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Abstract

We develop an explicit two-level system that allows programmers to reason about the be-
havior of effectful programs. The first level is an ordinary ML-style type system, which confers
standard properties on program behavior. The second level is a conservative extension of the
first which uses a logic of type refinements to check more precise properties of program behavior.
Our logic is a fragment of intuitionistic linear logic, which allows us the ability to reason locally
about changes of program state. We provide a generic resource semantics for our logic as well as
a sound, decidable syntactic refinement checking system. We also prove that refinements give
rise to an optimization principle for programs. Finally, we illustrate the power of our system
through a number of examples.
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1 Introduction

One of the major goals of programming language design is to allow programmers to express and
enforce properties of the execution behavior of programs. Conventional type systems, especially
those with polymorphism and abstract types, provide a simple yet remarkably effective means of
specifying program properties. For instance, we can normally prove that any program with integer
type will either diverge or actually return an integer, rather than a boolean or character. We can
also lift such properties to terms or values with higher type, which provides us with a mechanism to
reason about the behavior of functions.

In recent years, there has been substantial interest in formulating refinements of conventional
types that allow programmers to specify more precise properties of program data than are implied by
ordinary Java- or ML-style type systems. For example, Xi and Pfenning [XP99] popularized the use
of singleton types to reason exactly about the values bound to variables or produced by computations.
They also present compelling applications including static array-bounds checking [XP98].
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In order for a system of type refinements to be of practical use, we claim that it must satisfy two
criteria.

1. The system must be a conservative extension of the underlying type system. In other words,
type refinements should refine the information provided by the underlying conventional type
system rather than replace it with something different. The principle of conservative extension
makes it possible for programmers to add type refinements gradually to legacy programs or
to developing programs to make these programs more robust. Adding type refinements to a
program should not invalidate or contradict previous reasoning principles.

2. The system should support modular or local reasoning. In any given program, there will be
many invariants that a programmer might need to reason about. However, any single program
part might only depend upon a few of these invariants. In such program parts, it should be
possible to reason about local behavior based exclusively on these few invariants rather than
the many.

Systems such as Xi and Pfenning’s dependent types [XP99] satisfy both these criteria. Their
system is a conservative extension of ML and when reasoning about whether an array index is in
bounds (for instance), one only requires refinements concerning the particular array and the index
in question. One need not specify conditions about all arrays or about all integers that appear
anywhere in a program.

Still, Xi and Pfenning’s dependent type system and related work [Den98, Aug99, CW99, DP00]
are only able to capture properties of values and pure computations, rather than properties of
effectful computations. For example, they are unable to describe protocols that require effectful
functions to be used in a specified order. This property implies that these systems cannot be used
to enforce important invariants such as the fact that that a lock be held before a data structure is
accessed or that a file is opened, read and then closed.

Ideally, we would construct a system of refinements that specify properties of the underlying
state while maintaining our two criteria. Yet, it is considerably more difficult to construct such a
system than it is to construct systems such as Xi and Pfenning’s, which only specifies properties of
pure computations. The primary difficulty lies in the fact that semantics for stateful computations
thread the entire state along the evaluation path of the program. Hence, it would seem as though
any refinement of this state should capture and maintain all of the properties that may be needed
at some future point in the computation. In other words, at a first glance, one might guess that
refinements for state will violate our second condition.

Fortunately, the single “state” of a computation may often be viewed as a structured object
with many parts. Moreover, a particular part of a computation will often depend only upon a
few parts of the state and leave the rest untouched. The key to achieving a practical, modular
system of refinements is to develop a logic that supports local reasoning about state. Conventional
techniques based on classical logic require global reasoning in the sense that assertions are (and must
be) understood as describing the entire state of the computation. This works fine for simple while
programs, since then it is feasible to consider all program variables at once. But in more complex
programs this is clearly infeasible, and in any case is incompatible with modularity.

To achieve local reasoning we must employ a logic that allows us to make assertions about
a “piece” of the program state, without resorting to mentioning all of it. Classical logic fails to
support local reasoning! The reason can be traced back to the validity, in classical logic, of the
entailments A ` A ∧ A and A ` >. The former allows the free replication of assertions such as
“location l contains 7”, and the latter allows us to “forget” such assertions entirely. While at
first this may seem harmless, these conventional reasoning principles create fundamental difficulties
for local reasoning. In particular, it is impossible to axiomatize state-changing operations such as
assignment by entailments between pre- and post-conditions, creating a rift between the steps of
computation and the associated steps of reasoning.
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To support local reasoning about state requires an unconventional logic in which such funda-
mental entailments are not valid. One such logic is linear logic [Gir87], but others, such as bunched
implications [OP99, IO01], have also been proposed. What these logics have in common is fine-
grained control over replication and neglect of assertions so that a natural correspondence between
reasoning and computation may be achieved. In this paper we employ a fragment of linear logic
that is adequate for many practical purposes, as we will see in Section 4 below.

In summary, this work makes the following main contributions.

• We formalize the notion of a type refinement and construct a two-level system for checking
properties of programs. The first level involves simple type checking and the second level intro-
duces a logic of refinements for reasoning about program properties that cannot be captured
by conventional types. We establish a formal correspondence between the level of types and
our more precise level of logic of refinements. Only Denney [Den98] has explicitly considered
such a two-level system in the past, but he restricted attention to pure computations.

• The computational lambda calculus [Mog91] serves as our basic linguistic framework and our
logic of refinements enables programmers to reason locally about effectful computations. We
parameterize this base language with a set of abstract base types, effectful operators over these
types, and possible worlds. Consequently, our theorems hold for a very rich set of possible
effects and effectful computations. We have also worked hard to separate our central type
checking rules from the specifics of the logic of refinements. Our theorems will hold for a
variety of fragments of linear logic and we conjecture that similar substructural logics can be
used in its place with little or no modification to the core system.

• We have identified a crucial locality condition concerning the behavior of effectful operators that
is necessary for soundness in the presence of local reasoning. We have proven the soundness
of refinement checking in the presence of this locality condition. The soundness of refinement
checking not only provides a means for checking certain correctness criteria, it also entails
an optimization principle for effectful operators. We prove this optimization principle as a
corollary.

• We develop an algorithmic refinement checking system that is both cut-free and subsumption-
free, utilizing programmer annotations. We prove it both sound and complete with respect to
our original system.

• We provide a number of examples to demonstrate the expressiveness of our system. Our
refinements appear to subsume the state-logic used in the Vault programming language [DF01]
(although our idealized language does not contain the array of data structures present in Vault,
or the specialized type inference techniques). Hence, our system suggests a semantics for an
important fragment of Vault.

Within the last year or so, several type systems for checking properties of programs involving
state have been developed. However, these other proposals are either designed for very specific
applications rather than general effects [WCM00, NMW02, GMJ+02], are undecidable [fJ02, IO01],
or use a less general logic [DF01, FTA02]. Overall, the goal of the current paper is to complement this
exciting surge of research by providing a general, robust and extensible theory of type refinements
that captures sound techniques for local reasoning about program state.

In the remainder of this paper, we introduce our parameterized base language and its conventional
type system (Section 2). In Section 3, we provide the syntax for general first-order refinements and
provide a semantics for world (state) refinements. Also in this section, we define a declarative
system for our language and a corresponding algorithmic system for a new, annotated version of
our language. The new system is used for deciding type refinement judgments on annotated terms.
Finally, we show that our refinements are a conservative extension of the underlying type system,
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and prove that our algorithmic system is sound and that refined operators may be optimized. In
Section 4 we provide a series of simple examples to show how our refinements may be used. In the
last section, we discuss variants of our system and indicate our current research directions. We also
comment further on related work and provide some conclusions.

2 Base Language

We use Moggi’s computational λ-calculus [Mog91] as a basic linguistic framework, as reformulated by
Pfenning and Davies [PD01]. The framework is enriched with a base type of booleans and recursive
functions. In order to consider a variety of different sorts of effects, we parameterize the language
by a collection of abstract types a, constants c with type a and a set of multi-ary operators o over
these abstract types.

2.1 Abstract Syntax

The abstract syntax of the language is defined by the following grammar:

Types A : : = a | Bool | A1 → A2 | A1 ⇀ A2

Var’s X : : = x | y | . . .
Values V : : = X | c | true | false | λ(X).M | fun X (X1:A1) : A2 is E
Terms M : : = V | if M thenM1 elseM2 |M (M1)
Exp’s E : : = M | o(M1, . . . ,Mk) | letX beE1 inE2 end |

app(M,M1) | if M thenE1 elseE2

The binding conventions are as expected; we identify expressions up to consistent renaming of
bound variables. The type A1 → A2 is the type of “pure” functions, which always terminate without
effect, and the type A1 ⇀ A2 is the type of “impure” functions, which may not terminate and may
have an effect when applied.

Other formulations of Moggi’s computational lambda calculus include a suspended computation
{E}. Since we include a function space with an impure body, we do not need to include sus-
pended computations explicitly. We may encode the suspended computation {E} with the function
λx:Bool.E where x 6∈ FV(E) and λx:A.E is an abbreviation for a recursive function in which the
function name X does not appear in the body.

2.2 Abstract Resources

The language is parameterized by a set of operators that manipulate some abstract resource or set
of resources. We may reason about an instance of the language by specifying an interface Σ for
and implementation M of these operators and resources. In the future, we intend to extend our
language with a full-fledged module system and an internal means of defining new resources.

An interface Σ defines a set of abstract types B, a set of constants C, and a set of operators O.
The interface also provides a signature ΣA that gives types to the constants and operators. When
we come to checking refinements, we will do so with respect to a set of predicates P, an interface
Σp to specify the types of predicate arguments and, finally, a signature Σφ to define the refinements
for each constant or operator.

An implementation M = (W, T ) defines a set W of worlds w, and a transition function T that
specifies the behavior of the operators over constants of the appropriate types.

A world w is a pair (Per(w),Eph(w)) where Per(w) is a set of persistent facts and Eph(w) is a
multiset of ephemeral facts. Below, we will define an accessibility relation on worlds that relates a
world w to its possible future worlds (i.e., to any world that could be reached through a computation
starting with w). It will be the case that the persistent facts of one world will remain true in all its
possible future worlds. The ephemeral facts of a world may or may not hold in its future worlds.
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Interface Contents

B Base Types
C Constant Names
O Operator Names
ΣA Constant and Operator Types
P Predicates
Σp Predicate Types
Σφ Constant and Operator Refinements

Implementation Contents

W Worlds
Per(w) w’s Persistent Facts
Eph(w) w’s Ephemeral Facts
T (o) o’s Behavior

Figure 1: Language Parameters

The notation w1 + w2 denotes a world containing the union of the persistent facts from w1 and
w2, and the multi-set union of ephemeral facts from w1 and w2. We also define the notation w ∪ S,
where S is a set of (persistent) facts, to be (Per(w)∪ S,Eph(w)). We write S\S′ for set or multi-set
difference.

If an interface specifies that an operator has type a1, . . . ,an ⇀ a then the transition function T (o)
is a total function from a sequence of constants with types a1, . . . ,an and world w to a constant with
type a and world w′. We use the symbol ⇀ to note that while these operators always terminate, they
may have effects on the world. We require that these functions act monotonically on the persistent
facts in the world. In other words, if T (o)(c1, . . . , cn, w) = (c, w′) then Per(w) ⊆ Per(w′).

The transition function T (o) must also obey a locality condition. In general, it may only have
an effect on a part of the world, rather than the entire world. Most operators that one would like
to define obey this locality condition. However, some useful operators do not. For example, in our
system, programmers may not reason statically about a function such as gc(roots), which deletes all
resources except the resources referenced from the variable roots. We defer a formal explanation of
this condition to Section 3.7 where we prove the soundness of refinement checking.

We derive an accessibility relation on worlds from the transition functions. We say that wn+1

is a possible future world of w1 and write w1 ≤ wn+1 when there exists some set of operators and
constants such that

T (o1)(~c1, w1) = c′1, w2

. . .
T (on)( ~cn, wn) = c′n, wn+1

This clearly defines a pre-order. Notice that if w ≤ w′ then Per(w) ⊆ Per(w′).
We summarize the language parameters in Figure 1.
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Example: Integer References As a typical example of effectful computation, we consider pa-
rameterizing the language with allocation and assignment to integer references. We require three
base types, a type for integers int, the type for integer references int ref and the unit type unit. Our
constants include the integers i, a countable set of locations for storing integers (we use metavariable
` to range over locations) and a unit value (). We use new , set and get for allocation, assignment
and dereference respectively. The signature ΣA provides the usual types for these operations.

ΣA(()) = unit
ΣA(i) = int
ΣA(`) = int ref
ΣA(new ) = (int) ⇀ (int ref)
ΣA(get ) = (int ref) ⇀ (int)
ΣA(set ) = (int, int ref) ⇀ (unit)

We use two different predicates to capture the effect of references on the world. The predicate
alloc(`) indicates we have allocated location ` and it is in use storing an integer. We use the
predicate ctns(`, i) to denote the fact that ` contains the integer i at a particular program point.
We defer examples of possible refinements for the operators in this system until Section 4, after
specifying refinement syntax and semantics in Section 3 .

In the implementation component, we must specify the set of worlds and the behavior of the
operators. Once allocated, references are never deallocated since we haven’t included a “free” op-
eration. Therefore, the set of persistent facts for any world will contain alloc(`) for each location `
that has been previously allocated. The world will also contain an ephemeral fact ctns(`, i) for each
such location and for some integer i. The transition function T specifies the dynamic semantics
for each operator. A key aspect of this definition is that each of the operators are defined to be
total functions on the entire domain of worlds. If they were not total functions we would be unable
to prove a generic soundness theorem for our language. Later (see Section 3.9), we will prove an
optimization principle that allows programmers to replace these total functions with the appropriate
partial functions when their program has the necessary refinement.

T (new )(i, w) = (`, w′)
where Per(w′) = Per(w) ∪ {alloc(`)}
and Eph(w′) = Eph(w) + {ctns(`, i)}
and alloc(`) 6∈ Per(w)

T (get )(`, w) = (i, w)
if ctns(`, i) ∈ Eph(w) (for any i)

T (get )(`, w) = (0, w)
if ctns(`, i) 6∈ Eph(w) (for any i)

T (set )(i, `, w) = ((), w′)
if w = w′′ + {ctns(`, j)} (for any j)
and where Per(w′) = Per(w)
and Eph(w′) = Eph(w′′) + {ctns(`, i)}

T (set )(i, `, w) = ((), w)
if w 6= w′′ + {ctns(`, j)} (for any j)
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Γ, x:A `M x : A (S-T-Var)

(ΣA(c) = a)
Γ `M c : a (S-T-Const)

Γ ` true : Bool (S-T-True)

Γ ` false : Bool (S-T-False)

Γ, x1:A1 `M M : A2

Γ ` λ(x1:A1).M : A1 → A2 (S-T-Lam)

Γ, x:A1 ⇀ A2, x1:A1 `E E : A2

Γ ` fun x (x1:A1) : A is E : A1 ⇀ A2 (S-T-Fun)

Γ `M M : Bool Γ `M M1 : A Γ `M M2 : A
Γ `M if M thenM1 elseM2 : A (S-T-If)

Γ `M M : A1 → A2 Γ `M M1 : A1

Γ `M M (M1) : A2 (S-T-TApp)

Figure 2: Static Semantics of Terms

2.3 Static Semantics

The static semantics is given by the following two judgment forms.

Γ `M M : A Term M has type A in Γ
Γ `E E : A Expression E has type A in Γ

The meta-variable Γ ranges over finite functions from variables x to types A. We write such functions
according to the following grammar (where a variable x may appear at most once).

Γ ::= · | Γ, x:A

The symbol · represents the function with empty domain. Normally, when the domain is not empty,
we omit the initial “·”. We write Γ(x) for the type (if any) assigned to x by Γ.

The rules defining these judgments are given in Figures 2 and 3. They are entirely standard
and need little explanation except to say that the judgments are implicitly parameterized by the
signature ΣA.

2.4 Dynamic Semantics

The dynamic semantics is given by two evaluation judgments:

M ⇓ V the term M evaluates to value V
E@w ⇓ V @w′ in w the expression E evaluates to V and changes to w′
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Γ `M M : A
Γ `E M : A (S-E-Term)

(ΣA(c) = (a1, . . . ,an) ⇀ (a)) Γ `Mi : ai (for 1 ≤ i ≤ n)
Γ `M o(M1, . . . ,Mn) : a (S-E-Op)

Γ `E E1 : A1 Γ, x:A1 `E E2 : A2

Γ `E letxbeE1 inE2 end : A2 (S-E-Let)

Γ `M M : A1 ⇀ A2 Γ `M M1 : A1

Γ `E app(M,M1) : A2 (S-E-PApp)

Γ `M M : Bool Γ `E E1 : A Γ `E E2 : A
Γ `E if M thenE1 elseE2 : A (S-E-If)

Figure 3: Static Semantics of Expressions

The rules defining the evaluation relations are given in Figures 4 and 5. Once again, the rules
are entirely standard.

2.5 Properties

Since we are using an evaluation semantics, the proof of type safety is indirect. First, we prove a type
preservation lemma stating that the value of a term or expression has the type of the expression
itself. Second, we prove a canonical forms lemma characterizing the closed values of each type.
Third, we augment the operational semantics with rules specifying that the value of an expression
is a designated answer, wrong, in the case that the principal argument of an expression is non-
canonical. From this we may conclude that well-typed expressions do not “go wrong”. We will
consider here only the first and second steps, the third being routine.

Theorem 1 (Type Preservation)
1. If · `M M : A and M ⇓ V , then · `M V : A.

2. If · `E E : A and E@w ⇓ V @w′, then · `M V : A.

Theorem 2 (Type Canonical Forms)
If · `M V : A, then

1. if A = a, then V = c (and ΣA(c) = a);

2. if A = Bool, then V = true or V = false;

3. if A = A1 → A2, then V = λ(x1:A1).M

4. if A = A1 ⇀ A2, then V = fun x (x1:A1) : A2 is E.
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V ⇓ V (D-T-Val)

M ⇓ true M1 ⇓ V
if M thenM1 elseM2 ⇓ V (D-T-If-T)

M ⇓ false M2 ⇓ V
if M thenM1 elseM2 ⇓ V (D-T-If-F)

M ⇓ λ(x1:A1).M ′ M1 ⇓ V1 [V1/x1]M ′ ⇓ V
M (M1) ⇓ V (D-T-TApp)

Figure 4: Dynamic Semantics of Terms

M ⇓ V
M @w ⇓ V @w (D-E-Term)

Mi ⇓ ci (for 1 ≤ i ≤ n) T (o)(c1, . . . , cn, w) = c, w′

o(M1, . . . ,Mn) @w ⇓ c@w′ (D-E-Op)

E1 @w1 ⇓ V1 @w′
1 [V1/x]E2 @w′

1 ⇓ V2 @w′
2

letxbeE1 inE2 end@w1 ⇓ V2 @w′
2 (D-E-Let)

M ⇓ V0 M1 ⇓ V1 [V0/x][V1/x1]E@w ⇓ V ′ @w′

(V0 = fun x (x1:A1) : A2 is E)

app(M,M1) @w ⇓ V ′ @w′ (D-E-PApp)

M ⇓ true E1 @w ⇓ V1 @w1

if M thenE1 elseE2 @w ⇓ V1 @w1 (D-E-If-T)

M ⇓ false E2 @w ⇓ V2 @w2

if M thenE1 elseE2 @w ⇓ V2 @w2 (D-E-If-F)

Figure 5: Dynamic Semantics of Expressions
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3 Refinements

The canonical forms theorem specifies (some of) the properties that the type structure induces on
the value space. For example, values with integer type are 0, 1, 2, 3, . . . . In order to define and check
further, more specific, properties of values and also computations, we introduce a logic of refinements
that may be layered on top of the computational lambda calculus described in the previous section.

Whenever we consider the semantics of refinements or refinement checking, we presuppose that
the values, terms and expressions in question are well-formed with an appropriate type.

3.1 Syntax

A (term) refinement, or property, is a predicate over a type. A world refinement, or world property,
is a predicate over the (implicit) type of the world. Finally, an expression refinement is a predicate
over both a type and the implicit type of the world. The table below describes the syntax of term,
world and expression refinements.

Binding b : : = c:a
Term Refs φ : : = a | Bool | Its(c) | π
Function Refs π : : = φ1 → φ2 | (φ, ψ) ⇀ η | ∀b · π
World Refs ψ : : = p(c1, . . . , cn) |!p(c1, . . . , cn) |

1 | ψ1 ⊗ ψ2 | ψ1 ( ψ2 |
> | ψ1 &ψ2 | 0 | ψ1 ⊕ ψ2

Expr. Refs η : : = ∃[~b](φ, ψ)

Since we are concentrating on properties of effectful computations, we have chosen a minimalist
logic of term refinements. There is a refinement that corresponds to each type in the base language as
well as singleton types denoted Its(c). Partial functions are refined in order to specify a precondition
for the state of the world on input and a postcondition consisting of an expression refinement. The
precondition for a partial function could also have been an (existentially quantified) expression
refinement, but this extension provides no gain in expressive power. We allow function refinements
(but not other refinements) to be prefixed with first-order universal quantification.

The world refinements consist of the multiplicative-additive fragment of linear logic augmented
with intuitionistic predicates !p(c1, . . . , cn). The connectives 1, ⊗ and ( form the multiplicative
fragment of the logic whereas the connectives >, &, 0, and ⊕ are known as the additives. Both ⊗
and & are forms of conjunction. Intuitively, a world can be described by the formula ψ1 ⊗ ψ2 if it
can be split into two disjoint parts such that one part can be described by ψ1 and the other part
can be described by ψ2. On the other hand, a world satisfies ψ1&ψ2 if it can be described by both
ψ1 and ψ2 simultaneously. The formulas 1 and > are the identities for ⊗ and & respectively. The
formula ⊕ is a disjunction and 0 is its identity.

The multiplicative-additive fragment is decidable [LS94], and the intuitionistic predicates do not
change that, but were we to add freely-generated modal formulas !ψ, the logic would be undecidable.

When ~b is the empty sequence in some expression refinement ∃[~b](φ, ψ), we often use the abbre-
viation (φ, ψ). We use the notation FVc(φ) to denote the set of free variables appearing in the term
refinement φ. We use a corresponding notation for world and expression refinements. We use the
notation [c′/b]X to denote capture-avoiding substitution of c′ for c in term or world refinement X
when b = (c:a) and ΣA(c′) = a. We extend this notation to substitution for a sequence of bindings
as in [c′1, . . . , c

′
n/
~b]X or [~b′/~b]X. In either case, constants substituted for variables must have the

correct type and the sequences must have the same length or else the substitution is undefined. We
also extend substitution to persistent and ephemeral contexts in the ordinary way.

Every refinement refines a particular type. We write ~b ` φ v A and ~b ` η vE A to indicate that
a term or expression refinement refines the type A given the set of bindings ~b. Figure 6 defines this

11



~b ` Bool v Bool (Refines-Bool)

~b ` a v a (Refines-Base)

ΣA(c) = a or c:a ∈ ~b
~b ` Its(c) v a (Refines-Its)

~b ` φ1 v A1
~b ` φ2 v A2

~b ` φ1 → φ2 v A1 →A2 (Refines-TArr)

~b ` φ1 v A1
~b ` η2 vE A2

~b ` (φ1, ψ1) ⇀ η2 v A1 ⇀ A2 (Refines-PArr)

~b, c:a ` φ v A

~b ` ∀c:a · φ v A (Refines-All)

~b,~b′ ` φi v Ai (for 1 ≤ i ≤ n) ~b,~b′ ` η vE A

~b ` ∀~b′ · (φ1, . . . , φn, ψ) ⇀ η v (A1, . . . , An) ⇀ A (Refines-OpType)

~b, c:a ` ∃[~b1](φ, ψ) vE A

~b ` ∃[c:a,~b1](φ, ψ) vE A (Refines-Ex)

~b ` φ v A

~b ` (φ, ψ) vE A (Refines-ER)

Figure 6: A Refinement of a Type
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relation. The following useful lemma may be proven by induction on the structure of the refinement
in question.

Lemma 3
• If ~b ` φ v A1 and ~b ` φ v A2 then A1 = A2.

• If ~b ` η vE A1 and ~b ` η vE A2 then A1 = A2.

For every type A, there is a trivial refinement triv(A) that refines it.

triv(Bool) = Bool
triv(a) = a
triv(A1 →A2) = triv(A1)→ triv(A2)
triv(A1 ⇀ A2) = (triv(A1),>) ⇀ (triv(A2),>)

3.2 Semantics of Refinements

We were inspired to define a semantic model for our world refinements by the work of Ishtiaq and
O’Hearn [IO01]. Since Ishtiaq and O’Hearn work with bunched logic [OP99] whereas we use a
fragment of linear logic [Gir87], their model is not appropriate for our system, although there are
many similarities. One important difference between the logics is that linear logic contains the
modality !, which we use to reason about persistent facts. A notion of persistence seems essential
to allow one to reason about values, which, by their nature, remain unchanged throughout the
computation.

The semantics appears in Figure 7. The fragment of the logic without the modality ! is an
instance of Simon Ambler’s resource semantics [Amb91, p. 30-32]. It relies upon an abstract relation
. which defines the relationship between primitive facts. For example, in a system containing
arithmetic predicates such as less(x,y), the relation would include less(x, 3) . less(x, 5). In most of
our examples, the relation . will simply be the identity relation. In other words, our predicates are
usually left uninterpreted.

The semantics of world refinements is extended to closed persistent contexts Ω (lists of predicates
p(~c)) and ephemeral contexts ∆ (lists of world refinements) below. We treat both kinds of contexts
as equivalent up to reordering of their elements.1

w �Ω Ω iff Per(w) ⊇ Ω
w �∆ · iff Eph(w) = ∅
w �∆ ψ1, . . . , ψn iff there exist w1, . . . , wn such that
w = w1 + · · ·+ wn

w1 � ψ1 · · ·wn � ψn

w � Ω; ∆ iff w �Ω Ω and w �∆ ∆

An important point to notice in the semantic definition is that if a given world satisfies a formula
or context, then we can always add more persistent facts to the world and it will continue to satisfy
the given formula or context. In other words, the persistent facts satisfy the following monotonicity
property.

Lemma 4 (Monotonicity of Persistent Facts)
If (Per(w),Eph(w)) � ψ then for any set S, (Per(w) ∪ S,Eph(w)) � ψ.

1When we extend Ω to open contexts which include constant declarations, reordering must respect the dependencies
introduced by such declarations (see Section 3.3).
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w � ψ if and only if

• ψ = p(c1, . . . , cn) and Eph(w) = {X} and X . p(c1, . . . , cn)

• ψ =!p(c1, . . . , cn) and X ∈ Per(w) and X . p(c1, . . . , cn) and Eph(w) = ∅

• ψ = 1 and Eph(w) = ∅

• ψ = ψ1 ⊗ ψ2 and there exist w1, w2, such that w = w1 + w2 and w1 � ψ1 and w2 � ψ2

• ψ = ψ1 ( ψ2 and for all worlds w1 such that w1 � ψ1, w1 + w � ψ2

• ψ = > (and no other conditions need be satisfied)

• ψ = ψ1 &ψ2 and w � ψ1 and w � ψ2

• ψ = 0 and false (this refinement can never be satisfied).

• ψ = ψ1 ⊕ ψ2 and either

1. w � ψ1, or

2. w � ψ2.

Figure 7: Semantics of World Refinements

However, monotonicity does not generally hold for ephemeral facts. Only > can absorb arbitrarily
many ephemeral facts. The other cases for our semantic definition require that the ephemeral set of
facts must be empty (1 or !p(~c)), a singleton set (p(~c)) or divided between subexpressions in such a
way that all resources are accounted for (&, ⊗,( or Ω; ∆).

We will show later that linear logical entailment is sound with respect to our semantics. However,
as noted by Ambler [Amb91, p. 32], there is no sense in which linear logical reasoning is complete
with respect to this semantics. Despite this deficiency, linear logic has proven to be very useful for
many applications. We leave definition of a sound and complete logic for our resource semantics to
future work.

3.3 Declarative Refinement Checking

In this section, we give a declarative account of how to check that a (possibly open) term or expression
has a given refinement. Refinement checking of open terms will occur within a context of the following
form.

Persistent Ctxt Ω : : = · | Ω, c:a | Ω, x:φ | Ω, p(~c)
Ephemeral Ctxt ∆ : : = · | ∆, ψ

Furthermore, we define a derivative form of context, Ωb to be a vector,~b, consisting of all elements
in Ω of the form c:a.

Persistent contexts are constrained so that the variables c and x appear at most once to the
left of any : in the context. When necessary, we will implicitly alpha-vary bound variables to
maintain this invariant. We treat contexts that differ only in the order of the elements as equivalent
and do not distinguish them (provided both contexts in question are well formed; in other words,
reordering must respect dependencies.). Occasionally, we call the persistent context unrestricted
and the ephemeral context linear. Both contraction and weakening hold for the unrestricted context
while neither of these structural properties hold for the linear context.

14



` Σ ok Signature Σ is well-formed
` Ω ok Context Ω is well-formed
Ω ` ∆ ok Context ∆ is well-formed in Ω
Ω ` φ ok Refinement φ is well-formed in Ω
Ω ` ψ ok World ref. ψ is well-formed in Ω
Ω ` η ok Expression ref. η is well-formed

in Ω

Ω �M M : φ Term M has refinement φ in Ω
Ω; ∆ �E E : η Expression E has ref. η in Ω; ∆

Ω;φ =⇒M φ′ Term refinement φ entails φ′ in Ω
Ω; ∆ =⇒W ψ Context ∆ entails ψ in Ω
Ω; ∆; η =⇒E η′ Expression ref. η entails η′ in Ω; ∆

Ω; ∆ (Ωi;∆i)n Context Ω; ∆ reduces to the
context list (Ωi;∆i)n in one step

Ω; ∆ ∗ (Ωi;∆i)n Context Ω; ∆ reduces to the
context list (Ωi;∆i)n in 0 or more steps

Figure 8: Refinement Checking Judgments

Declarative refinement checking is formulated using the judgment forms in Figure 8. All but the
first judgment are implicitly parameterized by a fixed well-formed interface Σ.

The first six judgments in the list are relatively standard. They simply check that each sort
of type or context is well-formed in the context Ω. This check amounts to the fact that constants
and variables that appear in a type or context appear bound previously in the context or in the
signature. The formal rules appear in Figures 9, 10 and 11.

The next two judgments form the heart of the system. They check terms and expressions to
ensure that they have the appropriate refinements. First, we consider the term refinement checking
rules, which may be found in Figure 12. Variables and booleans are given the expected refinements.
Constants c are given very precise singleton types, following work by Xi and Pfenning [XP99]. When
such precision is unnecessary, we may use the subsumption rule (R-T-Sub) to give these constants
a more general refinement corresponding to their type (i.e., triv(ΣA(c))). Function definition has
the usual form, but with two added conditions. The first requires that the type refinement (or a
part thereof) chosen for the function refines the annotated type of the function. This requirement
ensures that any term or expression’s type refinement indeed refines that term’s (expression’s) type.
This property is expressed more precisely in Lemma 33. The second condition requires the chosen
refinement (or a part thereof) to be well-formed, thus ensuring that the context in the refinement
checking judgment in the rule’s premise is well-formed. Function application, rule (R-T-TApp),
has the usual form. This rule does not consider the case that the function in an application has a
polymorphic refinement. This possibility is taken care of by the (R-T-Sub) rule, which instantiates
universal quantifiers implicitly. Such instantiations can be resolved by standard first-order unifica-
tion. The rule (R-T-If) resembles the standard rule for if statements except that we do not bother
to check that the first term M has a boolean refinement. Such a check is unnecessary because we
assume refinement checking is preceded by ordinary type checking.

The expression refinement checking rules appear in Figure 13. Rule (R-E-Term) defines the
interface between pure and effectful computations. Pure terms themselves do not produce state,
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Σ = (B, C,O,ΣA,P,Σp,Σφ)
· ` Σφ(c) v ΣA(c) · ` Σφ(c) ok (for c ∈ C)
· ` Σφ(o) v ΣA(o) · ` Σφ(o) ok (for o ∈ O)

` Σ ok (WF-Sig)

` · ok (I-CTXT-Empty)

` Ω ok
` Ω, c:a ok

(c 6∈ Dom(Ω) ∪ Dom(Σφ))
(I-CTXT-Const)

` Ω ok Ω ` φ ok

` Ω, x:φ ok
(x 6∈ Dom(Ω))

(I-CTXT-Var)

` Ω ok Ω ` p(c1, . . . , cn) ok

` Ω, p(c1, . . . , cn) ok (I-CTXT-Pred)

Ω ` · ok (L-CTXT-Empty)

Ω ` ∆ ok Ω ` ψ ok

Ω ` ∆, ψ ok (L-CTXT-Refs)

Figure 9: Well-formed Signatures and Contexts
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Ω ` a ok (WF-Base)

Ω ` Bool ok (WF-Bool)

c ∈ Dom(Ω) ∪ Dom(Σφ)
Ω ` Its(c) ok (WF-Its)

Ω ` φ1 ok Ω ` φ2 ok

Ω ` φ1 → φ2 ok (WF-TArr)

Ω ` φ ok Ω ` ψ ok
Ω ` η ok

Ω ` (φ, ψ) ⇀ η ok (WF-PArr)

Ω, c:a ` φ ok

Ω ` ∀c:a · φ ok
(c 6∈ Dom(Ω) ∪ Dom(Σφ))

(WF-All)

Ω,~b ` φi ok (for 1 ≤ i ≤ n)
Ω,~b ` ψ ok Ω,~b ` η ok

Ω ` ∀~b · (φ1, . . . , φn, ψ) ⇀ η ok (WF-Op)

Figure 10: Well-formed Term Refinements
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ΣA(ci) = ai or Ω(ci) = ai (for 1 ≤ i ≤ n)
(Σp(p) = (a1, . . . ,an) ⇀ prop)

Ω ` p(c1, . . . , cn) ok (WF-WR-Pred)

Ω ` p(c1, . . . , cn) ok

Ω `!p(c1, . . . , cn) ok (WF-WR-!Pred)

Ω ` 1 ok (WF-WR-1)

Ω ` ψ1 ok Ω ` ψ2 ok

Ω ` ψ1 ⊗ ψ2 ok (WF-WR-MAnd)

Ω ` ψ1 ok Ω ` ψ2 ok

Ω ` ψ1 ( ψ2 ok (WF-WR-Impl)

Ω ` > ok (WF-WR-Top)

Ω ` ψ1 ok Ω ` ψ2 ok

Ω ` ψ1 &ψ2 ok (WF-WR-And)

Ω ` 0 ok (WF-WR-0)

Ω ` ψ1 ok Ω ` ψ2 ok

Ω ` ψ1 ⊕ ψ2 ok (WF-WR-Or)

Ω ` φ ok Ω ` ψ ok

Ω ` ∃[ ](φ, ψ) ok (WF-ER-Empty)

Ω, c:a ` ∃[~b](φ, ψ) ok

Ω ` ∃[c:a,~b](φ, ψ) ok
(c 6∈ Dom(Ω) ∪ Dom(Σφ))

(WF-ER-Binding)

Figure 11: Well-formed World and Expression Refinements
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and so are restricted to execute only in an empty emphemeral context and are given the corre-
sponding world refinement 1. Then, we use the (R-E-Sub) rule (discussed in more detail below)
to properly check terms within a non-empty ephemeral context. The rule for checking operators
requires that we guess a sequence of constants to substitute for the polymorphic parameters in the
operator refinement. Given this substitution, we must check that operator arguments may be given
refinements equal to their corresponding formal parameter. The rules (R-E-PApp) and (R-E-If)
are similar to their pure counterparts except that they produce expression refinements rather than
term refinements.

There are three expression checking rules that are not syntax-directed. (R-E-Sub) merits special
attention as it is the key to local reasoning. The rule splits the context into two disjoint parts, ∆1

and ∆2, where ∆1 is used to check the expression E, and ∆2 passes through unused. As a result, the
computation may be written in ignorance of the total global state. It need only know how to process
the local state in ∆1. In fact, in the case that ∆1 is empty, the computation may be completely
pure. Additionally, (R-E-Sub) serves as a conventional subsumption rule in which we check that
one expression refinement entails the other. (R-E-Cut) is the logical cut rule: If we can prove
some intermediary result (ψ) which in turn makes it possible to demonstrate our final goal (E : η)
then we should be able to prove our final goal from our original premises. Since ∆ contains linear
hypotheses that must not be duplicated, we split the context into two parts ∆1 and ∆2, one part
for each premise in the rule.

Finally, since proofs in substructural logics require careful manipulation of the context, we in-
troduce a new rule (R-E-Context) to control context evolution during type checking. This rule
depends upon the judgment Ω; ∆  ∗ (Ωi;∆i)n which encodes the action of all natural left rules
from the sequent calculus for linear logic. The notation (Ωi;∆i)n stands for a list of (possibly zero)
contexts (Ω1;∆1), . . . , (Ωn;∆n). The judgment may be read as saying “Context Ω;∆ reduces to the
context list (Ωi;∆i)n.” We specifically use the word reduces since every valid judgment of this form
reduces the number of connectives in the context when read from left to right. Hence, the number of
times the rule (R-E-Context) can be applied in sequence is bounded by the number of connectives
in the context. This fact is one of the keys to the decidability of our type system.

A sample valid judgment involves the modal formula !p(c1, . . . , cn).

Ω; ∆, !p(c1, . . . , cn) Ω, p(c1, . . . , cn);∆

It shifts the modal formula from the linear context into the unrestricted context and removes the
modality. In this case, no further conditions must be checked to validate this transformation. A
second example involves linear implication.

Ω; ∆1 =⇒W ψ1

Ω; ∆1,∆2, ψ1 ( ψ2  Ω; ∆2, ψ2

This time, we must check the condition Ω;∆1 =⇒W ψ1 in order to validate the context reduction
to Ω;∆2, ψ2. Most of the rules produce one context, which must be used to continue checking the
expression E. However, the rule for disjunction produces two contexts (and E must have the same
refinement in both of them) and the rule for falsehood produces no context (and we can choose any
well-formed expression refinement for E without further checking). We extend the one-step context
reduction judgment to its reflexive and transitive closure, which we denote Ω; ∆ ∗ (Ωi;∆i)n.

The last five judgments involved in refinement checking specify the logical component of the
system. We have already discussed the context reduction judgments. This judgment is combined
with the right rules from the sequent calculus and the cut rule in the judgment Ω;∆ =⇒W ψ to
provide a full proof system for our fragment of linear logic. The judgment Ω;φ =⇒M φ′ is the
corresponding proof system for term refinements. Notice that these rules do not depend upon the
linear context ∆. Since terms are pure, their refinements should not depend upon ephemeral state.
Finally, the judgment for expression refinement entailment Ω;∆; η =⇒E η′ combines the world and
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Ω, x : φ�M x : φ (R-T-Var)

c ∈ Dom(Σφ)
Ω �M c : Its(c) (R-T-Const)

Ω �M true : Bool (R-T-True)

Ω �M false : Bool (R-T-False)

Ωb,~b ` φ1 v A Ω,~b ` φ1 ok

Ω,~b, x:φ1 �M M : φ2 (φ = ∀~b · φ1 → φ2)

Ω �M λ(x:A).M : φ (R-T-Lam)

Ωb ` φ v A1 ⇀ A Ω ` φ ok

Ω, x:φ,~b, x1:φ1;ψ1 �E E : η
(φ = ∀~b · (φ1, ψ1) ⇀ η)

Ω �M fun x (x1:A1) : A is E : φ (R-T-Fun)

Ω �M M1 : φ Ω �M M2 : φ
Ω �M if M thenM1 elseM2 : φ (R-T-If)

Ω �M M : φ1 → φ2 Ω �M M1 : φ1

Ω �M M (M1) : φ2 (R-T-TApp)

Ω �M M : φ Ω;φ =⇒M φ′

Ω �M M : φ′ (R-T-Sub)

Figure 12: Refinement Checking for Terms

term proof systems with rules for existentials. These judgments are formally defined in Figures 14,
15, 16 and 17.

3.4 Properties of Refinement Checking Judgments

The following lemma expresses a number of well-formedness properties of our refinement checking
judgments.

Lemma 5
1. If ` Ω ok, Ω ` ∆ ok and Ω; ∆ (Ωi;∆i)n then ` Ωi ok and Ωi ` ∆i ok (for 1 ≤ i ≤ n).

2. If ` Ω ok, Ω ` ∆ ok and Ω; ∆ ∗ (Ωi;∆i)n then ` Ωi ok and Ωi ` ∆i ok (for 1 ≤ i ≤ n).

3. If ` Ω ok, Ω ` ∆ ok and Ω; ∆ =⇒W ψ then Ω ` ψ ok.

4. If ` Ω ok, Ω ` φ ok and Ω;φ =⇒W φ′ then Ω ` φ′ ok.
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Ω �M M : φ
Ω; · �E M : (φ,1) (R-E-Term)

Ω �M Mi : [~c/~b]φi (for 1 ≤ i ≤ n)
(Σφ(o) = ∀~b · (φ1, . . . , φn, ψ1) ⇀ η)

Ω; [~c/~b]ψ1 �E o(M1, . . . ,Mn) : [~c/~b]η (R-E-Op)

Ω; ∆ �E E1 : η1
Ω,~b1, x:φ1;ψ1 �E E2 : η2

(~b1 6∈ FVc(η2))
Ω; ∆ �E letxbeE1 inE2 end : η2

(η1 = ∃[~b1](φ1, ψ1)) (R-E-Let)

Ω �M M : (φ1, ψ1) ⇀ η Ω �M M1 : φ1

Ω;ψ1 �E app(M,M1) : η (R-E-PApp)

Ω; ∆ �E E1 : η Ω; ∆ �E E2 : η
Ω; ∆ �E if M thenE1 elseE2 : η (R-E-If)

Ω; ∆ ∗ (Ωi;∆i)n

Ωi;∆i �E E : η (for 1 ≤ i ≤ n)
Ω; ∆ �E E : η (R-E-Context)

Ω; ∆2 =⇒W ψ Ω; ∆1, ψ �E E : η
Ω; ∆1,∆2 �E E : η (R-E-Cut)

Ω; ∆1 �E E : η Ω; ∆2; η =⇒E η′

Ω; ∆1,∆2 �E E : η′ (R-E-Sub)

Figure 13: Refinement Checking for Expressions
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Ω;a =⇒M a (L-T-Base)

Ω;Bool =⇒M Bool (L-T-Bool)

Ω; Its(c) =⇒M Its(c) (L-T-Its)

ΣA(c) = a or Ω(c) = a
Ω; Its(c) =⇒M a (L-T-ItsBase)

Ω;φ′1 =⇒M φ1 Ω;φ2 =⇒M φ′2 Ω ` φ′1 ok

Ω;φ1 → φ2 =⇒M φ′1 → φ′2 (L-T-TArr)

Ω;φ′1 =⇒M φ1 Ω;ψ′1 =⇒W ψ1 Ω; ·; η =⇒E η′

Ω ` φ′1 ok Ω ` ψ′1 ok

Ω; (φ1, ψ1) ⇀ η =⇒M (φ′1, ψ
′
1) ⇀ η′ (L-T-PArr)

Ω; [c′/c:a]π =⇒M π′

Ω;∀c:a · π =⇒M π′ (L-T-AllL)

Ω, c:a;π =⇒M π′

Ω;π =⇒M ∀c:a · π′ (L-T-AllR)

Figure 14: Entailment for Term Refinements
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Ω; ∆, !p(c1, . . . , cn) Ω, p(c1, . . . , cn);∆ (CR-!)

Ω; ∆,1 Ω; ∆ (CR-1)

Ω; ∆, ψ1 ⊗ ψ2  Ω; ∆, ψ1, ψ2 (CR-MAnd)

Ω; ∆1 =⇒W ψ1

Ω; ∆1,∆2, ψ1 ( ψ2  Ω; ∆2, ψ2 (CR-Imp)

Ω; ∆, ψ1 &ψ2  Ω; ∆, ψ1 (CR-And1)

Ω; ∆, ψ1 &ψ2  Ω; ∆, ψ2 (CR-And2)

Ω; ∆,0 (CR-Zero)

Ω; ∆, ψ1 ⊕ ψ2  (Ω;∆, ψ1), (Ω; ∆, ψ2) (CR-Or)

Ω; ∆ ∗ Ω; ∆ (CR*-Reflex)

Ω; ∆ (Ωj ;∆j)m Ωj ;∆j  ∗ (Ωjk
;∆jk

)nj (for 1 ≤ j ≤ m)

Ω; ∆ ∗ (Ω1k
;∆1k

)n1 , · · · , (Ωmk
;∆mk

)nm
(CR*-Trans)

Figure 15: Context Reduction and Its Closure
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Ω;ψ =⇒W ψ (L-E-Hyp)

Ω, p(c1, . . . , cn); · =⇒W !p(c1, . . . , cn) (L-E-!R)

Ω; · =⇒W 1 (L-E-1R)

Ω; ∆1 =⇒W ψ1 Ω; ∆2 =⇒W ψ2

Ω; ∆1,∆2 =⇒W ψ1 ⊗ ψ2 (L-E-MAndR)

Ω; ∆, ψ1 =⇒W ψ2 Ω ` ψ1 ok

Ω; ∆ =⇒W ψ1 ( ψ2 (L-E-ImpR)

Ω; ∆ =⇒W > (L-E-TR)

Ω; ∆ =⇒W ψ1 Ω; ∆ =⇒W ψ2

Ω; ∆ =⇒W ψ1 &ψ2 (L-E-AndR)

Ω; ∆ =⇒W ψ1

Ω; ∆ =⇒W ψ1 ⊕ ψ2 (L-E-OrR1)

Ω; ∆ =⇒W ψ2

Ω; ∆ =⇒W ψ1 ⊕ ψ2 (L-E-OrR2)

Ω; ∆ (Ωi;∆i)n

Ωi;∆i =⇒W ψ (for 1 ≤ i ≤ n)
Ω; ∆ =⇒W ψ (L-E-Left)

Ω; ∆2 =⇒W ψ1 Ω; ∆1, ψ1 =⇒W ψ

Ω; ∆1,∆2 =⇒W ψ (L-E-Cut)

Figure 16: Entailment for World Refinements
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Ω;φ =⇒M φ′ Ω; ∆, ψ =⇒W ψ′

Ω; ∆; (φ, ψ) =⇒E (φ′, ψ′) (L-ER-Base)

Ω; ∆; η =⇒E [c′/c:a]∃[~b](φ, ψ)

Ω; ∆; η =⇒E ∃[c:a,~b](φ, ψ) (L-ER-ExistsR)

Ω, c:a;∆;∃[~b](φ, ψ) =⇒E η

Ω; ∆;∃[c:a,~b](φ, ψ) =⇒E η (L-ER-ExistsL)

Figure 17: Entailment for Expression Refinements

5. If ` Ω ok, Ω ` ∆ ok, Ω ` η ok and Ω; ∆; η =⇒E η′ then Ω ` η′ ok.

6. If ` Ω ok and Ω �M M : φ then Ω ` φ ok.

7. If ` Ω ok, Ω ` ∆ ok and Ω; ∆ �E E : η then Ω ` η ok.

Proof: The proof of the first item is by inspection and the second by induction, using the first when
necessary. The proof of the third item is by induction on the height of the entailment derivation,
using the first when necessary. The proof of the fourth and fifth items is by simultaneous induction
on the entailment derivation in each case, using the second item when necessary. The proof of the
last two items is by simultaneous induction on the height of the refinement-checking derivation in
each case, using the first five items when necessary. �

The following lemma states that all term refinements related by the term entailment judgment
refine the same type. It is needed in the proof of the term inversion lemma in section 3.7.

Lemma 6
If Ω;φ′ =⇒M φ then Ωb ` φ′ v A iff Ωb ` φ v A. If Ω; ∆; η′ =⇒E η then Ωb ` η′ v A iff Ωb ` η v A.

Proof: The proof is by simultaneous induction on the entailment derivation, relying on the syntax-
directedness of the v relation. �

The following lemma expresses the relationship between our world semantics and logical judg-
ments, stating that logical deduction respects the semantics of formulas. More specifically, item 1
expresses the property that if a set of contexts, Ω; ∆, is a satisfactory description of a world, w, then
at least one of the sets of contexts to which those contexts reduce is also a satisfactory description
of w. Item 2 expresses the property that if a set of contexts, Ω;∆, is a satisfactory description of a
world, w, then any formula, ψ, entailed by those contexts is itself a satisfactory description of w.

This lemma plays a critical role in our proof of preservation.

Lemma 7 (Soundness of Logical Judgments)
1. If w � Ω; ∆ and Ω; ∆ ∗ (Ω′

i;∆
′
i)

n
i=1 then for some i : 1..n, w � Ω′

i;∆
′
i.

2. If w � Ω; ∆ and Ω; ∆ =⇒W ψ then w � ψ.
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Proof: The proof of parts 1 and 2 is by simultaneous induction on the heights of context-reduction
and entailment derivations. �

The following are standard substitution lemmas for all but the first two refinement-checking
judgments listed in Figure 8.

Lemma 8 (Substitution)
Suppose that Ω �M c : a.

• If Ω, c′:a,Ω′;φ =⇒M φ′, then Ω, [c/c′]Ω′; [c/c′]φ =⇒M [c/c′]φ′.

• If Ω, c′:a,Ω′;∆ =⇒W ψ, then Ω, [c/c′]Ω′; [c/c′]∆ =⇒W [c/c′]ψ.

• If Ω, c′:a,Ω′;∆; η =⇒E η′, then Ω, [c/c′]Ω′; [c/c′]∆; [c/c′]η =⇒E [c/c′]η′.

• If Ω, c′:a ` ∆ ok then Ω ` [c/c′]∆ ok

• If Ω, c′:a ` φ ok then Ω ` [c/c′]φ ok

• If Ω, c′:a ` ψ ok then Ω ` [c/c′]ψ ok

• If Ω, c′:a ` η ok then Ω ` [c/c′]η ok

• If Ω, c′:a,Ω′;∆ (Ωi, c
′:a,Ω′

i;∆i)n then Ω, [c/c′]Ω′; [c/c′]∆ (Ωi, [c/c′]Ω′
i; [c/c

′]∆i)n

• If Ω, c′:a,Ω′;∆ ∗ (Ωi, c
′:a,Ω′

i;∆i)n then Ω, [c/c′]Ω′; [c/c′]∆ ∗ (Ωi, [c/c′]Ω′
i; [c/c

′]∆i)n

• If Ω, c′:a,Ω′ �M M : φ, then Ω, [c/c′]Ω′ �M M : [c/c′]φ. Similarly, if Ω, c′:a,Ω′;∆ �E E : η,
then Ω, [c/c′]Ω′; [c/c′]∆ �E E : [c/c′]η.

Additionally, if Ω, x:φ′ �M M : φ, and Ω �M V : φ′, then Ω �M [V/x]M : φ. Similarly, if
Ω, x:φ′;∆ �E E : η and Ω �M V : φ′, then Ω; ∆ �E [V/x]E : η.

Proof: By induction on the height of the relevant derivations. �

Lemma 9 (Reflexivity and Transitivity of Entailment)
1. Ω;φ =⇒M φ

2. If Ω;φ1 =⇒M φ2 and Ω;φ2 =⇒M φ3 then Ω;φ1 =⇒M φ3.

3. Ω; ∆; η =⇒E η

4. If Ω; ∆1; η1 =⇒E η2 and Ω; ∆2; η2 =⇒E η3 then Ω; ∆1,∆2; η1 =⇒E η3.

Proof: The proof of reflexivity is by simultaneous induction on term and expression entailment
derivations. The proof of transitivity is by simultaneous induction on the first derivation of both
term and expression entailment derivations. In the case of (L-T-AllR), we apply Lemma 8. In the
case of (L-ER-Base), we apply rule (L-E-Cut) to the second premise in obtaining our conclusion.

�

Lemma 10 (Admissibility of Cut for Term Refinements)
If Ω;φ1 =⇒M φ2 then

• if Ω, x:φ2 �M M : φ then Ω, x:φ1 �M M : φ.

• if Ω, x:φ2;∆ �E E : η then Ω, x:φ1;∆ �E E : η.

Proof: By induction on refinement derivations. For the case (R-T-Var) we apply (R-T-Sub) to
yield our conclusion. �
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3.5 Algorithmic Refinement Checking

We develop an algorithmic refinement checking system in two steps. The new system is algorithmic
up to the resolution of linear logic theorem proving (which is itself decidable).

1. Cut elimination. We eliminate the two cut rules (the cut rule for expression refinement checking
and the cut rule for linear logic entailment) and show the resulting system is sound and com-
plete with respect to the original refinement checking specification. We carry out the proof by
modifying and extending the logical cut elimination proof in earlier work by Pfenning [Pfe94].

2. Subsumption elimination and annotation introduction. In this step we eliminate two criti-
cal forms of non-determinism present in the previous system. We introduce type refinement
annotations into the language, allowing the programmer to guide the checker in its search
for type-refinement derivations. We furthermore incorporate the subsumption rule into the
language in a syntax-directed manner, and modify the expression rules so that the context-
splitting of the subsumption rule is deterministic.

At this point, there is one typing rule for each expression or term construct. All premises in
the rules are now fully determined, except those of the context-reduction judgment. We show
soundness and completeness of the new system.

3.5.1 Cut Elimination

Figure 18 gives the cut-free rules for expression refinement checking. These rules rely upon five new
judgments:

Ω �nc
M M : φ Cut-free term refinement checking

Ω; ∆ �nc
E E : η Cut-free expression refinement checking

Ω;φ =⇒nc
M φ′ Cut-free term refinement entailment

Ω; ∆ =⇒nc
W ψ Cut-free world refinement entailment

Ω; ∆; η =⇒nc
E η′ Cut-free expression refinement entailment

Only the second new judgment is significantly different from the corresponding cut-containing
judgment. The others are identical to the corresponding cut-containing judgment except that they
are mutually dependent upon other cut-free judgments (and of course, the cut-free world refinement
entailment derivations do not contain the cut rule). Hence, we do not include the rules for these
other judgments.

Lemma 11 (Equivalence of Cut-Free Refinement Checking)
• (Soundness) If Ω; ∆ �nc

E E : η then Ω; ∆ �E E : η.

• (Completeness) If Ω; ∆ �E E : η then Ω; ∆ �nc
E E : η.

Proof: The proof of soundness is straightforward, as any cut-free derivation is an instance of the
declarative system with the cut rule applied in one of three fixed places (as a hypothesis in rules
NC-E-Term, NC-E-Op, or NC-E-PAPP). Similarly, the cut-free sequent calculus proofs are a subset
of the cut-containing sequent calculus proofs.

The proof of completeness follows standard techniques [Pfe94]. �

3.5.2 Subsumption Elimination and Annotation Introduction

At this point, we eliminate two critical sources of non-determinism present in the previous system.
The first source arises from rules with elements in the premises that do not appear in the conclusions.
These elements, then, must be “guessed” when reading the rules from the top to bottom, as would be
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Ω �nc
M M : φ

Ω; · �nc
E M : (φ,1) (NC-E-Term)

Ω; ∆ =⇒nc
W [~c/~b]ψ1

Ω �nc
M Mi : [~c/~b]φi (for 1 ≤ i ≤ n)

(Σφ(o) = ∀~b · (φ1, . . . , φn, ψ1) ⇀ η)

Ω; ∆ �nc
E o(M1, . . . ,Mn) : [~c/~b]η (NC-E-Op)

Ω; ∆ �nc
E E1 : η1

Ω,~b1, x:φ1;ψ1 �nc
E E2 : η2

(~b1 6∈ FVc(η2))
Ω; ∆ �nc

E letxbeE1 inE2 end : η2
(η1 = ∃[~b1](φ1, ψ1)) (NC-E-Let)

Ω; ∆ =⇒nc
W ψ1 Ω �nc

M M : (φ1, ψ1) ⇀ η Ω �nc
M M1 : φ1

Ω; ∆ �nc
E app(M,M1) : η (NC-E-PApp)

Ω; ∆ �nc
E E1 : η Ω; ∆ �nc

E E2 : η
Ω; ∆ �nc

E if M thenE1 elseE2 : η (NC-E-If)

Ω; ∆ ∗ (Ωi;∆i)n

Ωi;∆i �nc
E E : η (for 1 ≤ i ≤ n)
Ω; ∆ �nc

E E : η (NC-E-Context)

Ω; ∆1 �nc
E E : η Ω; ∆2; η =⇒nc

E η′

Ω; ∆1,∆2 �nc
E E : η′ (NC-E-Sub)

Figure 18: Cut-free Refinement Checking for Expressions
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Ω, x : φ�nsc
M x ↑ φ (NSC-T-Var)

c ∈ Dom(Σφ)
Ω �nsc

M c ↑ Its(c) (NSC-T-Const)

Ω �nsc
M true ↑ Bool (NSC-T-True)

Ω �nsc
M false ↑ Bool (NSC-T-False)

Ω �nsc
M MI ↑ ∀~b · φ1 → φ2 Ω �nsc

M MC ↓ [~c/~b]φ1

Ω �nsc
M MI (MC) ↑ [~c/~b]φ2 (NSC-T-TApp)

Ω �nsc
M MC ↓ φ

Ω �nsc
M MC / φ ↑ φ (NSC-T-CtoI)

Ω �nsc
M MI ↑ φ′ Ω;φ′ =⇒nc

M φ

Ω �nsc
M MI ↓ φ (NSC-T-ItoC)

Ωb,~b ` φ1 v A Ω,~b ` φ1 ok

Ω,~b, x:φ1 �nsc
M MC ↓ φ2 (φ = ∀~b · φ1 → φ2)

Ω �nsc
M λ(x:A).MC ↓ φ (NSC-T-Lam)

Ωb ` φ v A1 ⇀ A Ω ` φ ok

Ω, x:φ,~b, x1:φ1;ψ1 �nsc
E EC ↓ η; ·

(φ = ∀~b · (φ1, ψ1) ⇀ η)

Ω �nsc
M fun x (x1:A1) : A is EC ↓ φ (NSC-T-Fun)

Ω �nsc
M MC1 ↓ φ Ω �nsc

M MC2 ↓ φ
Ω �nsc

M if M thenMC1 elseMC2 ↓ φ (NSC-T-If)

Figure 19: Cut-free, Subsumption-free, Bi-Directional Refinement Checking for Terms
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Ω �nsc
M MI ↑ φ

Ω; ∆ �nsc
E MI ↑ (φ,1);∆ (NSC-E-ITerm)

Ω; ∆ =⇒nc
W [~c/~b]ψ1

Ω �nsc
M MCi ↓ [~c/~b]φi (for 1 ≤ i ≤ n)

(Σφ(o) = ∀~b · (φ1, . . . , φn, ψ1) ⇀ η)

Ω; ∆,∆′ �nsc
E o(MC1, . . . ,MCn) ↑ [~c/~b]η;∆′ (NSC-E-Op)

Ω; ∆ =⇒nc
W [~c/~b]ψ1

Ω �nsc
M MI ↑ ∀~b · (φ1, ψ1) ⇀ η Ω �nsc

M MC ↓ [~c/~b]φ1

Ω; ∆,∆′ �nsc
E app(MI ,MC) ↑ [~c/~b]η;∆′ (NSC-E-PApp)

Ω; ∆ �nsc
E EC ↓ η;∆′

Ω; ∆ �nsc
E EC / η ↑ η;∆′ (NSC-E-CtoI)

Ω; ∆ �nsc
E EI ↑ η′;∆′,∆′′ Ω; ∆′′; η′ =⇒nc

E η

Ω; ∆ �nsc
E EI ↓ η;∆′ (NSC-E-ItoC)

Ω �nsc
M MC ↓ [~c/~b]φ Ω; ∆ =⇒nc

W [~c/~b]ψ
Ω; ∆,∆′ �nsc

E MC ↓ η;∆′ (η = ∃[~b](φ, ψ))
(NSC-E-CTerm)

Ω; ∆ �nsc
E EI ↑ η1;∆1

Ω,~b, x:φ1;∆1, ψ1 �nsc
E EC ↓ η2;∆2

(~b 6∈ FVc(η2))

Ω; ∆ �nsc
E let~b, xbeEI inEC end ↓ η2;∆2

(η1 = ∃[~b](φ1, ψ1))
(NSC-E-Let)

Ω; ∆ �nsc
E EC1 ↓ η;∆′ Ω; ∆ �nsc

E EC2 ↓ η;∆′

Ω; ∆ �nsc
E if M thenEC1 elseEC2 ↓ η;∆′ (NSC-E-If)

Ω; ∆ ∗ (Ωi;∆i)m

Ωi;∆i �nsc
E /EC/i ↓ η;∆′ (for 1 ≤ i ≤ m)

Ω; ∆ �nsc
E EC / m ↓ η;∆′ (NSC-E-Context)

Figure 20: Cut-free, Subsumption-free, Bi-Directional Refinement Checking for Expressions
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done in a refinement-checking algorithm. A classic example is the application rule (R-T-TApp), for
which φ1 is unspecified in the conlusion. The second source of non-determinism is the subsumption
rules, (R-T-Sub) and (NC-E-Sub), as neither rule is syntax-directed.

To elmininate the first source of non-determinism, we add an annotation syntax to the language,
allowing the programmer to add refinement annotations to expressions where the refinement checker
would have otherwise needed to “guess” the appropriate refinement. In order to minimize the num-
ber of annotations needed, we use bi-directional refinement checking in a similar style to that used by
Davies and Pfenning [DP00]. We redefine our grammar, distinguishing between terms and expres-
sions whose refinement can or need be inferred and those whose refinement can be checked against
a specified refinement. We classify as inferable those terms (expressions) whose type refinement can
always be inferred or terms (expressions) which require that at least one of their subterms be infer-
able and are therefore themselves inferable. We classify all terms (expressions), including inferable
ones, as checkable.

For example, consider function application. From the refinement of an application we cannot
derive the refinement of the function itself, and, therefore, the refinement of the function must
be inferred. As the function refinement contains a (quantified) result refinement from which the
application refinement can be derived, function application is classified as an inferable term. For
another example, consider functions and if statements. Since, generally, function refinements are not
inferable and our system does not have meets and joins, functions and if statements are classified as
only checkable terms.

Finally, we introduce a new form of inferable term (expression) consisting of a checkable term
(expression) annotated with a type refinement. The system infers the type refinement of the term
(expression) to be that specified by the annotation.

The modified grammar follows:

Annotations α : : = φ | η | m | • | {αi}m

Bindings β : : = ~b | {βi}m

Values VI : : = X | c | true | false |
VC : : = λ(X).MC | fun X (X1:A1) : A2 is EC

Terms MI : : = VI |MI (MC) |MC / α
MC : : = MI | VC | if M thenMC1 elseMC2

Exp’s EI : : = MI | o(MC1, . . . ,MCk) | app(MI ,MC) |
EC / α

EC : : = EI |MC | letβ,X beEI inEC end |
if M thenEC1 elseEC2

Our new grammar contains five forms of annotations: term annotations (φ), expression annotations
(η), context-rule annotations (m, with m an integer), the empty annotation (•), and lists of anno-
tations ({αi}m). The annotation lists are relevant for use with the (NSC-E-Context) rule. Term
and expression annotations, and lists thereof, can only be used with terms and expressions, respec-
tively. The empty annotation only has meaning within a list. We also add an annotated form of the
let expression, allowing programmers to bind the existential variables appearing in E1 so that they
can be used in annotations in E2. Note that the condition term in both the term and expression if
statements remains an unnannotated term M , as it is only examined by the type-checker and not
the refinement checker.

Next, we introduce two new classes of refinement-checking judgments, one for inferable terms and
expressions, and one for checkable terms and expressions. In total, we introduce four new judgments,
shown below.

Ω �nsc
M MI ↑ φ Term refinement inference

Ω �nsc
M MC ↓ φ Term refinement checking

Ω; ∆ �nsc
E EI ↑ η;∆′ Expression refinement inference

Ω; ∆ �nsc
E EC ↓ η;∆′ Expression refinement checking
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As a shorthand to refer to both the inference (↑) and checking (↓) judgments simultaneously, we
use the notation l. Similarly, we refer generically to M (E) when we do not wish to distinguish
between inferable and checkable terms (expressions).

The difference between the two judgment classes lies in whether we regard the type refinement
on the right side of the judgment as an input or as an ouput of the refinement-checking algorithm.
The inference judgments regard the type refinement as an output. The checking judgments regard
the type refinement as an input to be checked against the term (or expression) specified in the
judgment. Therefore, while there is only one refinement that can be inferred for a given inferable
term (expression), there are possibly many that can be checked against a checkable term (expression).

Another notable feature of the above judgments is the addition of the output ∆′ to the expression
judgments. This output represents the portion of the ephemeral context that is unused in inferring
EI to have type refinement η or in checking EI against η.

The annotation savings of the bi-directional system are two-fold. First, any refinement that
can be inferred is, indeed, inferred. Second, an annotation on an expression can be applied to
subexpressions without requiring the programmer to retype the annotation. For example, in the
case of the (NSC-T-If) rule, an annotation applied to the entire if term can be applied to the then
and else clauses of the term without any additional programmer effort.

To elmininate the second source of non-determinism, that is, to make the subsumption rules
syntax-directed, we allow subsumption only when checking the type refinement of an inferable term
or expression, in rules (NSC-T-ItoC) and (NSC-E-ItoC). As the inferable term (expression) in
the premise provides the sub type-refinement and the checkable term (expression) in the conclusion
provides the super type-refinement, all elements of the rule are well specified. Additionally, the
restriction of the rule to inferable terms used in a checking judgment ensures that the subsumption
rule is syntax-directed.

Figures 19 and 20 give the cut-free and subsumption-free rules for term and expression refinement
checking, respectively. The rules for both terms and expressions have been ordered according to our
reformulated grammar, with inference rules grouped seperately from checking rules. Figure 19 starts
with rules for variables, constants and booleans. As the type refinements of the terms are immedi-
ately obvious they are inferred. Notice that the inference judgment assigns the exact type refinement
of the term and not a super type-refinement. In rule (NSC-T-TApp), function refinements are now
universally quantified and so the value of ~c must be properly “guessed” in order to successfully infer
the refinement of the application. This guess may be resolved by standard first-order unification.

Rule (NSC-T-CtoI) provides an intuitive transition between the inference and checking judg-
ments. We can infer that term M has type refinement φ, specified by the programmer, if we can
check M against φ. Furthermore, this rule is central to the bi-directional system as it allows the
programmer to specify an annotation at a point where the compiler cannot automatically infer one.
Similarly, rule (NSC-T-ItoC) provides a transition between the checking and inference judgments,
as a checking rule for inferable terms. A simple such rule might specify that any term M with an
inferred type refinement φ checks only against φ. However, we integrate subsumption into this rule,
with the result that M can successfully be checked against any super type-refinement of φ. This rule
provides a natural place to add subsumption because of the rule’s syntax-directedness and because
subsumption includes an entailment judgment requiring two inputs, which the inference judgment
in the premise and checking judgment of the conclusion conveniently provide. We further note that,
as any checkable term can be converted to an inferable one through annotation, subsumption can,
in effect, be applied to any term through the insertion of annotations.

In rules (NSC-T-Lam) and (NSC-T-Fun), when checking MC (EC), the variables in ~b are
considered bound in MC (EC) itself, as if the function were written Λ[~b].λ(x:A).MC (and corre-
spondingly for fun). The binding is implicit to avoid unnecessary programmer effort.

The first rule of Figure 20, (NSC-E-ITerm), demonstrates a simple form of context threading.
As all terms are pure - no ephemeral state is changed during their execution - we can infer that
the entire ephemeral context is unused. Rule (NSC-E-Op) is similar to term application, except
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that the operator’s type refinement is known from the interface and therefore need not be inferred.
Additionally, in both (NSC-E-Op) and (NSC-E-PApp), the emphemeral context is split into a
portion used to entail the precondition of the operator and an unused portion, which is inferred as
output. In rule (NSC-E-ItoC), the context threading is more complicated, as it happens in two
steps. First, the entire context is threaded through the inference judgment. Then, the remaining
portion of that context is split, with one portion passed to the entailment judgment and the other
inferred to be unused.

A second term rule, (NSC-E-CTerm), is included due to the existence of two classes of terms,
MI and MC . Note that the instantion of~b needs to be guessed here as is the case for the operator and
function application rules. In rule (NSC-E-Let), the first expression of the let must be inferable,
because η1 and ∆1 are not specified by the type refinement, η2, in the conclusion of the rule.

Definition 12 (Cleanly Annotated Terms and Expressions)
We define a term M to be cleanly annotated if ∀M ′, α, M 6= (M ′ /α). That is, a cleanly annotated
term is one that is unnannotated at its top level. Similarly, we define an expression E to be cleanly
annotated if ∀E′, α, E 6= (E′ / α).

Definition 13 (Simply Annotated Terms and Expressions)
We define a term M to be simply annotated if it is cleanly annotated or M = (M ′ / φ) and M ′ is
simply annotated. That is, a simply annotated term is one that has only term annotations at its
top level. Similarly, we define an expression E to be simply annotated if it is cleanly annotated or
E = (E′ / η) and E′ is simply annotated.

Definition 14 (List-Simply Annotated Terms and Expressions)
We define a term M to be list-simply annotated if it is cleanly annotated or M = (M ′ / {φi}m) and
M ′ is list-simply annotated. That is, a list-simply annotated term is one that is annotated with only
lists of refinements, at its top level. Similarly, we define an expression E to be list-simply annotated
if it is cleanly annotated or E = (E′ / {ηi}m) and E′ is list-simply annotated.

To relate the cut-free syntax to the cut-and-subsumption free syntax, we define an erasure func-
tion |E| on terms and expressions.

Definition 15 (Erasure)
The erasure function |EC | removes all annotations from the term or expression EC . When the top-
level expression in EC does not carry an annotation, the erasure function is applied recursively to
the subcomponents of EC with no other modifications. Otherwise, the erasure function is defined
as follows:

|EC / α| = |EC |
|letβ,X beEI inEC end| = letX be |EI | in |EC | end

To enable the checking of terms and expressions with annotation lists, we define the slice function.

Definition 16 (Slice)
The slice function /EC/i on terms and expressions recursively extracts a copy of EC with each

annotation list replaced by the ith element of that list. Most notably,

/EC / {. . . , αi−1, •, αi+1, . . .}/i = /EC/i

/EC / {αj}m/i = /EC/i / αi (i ≤ m)
/let {βj}m, X beEI inEC end/i = letβi, X be /EI/i in /EC/i end (i ≤ m)

We also define an inverse of the slice function: the join function 〈〈E1, . . . , En〉〉.
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Definition 17 (Join)
For a set of expressions {E1, . . . , En}, with |Ei| = |E1| for all i from 1 to n, the join function uses
annotation lists to create a unified expression from the individual Ei. If none of the Ei carry anno-
tations on the top-level expression, then join is defined recursively on the syntax of the expression.
If some, or all, of the Ei are annotated – that is, E1, . . . , Ei are annotated and Ei+1, . . . , En are not
and 1 ≤ i ≤ n – then join is defined as follows:

〈〈E1 / α1, . . . , Ei / αi, Ei+1, . . . , En〉〉 = 〈〈E1, . . . , En〉〉 / {α1, . . . , αi,

n−i︷ ︸︸ ︷
•, . . . , •} (i ≥ 1)

Lemma 18 (Properties of Slice and Join)
1. / 〈〈E1, . . . , En〉〉 /i = Ei

2. ∀i, 1 ≤ i ≤ n, | 〈〈E1, . . . , En〉〉 | = |Ei|

3. ∀i, 1 ≤ i ≤ n, |/EC/i| = |EC |

4. If, ∀i, 1 ≤ i ≤ n, Ei is cleanly annotated, then 〈〈E1, . . . , En〉〉 is cleanly annotated.

5. If, ∀i, 1 ≤ i ≤ n, Ei is simply annotated, then 〈〈E1, . . . , En〉〉 is list-simply annotated.

6. If EC is cleanly annotated then /EC/i is cleanly annotated.

7. If EC is list-simply annotated then /EC/i is simply annotated.

Proof: Items one and two are proven by induction on the structure of expressions. Item three
follows from one and two, items four and five from the definition of the join function, and item
six from the definition of the slice function. Item seven is proven by induction on the definition of
list-simply annotated terms and expressions. �

As mentioned in Section 3.3, the rule (R-E-Sub) is the key to local reasoning. In order to
eliminate this rule without sacrificing completeness, our system needs to similarly support local
reasoning. We show that it does in Lemma 19, below. It states that unneeded ephemeral context is
inferred to be unused in both the inference and checking judgments.

Together with the local reasoning lemma, we present a lemma expressing an extensibility property
of the context reduction-closure judgment. It is needed in the proof of the local reasoning lemma.

Lemma 19 (Local Reasoning)
• If Ω; ∆ ∗ (Ωi;∆i)m then Ω; ∆′,∆ ∗ (Ωi;∆′,∆i)m

• If Ω; ∆ �nsc
E E ↑ η;∆′ then Ω; ∆,∆′′ �nsc

E E ↑ η;∆′,∆′′. Similarly, if Ω; ∆ �nsc
E E ↓ η;∆′

then Ω; ∆,∆′′ �nsc
E E ↓ η;∆′,∆′′.

Proof: The proof of item 1 is by inspection of context-reduction and induction on context-reduction
closure. The proof of item 2 is by induction on refinement-checking derivations. In the case of rule
(NSC-E-Context), we apply item 1 to the context reduction-closure judgment in the premise. �

The following lemma is needed in the proof of completeness of the NSC system.

Lemma 20
If Ω; ∆ �nsc

E EC /m ↓ η′;∆′,∆′′ and Ω; ∆′′; η′ =⇒nc
E η then Ω; ∆ �nsc

E EC / {

m︷ ︸︸ ︷
η′, . . . , η′} /m ↓ η;∆′.
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Proof: By inversion of rule (NSC-E-Context) we have

Ω; ∆ ∗ (Ωi;∆i)m

Ωi;∆i �nsc
E /EC/i ↓ η;∆′,∆′′ (for 1 ≤ i ≤ m).

For each i, we apply rule (NSC-E-CtoI) to /EC/i/η
′. Then, by rule (NSC-E-ItoC) and weakening

of our second assumption to Ωi;∆′′; η′ =⇒nc
E η (based on Lemma 30), we have

Ωi;∆i �nsc
E /EC/i / η

′ ↓ η;∆′ (for 1 ≤ i ≤ m).

Finally, setting

E′
C = 〈〈/EC/1 / η

′, . . . , /EC/m / η′〉〉 = EC / {

m︷ ︸︸ ︷
η′, . . . , η′}

and applying rule (NSC-E-Context) to E′
C , we obtain our result. �

We now state and prove the equivalence of the NSC system to the NC system.

Lemma 21 (Soundness of Cut-Free, Subsumption-Free R. C.)
• If Ω �nsc

M M l φ then Ω �nc
M |M | : φ.

• If Ω; ∆ �nsc
E E l η′;∆′ and Ω; ∆′; η′ =⇒nc

E η then Ω; ∆ �nc
E |E| : η.

Proof: By simultaneous induction on refinement-checking derivations. We detail the more difficult
cases below.

• Case NSC-E-ItoC: Suppose Ω; ∆′; η =⇒nc
E η′′. From the derivation, we have Ω; ∆′′; η′ =⇒nc

E

η. By Lemma 9 (transitivity), Ω; ∆′,∆′′; η′ =⇒nc
E η′′. By induction on the derivation of

Ω; ∆ �nsc
E EI ↑ η′;∆′,∆′′, we obtain our result that Ω;∆ �nc

E |EI | : η′′.

• Case NSC-E-CTerm: By induction, Ω �nc
M |MC | : [~c/~b]φ. By rule (NC-E-Term), Ω; · �nc

E

|MC | : ([~c/~b]φ,1). From the derivation and expression entailment rules, we derive that
Ω; ∆; ([~c/~b]φ,1) =⇒nc

E η. By rule (NC-E-Sub), Ω;∆ �nc
E |MC | : η. Now, supposing

Ω; ∆′; η =⇒nc
E η′ and applying rule (NC-E-Sub) again, we obtain our result that Ω; ∆,∆′ �nc

E

|MC | : η′.

• Case NSC-E-Let: By expression entailment rules we can derive that Ω; ∆1;∃[~b](φ1, ψ1) =⇒nc
E

∃[~b](φ1,
⊗

(∆1)⊗ ψ1), where
⊗

(ψ1, ψ2, . . . , ψn) = ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψn. Then, by induction on
the first derivation in the Let rule, we get Ω;∆ �nc

E |EC1| : ∃[~b](φ1,
⊗

(∆1)⊗ ψ1).

Now, supposing that Ω; ∆2; η2 =⇒nc
E η, by induction on the second derivation in the Let rule,

we get Ω,~b, x:φ1;∆1, ψ1 �nc
E |EC2| : η. Next, notice that

⊗
(∆1)⊗ ψ1  ∗ ∆1, ψ1. So, by rule

(NC-E-Context), we have Ω,~b, x:φ1;
⊗

(∆1)⊗ ψ1 �nc
E |EC2| : η

Finally, from the above results and rule (NC-E-Let) (omitting the proof of premise~b 6∈ FVc(η))
we have Ω;∆ �nc

E letxbeE1 inE2 end : η.

�

Lemma 22 (Completeness of Cut-Free, Subsumption-Free R. C.)
• If Ω �nc

M M : φ then ∃MC such that |MC | = M , MC is simply annotated and Ω �nsc
M MC ↓ φ.

• If Ω; ∆ �nc
E E : η then ∃EC ,m such that |EC | = E, EC is list-simply annotated and Ω; ∆ �nsc

E

EC / m ↓ η; ·.
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• If Ω �nc
M M : φ then ∃MI , φ

′ such that |MI | = M and Ω �nsc
M MI ↑ φ.

• If Ω; ∆ �nc
E E : η then ∃EI such that |EI | = E and Ω; ∆ �nsc

E EI ↑ η; ·.

Proof: The proof of completeness with respect to the checking judgments (the first two items
above) is by simultaneous induction on typing derivations. The most difficult cases are (NC-E-
Sub) and (NC-E-Context), which we detail below. The proof of item three follows directly from
item one and rule (NSC-T-CtoI). The proof of item four follows directly from item two and rule
(NSC-E-CtoI).

• Case NC-E-Context:
Ω; ∆ (Ωi;∆i)n (A)
Ωi;∆i �nc

E E : η (for 1 ≤ i ≤ n) (B)
Ω; ∆ �nc

E E : η

By the induction hypothesis and derivation B, for 1 ≤ i ≤ n,∃Ei,mi such that

|Ei| = E (1)
Ei is list-simply annotated (2)
Ωi;∆i �nsc

E Ei / mi ↓ η; · (3)

By inversion of NSC-E-Context and (3),

Ωi;∆i  
∗ (Ωi,j ;∆i,j)mi

(4)
Ωi,j ;∆i,j �nsc

E /Ei/j ↓ η; · (for 1 ≤ j ≤ mi) (5)

By CR*-Trans, derivation A and (4),

Ω; ∆ ∗ (Ω1,j ;∆1,j)m1 , · · · , (Ωn,j ;∆n,j)mn (6)

By NSC-E-Context, (6) and (5),

Ω; ∆ �nsc
E Eall / mall ↓ η; · (7)

where Eall =

〈〈/E1/1, . . . , /E1/m1 ,
...

...
/En/1, . . . , /En/mn

〉〉

and mall = (m1 + · · ·+mn)

By Lemma 18.3,

|/Ei/j | = E (8)

By Lemma 18.2 and (8),

|Eall| = E (9)

By Lemma 18.7 and (2),

/Ei/j is simply annotated (10)
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By Lemma 18.5 and (10),

Eall 6= (EC / α) (11)

Note that items (7), (9) and (11) are the conclusions of this case of the proof.

• Case NC-E-Sub:
A

Ω; ∆1 �nc
E E : η′

B

Ω; ∆2; η′ =⇒nc
E η

Ω; ∆1,∆2 �nc
E E : η

By the induction hypothesis and derivation A, ∃EC ,m such that,

|EC | = E (12)
EC is list-simply annotated (13)
Ω; ∆1 �nsc

E EC / m ↓ η′; · (14)

By Lemma 19 and (14),

Ω; ∆1,∆2 �nsc
E EC / m ↓ η′;∆2 (15)

By Lemma 20, (15) and derivation B,

Ω; ∆1,∆2 �nsc
E E′

C / m ↓ η; · (16)
where E′

C = EC / {η′, . . . , η′}

By the definition of erasure and (12),

|E′
C | = |EC | = E (17)

By (13) and the definition of a list-simply annotated expression,

E′
C is list-simply annotated (18)

Note that items (17), (18) and (16) are the conclusions of this case of the proof.

�

We conclude this section with two lemmas about the NSC system that will be useful in proving
the refinement inversion lemmas of Section 3.7.

Lemma 23
• If MC is simply annotated and Ω �nsc

M MC ↓ φ then ∃M ′
C such that |M ′

C | = |MC |, M ′
C is

cleanly annotated, Ω �nsc
M M ′

C ↓ φ′ and Ω;φ′ =⇒nc
M φ.

• If EC is simply annotated and Ω; ∆ �nsc
E EC ↓ η; · then ∃E′

C such that |E′
C | = |EC |, E′

C is
cleanly annotated, Ω; ∆ �nsc

E E′
C ↓ η′;∆′ and Ω; ∆′; η′ =⇒nc

E η.

Proof: The proof is by simultaneous induction on refinement-checking derivations. If a deriva-
tion ends with rule (NSC-T-ItoC) then we argue that either MI is a cleanly annotated term, in
which case the result follows immediately, or M = (M ′ / φ), in which case, by inversion of rule
(NSC-T-CtoI), Ω �nsc

M MC ↓ φ. Then, we obtain our result by induction and transitivity of term
entailment. We argue similarly for rule (NSC-E-ItoC). �
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Lemma 24 (NSC Substitution)
• If Ω, x:φ′ �nsc

M M ↑ φ and Ω �nsc
M V ↑ φ′ then Ω �nsc

M [V/x]M ↑ φ.

Similarly, if Ω, x:φ′;∆ �nsc
E E ↑ η;∆′ and Ω �nsc

M V ↑ φ′, then Ω; ∆ �nsc
E [V/x]E ↑ η;∆′.

• If Ω, x:φ′ �nsc
M M ↓ φ and Ω �nsc

M V ↑ φ′ then Ω �nsc
M [V/x]M ↓ φ.

Similarly, if Ω, x:φ′;∆ �nsc
E E ↓ η;∆′ and Ω �nsc

M V ↑ φ′, then Ω; ∆ �nsc
E [V/x]E ↓ η;∆′.

Proof: The proof is by simultaneous induction on the first refinement-checking derivation of each
case in the lemma. �

3.6 Decidability

The algorithmic refinement-checking system is decidable modulo the three following aspects of the
system:

1. Resolution of first-order existential variables.

2. Resource management.

3. Theorem proving in first-order MALL.

To prove our system decidable, we must show that these sources of nondeterminism do not cause
the system to be undecidable. Fortunately, each can be solved independently (and has in the past).
First, resolution of first-order existential variables can be done via either explicit instantiation or
unification. Second, we must solve the resource, or context, management problem. This problem
includes the issue of deciding how to split a linear context into parts in multiplicative rules such
as the ⊗-right rule, (L-E-MAndR), and (NSC-E-PApp). There are several known approaches to
efficient resource management in linear logic [CHP96]. Third, theorem proving in the multiplicative-
additive fragment of linear logic (MALL) has been proven decidable [LS94]. However, solving all
three of the above problems in the context of our system will be challenging. We believe that further
investigation should be done in the setting of a pratical implementation.

3.7 Soundness

The proof of soundness of refinement checking requires the following soundness condition on the
primitive operators.

Condition 25 (Soundness of Primitives)
Suppose

Σφ(o) = ∀~b1 · ((φ1,1, . . . , φ1,n, ψ1)→∃[~b2](φ2, ψ2))

If w � Ω; [~c1/~b1]ψ1, and for 1 ≤ i ≤ n, Ω �M c′i : [~c1/~b1]φ1,i, and T (o)(c′1, . . . , c
′
n, w + u) = c′, w′

then there exist ~c2 and Ω′ such that

1. w′ = w′′ + u;

2. Ω′ �M c′ : [~c2/~b2][~c1/~b1]φ2;

3. w′′ � Ω′; [~c2/~b2][~c1/~b1]ψ2.

4. Ω ⊆ Ω′
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Informally, this condition states that the operator must behave as predicted by its type refinement,
and, importantly, can have no effect on a part of the world that is not specified in the precondition
of its refinement. Above, w satisfies the precondition of o’s refinement. Consequently, no extension,
u, of the world may be modified during the operation of o at world w + u.

Lemma 26 (Inversion of Term Entailment)
If Ω;φ1 =⇒M φ2 then

• φ1 = Bool iff φ2 = Bool

• if φ1 = a then φ2 = a

• if φ2 = Its(c) then φ1 = Its(c)

• if φ1 = Its(c) then either

– φ2 = Its(c), or

– φ2 = a and either ΣA(c) = a or Ω(c) = a.

• φ1 = ∀~b1 · φ′1 → φ′′1 iff φ2 = ∀~b2 · φ′2 → φ′′2

• if φ1 = ∀~b1 · φ′1 → φ′′1 or φ2 = ∀~b2 · φ′2 → φ′′2 then all of the following hold:

– Ω,~b2;φ′2 =⇒M [~c1/~b1]φ′1
– Ω,~b2; [~c1/~b1]φ′′1 =⇒M φ′′2

– Ωb,~b2 ` φ′2 ok

• φ1 = ∀~b1 · (φ, ψ) ⇀ η iff φ2 = ∀~b2 · (φ′, ψ′) ⇀ η′

• if φ1 = ∀~b1 · (φ, ψ) ⇀ η or φ2 = ∀~b2 · (φ′, ψ′) ⇀ η′ then all of the following hold:

– Ω,~b2;φ′ =⇒M [~c1/~b1]φ

– Ω,~b2;ψ′ =⇒W [~c1/~b1]ψ

– Ω,~b2; ·; [~c1/~b1]η =⇒E η′

– Ωb,~b2 ` φ′ ok

– Ωb,~b2 ` ψ′ ok

Proof: By induction on the term entailment rules. �

Lemma 27 (Inversion of Expression Entailment)
If Ω; ∆; η1 =⇒E η2 then

• η1 = ∃[~b1](φ1, ψ1)

• η2 = ∃[~b2](φ2, ψ2)

• Ω,~b1;φ1 =⇒M [~c2/~b2]φ2

• Ω,~b1;∆, ψ =⇒W [~c2/~b2]ψ2

Proof: By inspection of expression entailment rules. �
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Lemma 28 (Inversion of Term Refinement)
If Ω �M M : φ then

• if M = x then

– Ω(x) = φ′ and

– Ω;φ′ =⇒M φ.

• if M = c then

– φ = Its(c) or

– φ = a and either ΣA(c) = a or Ω(c) = a.

• if M = true then φ = Bool.

• if M = false then φ = Bool.

• if M = λ(x:A).M then

– φ = ∀~b · φ1 → φ2,

– Ωb,~b ` φ1 ok,

– Ωb,~b ` φ1 v A and

– Ω,~b, x:φ1 �M M : φ2.

• if M = fun x (x1:A1) : A is E then

– φ′ = ∀~b′ · (φ′1, ψ′1) ⇀ η′,

– Ωb ` φ′ v A1 ⇀ A,

– Ω, x:φ′,~b′, x1:φ′1;ψ
′
1 �E E : η′,

– Ωb ` φ′ ok,

– φ = ∀~b · (φ1, ψ1) ⇀ η,

– Ω, x:φ′,~b, x1:φ1;ψ1 �E E : η and

– Ω;φ′ =⇒M φ

• if M = ifM ′ thenM1 elseM2 then

– Ω �M M1 : φ and

– Ω �M M2 : φ.

• if M = M1 (M2) then

– Ω �M M1 : φ′ → φ and

– Ω �M M2 : φ′.

Proof: The proof follows from the soundness and completeness of the bi-directional refinement
checking rules, using lemmas 23 and 24 as needed. �

Lemma 29 (Inversion of Expression Refinement)
• If Ω; ∆ �E M : η, then

– Ω; ∆ ∗ (Ωi;∆i)n
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– for all 1 ≤ i ≤ n,

∗ Ωi �M M : φ
∗ Ωi;∆i; (φ, 1) =⇒E η

• If Ω; ∆ �E o(M1, . . . ,Mk) : η, then

– Ω; ∆ ∗ (Ωi;∆i)n

– Σφ(o) = ∀~b · (φ1, . . . , φk, ψ) ⇀ η′

– for all 1 ≤ i ≤ n, ∃~ci, such that

∗ ∆i = ∆i,1,∆i,2

∗ Ωi;∆i,1 =⇒W [~ci/~b]ψ

∗ for each 1 ≤ j ≤ k, Ωi �M Mj : [~ci/~b]φj

∗ Ωi;∆i,2; [~ci/~b]η′ =⇒E η

• If Ω; ∆ �E letxbeE1 inE2 end : η, then

– Ω; ∆ ∗ (Ωi;∆i)n

– for all 1 ≤ i ≤ n,

∗ Ωi;∆i �E E1 : ∃[~bi](φi, ψi)
∗ Ωi,~bi, x:φi;ψi �E E2 : η

• If Ω; ∆ �E app(M,M1) : η, then

– Ω; ∆ ∗ (Ωi;∆i)n

– for all 1 ≤ i ≤ n, ∃~ci, such that

∗ ∆i = ∆i,1,∆i,2

∗ Ωi �M M : ∀~b1,i · (φ1,i, ψ1,i) ⇀ ηi

∗ Ωi;∆i,1 =⇒W [~ci/~bi]ψ1,i

∗ Ωi �M M1 : [~ci/~bi]φ1,i

∗ Ωi;∆i,2; [~ci/~bi]ηi =⇒E η

• If Ω; ∆ �E ifM thenE1 elseE2 : η, then

– Ω; ∆ �E E1 : η

– Ω; ∆ �E E2 : η

Proof: The proof follows from the soundness and completeness of the bi-directional refinement
checking rules, using lemmas 23 and 24 as needed. �

Lemma 30
If Ω; ∆ ∗ (Ωi;∆i)n then ∀i, 1 ≤ i ≤ n,Ω ⊆ Ωi.

Proof: By induction on the  ∗ relation. For the base case, notice that only rule (CR-!) changes
Ω, growing it by one predicate. �

Finally, we may state and prove our refinement preservation theorem.

Theorem 31 (Refinement Preservation)
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1. If Ω �M M : φ and M ⇓ V then Ω �M V : φ.

2. If Ω; ∆ �E E : ∃[~b](φ, ψ), w � Ω; ∆, and E@w + u ⇓ V ′ @w′, then there exist ~c and Ω′ such

that Ω′ �M V : [~c/~b]φ, w′ = w′′ + u, Ω ⊆ Ω′ and w′′ � Ω′; [~c/~b]ψ.

Proof: The proof is by simultaneous induction on evaluation. We consider below those cases
covered by the second induction hypothesis.

1. Case Term:

Suppose that:

Ω; ∆ �E M : η (19)
w � Ω; ∆ (20)
M @w + u ⇓ V @w′ (21)

where η = ∃[~b](φ, ψ)

By inversion of expression r.c.-checking (Lemma 29) and (19),

Ω; ∆ ∗ (Ωi;∆i)n (22)
for all i, 1 ≤ i ≤ n,

Ωi �M M : φ′ (23)
Ωi;∆i; (φ′,1) =⇒E η (24)

By inversion of evaluation and (21),

M ⇓ V (25)
w′ = w + u (26)

By soundness of logical judgments (Lemma 7.1), (20) and (22),

∃ i. w � Ωi;∆i (27)

By definition of � and (27),

w �Ω Ωi (28)
w �∆ ∆i,1 (29)

By inversion of expression entailment (Lemma 27) and (24),

Ωi;φ′ =⇒M [~c/~b]φ (30)

Ωi;∆i,1 =⇒W [~c/~b]ψ (31)

By induction hypothesis 1, (23) and (25),

Ωi �M V : φ′ (32)
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By (R-T-Sub), (32) and (30),

Ωi �M V : [~c/~b]φ (33)

By Lemma 7.2, (29) and (31),

w � [~c/~b]ψ (34)

By definition of �, (28) and (34),

w � Ωi; [~c/~b]ψ (35)

By Lemma 30 and (22),

Ω ⊆ Ωi (36)

Note that items (26), (33), (35) and (36) are the conclusions of this case of the proof.

2. Case Operator:

Suppose that:

Ω; ∆ �E o(M1, . . . ,Mk) : η (37)
w � Ω; ∆ (38)
o(M1, . . . ,Mk) @w + u ⇓ V @w′ (39)

where η = ∃[~b](φ, ψ)

By inversion of evaluation,

Mj ⇓ cj ,∀ j, 1 ≤ j ≤ k (40)
T (o)(c1, . . . , ck, w + u) = c, w′ (41)
V = c (42)

By inversion of expression r.c.-checking (Lemma 29) and (37),

Ω; ∆ ∗ (Ωi;∆i)n (43)

Σφ(o) = ∀~b1 · (φ1,1, . . . , φ1,k, ψ1) ⇀ η′ (44)
for all i, 1 ≤ i ≤ n, ∃~c1,i, such that:

∆i = ∆i,1,∆i,2 (45)

Ωi;∆i,1 =⇒W [~c1,i/~b1]ψ1 (46)

Ωi �M Mj : [~c1,i/~b1]φ1,j ,∀ j, 1 ≤ j ≤ k (47)

Ωi;∆i,2; [~c1,i/~b1]η′ =⇒E η (48)

where η′ = ∃[~b2](φ2, ψ2)

By soundness of logical judgments (Lemma 7.1), (38) and (43),

∃ i. w � Ωi;∆i (49)
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By definition of � and (49),

w �Ω Ωi (50)
w �∆ ∆i,1,∆i,2 (51)
∃wi,1, wi.2 such that: (52)

w = wi,1 + wi,2 (53)
wi,1 � ∆i,1

wi,2 � ∆i,2

and, WLOG:
wi,1 � Ωi

wi,2 � Ωi

By above and definition of �,

wi,1 � Ωi;∆i,1 (54)
wi,2 � Ωi;∆i,2 (55)

By soundness of logical judgments (Lemma 7.2), (54) and (46),

wi,1 � [~c1,i/~b1]ψ1 (56)

By induction hypothesis 1, (47) and (40),

Ωi �M cj : [~c1,i/~b1]φ1,j ,∀ j, 1 ≤ j ≤ k (57)

By (53) and associativity of the + operation,

w + u = wi,1 + wi,2 + u = wi,1 + (wi,2 + u) (58)

By the soundness of primitives (Condition 25),(56), (57), (58), and (41),

∃~c2,i, Ω′, such that:
w′ = w′′ + (wi,2 + u) (59)

Ω′ �M c : [~c2,i/~b2][~c1,i/~b1]φ2 (60)

w′′ � Ω′; [~c2,i/~b2][~c1,i/~b1]ψ2 (61)
Ωi ⊆ Ω′ (62)

By inversion of expression entailment (Lemma 27), and (48),

Ωi,~b2; [~c1,i/~b1]φ2 =⇒M [~c/~b]φ

Ωi,~b2;∆i,2; [~c1,i/~b1]ψ2 =⇒W [~c/~b]ψ

By substitution (Lemma 8), weakening, (62) and above,

Ω′; [~c2,i/~b2][~c1,i/~b1]φ2 =⇒M [~c/~b]φ (63)

Ω′;∆i,2; [~c2,i/~b2][~c1,i/~b1]ψ2 =⇒W [~c/~b]ψ (64)
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By (R-T-Sub), (60) and (63),

Ω′ �M c : [~c/~b]φ (65)

By (59) and associativity of the + operation,

w′ = (w′′ + wi,2) + u (66)

By Lemma 30 and (43),

Ω ⊆ Ωi (67)

By above and (62),

Ω ⊆ Ω′ (68)

By definition of �, (55) and (61),

w′′ + wi,2 � Ω′;∆i,2, [~c2,i/~b2][~c1,i/~b1]ψ2 (69)

By soundness of logical judgment (Lemma 7.2), (69), (64),

w′′ + wi,2 � Ω′; [~c/~b]ψ (70)

Note that items (65), (66), (68) and (70) are the conclusions of this case of the proof.

3. Case App:

Suppose that:

Ω; ∆ �E app(M1,M2) : η (71)
w � Ω; ∆ (72)
app(M1,M2) @w + u ⇓ V @w′ (73)

where η = ∃[~b](φ, ψ)

By inversion of evaluation,

M1 ⇓ V1 (74)
M2 ⇓ V2 (75)
[V1/x][V2/x1]E@w + u ⇓ V ′ @w′ (76)
where V1 = fun x (x1:A1) : A is E

By inversion of expression r.c.-checking (Lemma 29) and (71),

Ω; ∆ ∗ (Ωi;∆i)n (77)
for all i, 1 ≤ i ≤ n, ∃~ci, such that:

∆i = ∆i,1,∆i,2 (78)

Ωi �M M1 : ∀~bi · (φ1,i, ψ1,i) ⇀ ηi (79)

Ωi;∆i,1 =⇒W [~ci/~bi]ψ1,i (80)

Ωi �M M2 : [~ci/~bi]φ1,i (81)

Ωi;∆i,2; [~ci/~bi]ηi =⇒E η (82)

where ηi = ∃[~b2,i](φ2,i, ψ2,i)
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By induction hypothesis 1, (79) and (74),

Ωi �M V1 : ∀~bi · (φ1,i, ψ1,i) ⇀ ηi (83)

By induction hypothesis 1, (81) and (75),

Ωi �M V2 : [~ci/~bi]φ1,i (84)

By inversion of term refinement (Lemma 28) and (83),

φ′i = ∀~b′i · (φ′1,i, ψ
′
1,i) ⇀ η′i (85)

Ωib ` φ′i v A1 ⇀ A (86)
Ωib ` φ′i ok (87)

Ωi,~b
′
i, x:φ

′
i, x1:φ′1,i;ψ

′
1,i �E E : η′i (88)

Ωi;φ′i =⇒M ∀~bi · (φ1,i, ψ1,i) ⇀ ηi (89)

Ωi,~bi, x : φ′i, x1 : φ1,i;ψ1,i �E E : ηi (90)

By substitution lemma and (90),

Ωi, x:φ′i, x1:[~ci/~bi]φ1,i; [~ci/~bi]ψ1,i �E E : [~ci/~bi]ηi (91)

By (R-T-Fun) and (85)-(88),

Ωi �M V1 : φ′i (92)

By substitution lemma, (92), (84) and (91),

Ωi; [~ci/~bi]ψ1,i �E [V1/x][V2/x1]E : [~ci/~bi]ηi (93)

By soundness of logical judgments (Lemma 7.1), (72) and (77),

∃ i. w � Ωi;∆i (94)

By definition of �, (78) and (94),

w �Ω Ωi (95)
w �∆ ∆i,1,∆i,2 (96)
∃wi,1, wi.2 such that: (97)

w = wi,1 + wi,2 (98)
wi,1 � ∆i,1

wi,2 � ∆i,2

and, WLOG:
wi,1 � Ωi

wi,2 � Ωi
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By above and definition of �,

wi,1 � Ωi;∆i,1 (99)
wi,2 � Ωi;∆i,2 (100)

By soundness of logical judgments lemma (Lemma 7.2), (99) and (80),

wi,1 � Ωi; [~ci/~bi]ψ1 (101)

By (98) and associativity of the + operation,

w + u = wi,1 + wi,2 + u = wi,1 + (wi,2 + u) (102)

By induction hypothesis 2, (93),(101), (102), and (76), ∃~ci, Ω′, such that:,

w′ = w′′ + (wi,2 + u) (103)

Ω′ �M V ′ : [~c2,i/~b2,i][~ci/~bi]φ2,i (104)

w′′ � Ω′; [~c2,i/~b2,i][~ci/~bi]ψ2 (105)
Ωi ⊆ Ω′ (106)

By inversion of expression entailment, Lemma 27, and (82),

Ωi,~b2,i; [~ci/~bi]φ2,i =⇒M [~c/~b]φ

Ωi,~b2,i;∆i,2; [~ci/~bi]ψ2,i =⇒W [~c/~b]ψ

By substitution, Lemma 8, weakening, and above,

Ω′; [~c2,i/~b2,i][~ci/~bi]φ2,i =⇒M [~c/~b]φ (107)

Ω′;∆i,2; [~c2,i/~b2,i][~ci/~bi]ψ2,i =⇒W [~c/~b]ψ (108)

By (R-T-Sub), (104) and (107),

Ω′ �M V ′ : [~c/~b]φ (109)

By (103) and associativity of the + operation,

w′ = (w′′ + wi,2) + u (110)

By Lemma 30 and (77),

Ω ⊆ Ωi (111)

By above and (106),

Ω ⊆ Ω′ (112)

By definition of �, (100) and (105),

w′′ + wi,2 � Ω′;∆i,2, [~c2,i/~b2,i][~ci/~bi]ψ2,i (113)
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By soundness of logical judgments lemma (Lemma 7.2), (113), (108),

w′′ + wi,2 � Ω′; [~c/~b]ψ (114)

Note that items (109), (110), (112) and (114) are the conclusions of this case of the proof.

4. Case Let:

Suppose that:

Ω; ∆ �E letxbeE1 inE2 end : η (115)
w � Ω; ∆ (116)
letxbeE1 inE2 end@w + u ⇓ V @w′ (117)

where η = ∃[~b](φ, ψ)

By inversion of expression refinement-checking (Lemma 29) and (115),

Ω; ∆ ∗ (Ωi;∆i)n (118)
for all i, 1 ≤ i ≤ n,

Ωi;∆i �E E1 : ∃[~bi](φi, ψi) (119)

Ωi,~bi, x:φi;ψi �E E2 : η (120)
~bi 6∈ FVc(η) (121)

By inversion of evaluation and (117),

E1 @w + u ⇓ V1 @w′
1 (122)

[V1/x]E2 @w′
1 ⇓ V @w′ (123)

By soundness of logical judgments (Lemma 7.1), (116) and (118),

∃ i. w � Ωi;∆i (124)

By induction hypothesis 2, (119), (124) and (122), ∃~ci, Ω′, such that:

w′
1 = w′′

1 + u (125)

Ω′ �M V1 : [~ci/~bi]φi (126)

w′′
1 � Ω′; [~ci/~bi]ψi (127)

Ωi ⊆ Ω′ (128)

By weakening and (120),

Ω′,~bi, x:φi;ψi �E E2 : η (129)

By refinement substitution (Lemma 8),(129), and (121),

Ω′, x:[~ci/~bi]φi; [~ci/~bi]ψi �E E2 : η

Ω′; [~ci/~bi]ψi �E [V1/x]E2 : η (130)
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By (123) and (125),

[V1/x]E2 @w′′
1 + u ⇓ V @w′ (131)

By induction hypothesis 2, (130), (127) and (131), ∃~c, Ω′′, such that:

w′ = w′′ + u (132)

Ω′′ �M V : [~c/~b]φ (133)

w′′ � Ω′′; [~c/~b]ψ (134)
Ω′ ⊆ Ω′′ (135)

By Lemma 30, (118), (128) and (135),

Ω ⊆ Ω′′ (136)

Note that items (132), (133), (134) and (136) are the conclusions of this case of the proof.

5. Case If:

Suppose that:

Ω; ∆ �E if M thenE1 elseE2 : η (137)
w � Ω; ∆ (138)
if M thenE1 elseE2 @w + u ⇓ V @w′ (139)

where η = ∃[~b](φ, ψ)

By inversion of expression r.c.-checking (Lemma 29) and (137),

Ω; ∆ �E E1 : η (140)
Ω; ∆ �E E2 : η (141)

By inversion of evaluation we have either,

M ⇓ true (142)
E1 @w + u ⇓ V @w′ (143)

or

M ⇓ false (144)
E2 @w + u ⇓ V @w′ (145)

In either case of evaluation the result follows immediately by the induction hypothesis.

�

The following canonical refinement forms theorem expresses the properties of values that refine-
ment checking provides in addition to ordinary type checking. We do not state properties of values
implied by the conventional canonical forms lemma, except where necessary.
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Theorem 32 (Refinement Canonical Forms)
If · ` V : A and Ω �M V : φ (with Ω containing only bindings and predicates) then one of the
following holds:

1. φ = Bool

2. φ = Its(c) and V = c

3. φ = a

4. φ = ∀~b · φ1 → φ2, V = λ(x1:A1).M and Ω,~b, x1:φ1 �M M : φ2.

5. φ = ∀~b · (φ1, ψ1) ⇀ η, V = fun x (x1:A1) : A2 is E, and Ω, x:φ′,~b, x1:φ1;ψ1 �E E : η, where
Ω;φ′ =⇒M φ.

3.8 Conservative Extension

To capture the notion that refinements are a conservative extension of the type system, we present
the theorems below. The first theorem states that any refinement given to a term (or expression) in
our refinement-checking system will always refine the type given to the term (or expression) in the
type-checking system. In this theorem, we define type(Ω) as the typing context mapping all variables
x ∈ Dom(Ω) to the type refined by their refinement in Ω. That is, if x:φ ∈ Ω and Ωb ` φ v A then
x:A ∈ type(Ω).

Theorem 33
If Ω �M M : φ and type(Ω) `M M : A then Ωb ` φ v A. Similarly, if Ω; ∆ �E E : η and
type(Ω) `E E : A then Ωb ` η v A.

The next theorem states that for any well-typed term, M (or expression, E), with type A, there
exists a refinement-checking derivation for which M (E) has the trivial refinement associated with
A. That is, any well-typed term (expression) can also be shown to be well-refined with a trivial
refinement. In this theorem, trivΓ(Γ) is defined as the persistent context mapping elements x ∈ Γ
to the trivial refinement of their type in Γ. Also, trivΣ(ΣA) is defined as the refinement interface
containing the trivial refinements of the elements of ΣA.

Theorem 34
If Γ `M M : A and Σφ = trivΣ(ΣA) then trivΓ(Γ) �M M : triv(A). Similarly, if Γ `E E : A and
Σφ = trivΣ(ΣA) then trivΓ(Γ);> �E E : (triv(A),>).

Proof: The proof is by induction on the typing derivation. �

3.9 Optimization

As well as helping programmers document and check their programs for additional correctness
criteria, refinements provide language or library implementors with a sound optimization principle.
When programs are checked to determine their refined type, implementors may replace the total
function, T (o), implementing operator o, with a partial function, T̂ (o), that is only defined on the
refined domain given by the refinement signature Σφ.

To be precise, we define the optimized function T̂ (o) as follows.
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T̂ (o)(c1, . . . , cn, w) = T (o)(c1, . . . , cn, w)
if Σφ(o) = ∀~b · (φ1, . . . , φn, ψ) ⇀ η,
w � Ω; [~c/~b]ψ
and Ω �M ci : [~c/~b]φi for 1 ≤ i ≤ n

T̂ (o)(c1, . . . , cn, w) = undefined otherwise

We use the notation ⇓̂ to denote the optimized evaluation of expressions with the transition
function T replaced by T̂ (that is, all operator implementations replaced by their optimized versions).
We are able to prove that optimized and unoptimized evaluation are equivalent and therefore that
it is safe for implementors to replace operator implementations with their optimized version.

Theorem 35 (Optimization)
If Ω; ∆ �E E : η and w � Ω; ∆ then E@w ⇓ V @w′ if and only if E@w⇓̂V @w′.

Proof: (⇐) The proof in this direction is trivial. The reduction relation on optimized programs is
a subset of the relation on unoptimized programs.

(⇒) The proof in this direction is by induction on the evaluation relation. Only the case for
operators is difficult. It uses the inversion of refinement checking and the Preservation Theorem. �

4 Examples

In this section, we provide a number of examples that demonstrate the expressive power of our
language.

4.1 ML-style integer references

In Section 2.2 we discussed how to extend the semantics of our language with mutable integer
references. Our first example demonstrates how to simulate the (limited) information one gets from
the ML type system for reasoning about references.

Recall that in our basic model of integer references, there are two predicates alloc(`) and ctns(`, i).
For each location that has been allocated, the world’s persistent facts include a predicate alloc(`)
and the world’s ephemeral facts include the predicate ctns(`, i).

In ML, the only information we have about references is that a reference that appears in our
program has been allocated at some point in the past (and once allocated, references remain allocated
forever since there is no free operation in ML). We know nothing about the contents of the reference.
In order for access to a reference to be safe, we require proof that the reference in question has been
allocated. In ML, such proof is implicit in the way the language is structured. Constants with
reference type may not explicitly appear in user-defined programs. However, such facts can only be
established through meta-theoretic reasoning about ML’s semantics.

Here, we make the proof that a reference has been allocated explicit within the language by
refining the type of the allocation primitive.

new : (int,>) ⇀ ∃[`:int ref ](Its(`), !alloc(`)⊗>)

The new operation has no particular requirements before it can be invoked. It operates on the
whole world w, choosing a new location ` that does not appear in Per(w) and returns the extended
world w + ({alloc(`)}, {ctns(`, i)}). Since we do not care about the specifics of w, we allowed the
precondition for new to be >. Since we later want to establish explicitly the fact that any reference
that we read or update is allocated, the postcondition includes the formula !alloc(`). The modality
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“!” indicates that this is a persistent fact that may be used as many times as necessary (or not at
all). The second part of the postcondition is again >: We say nothing about the contents of the
location or any other part of the world.

The get and set operations only care that the location that they access has been allocated.
They make no use of the contents of the reference or any other part of the world. As a result, the
precondition for the operations specify !alloc(`)⊗>.

get : ∀`:int ref · (Its(`), !alloc(`)⊗>) ⇀ (int,>)
set : ∀`:int ref · (Its(`), int, !alloc(`)⊗>) ⇀ (unit,>)

4.2 Alias Types

Here we demonstrate how our system of type refinements is able to capture simple aliasing con-
straints, as in previous work on alias types [SWM00, WM00]. These constraints allow us to deal-
locate memory explicitly, yet safely, using the free function. The refinement signature for this
application appears below.

() : unit
n : int (for any integer n)
` : int ref (for any location `)
new : ∀w:int · (Its(w),1) ⇀ ∃[`:int ref ](Its(`), ctns(`, w))
get : ∀`:int ref · ∀w:int · (Its(`), ctns(`, w)) ⇀ (Its(w), ctns(`, w))
set : ∀`:int ref · ∀w:int · ∀w′:int·

(Its(`), Its(w), ctns(`, w′)) ⇀ (unit, ctns(`, w))
free : ∀`:int ref · ∀w:int · (Its(`), ctns(`, w)) ⇀ (unit,1)

A single predicate ctns(`, w) appears in the signature. It indicates that the location ` holds
the integer w. The new operation places no requirements on the world in which it operates and
therefore its precondition is simply 1. The postcondition specifies that exactly one new location has
been allocated. The other three functions require that the world refinement ctns(`, w) be satisfied
before the function is called.

This example can easily be extended to accommodate region-based memory management [TT94].
We would need to augment the signature with a collection of region constants r and a pair of
predicates, allocreg(r) to indicate that the region r is allocated, and inreg(`, r) to link the location
to its region. Refinements can then be written for region allocation, object allocation, get, set and
region deallocation operations.

4.3 Interrupt Levels

For their study of Windows device drivers, DeLine and Fahndrich extend Vault with a special mech-
anism for specifying “capability states” which are arranged in a partial order [DF01]. They use the
partial order and bounded quantification to specify preconditions on kernel functions. Here we give
an alternate encoding and reason logically about the same kernel functions and their preconditions.

First, we assume a signature with abstract constants that correspond to each interrupt level and
also a predicate L over these levels. If L(c) is true at a particular program point then the program
executes at interrupt level c at that point.

pass : level Passive Level
apc : level APC Level
dis : level Dispatch Level
dirql : level DIRQL Level
L : level→ prop Level Predicate
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Next we consider a variety of kernel functions and their type refinements. First, the KeSet-
PriorityThread function requires that the program be at Passive Level when it is called and also
returns in Passive Level. The function takes arguments with type thread and pr, which we assume
are defined in the current signature.

KeSetPriorityThread : (thread,pr, L(pass)) ⇀ (pr, L(pass))

Function KeReleaseSemaphore is somewhat more complex since it may be called in Passive, APC
or Dispatch level and it preserves its level across the call. We let less(dis) abbreviate the formula
L(pass)⊕ L(apc)⊕ L(dis).

KeReleaseSemaphore :
∀l:level · (sem,pr, long, L(l)⊗ (L(l)( less(dis))) ⇀ (pr, L(l))

Finally, KeAcquireSpinLock also must be called in one of three states. However, it returns in
the Dispatch state and also returns an object representing the initial state (l) that the function was
called in.

KeAcquireSpinLock :
∀l:level · (sem,pr, long, L(l)⊗ (L(l)( less(dis))) ⇀ (Its(l), L(dis))

4.4 Recursion Counts

Worlds have no persistent properties and the ephemeral properties are the singleton sets of predicates
count(i) for all integers i. Before refinement checking occurs, we assume that programs have been
instrumented with a call to the constant inc at the entry point of every recursive function. We
would require a slight extension of our language with function symbols such as “+” in order to
encode the necessary invariants in this example. Below, we provide an appropriate interface.

• Σp = {count:(int) ⇀ (prop),+:(int, int) ⇀ (int)}

• ΣA = {():unit, n:int, inc :(unit) ⇀ (unit)}

• Σφ = {inc :∀c:int · (unit, count(c)) ⇀ (unit, count(c+ 1))}

5 Discussion

5.1 Variants and Further Extensions

We have provided semantics for an expressive core set of program refinements. In this section, we
informally discuss a number of possible extensions to and variations of our language.

Term Refinements Previous work by Davies, Pfenning and Xi [DP00, XP99] has considered
refinements for terms including conjunctive refinements (intersection types) and implication (for
stating preconditions on functions in classical logic). We do not expect to encounter difficulties
when extending our system with these additional sorts of refinements.

Linear Data Structures In practice, one often associates invariants about state with each cell
in a recursive data structure. For example, one might like to represent a list of files, each of which
is in the “open” state (as opposed to the “closed” state). One way to accomplish this task is
to add linear, or more generally, single-threaded data structures as has been considered elsewhere
[WM00, DF01, WW01]. To extend our system, we need only augment our linear context ∆ with
linear term variables and add the appropriate introduction and elimination forms. A more general
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approach would be to add arbitrary inductive definitions to our world refinements as in work by
Ishtiaq, O’Hearn and Reynolds [IO01, Rey00].

Other Substructural Logics We have worked hard to define our core refinement checking rules
for expressions and terms independently of the specifics of any particular logic. As a result, we
believe it is possible to consider using a variety of different substructural logics in place of the
multiplicative-additive linear logic that we chose to explore in this paper. Whichever logic is chosen,
it needs to satisfy the following requirements.

• The logic must contain a linear hypothetical judgment that can control contraction and weak-
ening of hypotheses.

• The logic must satisfy cut-elimination.

• There must be an algorithm for deciding entailment or else programmers must be satisfied
with an incomplete type checker or the task of placing additional annotations on programs to
guide proof search.

For example, it seems likely that we could use O’Hearn and Pym’s bunched logic with its shared
implication if we were to interpret “,” in our expression refinement judgments as the multiplica-
tive separator in a bunch. It would also be interesting to explore applications involving ordered
logic [Pol01]. In this case, we would replace our linear context ∆ with a pair of contexts (∆′; Θ)
where ∆′ is linear as before and Θ is an ordered context. An ordered context does not even allow
the structural exchange principle and an ordered type system ensures that assumptions are used
in the order they appear. Such an extension may be quite effective for reasoning about resources
allocated on the stack [AW03].

5.2 Current and Future Work

There are many directions for future work. We have begun to investigate the following three further
issues.

Encoding Type-and-Effect Systems We believe that our language provides a general frame-
work in which to encode many type-and-effect systems. We have devised a translation from a variant
of a well-known type-and-effect system concerning lock types for static enforcement of mutual exclu-
sion [FA99], into our language (extended with second-order quantification). We thereby show that
our refinements are at least as powerful. Our translation also helps us understand the connection
between types and effects and recent research on sophisticated substructural type systems such as
the one implemented in Vault [DF01].

Implementation One of the authors (Mandelbaum) has developed a preliminary implementation
for small core subset of Java. The current implementation is built using Polyglot [NCM02], an
extensible compiler infrastructure for Java. We are very grateful to the Polyglot implementers
for giving us access to their software. The current version allows programmers to reason with a
minimalist subset of the logic that includes 1, ⊗ and >. We would like to extend this implementation
to include the additive connectives & and ⊕ as well as second-order quantifiers. However, the
combination of the features will require new algorithms and heuristics for inferring instantiation
of second-order quantifiers, unless we require programmers to explicitly instantiate second-order
quantifiers, which we believe is likely to be too burdensome in practice. We also need to investigate
mechanisms for handling some of Java’s advanced features, including exceptions.

54



Semantics We are interested in extending our semantics for world refinements in several directions.
First, as mentioned in section 3.2, linear logic is incomplete with respect to our resource semantics.
Although this incompleteness may not cause too much trouble in practice, it is unsatisfying in theory.
We plan to attempt to find a substructural logic that is both expressive and complete with respect
to this semantics. Second, we have been experimenting with more general uses of the unrestricted
modality ! and we are interested in extending our semantics to incorporate !ψ for arbitrary formulas
ψ.

Modularity Our language is parameterized by a single interface and implementation that enables
us to consider reasoning about a variety of different sorts of effects. The next step in the development
of this project is to extend the language with an advanced module system that allows programmers
to define their own logical safety policies and to reason compositionally about their programs.

Concurrency There are a number of different strategies for reasoning about effects in concurrent
systems. For example, Gordon and Jefferies [GJ01, GJ02] have used a type and effect system to
check the correctness of security policies written in the pi calculus. We believe our logical approach
to reasoning about program effects can be extended to a similar sort of concurrent setting. We are
eager to discover which substructural logics are best suited for reasoning in concurrent domains.

5.3 Related Work

A number of researchers have recently proposed strategies for checking that programs satisfy sophis-
ticated safety properties. Each system brings some strengths and some weaknesses when compared
with our own. Here are some of the most closely related systems.

Refinement Types Our initial inspiration for this project was derived from work on refinement
types by Davies and Pfenning[DP00] and Denney [Den98] and the practical dependent types proposed
by Xi and Pfenning [XP98, XP99]. Each of these authors propose sophisticated type systems that
are able to specify many program properties well beyond the range of conventional type systems
such as those for Java or ML. However, none of these groups consider the ephemeral properties that
we are able to specify and check.

Safe Languages CCured [NMW02], CQual [FTA02], Cyclone [GMJ+02], ESC [Det96, fJ02], and
Vault [DF01, FD02] are all languages designed to verify particular safety properties. CCured con-
centrates on showing the safety of mostly unannotated C programs; Cyclone allows programmers
to specify safe stack and region memory allocation; ESC facilitates program debugging by allowing
programmers to state invariants of various sorts and uses theorem proving technology to check them;
and Vault and CQual make it possible to check resource usage protocols. Vault has been applied to
verification of safety conditions in device drivers and CQual has been applied to find locking bugs in
the Linux kernel. One significant difference between our work and the others is that we have chosen
to use a general substructural logic to encode program properties. Vault is the most similar since
its type system is derived from the capability calculus [WCM00] and alias types [SWM00, WM00],
which is also an inspiration for this work. However, the capability logic is somewhat ad hoc whereas
we base our type system directly on linear logic. Our logic is more general as we may take advantage
of linear implication and the additive connectives, and yet our type system remains decidable.

Proof-Carrying Type Systems Shao et al. [SSTP02] and Crary and Vanderwaart [CV02] have
both developed powerful type languages that include a fully general logical framework within the type
structure. Both languages were inspired by Necula and Lee’s work on proof carrying code [NL96,
Nec97] and are designed as a very general framework for coupling low-level programs with their
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proofs of safety. In contrast, our language is intended to be a high-level language for programmers.
Hence, the design space is quite different. Our specification language is less general than either of
these, but it does not require programmers to write explicit proofs that their programs satisfy the
safety properties in question. On the other hand, neither of these logics contain linear logic’s left-
asynchronous connectives (1, ⊗, 0, ⊕, ∃) which we find very convenient in many of our applications.

Hoare Logic Recent efforts by Ishtiaq, O’Hearn and Reynolds [IO01, Rey00] on the reasoning
about pointers in Hoare logic provided guidance in construction of our semantic model of refinements.
However, they use bunched logic in their work whereas we use a subset of linear logic. Since our
work is based on type theory, it naturally applies to higher-order programs, which is not the case
for Hoare logic. Moreover, programmers who use Hoare logic have no automated support whereas
our system has a decidable type-refinement checking algorithm.

Model Checking Slightly further removed is work on model checking programs. Model checkers
normally attempt to verify programs with little or no programmer annotations; in contrast, our
type system requires type refinement annotations and hence requires more work from programmers.
On the other hand, type systems usually scale much more effectively to large programs than model
checkers since type checking may be done on a module by module basis.

5.4 Conclusions

We have developed a theory of type refinements for effectful computations. This theory includes
a semantics for refinements and a sound and decidable syntactic refinement checking system. We
have demonstrated the usefulness of our refinements by showing how to encode a number of different
kinds of invariants concerning the state of a computation.
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