Semantics of Programs

Figure 3 contains inference rules and assertion language for a basic Hoare
Logic, with a subscript m added for use in our logic. The subscript refers to
the fault model considered in the Hoare triples. Note that the assignment rule
works backwards. If some assertion P describes the program state after the
assignment of E to x, then the same assertion with all occurrences of x replaced
with E describes the state before the assignment.

4.1 A Straw Man Logic

Before describing our actual Hoare Logic, it is instructive to consider why a
naive extension of our basic Hoare Logic does not work. Taking a cue from
the assignment rule, we could generate a precondition from a postcondition by
replacing the affected variable with the value it is assigned by the statement.

Hfault − try1
{P[ f x/x]}fault x{P}m

seems to be a plausible start, as the operational semantics say that the value of
x changes to f x for some function f . In order to consider all possible faults, we
quantify over all possible functions on the integers:

Hfault − try2
{∀φ. P[φ x/x]}fault x{P}m
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Hskip
{P}skip{P}m

Hassign
{P[E/x]}x := E{P}m

Hwhile
{B & P}S{P}m

{P}while B do S{¬B & P}m

Hif
{B & P}St{Q}m {¬B & P}Se{Q}m

{P}if B then St else Se{Q}m

Hcons
P′ �m P {P}S{Q}m Q �m Q′

{P′}S{Q′}m

Hseq
{P}S1{Q}m {Q}S2{R}m

{P}S1;S2{R}m

P ::= true | false | ¬P | E = E | ∀x.P | ∃x.P | P ∨ P | P & P

Fig. 3. Inference Rules and Assertion Language for a basic Hoare Logic

Unfortunately, this rule does not integrate any properties of the fault model.
This makes the rule quite useless, as the following example 4 using the SWC
fault model, m, demonstrates:

Example 1.
{false}
{∀φ1, φ2. φ1 3 = 3 ∨ φ2 3 = 3}m (equivalent)

x = 3; {∀φ1, φ2. φ1 x = 3 ∨ φ2 3 = 3}m
y = 3; {∀φ1, φ2. φ1 x = 3 ∨ φ2 y = 3}m
fault x,y; {x = 3 ∨ y = 3}m

Under the SWC fault model, at least one of the variables should equal 3 at
the end, no matter what state the program begins in. However, the precondition
we derive is equivalent to false and thus not true in any state. The problem is
that our candidate Hoare rule does not allow us to apply any information about
the fault model to the assertions. We need a way to describe the fault functions
that can actually occur in the fault state.

4.2 A Useful Logic

The key insight is that we need a predicate hap f (“ f happened”) that says that
a fault function is in the current fault state. hap f is true whenever the fault

4 In our examples, the left column contains code and the right column contains the
corresponding assertions. A line of code, the precondition above and to the right, and
the postcondition to the right together form a valid Hoare triple. Assertions one on
top of the other with no code to the left indicate entailment. Using the sequence and
consequence rules, a sequence of such entailments and Hoare triples results in a valid
Hoare triple for the entire example.
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function f is the identity or is in the fault state. For example, hapλx.x describes
any program state and hap f describes any state where f is in the fault state.
This will allow us to reason about fault functions that are allowed in the current
fault state.

In order to refer to the addition of fault functions to the state, rather than just
their presence, we borrow −∗ from Separation Logic [8, 9]. P −∗ Q means that, in
any state under which P holds, adding that state to the current state makes Q
true. For example, hap f −∗ Q implies that adding f to the current state makes
Q true.

Using both −∗ and hap , we can limit the range of fault functions to those that
are allowed in the current fault state.

Hfault
{∀φ. hapφ −∗ P[φ x/x]}fault x{P}m

This is the correct Hoare rule for fault x. Intuitively, it means that we know
P after a fault statement if P[ f x/x] was true for any allowable fault function f
beforehand.

Before we can use the fault rule to reason about the example from the previ-
ous section, we need a way to describe the values of fault functions. A simple
approach suffices: we introduce predicates to say whether a function f is the
identity (id f ) or not (faulty f ). For example, idλx.x & faulty (λx.x xor 24) is
always true.

Using the predicates id f , faulty f , and hap f , we can write down simple
axioms that characterize our fault models. For instance, we can characterize
the SWC fault model through the following axiom. This axiom uses Separation
Logic’s separating conjunction P ∗ Q to express the fact that both P and Q are
true and that they describe disjoint subsets of the fault state.

∀φ1, φ2. hapφ1 ∗ hapφ2 −∗ (idφ1 ∨ idφ2)

This axiom says that, of any two fault functions in the fault state, at least one is
the identity 5. The separating conjunction in hapφ1 ∗ hapφ2 guarantees that φ1

and φ2 do not refer to the same fault function instance in the fault state.
Using the proper Hoare rule for fault and this axiom about the SWC fault

model, the example from the previous section works perfectly.

Example 2.
{true}m
{∀φ2, φ1. hapφ2 ∗ hapφ1 −∗ idφ1 ∨ idφ2}m (by above property)
{∀φ2, φ1. hapφ2 ∗ hapφ1 −∗ φ1 3 = 3 ∨ φ2 3 = 3}m
{∀φ2. hapφ2 −∗ ∀φ1. hapφ1 −∗ φ1 3 = 3 ∨ φ2 3 = 3}m

x = 3; y = 3; {∀φ2. hapφ2 −∗ ∀φ1. hapφ1 −∗ φ1 x = 3 ∨ φ2 y = 3}m
fault x,y; {x = 3 ∨ y = 3}m

5 The reader may note that the two fault functions added to the fault state in the
antecedent of this axiom are not ”used” in the consequent. This is allowed, since, as
can be seen in Section 4.3, our logic is an affine logic rather than a linear logic such as
Separation Logic.
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The SEU fault model allows for even more powerful properties, such as:

∀ f , x. f x , x(mod 3) iff faulty f

which says that if there is a single bit flip in a variable (the only fault allowed in
the SEU model), then difference between the changed variable and its original
value is not divisible by 3, as it is a power of 2.

We use this property to prove that a simple example using an AN code is
fault tolerant [5]. An AN code is a fault tolerant encoding of integers. To encode
an integer encoded in base two, it is multiplied by a number that is relatively
prime to two (in this case three). This way, any legal code word is a multiple of
three. Any bit single flip will result in a number that is not a multiple of three
and thus can be detected. What makes this code so useful is that it commutes
with addition:

3 · (a + b) = 3a + 3b.

This way, additions can be done efficiently on encoded numbers with regular
hardware and the results can be checked for errors.

In Figure 4, we show that when using an AN code, only two independent
copies of a computation are required to recover from a single bit flip fault,
assuming no faults during the recovery code. The example code simply sets
the variable y to be three times its initial value (while x remains at the same
initial value). It then loops, waiting for a fault. The code checks whether the
fault occurred in x or y and sets the faulty variable from the unaffected one.

Note that this example uses the standard Separation Logic frame rule

Hfaultframe
{P}fault x{Q}m x < fv(R)

{P ∗ R}fault x{Q ∗ R}m

which we will prove later. The frame rule allows modular reasoning—if an
unrelated assertion is separated from the one currently being considered, then
it is unaffected. This is very useful in proofs of many fault tolerance properties
including those involving independent redundant computations.

Our logic can also be used with a fault model allowing two arbitrary faults
in a single program run. This results in an axiom very similar to that we had for
the SWC model. The axiom appears below.

∀φ1, φ2, φ3. hapφ1 ∗ hapφ2 ∗ hapφ3 −∗ (idφ1 ∨ idφ2 ∨ idφ3)

Except for the addition of a third assignment and thus a third fault function, the
example proceeds exactly like Example 1.

Example 3.
{true}m
{∀φ3, φ2, φ1. hapφ3 ∗ hapφ2 ∗ hapφ1 −∗ idφ1 ∨ idφ2 ∨ idφ3}m

(by the above axiom)
{∀φ3, φ2, φ1. hapφ3 ∗ hapφ2 ∗ hapφ1 −∗ φ11 = 1 ∨ φ21 = 1 ∨ φ31 = 1}m
{∀φ3. hapφ3 −∗ ∀φ2. hapφ2 −∗ ∀φ1. hapφ1 −∗ φ11 = 1 ∨ φ21 = 1 ∨ φ31 = 1}m

x=3;y=3;z=3 {∀φ3. hapφ3 −∗ ∀φ2. hapφ2 −∗ ∀φ1. hapφ1 −∗ φ1x = 1 ∨ φ2 y = 1 ∨ φ3z = 1}m
fault x,y,z {x = 1 ∨ y = 1 ∨ z = 1}m
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{x = n ∗ y = n}m
y = 3*y; {x = n ∗ y = 3n}m

{∃g1, g2.hap g1 ∗ hap g2 ∗ y = g2(3n) ∗ x = g1n})
while (y=3x) {y = 3x & (∃g1, g2.hap g1 ∗ hap g2 ∗ y = g2(3n) ∗ x = g1n)}m
do {(y = 3x & y = 3n) ∨ (y = 3x & x = n)}m

{y = 3n & x = n}
{∀g3, g4.hap g3 ∗ hap g4 −∗ hap g3 ∗ hap g4 ∗ g3 y = g3(3n) ∗ g4x = g4n}m
{∀g3, g4.hap g3 ∗ hap g4 −∗ ∃g1, g2.hap g1 ∗ hap g2∗

g3 y = g2(3n) ∗ g4x = g1n}m
fault x,y; {∃g1, g2.hap g1 ∗ hap g2 ∗ y = g2(3n) ∗ x = g1n)}m

{y , 3x & (∃g1, g2.hap g1 ∗ hap g2 ∗ y = g2(3n) ∗ x = g1n)}m
{(y mod 3 = 0 & y = 3n) ∨ (y mod 3 , 0 & x = n)}m

if (y mod 3=0) {y mod 3 = 0 & ((y mod 3 = 0 & y = 3n) ∨ (y mod 3 , 0 & x = n))}m
then {y/3 = n}m
y = y/3; {y = n}m �m {y = n ∗ y = n}m
x = y; {x = n ∗ y = n}m
else {y mod 3 , 0 & ((y mod 3 = 0 & y = 3n) ∨ (y mod 3 , 0 & x = n))}m

{x = n}m
{x = n ∗ x = n}m

y = x; {x = n ∗ y = n}m
{x = n ∗ y = n}m

Fig. 4. Proving a use of AN codes to be fault tolerant under the SEU fault model, m

4.3 Formal Assertion Semantics

The assertions of our Hoare Logic are based on those of the Separation Logic of
Ishtiaq, O’Hearn, and Reynolds [8, 9] with the current fault state taking on the
role that the heap has in Separation Logic.

Assertion semantics are defined according to a judgment F; V �m P between
a fault model m, well-formed fault state, an environment, and an assertion.
This judgment is defined in Figure 5. Note that these semantics depend on the
definition of the well-formedness judgment F okm, which varies according to
the fault model being considered. The novelty of these assertions lies in the
interaction of the atomic assertions with the Separation Logic connectives ∗ and
−∗.

The fault state directly affects only the atomic assertion hap f , as the asser-
tions faulty f and id f depend only on the function f , and the equality assertion
between expressions depends on the environment but not the fault state. Fur-
thermore, the logic is affine: the hap f assertion uses up an occurrence of the
function f in the fault state, but the function’s appearance in the fault state does
not require that it is used by a hap f . Thus the predicates describe a subset of all
elements of the fault state (and possibly additional identity functions).

The purpose of the separating implications is to reason about adding fault
functions to states. The separating conjunctions allow reasoning about fault
functions that are distinct elements of the fault state. With −∗ we can capture
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the notion of adding a fault function to the fault state. For example, F; V �m

hap f −∗ P says that P holds if f is added to the fault state (more precisely, in any
fault state containing F plus a copy of f ). Similarly, ∗ allows us to reason about
multiple separate fault functions. The statement F; V �m hap f ∗hap g −∗ id f∨id g
says that if two fault functions are added to the fault state, then at least one of
them is the identity. This statement holds under the SWC fault model.

Unlike the heap contents in Separation Logic, fault functions do not refer
to one another and there is no way to modify fault functions in our logic. As
such, the complex descriptions of heap structure in Separation Logic have no
analogue here. This is a good thing, as the large number of fault functions
corresponding to possible faults are complex enough.

F; V �m P
F; V �m ∀x. P iff F okm and for all n, F; V �m P[n/x]
F; V �m ∃x. P iff F okm and there exists n such that F; V �m P[n/x]
F; V �m ∀φ. P iff F okm and for all f , F; V �m P[ f/φ]
F; V �m ∃φ. P iff F okm and there exists f such that F; V �m P[ f/φ]
F; V �m hap f iff F okm and f ∈ F or f = λx.x
F; V �m id f iff F okm and f = λx.x
F; V �m faulty f iff F okm and f , λx.x
F; V �m P1 ∗ P2 iff F okm and there exist F1 and F2 such that

F = F1 + F2, F1; V �m P1, and F2; V �m P2

F; V �m P1 −∗ P2 iff F okm and for all F′, if F + F′ okm and F′; V �m P1,
then F + F′; V �m P2

F; V �m E1 = E2 iff F okm and [[E1]]V = [[E2]]V

F; V �m P1 ∨ P2 iff F okm and F; V �m P1 or F; V �m P2

F; V �m P1 & P2 iff F okm and F; V �m P1 and F; V �m P2

F; V �m ¬P iff F okm and F; V 2m P
F; V �m true iff F okm

F; V �m false iff never

Fig. 5. Assertion Semantics

4.4 Properties

Let fv(P) for a proposition P represent the free variables of P. Semantic entail-
ment, P �m Q, holds between two formulae under the fault model m iff for all
F and V such that fv(Q) ∪ fv(P) ⊆ dom V, F; V �m Q whenever F; V �m P. The
resulting logic has the following useful properties:

Proposition 1.

– ∗ is commutative and associative with unit true.
– If P ∗Q holds, then so does P.
– P ∨ P is equivalent to P.
– If P′ �m P and Q′ �m Q, then P′ ∗Q′ �m P ∗Q.
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– In any state, if ∀φ1, φ2. hapφ1 ∗ hapφ2 −∗ P holds, then so does ∀φ1. hapφ1 −∗

∀φ2. hapφ2 −∗ P.
– faulty f , id f , and equality of expressions are independent of well-formed fault states.
– If F1 + F2 okm and F1,V �m P, then F1 + F2,V �m P.

Proof. Immediate using the semantics of assertions.

Lemma 1. For all assertions P, fault states F, environments V, variables x, and ex-
pressions E, F; V �m P[E/x] iff F,V[x 7→ E] �m P.

Proof. By induction on structure of P, simultaneously for the if and only if
directions. This is necessary to get the inductive hypothesis in both directions
for the −∗ case.

Proposition 2. The Hoare Logic fault rule, Hfault, is sound with respect to the asser-
tion semantics.

Proof. By induction on the derivation of {P}fault x{Q}m. Uses the above sub-
stitution lemma for the fault rule case.

Proposition 3. The fault rule generates the weakest precondition, in the strong sense
that for any F and V that do not entail the precondition, and any F′ and V′ such
that (F,V, fault x) 7−→ (F′,V′, − ), it is the case that F′; V′ does not entail the
postcondition.

Proof. Easy proof from the definitions.

For every statment but the fault statement, the frame rule is standard. Here
we verify that the frame rule holds for the fault statement as well.

Proposition 4. The frame rule holds for the fault statement:

{P}fault x{Q}m
{P ∗ R}fault x{Q ∗ R}m

x < fv(R)

Proof. By induction on the derivation of {P}fault x{Q}m.

5 Taming Proof Complexity

The large number of fault functions generated by the fault rule can make it
difficult to manage proofs in the program logic. Even quite simple programs
can require manipulation and reasoning about many fault functions. For ex-
ample, the program in Figure 6 redundantly computes a single addition three
times and compares the results. Even such a simple program generates a large
and unwieldy precondition that includes nine different universally quantified
variables. Fortunately, though the apparent complexity grows quickly, the rea-
soning itself is relatively simple. In this section, we show how to tame such
complexity by introducing a new modal operator.
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{a0 = a & a1 = a & a2 = a & b0 = b & b1 = b & b2 = b}m
... (sequence of entailments elided)
{∀φa0

, φb0
. ∀φa1

, φb1
. ∀φa2

, φb2
. ∀φ0, φ1, φ2. hap (φa1

) ∗ hap (φb1
)

∗hap (φa2
) ∗ hap (φb2

) ∗ hap (φ0) ∗ hap (φ1, φ2}) −∗
(φ1(φa1

a1 + φb1
b1) = φ2(φa2

a2 + φb2
b2) & φ1(φa1

a1 + φb1
b1) = a + b)∨

(φ1(φa1
a1 + φb1

b1) , φ2(φa2
a2 + φb2

b2) & φ0(φa0
a0 + φb0

b0) = a + b)}m
fault a0, b0;

a0 = a0 + b0;

fault a1, b1;

a1 = a1 + b1;
... (this is the complex part)

fault a2, b2;

a2 = a2 + b2;

fault a0, a1, a2;

{(a1 = a2 & a1 = a + b) ∨ (a1 , a2 & a0 = a + b)}m
if a1=a2

then a0 = a1;
...

else skip;

{a0 = a + b}m

Fig. 6. An elided version of a complicated example with m = SWC fault model

5.1 The Possibility Modality

To eliminate the need to deal with universally quantified fault functions directly,
we have hidden them inside a modal operator�P, read ”maybe P” and meaning
“P is true in the absence of faults.” More precisely, �P says that either P is true,
or a fault has occurred.

�P
def
= (∃φ. hapφ ∗ faultyφ) ∨ P

The key property of� is its relation to the fault statement in our Hoare Logic.
The modality � allows for a simple Hoare rule, as fault x preserves �P for any
P.

Proposition 5. {�P}fault x{�P}m is valid for all P.

Proof. This follows by proving that the precondition obtained by applying the
Hfault rule to �P implies �P. Uses substitution lemma 1.

By combining this Hoare rule with the frame rule for fault x, we obtained

{�P ∗Q}fault x{�P ∗Q}m

whenever x < fv(Q). These �-based Hoare rules for the fault statement do not
contain any explicit fault functions, allowing us to ignore the fault functions in
cases when the new rules apply.

Under the SWC fault model an additional and quite useful property holds:
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Proposition 6. Under the SEU fault model

�P ∗ �Q �m P ∨Q

and, in a generalized form:

∗ni=1 � Pi �m

n∨

j=1

&i={1,...,n}\{ j} Pi

Proof. By case analysis on whether and where a fault occurs.

This enables the easy derivation of useful postconditions to programs us-
ing modular redundancy. Using this rule with the Hoare rule involving �,
we can derive postconditions such as those of the form 〈result is correct〉 ∨
〈other result is correct〉 where the two results come from modular computa-
tions.

With�, the rough example from Section 5 is much simpler, as seen in Figure 7.
Though still relatively long, this proof is quite simple and regular. There is not
a single visible quantifier or fault function in the proof. What was formerly the
most complex part of the proof now only has one simple assertion per line of
code.

{a0 = a & a1 = a & a2 = a & b0 = b & b1 = b & b2 = b}m
{a0 + b0 = a + b ∗ a1 + b1 = a + b ∗ a2 + b2 = a + b}m
{�a0 + b0 = a + b ∗ �a1 + b1 = a + b ∗ �a2 + b2 = a + b}m

fault a0, b0; {�a0 + b0 = a + b ∗ �a1 + b1 = a + b ∗ �a2 + b2 = a + b}m
a0 = a0 + b0; {�a0 = a + b ∗ �a1 + b1 = a + b ∗ �a2 + b2 = a + b}m
fault a1, b1; {�a0 = a + b ∗ �a1 + b1 = a + b ∗ �a2 + b2 = a + b}m
a1 = a1 + b1; {�a0 = a + b ∗ �a1 = a + b ∗ �a2 + b2 = a + b}m
fault a2, b2; {�a0 = a + b ∗ �a1 = a + b ∗ �a2 + b2 = a + b}m
a2 = a2 + b2; {�a0 = a + b ∗ �a1 = a + b ∗ �a2 = a + b}m
fault a0, a1, a2; {�a0 = a + b ∗ �a1 = a + b ∗ �a2 = a + b}m

P
def
= {(a1 = a2 & a1 = a + b) ∨ (a1 , a2 & a0 = a + b)}m

if a1=a2

{a1 = a2 & P}m
{a1 = a + b}m

then a0 = a1; {a0 = a + b}m
{a1 , a2 & P}m
{a0 = a + b}m

else skip; {a0 = a + b}m
{a0 = a + b}m

Fig. 7. The previous example, but smoother, m = SWC fault model
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6 RSA Sign/Verify

We now describe a more realistic example using the RSA Sign/Verify algorithm,
one of many algorithms used to authenticate messages using digital signatures.
RSA is a very widely used public key encryption system based on the difficulty
of factoring a product of two large primes, n = p · q. A public and private key,
called e and d, respectively, are generated such that e ·d ≡ 1 mod ((p−1) ∗ (q−1)).
When used for digital signatures, a signature is created by starting with a hash
of the message and exponentiating it by raising it to the power given by the
private key, modulo p·q. The message and signature are then sent out. A recipient
can verify the sender of the message by raising the signature to the power of the
public key, modulo p ·q, and comparing this to the hash of the received message.

A common implementation of RSA uses the Chinese remainder theorem to
speed up the exponentiation. The exponentiation is done twice, once modulo p
and once modulo q. Then the results are multiplied by precalculated constants
and added together. The same number of multiplications must be calculated,
but the numbers are half the length in bits, so each multiplication takes about a
quarter of the time. Thus there is an overall speedup of about 4.

However, Boneh and DeMilo showed that a single fault during execution
of the Chinese remainder theorem algorithm for RSA not only fails validation,
but can also compromise the secret key. As such, it is important to protect the
algorithm with appropriate redundancy. One way to do so is to use a calculate-
and-check form of fault tolerance where the check is simply the verify portion of
the RSA algorithm. The verify step is also particularly fast, as the exponent used
to decrypt the signature, e, is chosen so that it has a short bit length (commonly e
is 65537, 17 bits long), enabling a very quick exponentiation. Using our system,
we have proven the version of the RSA Sign/Verify algorithm appearing in
Figure 8 fault tolerant with respect to the SWC Fault Model.

7 Certifying Compilation with Triple Modular Redundancy

In addition to being used as a standalone logic for proofs about fault tolerant
programs, our logic can be used within the context of a certifying compiler to
guarantee the compiler outputs fault tolerant code. To demonstrate this idea,
we have developed a formal translation from ordinary, non-fault-tolerant Hoare
triples, proven sound using conventional Hoare rules, into fault-tolerant Hoare
triples proven sound with respect to the SWC fault model in our logic. The com-
piler achieves generic fault tolerance by adding triple modular redundancy to
the program. In other words, each subexpression is recomputed three times and
the results are compared to detect faults. Figure 9 presents the translation, which
is composed of independent judgements for translating expressions (B{ B′ for
booleans and E { (E1,E2,E3) for integer expressions (there is one translated
expression for each redundant computation)), statements (S { S′), and Hoare
triples ({P}S{Q}m { {P

′}S’{Q′}m). The top level translation of Hoare triples is
performed according to the rule Ttriple, the program being translated according
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{(∀x, c ∈ V : ce = x(mod n)→ c = xd(mod n)) ∗ d < 2512 ∗ e < 217 ∗ ev = e ∗ nv = p · q ∗ s2 =
1 ∗ i2 = 17 ∗ mv2 = m ∗ (∀s1, s2, x.s1 = xdp (mod p) ∗ s2 = xdq (mod q) −∗ a · s1 + b · s2 =

xd(mod p · q)) ∗ av = a ∗ bv = b ∗ dvq = dq ∗ qv1 = q ∗ mvq = m ∗ d < 217 ∗ sp = 1 ∗ dvp =
dp ∗ pv1 = p ∗ mvp = m ∗ ip := 511}

Calculate signature modulo p.
fault ip

while ip > -1

fault sp, pv1

sp := sp*sp (mod pv1)

fault dvp, ip

if dvp & (1 << ip) != 0:

fault sp, mv, pv1

sp := sp * mv (mod pv1)

else:

skip

fault ip

ip--

fault ip

Calculate signature modulo q.
fault iq

while iq > -1

fault sq, qv1

sq := sq*sq (mod qv1)

fault dvq, iq

if dvq & (1 << iq) != 0:

fault sq, mvq, qv1

sq := sq * mvq (mod qv1)

else:

skip

fault iq

iq--

fault iq

Combine results to get actual signature.
fault sp, av

tp := sp * av

fault sq, bv

tq := sq * bv

fault tp, tq

s := tp + tq

Check for errors by performing verify.
good := 1

fault s

out := s

fault i2

while i2 > -1:

fault s2, nv2

s2 := s2*s2 (mod nv2)

fault ev2, i2

fault ev2, i2

if ev & (1<<i2) != 0:

fault s2, out, nv2

s2 := s2 * out (mod nv2)

else:

skip

fault i2

i2--

fault i2 fault mv2, s2

if mv2 != s2:

good := 0

else:

skip

{good = 0 ∨ s = md(mod n)}

Fig. 8. RSA Message Signing with Chinese Remainder Theorem, Fault Tolerant, SWC
Fault Model
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Translation of Boolean and Integer Expressions:
Tbool

B{ majority-vote (B1,B2,B3)
where Bi is B with an i subscript added to each variable name.

Texpr
E{ (E1,E2,E3)

where Ei is E with an i subscript added to each variable name.

Translation of Imperative Statements:

Twhile
B{ B′ S{ S′

while B do S{ fault f v(B′) ; while B′ do (S′ ; fault fv(B′))

Tseq
S{ S′ T{ T′

S ; T{ S′ ; T′

Tif
B{ B′ S{ S′ T{ T′

if B then S else T{ fault f v(B′) ; if B′ then S′ else T′

Tskip
skip{ skip

Tasgn
E{ (E1,E2,E3)

x := E{ fault f v(E1) ; x1 := E1 ; fault f v(E2) ; x2 := E2 ; fault f v(E3) ; x3 := E3

Translation of Hoare triples:

Let convert[P]
def
= ∃x′. � (x1 = x′) ∗�(x2 = x′) ∗�(x3 = x′) ∗ P[x′/x] where x is the vector of

program variables in P.

Ttriple
S{ S′

{P}S{Q}{ {convert[P]}S′{convert[Q]}m

Fig. 9. Translation from Program and Specification in standard Hoare logic to Triple
Modular Redundant Program in our logic

to the rules for translating statements and the precondition and postcondition
being converted by the convert predicate.

The most interesting aspect of the translation is the coding of triple modular
redundancy in our assertion logic: Given a standard assertion P(x), which refers
to some (non-fault-tolerant) program variable x, the translated assertion will
have the form ∃x′. � (x1 = x′) ∗ �(x2 = x′) ∗ �(x3 = x′) ∗ P[x′/x]. Intuitively,
this assertion states that states that P(x′) will be true and x′ may be equal to
any one of three redundant versions of the original variable x, called x1, x2, and
x3. Additionally, when working in the SWC fault model, at most one of x1, x2,
or x3 will not be equal to x′, allowing us to conclude at least two of the three
assertions P(x1), P(x2) and P(x3) are true. By comparing x1, x2, and x3 to each
other, one can determine which (if any) variables are faulty and hence which
predicates are true.

Proposition 7. Given a valid standard Hoare triple as input, the translation produces
a valid logic Hoare triple in our logic as output.

8 Related Work

There are many existing methods for mitigating the effects of transient faults,
using both hardware mechanisms, software mechanisms, and combinations of
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the two. For example, many solutions in software [10–13] require the compiler to
duplicate computations and to insert comparisons to ensure that the two copies
remain in agreement. Such techniques are usually evaluated experimentally
using random fault injection, which shows that these solutions handle large
classes of faults, but gives no hard and fast semantic guarantees about program
behavior.

The SymPLFIED system [14] is a notable exception to the practice of random
fault injection. SymPLFIED uses model checking to iterate through all possible
hardware faults and to determine whether such faults can lead to catastrophic
outcomes in the application being analyzed. SymPLIFIED has a significantly
richer error model than the ones treated in this paper as it considers memory
errors and control-flow errors. On the other hand, SymPLIFIED does not come
with a program logic, like the one defined in this paper, that makes it possible to
judge whether a program satisfies some general-purpose logical specification.

Another closely related line of research involves the development of type
systems for checking fault tolerance properties. For example, the faulty lambda
calculus, λzap [15], uses a type system to ensure its programs use triple modular
redundancy properly. Elsman [16] shows how to extend that calculus with
simplified error detection operations. More recent work applies these abstract,
high-level ideas directly to assembly langauge [17, 18]. The main drawback of
these type-based approaches is that each new fault tolerance scheme requires
its own type system. In contrast, this paper proposes a more general logical
framework for understanding how transient faults affect software behavior.

9 Conclusion

While development of most applications does not require reasoning about tran-
sient hardware faults, there are several domains in which such faults can cause
substantial problems. One domain of particular interest is in the development
of cryptographic algorithms where recent research has shown that even a single
fault induced by an attacker is often sufficient to break the security of well-
known algorithms such as RSA and DES.

This paper makes initial progress in the development of a framework for
verifying such programs. It shows how to extend the operational semantics of
a simple language of while programs with standard fault models and develops
a variation of Separation Logic to reason about these programs and their faults.
It also shows how to define and use a modal operator to simplify certain proofs
of fault tolerance. Finally, the paper presents two illustrative applications of the
logic: one involving a fault tolerant version of RSA and a second involving a
compiler transformation that introduces triple modular redundancy.
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