
The Next 700 Data Description Languages

KATHLEEN FISHER
AT&T Labs Research
kfisher@research.att.com

and
YITZHAK MANDELBAUM
AT&T Labs Research
yitzhak@research.att.com

and
DAVID WALKER
Princeton University
dpw@CS.Princeton.EDU

1. THE CHALLENGES OF AD HOC DATA FORMATS

XML. HTML. JPEG. MPEG. These data formats represent vast quantities of industrial,
governmental, and scientific data. Because they have been standardized and are widely
used, many reliable, efficient, and convenient tools for processing data in these formats
are readily available. For instance, most programming languages have libraries for parsing
XML and HTML as well as manipulating images in JPEG or movies in MPEG. Query en-
gines are available for querying XML documents. Widely-used applications like Microsoft
Word and Excel automatically translate documents between HTML and other standard for-
mats. In short, life is good when working with standard data formats. In an ideal world, all
data would be in such formats. In reality, however, we are not nearly so fortunate.

An ad hoc data format is any nonstandard data format. Typically, such formats do
not have parsing, querying, analysis, or transformation tools readily available. Every day,
network administrators, financial analysts, computer scientists, biologists, chemists, as-
tronomers, and physicists deal with ad hoc data in a myriad of complex formats. Figure 1
gives a partial sense of the range and pervasiveness of such data. Since off-the-shelf tools
for processing these ad hoc data formats do not exist or are not readily available, talented
scientists, data analysts, and programmers must waste their time on low-level chores like
parsing and format translation to extract the valuable information they need from their data.
Though the syntax of everyday programming languages might be considered “ad hoc,” we
explicitly exclude programming language syntax from our domain of interest.

This research was supported in part by National Science Foundation grants 0238328, 0612147 and 0615062.
This work does not necessarily reflect the opinions or policy of the federal government or NSF and no official
endorsement should be inferred.

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 20YY ACM 0004-5411/20YY/0100-0001 $5.00

Journal of the ACM, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · K. Fisher, Y. Mandelbaum and D. Walker

Name & Use Representation

Web server logs (CLF): Fixed-column ASCII records
Measure web workloads
AT&T provisioning data: Variable-width ASCII records
Monitor service activation
Call detail: Fraud detection Fixed-width binary records
AT&T billing data: Various Cobol data formats
Monitor billing process
Netflow: Data-dependent number of
Monitor network performance fixed-width binary records
Newick: Immune Fixed-width ASCII records
system response simulation in tree-shaped hierarchy
Gene Ontology: Variable-width ASCII records
Gene-gene correlations in DAG-shaped hierarchy
CPT codes: Medical diagnoses Floating point numbers
SnowMed: Medical clinic notes keyword tags

Fig. 1. Selected ad hoc data sources.

In addition to the inconvenience of having to build custom processing tools from scratch,
the nonstandard nature of ad hoc data frequently leads to other difficulties for its users.
First, documentation for the format may not exist, or it may be out of date. For example, a
common phenomenon is for a field in a data source to fall into disuse. After a while, a new
piece of information becomes interesting, but compatibility issues prevent data suppliers
from modifying the shape of their data, so instead they hijack the unused field, often failing
to update the documentation in the process.

Second, such data frequently contain errors, for a variety of reasons: malfunctioning
equipment, programming errors, nonstandard values to indicate “no data available,” human
error in entering data, and unexpected data values caused by the lack of good documenta-
tion. Detecting errors is important, because otherwise they can corrupt “good” data. The
appropriate response to such errors depends on the application. Some applications require
the data to be error free: if an error is detected, processing needs to stop immediately and
a human must be alerted. Other applications can repair the data, while still others can
simply discard erroneous or unexpected values. For some applications, errors in the data
can be the most interesting part because they can signal where two systems are failing to
communicate.

Today, many programmers tackle the challenge of ad hoc data by writing scripts in a lan-
guage like PERL. Unfortunately, this process is slow, tedious, and unreliable. Error check-
ing and recovery in these scripts is often minimal or nonexistent because when present,
such error code swamps the main-line computation. The program itself is often unreadable
by anyone other than the original authors (and usually not even them in a month or two)
and consequently cannot stand as documentation for the format. Processing code often
ends up intertwined with parsing code, making it difficult to reuse the parsing code for dif-
ferent analyses. Hence, in general, software produced in this way is not the high-quality,
reliable, efficient and maintainable code one should demand.
Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 3

Generated
Parser

Description
Compiler

Data Description
(Type T)

010010100100..

Parse
Descriptor
for Type T

Representation
for Type T

(Generic)
User
Code

Fig. 2. Architecture of PADS system.

1.1 Promising Solutions

To address these challenges, researchers have begun to develop high-level languages for
describing and processing ad hoc data. For instance, McCann and Chandra introduced
PACKETTYPES [McCann and Chandra 2000], a specification language designed to help
programmers process the binary data associated with networking protocols. Godmar Back
developed DATASCRIPT [Back 2002], a scripting language with explicit support for spec-
ifying and parsing binary data formats. DATASCRIPT has been used to manipulate Java
jar files and ELF object files. James and Malpani developed the Data Definition Lan-
guage (DDL) [James and Malpani 2003], a scripting language similar to DATASCRIPT, but
targeted at the .NET runtime. The developers of Erlang have also introduced language
extensions that they refer to as binaries [Wikström and Rogvall 1999; Gustafsson and Sag-
onas 2004] to aid in packet processing and protocol programming. Finally, we are part
of a group developing PADS, another system for managing ad hoc data. PADS focuses on
robust error handling and tool generation. It is also unusual in that it supports a variety of
data encodings: ASCII formats used by financial analysts, medical professionals and sci-
entists, EBCDIC formats used in Cobol-based legacy business systems, binary data from
network applications, and mixed encodings as well. PADS comes with not one but two
specification languages: PADS/C [Fisher and Gruber 2005] generates libraries and tools for
C programmers, while PADS/ML [Mandelbaum et al. 2007] generates OCAML code.

Although these languages differ in many details, they all derive their power from a
remarkable insight: Types can describe data in both its external (on-disk) and internal
(programmatic) forms. Figure 2 illustrates how systems such as PADS, DATASCRIPT, and
PACKETTYPES exploit this dual interpretation of types. In the diagram, the data consumer
constructs a type T to describe the syntax and semantic properties of the format in ques-
tion. A compiler converts this description into parsing code, which maps raw data into a
canonical in-memory representation. This canonical representation is guaranteed to be a
data structure that itself has type T, or perhaps T’, the closest relative of T available in the
host programming language being used. In the case of PADS, the parser also generates a
parse descriptor (PD), which describes the errors detected in the data. A host language
program can then analyze, transform or otherwise process the data representation and PD.

Journal of the ACM, Vol. V, No. N, Month 20YY.

4 · K. Fisher, Y. Mandelbaum and D. Walker

This architecture helps programmers take on the challenges of ad hoc data in multiple
ways. First, format specifications in these languages serve as high-level documentation that
is more easily read and maintained than the equivalent low-level PERL script or C parser.
Importantly, DATASCRIPT, PACKETTYPES, and PADS all allow programmers to describe
both the physical layout of data as well as its deeper semantic properties such as equality
and range constraints on values, sortedness, and other forms of dependency. The intent is
to allow analysts to capture all they know about a data source in a data description. If a
data source is changed, as data sources frequently are, by the extension of a record with an
additional field or new variant, one often only needs to make a single, local change to the
declarative description to keep it up to date.

Second, basing the description language on type theory is especially helpful as ordinary
programmers have strong intuitions about types. The designers of data description lan-
guages have leveraged these intuitions to make the syntax and semantics of descriptions
particularly easy to understand, even for beginners. For instance, an array type is used to
describe sequences of data objects, while union types are used to describe alternatives.

Third, programmers can write generic, type-directed programs that produce tools for
purposes other than just parsing. For instance, McCann and Chandra suggest using PACK-
ETTYPES specifications to generate packet filters and network monitors automatically.
Back used DATASCRIPT to generate infrastructure for visitor patterns over parsed data.
PADS generates a statistical data analyzer, a pretty printer, an XML translator and an aux-
iliary library that enables XQueries using the Galax query engine[Fernández et al. 2003].
It is the declarative, domain-specific nature of these data description languages that makes
it possible to generate all these value-added tools for programmers. The suite of tools,
all of which can be generated from a single description, provides additional incentive for
programmers to keep documentation up-to-date.

Fourth, these data description languages facilitate insertion of error handling code. The
generated parsers check all possible error cases: system errors related to the input file,
buffer, or socket; syntax errors related to deviations in the physical format; and seman-
tic errors in which the data violates user constraints. Because these checks appear only
in generated code, they do not clutter the high-level declarative description of the data
source. Moreover, since tools are generated automatically by a compiler rather than writ-
ten by hand, they are far more likely to be robust and far less likely to have dangerous
vulnerabilities like buffer overflows.

In summary, data description languages like DATASCRIPT, PACKETTYPES, Erlang, and
PADS meet the challenge of processing ad hoc data by providing a concise and precise form
of “living” data documentation and producing reliable tools that handle errors robustly.

1.2 The Next 700 Data Description Languages

The languages people use to communicate with computers differ in their in-
tended aptitudes, towards either a particular application area, or a particu-
lar phase of computer use (high level programming, program assembly, job
scheduling, etc). They also differ in physical appearance, and more impor-
tant, in logical structure. The question arises, do the idiosyncrasies reflect
basic logical properties of the situations that are being catered for? Or are they
accidents of history and personal background that may be obscuring fruitful
developments? This question is clearly important if we are trying to predict or
influence language evolution.

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 5

To answer it we must think in terms, not of languages, but of families of lan-
guages. That is to say we must systematize their design so that a new language
is a point chosen from a well-mapped space, rather than a laboriously devised
construction.

— P. J. Landin, The Next 700 Programming Languages [Landin 1966].

Landin asserts that principled programming language design involves thinking in terms
of “families of languages” and choosing from a “well-mapped space.” However, so far,
when it comes to the domain of type-based ad hoc data processing languages, there is no
well-mapped space and no systematic understanding of the family of languages one might
be dealing with.

The primary goal of this paper is to begin to understand the family of type-based ad hoc
data processing languages. We proceed, as Landin did, by developing a semantic frame-
work for defining, comparing, and contrasting languages in our domain. This semantic
framework revolves around the definition of a data description calculus (DDCα). This cal-
culus uses types from a dependent type theory to describe various forms of ad hoc data:
base types to describe atomic pieces of data and type constructors to describe richer struc-
tures.

DDCα has a denotational semantics that interprets its data descriptions in two different
ways. The first dimension of the semantics describes the types of the data structures that
result from using a particular data description as a parser. Client programmers use this
semantics to write safe, well-typed application programs against the libraries generated by
DDCα descriptions. The second dimension of the semantics explains how data descrip-
tions are interpreted as parsing functions that map external representations (bits) into data
structures in a typed lambda calculus. These parsers produce both representations of the
external data and parse descriptors that pinpoint errors in the original source.

For many domains, researchers have a solid understanding of what makes a “reason-
able” or “unreasonable” language. For instance, a reasonable typed language is one in
which values of a given type have a well-defined canonical form and “programs don’t go
wrong.” On the other hand, when we began this research, it was not at all clear how to
decide whether our data description language and its interpretation were “reasonable” or
“unreasonable.” A conventional sort of canonical forms property, for instance, is not rel-
evant as the input data source is not under system control, and, as mentioned above, is
frequently buggy. Consequently, we have had to define and formalize a new correctness
criterion for the language. In a nutshell, rather than requiring input data be error-free,
we require that the internal data structures produced by parsing satisfy their specification
wherever the parse descriptor says they will. Our invariant allows data consumers to rely
on the integrity of the internal data structures marked as error-free.

To study and compare PADS/C, PADS/ML, PACKETTYPES, DATASCRIPT, and/or some
other data description language, we advocate translating the language into DDCα. The
translation decomposes the relatively complex, high-level descriptions of the language in
question into a series of lower-level DDCα descriptions, which have all been formally de-
fined. We have done this decomposition for IPADS, an idealized version of the PADS/C
language that captures the essence of the actual implementation. We have also analyzed
many of the features of PADS/ML, PACKETTYPES and DATASCRIPT using our model. The
process of giving semantics to these languages highlighted features that were ambiguous
or ill-defined in the documentation that we had available to us.

Journal of the ACM, Vol. V, No. N, Month 20YY.

6 · K. Fisher, Y. Mandelbaum and D. Walker

To our delight, the process of giving PADS/C a semantics in this framework has had ad-
ditional benefits. In particular, since we defined the semantics by reviewing the existing
implementation, we found (and fixed!) a couple of subtle bugs. The semantics has also
raised several design questions and helped us explore important extensions. In particu-
lar, driven by examples found in biological data [Gene Ontology Consortium ; 2003], we
decided to add recursion to PADS/C.

Finally, DDCα has been instrumental in the development of our latest data description
language, PADS/ML. Unlike PADS/C, which was created prior to our semantic analysis,
PADS/ML was defined with DDCα already in hand. The semantics was a useful guide
in all aspects of the PADS/ML implementation, but particularly so in the development of
polymorphic descriptions, a new feature in PADS/ML. The compilation invariants required
for correct code generation in the presence of polymorphism are quite subtle. However,
using DDCα, we were able to work out the details in a clean, elegant setting and prove our
implementation technique correct.

In summary, this article makes the following theoretical and practical contributions:

—We define a semantic framework for understanding and comparing data description lan-
guages such as PADS/C, PADS/ML, PACKETTYPES, and DATASCRIPT. No one has previ-
ously given a formal semantics to any of these languages. In fact, as far as we are aware,
this is the first general and complete “theory of front-ends” that encompasses both a
semantics for recognition of concrete, external syntax and a semantics for internal rep-
resentation of this data within a rich, strongly-typed programming language.

—At the center of the framework is DDCα, a calculus of data descriptions based on a
polymorphic, dependent type theory. We give a denotational semantics to DDCα by
interpreting types both as parsers and, more conventionally, as classifiers for parsed
data.

—We define an important correctness criterion for our language, stating that all errors in
the parsed data are reported in the parse descriptor. We prove DDCα parsers maintain
this property.

—We define IPADS, an idealized version of the PADS/C data description language that
captures its essential features, and show how to give it a semantics by translating it into
DDCα. The process of defining the semantics led to the discovery of several bugs in the
actual implementation.

—We have given semantics to features from several other data description languages in-
cluding PACKETTYPES and DATASCRIPT. As Landin asserts, this process helps us un-
derstand the families of languages in this domain and the totality of their features, so that
we may engage in principled language design as opposed to falling prey to “accidents
of history and personal background.”

—We used IPADS and DDCα to experiment with a definition and implementation strategy
for recursive data types. Recursive types are essential for representing tree-shaped hi-
erarchical data [Gene Ontology Consortium ; 2003]. We have integrated recursion into
PADS/C, using our theory as a guide.

—We also used IPADS and DDCα as a guide for the implementation of PADS/ML, a new
data description language for OCAML. The chief difficulty in the design involved under-
standing how to compile polymorphic descriptions into OCAML. Polymorphism allows
for effective “description reuse” and fits elegantly in the context of typed functional pro-

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 7

gramming languages like OCAML. DDCα served as a simple formal framework in which
we could work out and prove the correctness of our implementation strategy.

One explicit non-contribution of this work is the development of new techniques for rec-
ognizing any particularly interesting class of grammars. The parsers generated by DDCα

or PADS are completely ordinary recursive-descent parsers. The novelty of our contribu-
tion comes entirely from establishing the connection between these traditional parsers and
modern type theory.

Many of the basic ideas mentioned above were presented at the ACM Symposium on
Principles of Programming Languages in 2006, in a paper with the same title [Fisher et al.
2006]. However, this article makes two important additional contributions. First, we have
improved the structure of the semantics of the DDCα in several ways. In particular, we
eliminated the “contractiveness” constraint, which allowed us to substantially simplify and
standardize the earlier kinding rules. Second, we added polymorphism to the calculus to
elucidate the semantics of PADS/ML’s polymorphic, recursive and dependent data types.
The addition of polymorphism led to a number of technical challenges in the proof of
correctness. Note that we call the new version of our calculus DDCα, to distinguish it
from the previous version, DDC. Finally, this article differs from our previously published
work as it explains the proof techniques and all intermediate lemmas needed to achieve
our formal results. We have omitted the line-by-line details of the proofs, but key cases of
the most challenging lemmas may be found in Mandelbaum’s Ph.D. thesis [Mandelbaum
2006].

The rest of the paper describes our contributions in detail. Section 2 gives a gentle in-
troduction to data description languages by introducing IPADS. Sections 3, 4 and 5 explain
the syntax, semantics and metatheory of DDCα. Section 6 discusses encodings of IPADS,
PADS/ML, PACKETTYPES and DATASCRIPT in DDCα and Section 7 explains how we have
already made use of our semantics in practice. Sections 8 and 9 discuss related work and
conclude. We have explicitly excluded discussion of a variety of practical considerations
concerning the engineering of either the PADS/C or PADS/ML systems from this article so
we may focus specifically on the semantics of data description languages. We consider en-
gineering concerns, system performance and the architecture of the PADS tool generation
system beyond the scope of this article.

2. IPADS: AN IDEALIZED DDL

In this section, we define IPADS, an idealized data description language. IPADS captures
the essence of PADS/C and related data description languages such as PADS/ML, PACKET-
TYPES, and DATASCRIPT in a fashion similar to the way that MinML [Harper 2005] cap-
tures the essence of ML or Featherweight Java [Igarashi et al. 1999] captures the essence of
Java. The main goal of this section is to introduce the form and function of IPADS by giv-
ing its syntax and explaining several examples. Later sections show how to give a formal
semantics to IPADS.

Preliminary Concepts. As in PADS/C, PADS/ML, PACKETTYPES, and DATASCRIPT, the
data descriptions in IPADS are types. These types specify both the external data format (a
sequence of bits or characters) and a mapping into a data structure in the host programming
language. In PADS/C, the host language is C; in IPADS, the host language is an extension
of the polymorphic lambda calculus. For the most part, however, the specifics of the host
language are unimportant.

Journal of the ACM, Vol. V, No. N, Month 20YY.

8 · K. Fisher, Y. Mandelbaum and D. Walker

A complete IPADS description is a sequence of type definitions terminated by a single
type. This terminal type describes the entirety of a data source, making use of the previous
type definitions to do so. IPADS type definitions can have one of two forms. The form
(α = t) introduces the type identifier α and binds it to IPADS type t. The type identifier
may be used in subsequent types. The second form (Prec α = t) introduces a recursive
type definition. In this case, α may appear in t.

Complex IPADS descriptions are built by using type constructors to glue together a col-
lection of simpler types. In our examples, we assume IPADS contains a wide variety of base
types including integers (Puint32 is an ASCII representation of an unsigned integer that
may be represented internally in 32 bits), characters (Pchar), strings (Pstring), dates
(Pdate), IP addresses (Pip), and others. In general, these base types may be param-
eterized. For instance, we will assume Pstring is parameterized by an argument that
signals termination of the string. For example, Pstring(" ") describes any sequence
of characters terminated by a space. (Note that we do not consider the space to be part
of the parsed string; it will be part of the next object.) Similarly, Puint16 FW(3) is an
unsigned 16-bit integer described in exactly 3 characters in the data source. In general, we
write C(e) for a base type C parameterized by a (host language) expression e.

When interpreted as a parser, each of these base types reads the external data source
and generates a pair of data structures in the host language. The first data structure is the
internal representation and the second is the parse descriptor, which contains metadata
collected during parsing. For instance, Puint32 reads a series of digits and generates an
unsigned 32-bit integer as its internal representation. Pstring generates a host-language
string. Pdate might read dates in a multitude of different formats, but always generates
a tuple with time, day, month, and year fields as its internal representation. Whenever
an IPADS parser encounters an unexpected character or bit-sequence, it sets the internal
representation to none (i.e. null) and notes the error in the parse descriptor.

An IPADS Example. IPADS provides a collection of type constructors for creating de-
scriptions of ad hoc data. We present these constructors in a series of examples. The first
example, shown in Figure 3, describes the Common Web Log Format [Krishnamurthy and
Rexford 2001], which web servers use to log requests. Figure 4 shows two sample records,
each of which represents one request. A complete log contains any number of requests. A
request begins with an IP address followed by two optional identifiers. In the example, the
identifiers are missing and dashes stand in for them. Next is a date, surrounded by square
brackets. A string in quotation marks follows, describing the request. Finally, a pair of
integers denotes the response code and the number of bytes returned to the client.

The IPADS description of web logs is most easily read from bottom to top. The termi-
nal type, which describes an entire web log, is an array type. Arrays in IPADS take three
arguments: a description of the array elements (in this case, entry t), a description of
the separator that appears between elements (in this case, a newline marker Pnl), and
a description of the terminator (in this case, the end-of-file marker). PADS/C itself pro-
vides a much wider selection of separators and termination conditions, but these additional
variations are of little semantic interest so we omit them from IPADS. The host language
representation for an array is a sequence of elements. We do not represent separators or
terminators internally.

We use a Pstruct to describe the contents of each line in a web log. Like an array,
a Pstruct describes a sequence of objects in a data source. We represent the result of
Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 9

parsing a Pstruct as a tuple in the host language. The elements of a Pstruct are either
named fields (e.g. client : Pip) or anonymous fields (e.g. " ["). The Pstruct
entry t declares that the first thing on the line is an IP address (Pip) followed by a space
character (" "). Next, the data should contain an authid t followed by another space,
etc.

The last field of entry t is quite different from the others. It has a Pcompute type,
meaning it does not match any characters in the data source, but it does form a part of the
internal representation used by host programs. The argument of a Pcompute field is an
arbitrary host language expression (and its type) that determines the value of the associated
field. In the example, the field academic computes a boolean that indicates whether the
web request came from an academic site. Notice that the computation depends upon a
host language value constructed earlier — the value stored in the client field. IPADS
structs are a form of dependent record and, in general, later fields may refer to the values
contained in earlier ones.

The entry t description uses the type authid t to describe the two fields remoteid
and localid. The authid t type is a Punion with two branches. Unions are repre-
sented internally as sum types. If the data source can be described by the first branch (a
dash), then the internal representation is the first injection into the sum. If the data source
cannot be described by the first branch, but can be described by the second branch then the
internal representation is the second injection. Otherwise, there is an error.

Finally, the response t type is a Pfun, a user-defined parameterized type. The pa-
rameter of response t is a host language integer. The body of the Pfun expression
is a Puint16 FW where x, the fixed width, is the argument of the function. In addition,
the value of the fixed-width integer is constrained by the Pwhere clause. In this case,
the Pwhere clause demands that the fixed-width integer y that is read from the source lie
between 100 and 599. Any value outside this range will be considered a semantic error.
In general, a Pwhere clause may be attached to any type specification. It closely resem-
bles the semantic constraints found in practical parser generators such as ANTLR [Parr and
Quong 1995].

A Recursive IPADS Example. Figure 5 presents a second IPADS example. In this exam-
ple, IPADS describes the Newick Standard format, a flat representation of tree-structured
data. The leaves of the trees are names that describe an “entity.” In our variant of Newick
Standard, leaf names may be omitted. If the leaf name does appear, it is followed by a
colon and a number. The number describes the “distance” from the parent node. Micro-
biologists often use distances to describe the number of genetic mutations that have to
occur to move from the parent to the child. An internal tree node may have any number of
(comma-separated) children within parentheses. Distances follow the closing parenthesis
of the internal tree node.

The Newick Standard format and other formats that describe tree-shaped hierarchies [Gene
Ontology Consortium ; 2003] provide strong motivation for including recursion in IPADS.
We have not been able to find any useable description of Newick data as simple sequences
(structs and arrays) and alternatives (unions); some kind of recursive description appears
essential. The definition of the type tree t introduces recursion. It also uses the type
Popt t, a trivial union that either parses t or nothing at all.

Journal of the ACM, Vol. V, No. N, Month 20YY.

10 · K. Fisher, Y. Mandelbaum and D. Walker

authid_t = Punion {
unauthorized : "-";
id : Pstring (" ");

};

response_t =
Pfun(x:int) =
Puint16_FW(x) Pwhere y.100 <= y and y < 600;

entry_t = Pstruct {
client : Pip; " ";
remoteid : authid_t; " ";
localid : authid_t; " [";
date : Pdate("]"); "] \"";
request : Pstring("\""); "\" ";
response : response_t 3; " ";
length : Puint32;
academic : Pcompute (getdomain client) == "edu" : bool;

};

entry_t Parray(Pnl, Peof)

Fig. 3. IPADS Common Web Log Format Description

207.136.97.49 - - [15/Oct/1997:18:46:51 -0700] \
"GET /tk/p.txt HTTP/1.0" 200 30

213.120.12.10 - - [16/Oct/1997:14:32:22 -0700] \
"POST /scpt/confirm HTTP/1.0" 200 941

Fig. 4. Sample Common Web Log Data. To fit on the page, each record spans two lines, with the break indicated
by a backslash.

node_t = Popt Pstruct {
name : Pstring(":"); ":";
dist : Puint32;

};

Prec tree_t = Punion {
internal : Pstruct {

"("; branches : tree_t Parray(",",")");
"):"; dist : Puint32;

};
leaf : node_t;

};

Pstruct { body : tree_t; ";"; }

(* Example: (B:3,(A:5,C:10,E:2):12,D:0):32; *)

Fig. 5. IPADS Newick Format Description

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 11

Types t ::= C(e) | Plit c | Pfun(x : σ) = t | t e
| Pstruct{−→x:t} | Punion{−→x:t} | Palt{−→x:t} | t Pwherex.e
| Popt t | t Parray(t, t) | Pcompute e:σ | α | Prec α.t

Programs p ::= t | α = t; p | Prec α = t; p

Fig. 6. IPADS Syntax

Formal Syntax. Figure 6 summarizes the formal syntax of IPADS. Expressions e and
types σ are taken from the host language, described in Section 3.2. Notice, however, that
we use x for host language expression variables and α for IPADS type variables. In the
examples, we have abbreviated the syntax in places. For instance, we omit the operator
“Plit” and formal label x when specifying constant types in Pstructs, writing “c;”
instead of “x : Plit c;”. In addition, all base types C formally have a single parameter,
but we have omitted parameters for base types such as Puint32. Finally, the type Palt,
which did not appear in the examples, describes data that is described by all the branches
simultaneously and produces a set of values - one from each type. Intuitively, Palt is a
form of intersection type.

3. A DATA DESCRIPTION CALCULUS

At the heart of our work is a data description calculus (DDCα), containing simple, orthog-
onal type constructors designed to capture the core features of data description languages.
Consequently, the syntax of DDCα is at a significantly lower level of abstraction than that of
PADS/C, PADS/ML or IPADS. Like any of these languages, however, the form and function
of DDCα features are directly inspired by type theory.

Informally, we may divide the features that make up DDCα into types and type opera-
tors. Each DDCα type describes the external representation of a piece of data and implicitly
specifies how to transform that external representation into an internal one. The internal
representation includes both the transformed value and a parse descriptor that character-
izes the errors that occurred during parsing. Type operators provide for description reuse
by abstracting over types.

Syntactically, the primitives of the calculus are similar to the types found in many depen-
dent type systems, with a number of additions specific to the domain of data description.
The types are dependent because data parsed earlier often guides parsing of later data (i.e.,
the form of the later data depends on the earlier data). In addition, parsing ad hoc formats
correctly often involves checking constraints phrased as expressions in some conventional
programming language. Data description languages tend to draw their expressions from
their host language – the programming language in which their generated software artifacts
are encoded. The host language of PADS/C, for example, is C and therefore the PADS/C
constraint language is also C. We mimic this design in DDCα and choose a single language
– a variant of the polymorphic lambda calculus Fω[Girard 1972; Reynolds 1974] – for
expressing both the expressions embedded in types and the interpretations of DDCα. We
discuss this host language further in Section 3.2.

3.1 DDCα Syntax

Figure 7 shows the syntax of DDCα. Expressions e and types σ belong to the host language,
which we define in Section 3.2. We use kinds κ to classify types. In particular, kind T

Journal of the ACM, Vol. V, No. N, Month 20YY.

12 · K. Fisher, Y. Mandelbaum and D. Walker

classifies types that directly describe data. Types with this kind include integers, pairs of
IP addresses and strings of length ten, among others. Kind σ → κ describes functions from
values with type σ to types with arbitrary kind κ. An example of a type with such a kind is
base type constructor Pstring_FW that takes as an argument an integer expression e and
returns a type for strings with length e. Finally, kind T→ κ classifies functions from first-
order types (those having kind T) to arbitrary types (those having kind κ). A useful type
with such a kind is a function that takes any first-order type τ as an argument and returns
the type that describes data corresponding to either τ or the character ′−′, indicating a
missing value. This kinding system disallows types that take type functions as arguments.
Such types add complexity to the system, and we have not encountered a compelling need
for them in practice.

The most basic types of kind T are unit and bottom. Type unit describes the empty
string; it succeeds on all input. While vacuous by itself, the type unit is useful when com-
bined with other type constructors. For example, a type that unions an integer type with
unit corresponds to an optional integer. In contrast, the type bottom describes no strings;
it fails on all input. When used within a compound type containing choices, bottom indi-
cates that the choice leading to bottom fails and an alternative branch must be chosen. We
will see another use of bottom when we discuss array types.

The syntax C(e) denotes a base type C parameterized by expression e. Such a base
type recognizes and transforms atomic values within the data source; typical examples
include strings, various kinds of integers, dates, times, etc. The parameter expression plays
a type-dependent role, specifying, for example, digit lengths for integers or terminating
conditions for strings. If the parameter is not needed for a particular base type, we often
omit it from the syntax for clarity. Concretely, we use the base type Pstring(s) to denote
strings terminated by the string s and Puint to denote sequences of digits of arbitrary
length. We adopt the convention that base types start with a capital P.

We provide abstraction λx.τ and application τ e so that we may parameterize types by
expressions. For example, if we had a fragment of a data format that was terminated in
some circumstances by a vertical bar and in others by a semi-colon, we can use abstrac-
tion to parameterize the description of the format by the terminating character, yielding a
description of the form λc.τd, where τd is a description of the fragment in terms of termi-
nating character c. We can then apply the function to either a vertical bar or a semi-colon
as circumstances require; i.e., the application (λc.τd) ′|′ specializes the description to the
vertical bar case.

Dependent sum types Σx:τ1.τ2 (also known as dependent pairs) describe a sequence of
values in which the second type may refer to the value of the first. A common idiom for
which such sums are useful is an integer field followed by a string of the corresponding
length, for example: Σ x:Pint.Pstring FW(x).

Sum types τ1 + τ2 express flexibility in the data format, as they describe data matching
either τ1 or τ2. For example, the type Puint32 + Pstring FW(3) describes a format that
is either an unsigned, 32-bit integer or a string of length three. Unlike regular expressions
or context-free grammars, which allow nondeterministic choice, sum-type parsers are de-
terministic, transforming the data according to τ1 when possible and only attempting to use
τ2 if there is an error in τ1.

Intersection types τ1 & τ2 describe data that match both τ1 and τ2. They transform a
single set of bits to produce a pair of values, one from each type. Examples that use this
Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 13

Kinds κ ::= T | σ → κ | T→ κ
Types τ ::= unit | bottom | C(e) | λx.τ | τ e

| Σx:τ.τ | τ + τ | τ & τ | {x:τ | e} | τ seq(τ, e, τ)
| α | µα.τ | λα.τ | τ τ
| compute(e:σ) | absorb(τ) | scan(τ)

Fig. 7. DDCα syntax

construct arise in various Cobol data formats and in processing Internet packets, which
can be viewed at multiple levels of abstraction, e.g., as a header and an uninterpreted
collection of bytes or as a header followed by a packet in the format of the next level of the
communication stack.

Constrained types {x:τ | e} transform data according to the underlying type τ and then
check that the constraint e holds when x is bound to the parsed value. For example, the
type {x:Pint | x > 100} checks that the integer x is greater than 100. As another example,
the constrained type {x:Pstring FW(1) | x = “, ”} describes exactly the comma character.
Because such “singleton types” arise frequently, we introduce a short-hand notation for
them. In particular, we use S(“, ”) as an abbreviation for the type above. Similarly, S(“; ”)
abbreviates the corresponding description of precisely the semi-colon character.

The type τ seq(τs, e, τt) represents a sequence of values of type τ . The type τs specifies
the type of the separator found between elements of the sequence. For sequences without
separators, we use unit as the separator type. Expression e is a boolean-valued function
that examines the parsed sequence after each element is read to determine if the sequence
has completed. For example, a function len10 defined to be λs.len s = 10 that checks
if the sequence s has 10 elements would terminate a sequence when it reaches length 10.
The type τt is used when data following the array will indicate the array’s completion.
Commonly, constrained singleton types are used to specify that a particular value termi-
nates the sequence. For example, when used as a terminator, the type S(“; ”) specifies that
a semicolon ends the array. However, if no particular value or set of values terminates the
array, then we can use bottom to ensure that the array is not terminated based on the ter-
minating type τt. As an example, the type Pint32 seq(S(“, ”), len10, S(“; ”)) describes
a sequence of ten 32-bit integers separated by commas and terminated by a semi-colon.

Type variables α are abstract descriptions; they are introduced by recursive types and
type abstractions. Recursive types µα.τ describe recursive formats, like lists and trees.
Type abstraction λα.τ and application τ τ allow us to parameterize types by other types.
Type variables α always have kind T. Note that we call functions from types to types type
abstractions in contrast to value abstractions, which are functions from values to types.
As an example, the type abstraction λα.S(“−”) + α takes any (first-order) type as an
argument and constructs a type that describes either the singleton string “−”, denoting a
missing value, or the argument type.

DDCα also has a number of “active” types. These types describe actions to be taken
during parsing rather than strictly describing the data format. Type compute(e:σ) allows us
to include an element in the parsed output that does not appear in the data stream (although
it is likely to depend on elements that do), based on the value of expression e. In contrast,
type absorb(τ) parses data according to type τ but does not return its result. This behavior
is useful for data that is important for parsing, but uninteresting to users of the parsed data,

Journal of the ACM, Vol. V, No. N, Month 20YY.

14 · K. Fisher, Y. Mandelbaum and D. Walker

Bits B ::= · | 0B | 1B
Constants c ::= () | true | false | 0 | 1 | −1 | . . .

| none | B | ω | ok | err | fail | . . .
Values v ::= c | fun f x = e | (v, v)

| inl v | inr v | [~v]

Operators op ::= = | < | not | . . .
Expressions e ::= c | x | op(e) | fun f x = e | e e

| Λα.e | e [τ]

| let x = e in e | if e then e else e
| (e, e) | πi e | inl e | inr e
| case e of (inlx⇒ e | inrx⇒ e)

| [~e] | e @ e | e [e]
| fold[µα.τ] e | unfold[µα.τ] e

Base Types a ::= unit | bool | int | none
| bits | offset | errcode

Types σ ::= a | α | σ → σ | σ ∗ σ | σ + σ

| σ seq | ∀α.σ | µα.σ | λα.σ | σ σ
Kinds κ ::= T | κ→ κ

Fig. 8. The syntax of the host language, an extension of Fω with recursion and a variety of useful constants and
operators.

such as a separator. The last of the “active” types is scan(τ), which scans the input for
data that can be successfully transformed according to τ . This type provides a form of
error recovery as it allows us to discard unrecognized data until the “synchronization” type
τ is found.

3.2 Host Language

In Figure 8, we present the host language of DDCα, a straightforward extension of Fω
with recursion1 and a variety of useful constants and operators. We use this host language
both to encode the parsing semantics of DDCα and to write the expressions that can appear
within DDCα itself.

As the calculus is largely standard, we highlight only its unusual features. The constants
include bit strings B; offsets ω, representing locations in bit strings; and error codes ok,
err, and fail, indicating success, success with errors, and failure, respectively. We use
the constant none to indicate a failed parse. Because of its specific meaning, we forbid
its use in user-supplied expressions appearing in DDCα types. Our expressions include
arbitrary length sequences [~e], sequence append e @ e′, and sequence indexing e [e′].

The type none is the singleton type of the constant none. Types errcode and offset
classify error codes and bit string offsets, respectively. The remaining types have standard
meanings: function types, product types, sum types, sequence types (τ seq), type variables
(α), polymorphic types (∀α.σ), and recursive types (µα.σ).

We extend the formal syntax with some syntactic sugar for use in the rest of the pa-
per: anonymous functions λx.e for fun f x = e, with f 6∈ FV(e); function bindings
letfun f x = e in e′ for let f = fun f x = e in e′; span for offset ∗ offset. We
often use pattern-matching syntax for pairs in place of explicit projections, as in λ(B,ω).e

1The syntax for fold and unfold, particularly the choice of annotating unfold with a type, is based on the
presentation of recursive types in Pierce [Pierce 2002].

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 15

and let (ω, r, p) = e in e′. Although we have no formal records with named fields, we
use a (named) dot notation for commonly occurring projections. For example, for a pair x
of representation and parse descriptor, we use x.rep and x.pd for the left and right projec-
tions of x, respectively. Also, sums and products are right-associative. Hence, for example,
a ∗ b ∗ c is shorthand for a ∗ (b ∗ c).

The static semantics (Γ ` e : σ), operational semantics (e → e′), and type equivalence
(σ ≡ σ′) are those of Fω extended with recursive functions and iso-recursive types and are
entirely standard. See, for example, Pierce [Pierce 2002].

We only specify type abstraction over terms and application when we feel it will clarify
the presentation. Otherwise, the polymorphism is implicit. We also omit the usual type
and kind annotations on functions, with the expectation that the reader can construct them
from context.

3.3 Example

As an example, we present an abbreviated description of the common log format as it might
appear in DDCα. For brevity, this description does not fully capture the semantics of the
IPADS description from Section 2. Additionally, we use the standard abbreviation τ ∗ τ ′
for products and introduce a number of type abbreviations in the form name = τ before
giving the type that describes the data source.

S = λstr.{s:Pstring FW(1) | s = str}

authid t = S(“−”) + Pstring(“ ”)

response t = λx.{y:Puint16 FW(x) | 100 ≤ y and y < 600}

entry t =
Σ client:Pip. S(“ ”) ∗
Σ remoteid:authid t. S(“ ”) ∗
Σ response:response t 3.
compute(getdomain client = “edu”:bool)

entry t seq(S(“\n”), λx.false, bottom)

In the example, we use the following informal translations: Pwhere becomes a set-type,
Pstruct a series of dependent sums, Punion a series of sums, and Parray a sequence.
As the array terminates at the end of the file, we use λx.false and bottom to indicate the
absence of termination condition and terminator, respectively.

4. DDCα SEMANTICS

At first glance, the primitives of DDCα are deceptively simple. However, deeper thought
reveals that their semantics is multifaceted. For example, each basic type simultaneously
describes a collection of valid bit strings, two datatypes in the host language – one for the
data representation itself and one for its parse descriptor – and a transformation from bit
strings, including invalid ones, into data and corresponding metadata.

We give semantics to DDCα types using three primary semantic functions, each of which
precisely conveys a particular facet of a type’s meaning. The functions [[·]]rep and [[·]]PD
describe the representation semantics of DDCα, detailing the types of the data’s in-memory

Journal of the ACM, Vol. V, No. N, Month 20YY.

16 · K. Fisher, Y. Mandelbaum and D. Walker

∆; Γ ` τ : κ type kinding

τ → τ ′ type normalization

[[τ]]rep = σ representation-type interpretation of DDCα

[[τ]]PD = σ parse-descriptor type interpretation of DDCα

[[τ]]PDb = σ pd-body type interpretation of DDCα

[[τ]]P = e parsing semantics of DDCα

[[τ :κ]]PT = σ Fω type of specified type’s parsing function (parser-type)

[[∆]]PT = Γ parser-type interpretation lifted to entire context

[[∆]]Fω
= Γ Fω image of DDCα type context

[[∆]]rep = Γ representation-type variables in [[∆]]Fω

[[∆]]PD = Γ parse-descriptor type variables in [[∆]]Fω

Table I. DDCα functions and judgments defined in this section.

` Γ ok well-formed contexts

Γ ` σ :: κ well-formed types

σ ≡ σ′ type equivalence

Γ ` e : σ expression typing

e→ e′ expression evaluation

Table II. Fω judgments referenced in this section.

representation and parse descriptor. The function [[·]]P describes the parsing semantics of
DDCα, defining a host language function for each type that parses bit strings to produce a
representation and parse descriptor. We define the set of valid bit strings for each type to be
those strings for which the PD indicates no errors when parsed. In addition to these three
semantic functions, we define a normalization relation, which facilitates reasoning about
parameterized descriptions.

We begin the technical discussion by describing a kinding judgment that checks if a
type is well formed — the other semantic functions should only be applied to well-formed
DDCα types. We then specify the normalization relation after which we formalize the three-
fold semantics of DDCα types. For reference, Table I lists all the functions and judgments
defined in this section and a brief description of each. Additionally, Table II lists all of the
Fω judgments that we reference.

4.1 DDCα Kinding

The kinding judgment defined in Figure 9 determines well-formed DDCα types. We use
two contexts to express our kinding judgment:

Γ ::= · | Γ, x:σ
∆ ::= · | ∆, α:T

Context Γ is a finite partial map that associates a type with each expression variable in its
domain. When appearing in Fω judgments, such contexts may also contain type-variable
bindings of the form α::κ. Context ∆ is a finite partial map that associates a kind with each
Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 17

∆; Γ ` τ : κ

` [[∆]]Fω
,Γ ok

∆; Γ ` unit : T
UNIT

` [[∆]]Fω
,Γ ok

∆; Γ ` bottom : T
BOTTOM

` [[∆]]Fω
,Γ ok [[∆]]Fω

,Γ ` e : σ

Bkind(C) = σ → T

∆; Γ ` C(e) : T
CONST

∆; Γ, x:σ ` τ : κ

∆; Γ ` λx.τ : σ → κ
ABS

∆; Γ ` τ : σ → κ [[∆]]Fω
,Γ ` e : σ

∆; Γ ` τ e : κ
APP

∆; Γ ` τ : T ∆; Γ, x:[[τ]]rep ∗ [[τ]]PD ` τ
′ : T

∆; Γ ` Σx:τ.τ ′ : T
DEPSUM

∆; Γ ` τ : T ∆; Γ ` τ ′ : T

∆; Γ ` τ + τ ′ : T
SUM

∆; Γ ` τ : T ∆; Γ ` τ ′ : T

∆; Γ ` τ & τ ′ : T
INTERSECTION

∆; Γ ` τ : T [[∆]]Fω
,Γ, x:[[τ]]rep ∗ [[τ]]PD ` e : bool

∆; Γ ` {x:τ | e} : T
CON

∆; Γ ` τ : T ∆; Γ ` τs : T ∆; Γ ` τt : T
[[∆]]Fω

,Γ ` e : [[τm]]rep ∗ [[τm]]PD → bool (τm = τ seq(τs, e, τt))

∆; Γ ` τ seq(τs, e, τt) : T
SEQ

` [[∆]]Fω
,Γ ok α:T ∈ ∆

∆; Γ ` α : T
TYVAR

∆, α:T; Γ ` τ : T

∆; Γ ` µα.τ : T
REC

∆, α:T; Γ ` τ : κ

∆; Γ ` λα.τ : T→ κ
TYABS

∆; Γ ` τ1 : T→ κ ∆; Γ ` τ2 : T

∆; Γ ` τ1 τ2 : κ
TYAPP

` [[∆]]Fω
,Γ ok [[∆]]Fω

,Γ ` e : σ [[∆]]rep ` σ :: T

∆; Γ ` compute(e:σ) : T
COMPUTE

∆; Γ ` τ : T

∆; Γ ` absorb(τ) : T
ABSORB

∆; Γ ` τ : T

∆; Γ ` scan(τ) : T
SCAN

Fig. 9. DDCα kinding rules

type variable in its domain. We provide the following mappings from DDCα contexts ∆ to
Fω contexts Γ.

[[·]]rep = · [[·]]PD = ·
[[∆, α:T]]rep = [[∆]]rep, αrep::T [[∆, α:T]]PD = [[∆]]PD, αPDb::T

Translation [[∆]]Fω
simply combines the two ([[∆]]Fω

= [[∆]]rep, [[∆]]PD). These translations
are used when checking the well-formedness of contexts Γ and types σ with open type
variables.

Journal of the ACM, Vol. V, No. N, Month 20YY.

18 · K. Fisher, Y. Mandelbaum and D. Walker

Normal
Types

ν ::= unit | bottom | C(e) | λx.τ | Σx:τ.τ
| τ + τ | τ & τ | {x:τ | e} | τ seq(τ, e, τ)

| µα.τ | λα.τ
| compute(e:σ) | absorb(τ) | scan(τ)

Types τ ::= ν | τ e | τ τ | α

Fig. 10. Revised DDCα Syntax

τ → τ ′

τ e→ τ ′ e

e→ e′

ν e→ ν e′ (λx.τ) v → τ [v/x]

τ1 → τ ′1

τ1 τ2 → τ ′1 τ2

τ → τ ′

ν τ → ν τ ′ (λα.τ) ν → τ [ν/α]

Fig. 11. DDCα weak-head normalization

As the rules are mostly straightforward, we highlight just a few of them. In rule CONST,
we use the function Bkind to assign kinds to base types. Base types must be fully applied
to arguments of the right type. Once fully applied, all base types have kind T. Rule
DEPSUM, for dependent sums, shows that the name of the first component is bound to a
pair of a representation and corresponding PD. The semantic functions defined in the next
section determine the type of this pair. Type abstractions and recursive types (rules TYABS
and REC) restrict their type variable to kind T. This restriction simplifies the metatheory
of DDCα with little practical impact. Finally, with the introduction of potentially open host
types, we must now check in rule COMPUTE that the only (potentially) open type variables
in σ are the representation-type variables bound (implicitly) in ∆.

At the beginning of this chapter, we mentioned that DDCα is an extension and improve-
ment of our prior work on DDC. The improvements relate to changes in the kinding rules.
In particular, we have replaced the context M of DDC, which mapped recursive-type vari-
ables to their definitions, with a simpler context ∆ which merely assigns a kind (always
T) to open type variables. The type variables bound by recursive types are now treated as
abstract, just like the type variables bound by type abstractions. Correspondingly, the rule
for type variables (TYVAR) now has a standard form, and the premise of the rule for re-
cursive types (REC) is now nearly identical to the premise of the rule for type abstractions
(TYABS).

4.2 DDCα Normalization

To specify the rules of normalization, we must first refactor the syntax of DDCα by distin-
guishing the subset of weak-head normal types (ν) from all types τ , as shown in Figure 10.
In addition, we must define type and value substitution for DDCα. The notation τ ′[τ/α]
denotes standard capture-avoiding substitution of types into types, except for constructs
that contain an Fω expression e or type σ. For those constructs, the alternative substi-
tution [[[τ]]rep/αrep][[[τ]]PDb/αPDb] is applied to the subcomponent expression or type. For
example,

compute(e:σ)[τ/α] = compute(e[[[τ]]rep/αrep][[[τ]]PDb/αPDb] : σ[[[τ]]rep/αrep][[[τ]]PDb/αPDb]).

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 19

[[τ]]rep = σ

[[unit]]rep = unit

[[bottom]]rep = none

[[C(e)]]rep = Btype(C) + none

[[λx.τ]]rep = [[τ]]rep
[[τ e]]rep = [[τ]]rep
[[Σx:τ1.τ2]]rep = [[τ1]]rep ∗ [[τ2]]rep
[[τ1 + τ2]]rep = [[τ1]]rep + [[τ2]]rep
[[τ1 & τ2]]rep = [[τ1]]rep ∗ [[τ2]]rep
[[{x:τ | e}]]rep = [[τ]]rep + [[τ]]rep
[[τ seq(τsep, e, τterm)]]rep = int ∗ ([[τ]]rep seq)

[[α]]rep = αrep

[[µα.τ]]rep = µαrep.[[τ]]rep
[[λα.τ]]rep = λαrep.[[τ]]rep
[[τ1τ2]]rep = [[τ1]]rep[[τ2]]rep
[[compute(e:σ)]]rep = σ

[[absorb(τ)]]rep = unit + none

[[scan(τ)]]rep = [[τ]]rep + none

Fig. 12. Representation-type interpretation function.

This definition of substitution derives from the kinding rules of DDCα. In a judgment
∆, α:T; Γ ` τ : κ, the DDCα type variable α implicitly binds the Fω type variables αrep

and αPDb for any types in Γ. Therefore, when replacing α in a DDCα type, we must also
make sure to replace all type variables αrep and αPDb in constituent Fω expressions and
types in a consistent manner. We denote standard capture-avoiding substitution of terms in
DDCα types with τ [v/x]. Similarly, κ[σ/α] denotes standard capture-avoiding substitution
of Fω types into DDCα kinds.

Normalization of DDCα is based on a standard call-by-value small-step semantics of the
lambda calculus. We present the rules of the normalization judgment in Figure 11.

4.3 Representation Semantics

In Figure 12, we present the representation type of each DDCα primitive. While the prim-
itives are dependent types, the host does not have such types, so the translation erases all
dependency. Removing expressions from the types renders expression-variable binding
and application useless, so we drop those forms as well in the translation.

In more detail, the DDCα type unit consumes no input and produces only the unit
value. Correspondingly, bottom consumes no input, but uniformly fails, producing the
value none. The function Btype maps each base type to a representation for successfully
parsed data. Note that this representation does not depend on the argument expression. As
base type parsers can fail, we sum this type with none to produce the actual representa-
tion type. Intersection types produce a pair of values, one for each sub-type, because the
representations of the subtypes need not be identical nor even compatible. Constrained
types produce sums, where a left branch indicates the data satisfies the constraint and the
right indicates it does not. In the latter case, the parser returns the offending data rather
than none because the error is semantic rather than syntactic. Sequences produce a host
language sequence paired with its length.

Journal of the ACM, Vol. V, No. N, Month 20YY.

20 · K. Fisher, Y. Mandelbaum and D. Walker

[[τ]]PD = σ

[[unit]]PD = pd hdr ∗ unit
[[bottom]]PD = pd hdr ∗ unit
[[C(e)]]PD = pd hdr ∗ unit
[[λx.τ]]PD = [[τ]]PD
[[τ e]]PD = [[τ]]PD
[[Σx:τ1.τ2]]PD = pd hdr ∗ [[τ1]]PD ∗ [[τ2]]PD
[[τ1 + τ2]]PD = pd hdr ∗ ([[τ1]]PD + [[τ2]]PD)

[[τ1 & τ2]]PD = pd hdr ∗ [[τ1]]PD ∗ [[τ2]]PD
[[{x:τ | e}]]PD = pd hdr ∗ [[τ]]PD
[[τ seq(τsep, e, τterm)]]PD = pd hdr ∗ (arr pd [[τ]]PD)

[[α]]PD = pd hdr ∗ αPDb

[[µα.τ]]PD = pd hdr ∗ µαPDb.[[τ]]PD
[[λα.τ]]PD = λαPDb.[[τ]]PD
[[τ1 τ2]]PD = [[τ1]]PD [[τ2]]PDb
[[compute(e:σ)]]PD = pd hdr ∗ unit
[[absorb(τ)]]PD = pd hdr ∗ unit
[[scan(τ)]]PD = pd hdr ∗ ((int ∗ [[τ]]PD) + unit)

[[τ]]PDb = σ

[[τ]]PDb = σ where [[τ]]PD ≡ pd hdr ∗ σ

Fig. 13. Parse-descriptor type interpretation function

A type variable α in DDCα is mapped to a corresponding type variable αrep in Fω .
Recursive types generate recursive representation types with the type variable named ap-
propriately. Polymorphic types and their application become Fω type constructors and
type application, respectively. The output of a compute is exactly the computed value,
and therefore shares its type. The output of absorb is a sum indicating whether parsing
the underlying type succeeded or failed. The type of scan is similar, but also returns an
element of the underlying type in case of success.

In Figure 13, we give the parse descriptor type for each DDCα type. Each PD type has
a header and body. This common shape allows us to define functions that polymorphically
process PDs based on their headers. Each header stores the number of errors encountered
during parsing, an error code indicating the degree of success of the parse – success, suc-
cess with errors, or failure – and the span of data described by the descriptor. Formally, the
type of the header (pd hdr) is int∗errcode∗span. Each body consists of subdescriptors
corresponding to the subcomponents of the representation and any type-specific metadata.
For types with neither subcomponents nor special metadata, we use unit as the body type.

We discuss a few of the more complicated parse descriptors in detail. The parse de-
scriptor body for sequences contains the parse descriptors of its elements, the number of
element errors, and the sequence length. Note that the number of element errors is distinct
from the number of sequence errors, as sequences can have errors that are not related to
their elements (such as errors reading separators). We introduce an abbreviation for array
PD body types, arr pd σ = int ∗ int ∗ (σ seq). The compute parse descriptors have no
subelements because the data they describe is not parsed from the data source. The absorb
PD type is unit just like its representation. We assume that the user wants the parser to
discard the parse descriptor just as it discards the representation. The scan parse descriptor
Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 21

[[τ :κ]]PT = σ

[[τ :T]]PT = bits ∗ offset→ offset ∗ [[τ]]rep ∗ [[τ]]PD

[[τ :σ → κ]]PT = σ → [[τe:κ]]PT, for any e.

[[τ :T→ κ]]PT = ∀αrep.∀αPDb.[[α:T]]PT → [[τα:κ]]PT

(αrep, αPDb 6∈ FTV(κ) ∪ FTV(τ))

Fig. 14. Fω types for parsing functions.

is either unit, in case no match was found, or records the number of bits skipped before
the type was matched along with the type’s corresponding parse descriptor.

Like other types, DDCα type variables α are translated into a pair of a header and a
body. The body has abstract type αPDb. This translation makes it possible for polymorphic
parsing code to examine the header of a PD, even though it does not know the DDCα type
it is parsing. DDCα abstractions are translated into Fω type constructors that abstract the
body of the PD (as opposed to the entire PD) and DDCα applications are translated into Fω
type applications where the argument type is the PD-body type.

It is important to note that the PD interpretation is not defined for all types. The problem
lies with the interpretation of type application ([[τ1 τ2]]PD = [[τ1]]PD [[τ2]]PDb). The interpre-
tation requires that [[τ2]]PDb be defined, which, in turn, requires that [[τ2]]PD ≡ pd hdr ∗ σ,
for some σ. Yet, this requirement is not met by all types; for example, λα.τ .

4.4 Parsing Semantics of the DDCα

The parsing semantics of a type τ with kind T is a function that transforms some amount
of input into a pair of a representation and a parse descriptor, the types of which are deter-
mined by τ . The parsing semantics for types with higher kind are functions that construct
parsers, or functions that construct functions that construct parsers, and so forth. Figure 14
specifies the host-language types of the functions generated from well-kinded DDCα types.
For each (unparameterized) type, the input to the corresponding parser is a bit string to
parse and an offset at which to begin parsing. The output is a new offset, a representation
of the parsed data, and a parse descriptor.

Figure 15 shows the parsing semantics function. For each type, the input to the corre-
sponding parser is a bit string and an offset which indicates the point in the bit string at
which parsing should commence. The output is a new offset, a representation of the parsed
data, and a parse descriptor. As the bit string input is never modified, it is not returned as
an output. In addition to specifying how to handle correct data, each function describes
how to transform corrupted bit strings, marking detected errors in a parse descriptor. The
semantics function is partial, applying only to well-formed DDCα types.

For any type, there are three steps to parsing: parse the subcomponents of the type (if
any), assemble the resultant representation, and tabulate metadata based on subcomponent
metadata (if any). For the sake of clarity, we have factored the latter two steps into separate
representation and PD constructor functions which we define for many of the types. For
some types, we additionally factor the PD header construction into a separate function. For
example, the representation and PD constructors for unit are Runit and Punit, respectively,
and the header constructor for dependent sums is HΣ. The constructor functions are shown

Journal of the ACM, Vol. V, No. N, Month 20YY.

22 · K. Fisher, Y. Mandelbaum and D. Walker

[[τ]]P = e

[[unit]]P = λ(B, ω).(ω, Runit(), Punit(ω))

[[bottom]]P = λ(B, ω).(ω, Rbot(), Pbot(ω))

[[C(e)]]P = λ(B, ω).Bimp(C) e (B, ω)

[[λx.τ]]P = λx.[[τ]]P

[[τ e]]P = [[τ]]P e

[[Σx:τ.τ ′]]P =
λ(B, ω).

let (ω′, r, p) = [[τ]]P (B, ω) in

let x = (r, p) in
let (ω′′, r′, p′) = [[τ ′]]P (B, ω′) in
(ω′′, RΣ(r, r′), PΣ(p, p′))

[[τ + τ ′]]P =
λ(B, ω).

let (ω′, r, p) = [[τ]]P (B, ω) in

if isOk(p) then
(ω′, R+left(r), P+left(p))

else let (ω′, r, p) = [[τ ′]]P (B, ω) in
(ω′, R+right(r), P+right(p))

[[τ & τ ′]]P =

λ(B, ω).
let (ω′, r, p) = [[τ]]P (B, ω) in

let (ω′′, r′, p′) = [[τ ′]]P (B, ω) in

(max(ω′, ω′′), R&(r, r′), P&(p, p′))
[[{x:τ | e}]]P =

λ(B, ω).

let (ω′, r, p) = [[τ]]P (B, ω) in
let x = (r, p) in

let c = e in
(ω′, Rcon(c, r), Pcon(c, p))

[[τ seq(τs, e, τt)]]P =

λ(B, ω).

letfun isDone (ω, r, p) =
EoF(B, ω) or e (r, p) or

let (ω′, r′, p′) = [[τt]]P(B, ω) in

isOk(p′)
in

letfun continue (ω, ω′, r, p) =
if ω = ω′ or isDone (ω′, r, p) then (ω′, r, p)
else let (ωs, rs, ps) = [[τs]]P (B, ω′) in
let (ωe, re, pe) = [[τ]]P (B, ωs) in
continue (ω′, ωe, Rseq(r, re), Pseq(p, ps, pe))

in

let r = Rseq init() in

let p = Pseq init(ω) in

if isDone (ω, r, p) then (ω, r, p)
else let (ωe, re, pe) = [[τ]]P (B, ω) in

continue (ω, ωe, Rseq(r, re), Pseq(p, Punit(ω), pe))

[[α]]P = parseα

[[µα.τ]]P =

fun parseα (B:bits, ω:offset) :
offset ∗ [[µα.τ]]rep ∗ [[µα.τ]]PD =

let (ω′, r, p) =
[[τ]]P[[[µα.τ]]rep/αrep][[[µα.τ]]PDb/αPDb] (B, ω)

in

(ω′, fold[[[µα.τ]]rep] r, (p.h, fold[[[µα.τ]]PDb] p))

[[λα.τ]]P = Λαrep.ΛαPDb.λparseα.[[τ]]P
[[τ1τ2]]P = [[τ1]]P [[[τ2]]rep] [[[τ2]]PDb] [[τ2]]P
[[compute(e:σ)]]P =
λ(B, ω).(ω, Rcompute(e), Pcompute(ω))

[[absorb(τ)]]P =
λ(B, ω).

let (ω′, r, p) = [[τ]]P (B, ω) in

(ω′, Rabsorb(p), Pabsorb(p))
[[scan(τ)]]P =

λ(B, ω).

letfun try i =
let (ω′, r, p) = [[τ]]P (B, ω + i) in
if isOk(p) then

(ω′, Rscan(r), Pscan(i, sub(B, ω, i + 1), p))
else if EoF(B, ω + i) then

(ω, Rscan err(), Pscan err(ω))
else try (i + 1)

in try 0

Fig. 15. DDCα parsing semantics

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 23

Eof : bits ∗ offset→ bool

scanMax : int

fun max (m, n) = if m > n then m else n

fun pos n = if n = 0 then 0 else 1

fun isOk p = p.h.nerr = 0

fun isErr p = p.h.nerr > 0

fun max ec (ec1, ec2) =
if ec1 = fail or ec2 = fail then fail

else if ec1 = err or ec2 = err then err

else ok

fun max ec nf (ec1, ec2) =
if ec1 = ok and ec2 = ok then ok else err

Fig. 16. Auxiliary functions. The type of PD headers is int ∗ errcode ∗ span. We refer to the projections
using dot notation as nerr, ec and sp, respectively. A span is a pair of offsets, referred to as begin and end,
respectively.

fun Runit () = ()

fun Punit ω = ((0, ok, (ω, ω)), ())

fun Rbot () = none

fun Pbot ω = ((1, fail, (ω, ω)), ())

fun RΣ (r1, r2) = (r1, r2)

fun HΣ (h1, h2) =
let nerr = pos(h1.nerr) + pos(h2.nerr) in

let ec = if h2.ec = fail then fail

else max ec nf h1.ec h2.ec in

let sp = (h1.sp.begin, h2.sp.end) in

(nerr, ec, sp)

fun PΣ (p1, p2) = (HΣ(p1.h, p2.h), (p1, p2))

fun R+left r = inl r

fun R+right r = inr r

fun H+ h = (pos(h.nerr), h.ec, h.sp)

fun P+left p = (H+ p.h, inl p)

fun P+right p = (H+ p.h, inr p)

fun R& (r, r′) = (r, r′)

fun H& (h1, h2) =
let nerr = pos(h1.nerr) + pos(h2.nerr) in

let ec = if h1.ec = fail and h2.ec = fail then fail

else max ec nf h1.ec h2.ec in

let sp = (h1.sp.begin, max(h1.sp.end, h2.sp.end)) in

(nerr, ec, sp)

fun P& (p1, p2) = (H& (p1.h, p2.h), (p1, p2))

Fig. 17. Constructor functions, part 1. Parse descriptor headers are sometimes referenced using dot notation as
h. Their type is int ∗ errcode ∗ span. We refer to the projections using dot notation as nerr, ec and sp,
respectively. A span is a pair of offsets, referred to as begin and end, respectively.

Journal of the ACM, Vol. V, No. N, Month 20YY.

24 · K. Fisher, Y. Mandelbaum and D. Walker

fun Rcon (c, r) = if c then inl r else inr r

fun Pcon (c, p) =
if c then ((pos(p.h.nerr), p.h.ec, p.h.sp), p)
else ((1 + pos(p.h.nerr), max ec err p.h.ec, p.h.sp), p)

fun Rseq init () = (0, [])

fun Pseq init ω = ((0, ok, (ω, ω)), (0, 0, []))

fun Rseq (r, re) = (r.len + 1, r.elts @ [re])

fun Hseq (h, hs, he) =
let eerr = if h.neerr = 0 and he.nerr > 0

then 1 else 0 in

let nerr = h.nerr + pos(hs.nerr) + eerr in

let ec = if he.ec = fail then fail

else max ec nfh.eche.ec in

let sp = (h.sp.begin, he.sp.end) in
(nerr, ec, sp)

fun Pseq (p, ps, pe) =
(Hseq (p.h, ps.h, pe.h),
(p.neerr + pos(pe.h.nerr), p.len + 1, p.elts @ [pe]))

fun Rcompute r = r

fun Pcompute ω = ((0, ok, (ω, ω)), ())

fun Rabsorb p = if isOk(p) then inl () else inr none

fun Pabsorb p = (p.h, ())

fun Rscan r = inl r

fun Pscan (i, p) =
let nerr = pos(i) + pos(p′.h.nerr) in

let ec = if nerr = 0 then ok else err in

let hdr = (nerr, ec, (p.sp.begin− i, p.sp.end)) in

(hdr, inl (i, p))

fun Rscan err () = inr none

fun Pscan err ω = let hdr = (1, fail, (ω, ω)) in
(hdr, inr ())

Fig. 18. Constructor functions, part 2.

in Figure 17 and Figure 18. We have also factored out some commonly occurring code
into auxiliary functions, explained as needed and defined formally in Figure 16.

The PD constructors determine the error code and calculate the error count. There are
three possible error codes: ok, err, and fail, corresponding to the three possible results of
a parse: it can succeed, parsing the data without errors; it can succeed, but discover errors
in the process; or, it can find an unrecoverable error and fail. Note that the purpose of the
fail code is to indicate to any higher level elements that some form of error recovery is
required. Hence, the whole parse is marked as failed exactly when the parse ends in failure.
The error count is determined by subcomponent error counts and any errors associated
directly with the type itself. If a subcomponent has errors then the error count is increased
by one; otherwise it is not increased at all. We use the function pos, which maps all positive
numbers to 1 (leaving zero as is), to assist in calculating the contribution of subcomponents
to the total error count. Errors at the level of the element itself - such as constraint violation
Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 25

in constrained types - are generally counted individually.
With this background, we can now discuss the semantics. The unit and bottom de-

scriptions do not consume any input. Hence, the output offset is the same as the input
offset in the parsers for these constructs. A look at their constructors shows that the parse
descriptor for unit always indicates no errors and a corresponding ok code, while that of
bottom always indicates failure with an error count of one and the fail error code. The
semantics of base types applies the implementation of the base type’s parser, provided by
the function Bimp, to the appropriate arguments. Abstraction and application are defined
directly in terms of host language abstraction and application. Dependent sums read the
first element at ω and then the second at ω′, the offset returned from parsing the first ele-
ment. Notice that we bind the pair of the returned representation and parse descriptor to
the variable x before parsing the second element, implicitly mapping the DDCα variable x
to the host language variable x in the process. Finally, we combine the results using the
constructor functions, returning ω′′ as the final offset of the parse.

Sums first attempt to parse according to the left type, returning the resulting value if it
parses without errors. Otherwise, they parse according to the right type. Intersections read
both types starting at the same offset. They advance the stream to the maximum of the
two offsets returned by the component parsers. The construction of the parse descriptor
is similar to that of products. For constrained types, we call the parser for the underlying
type τ , bind x to the resulting rep and PD, and check whether the constraint is satisfied.
The result indicates whether the data has a semantic error and is used in constructing the
representation and PD. For example, the PD constructor will add one to the error count if
the constraint is not satisfied. Notice that we advance the stream independent of whether
the constraint was satisfied.

Sequences have the most complicated semantics because the number of subcomponents
depends upon a combination of the data, the termination predicate, and the terminator
type. Consequently, the sequence parser uses the function isDone and the recursive func-
tion continue to implement this open-ended behavior. Function isDone determines if
the parser should terminate by checking whether the end of the source has been reached,
the termination condition e has been satisfied, or the terminator type can be read from
the stream without errors at ω. Function continue takes four arguments: two offsets, a
sequence representation, and a sequence PD. The two offsets are the starting and ending
offset of the previous round of parsing. They are compared to determine whether the parser
is progressing in the source, a check that is critical to ensuring that the parser terminates.
Next, the parser checks whether the sequence is finished, and if so, terminates. Otherwise,
it attempts to read a separator followed by an element and then continues parsing the se-
quence with a call to continue. Then, the body of the parser creates an initial sequence
representation and parse descriptor and then checks whether the sequence described is
empty. If not, it reads an element and creates a new rep and PD for the sequence. Note that
it passes the PD for unit in place of a separator PD, as no separator is read before the first
element. Finally, it continues reading the sequence with a call to continue.

Because of the iterative nature of sequence parsing, the representation and PD are con-
structed incrementally. The parser first creates an empty representation and PD and then
adds elements to them with each call to continue. The error count for an array is the sum
of the number of separators with errors plus one if there were any element errors. There-
fore, in function Hseq we first check if the element is the first with an error, setting eerr

Journal of the ACM, Vol. V, No. N, Month 20YY.

26 · K. Fisher, Y. Mandelbaum and D. Walker

to one if so. Then, the new error count is a sum of the old, potentially one for a separator
error, and eerr. In Pseq we calculate the element error count by unconditionally adding
one if the element had an error.

A type variable translates to an expression variable whose name corresponds directly to
the name of the type variable. These expression variables are bound in the interpretations
of recursive types and type abstractions. We interpret each recursive type as a recursive
function whose name corresponds to the name of the recursive type variable. For clarity,
we annotate the recursive function with its type.

We interpret type abstraction as a function over other parsing functions. Because those
parsing functions can correspond to arbitrary DDCα types (of kind T), and, therefore, can
have different Fω types, the interpretation must be a polymorphic function, parameterized
by the representation and PD-body type of the DDCα type parameter. For clarity, we present
this type parameterization explicitly. Type application τ1 τ2 becomes the application of
the interpretation of τ1 to the representation-type, PD-body type, and parsing-function
interpretations of τ2.

The scan type attempts to parse the underlying type from the stream at an increasing
offset i from the original offset ω, until success is achieved or the end of the file is reached.
In the semantics we give here, offsets are incremented one bit at a time – a practical im-
plementation would choose some larger increment (for example, 32 bits at a time). Note
that, upon success, i is passed to the PD constructor function, which both records it in the
PD and sets the error code based on it. It is considered a semantic error for the value to be
found at a positive i, whereas it is a syntactic error for it not to be found at all.

Notice that the upper-bound on the running time of scan is at least linear in the size of
the data, depending on the particular argument type. More precisely, if the running time
of a type τ is O(f(n)), where n is the size of the data, then the running time of scan(τ)
is O(nf(n)). While such a running time is potentially high, it is reasonable if it is only
incurred for erroneous data, in which case the cost is not incurred on the “fast path” of
processing good data; or, if f(n) is 1 and scan consumes all of the scanned data, in which
case the total running time of the parser is linear in the amount of data consumed, which is
the best running time achievable without skipping data. However, we cannot guarantee that
either of these conditions are met. The scan type can legally appear in branches of sums,
in which case the cost could be incurred for valid data (that matches a different branch)
without consuming any of the data scanned.

In PADS/C and PADS/ML, we control the potentially high cost of scan in two ways. First,
we only scan for literals, thereby bounding the running time to linear in the size of the data
source. Second, we set a data-source independent maximum on the number of bits scanned
for any particular instance of scan, rather than potentially scanning until end of the data
source. Together, these factors reduce the running time of scanning to O(1). However, the
second factor implies that PADS/C and PADS/ML, unlike DDCα, do not guarantee to find the
targets of scans, even if they are present in the data source. This difference between DDCα

and the PADS languages could have a significant impact on any guarantees we might make
about error recovery based on DDCα alone. We leave for future work the development of
a more sophisticated semantics for scan that accounts for the unreliable nature of scans in
PADS/C and PADS/ML.

Returning to our discussion of the semantics of DDCα, we note that compute only calls
the compute constructors without performing any parsing. The representation constructor
Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 27

returns the value computed by e, while the PD records no errors and reports a span of
length 0, as no data is consumed by the computation. The absorb parser first parses
the underlying type and then calls the absorb constructors, passing only the PD, which is
needed by the rep constructor to determine whether an error occurred while parsing the
underlying type. If so, the value returned is a none. Otherwise, it is unit. The absorb
parse descriptor duplicates the error information of its underlying type.

5. METATHEORY

One of the most difficult challenges of our work on DDCα was to determine the meta-
theoretic properties that should hold of the language. What are the “correct” invariants
of data description languages? While the languages community has a good understanding
of the desirable invariants for conventional programming languages, the corresponding
properties of data description languages have not been studied.

We present the following two properties as critical invariants of our theory. Just like
the classic Progress and Preservation theorems should hold for any conventional typed
programming language, we feel that the following properties should hold, in some form,
for any data description language.

—Parser Type Correctness: For a DDCα type τ , the representation and PD output by the
parsing function of τ will have the types specified by [[τ]]rep and [[τ]]PD, respectively.

—Canonical Forms of Parsed Data: We precisely characterize the results of DDCα

parsers by defining the canonical form of the representation, parse descriptor pairs as-
sociated with a dependent DDCα type. We show that the errors reported in the parse
descriptor accurately reflect the errors present in the representation.

This section states these critical properties formally. Appendix A expands on this section,
including a sketch of the proofs. Mandelbaum’s thesis [Mandelbaum 2006] contains the
complete meta-theory.

Before proceeding to the main elements of our meta-theory, we state a few simple re-
quirements of DDCα base types. Note that the interface Bopty specifies the types of base-
type parsers.

Condition 1 (Conditions on Base Types)
(1) dom(Bkind) = dom(Bimp).

(2) If Bkind(C) = σ → T then Bopty(C) = σ → [[C(e):T]]PT (for any e of type σ).

(3) ` Bimp(C) : Bopty(C).

Note that by condition 3, base type parsers must be closed.

5.1 Type Correctness

Our first key theorem is that the various semantic functions we have defined are coherent.
In particular, we show that for any well-kinded DDCα type τ , the corresponding parser is
well typed, returning a pair of the corresponding representation and parse descriptor.

Theorem 2 (Type Correctness of Closed Types)
If ` τ : κ then ` [[τ]]P : [[τ :κ]]PT.

Journal of the ACM, Vol. V, No. N, Month 20YY.

28 · K. Fisher, Y. Mandelbaum and D. Walker

A practical implication of this theorem is that it is sufficient to check data descriptions
(i.e., DDCα types) for well-formedness to ensure that the generated types and functions are
well formed. This property is sorely lacking in many parser generators, for which users
must examine generated code to debug compile-time errors in specifications.

5.2 Canonical Forms

DDCα parsers generate pairs of representations and parse descriptors that satisfy a number
of invariants. Most importantly, when the parse descriptor reports that there are no errors
in a particular substructure, the programmer is guaranteed that the corresponding repre-
sentation satisfies all of the syntactic and semantic constraints expressed by the dependent
DDCα type description. When the pair of a parse descriptor and a representation satisfy
these invariants, we say the pair is canonical or in canonical form.

The canonical form for each DDCα type is defined via the relation Canon(r, p) : τ ,
which defines the canonical form of a representation r and a parse descriptor p at type τ .
This relation is defined for all closed types τ with base kind T. The definition excludes
types with higher kind, such as abstractions, because such types cannot directly produce
representations and PDs.

For brevity in the definitions, we write p.h.nerr as p.nerr and use pos to denote the
function that returns zero when passed zero and one when passed another natural number.

Definition 3 (Canonical Forms)
Canon(r, p) : τ holds if and only if exactly one of the following is true:

— τ = unit and r = () and p.nerr = 0.
— τ = bottom and r = none and p.nerr = 1.
— τ = C(e) and r = inl c and p.nerr = 0.
— τ = C(e) and r = inr none and p.nerr = 1.
— τ = Σx:τ1.τ2 and r = (r1, r2) and p = (h, (p1, p2)) and h.nerr = pos(p1.nerr) +
pos(p2.nerr), Canon(r1, p1) : τ1 and Canon(r2, p2) : τ2[(r1, p1)/x].

— τ = τ1 + τ2 and r = inl r′ and p = (h, inl p′) and h.nerr = pos(p′.nerr) and
Canon(r′, p′) : τ1.

— τ = τ1 + τ2 and r = inr r′ and p = (h, inr p′) and h.nerr = pos(p′.nerr) and
Canon(r′, p′) : τ2.

— τ = τ1 & τ2, r = (r1, r2) and p = (h, (p1, p2)), and h.nerr = pos(p1.nerr) +
pos(p2.nerr), Canon(r1, p1) : τ1 and Canon(r2, p2) : τ2.

— τ = {x:τ ′ | e}, r = inl r′ and p = (h, p′), and h.nerr = pos(p′.nerr), Canon(r′, p′) :
τ ′ and e[(r′, p′)/x]→∗ true.

— τ = {x:τ ′ | e}, r = inr r′ and p = (h, p′), and h.nerr = 1 + pos(p′.nerr),
Canon(r′, p′) : τ ′ and e[(r′, p′)/x]→∗ false.

— τ = τe seq(τs, e, τt), r = (len, [~ri]), p = (h, (neerr, len, [~pi])),
neerr =

∑len
i=1 pos(pi.nerr), Canon(ri, pi) : τe (for i = 1 . . . len), and h.nerr ≥

pos(neerr).
— τ = µα.τ ′, r = fold[[[µα.τ ′]]rep] r′, p = (h, fold[[[µα.τ ′]]PD] p′), p.nerr = p′.nerr

and Canon(r′, p′) : τ ′[µα.τ ′/α].
— τ = compute(e:σ) and p.nerr = 0.
Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 29

— τ = absorb(τ ′), r = inl (), and p.nerr = 0.
— τ = absorb(τ ′), r = inr none, and p.nerr > 0.
— τ = scan(τ ′), r = inl r′, p = (h, inl (i, p′)), h.nerr = pos(i) + pos(p′.nerr), and

Canon(r′, p′) : τ ′.
— τ = scan(τ ′), r = inr none, p = (h, inr ()), and h.nerr = 1.
— τ 6= ν, τ →∗ ν, and Canon(r, p) : ν.

Theorem 5 establishes that our generated parsers yield Canonical Forms under the as-
sumption that all base type parsers produce values in canonical form, a condition stated
formally in Condition 4.

Condition 4 (Base Type Parsers Produce Values in Canonical Form)
If ` v : σ, Bkind(C) = σ → T and Bimp(C) v (B,ω) →∗ (ω′, r, p) then Canon(r, p) :
C(v).

Theorem 5 (Parsing to Canonical Forms)
If ` τ : T and [[τ]]P (B,ω)→∗ (ω′, r, p) then Canon(r, p) : τ .

Theorem 5 has the following useful corollary, which ensures that a single check of the
top-level parse descriptor is sufficient to verify the validity of an entire data representation
in canonical form.

Corollary 6
If Canon(r, p) : τ and p.h.nerr = 0 then there are no syntactic or semantic errors in the
representation data structure r.

6. ENCODING DDLS IN DDCα

We can better understand data description languages by elaborating their constructs into
the types of DDCα. We start by specifying the complete elaboration of IPADS into DDCα.
We then discuss other features of PADS/C, PADS/ML, DATASCRIPT, and PACKETTYPES
that are not found in IPADS. Finally, we briefly discuss some limitations of DDCα.

6.1 IPADS Elaboration

We specify the elaboration from IPADS to DDCα with two judgments: p ⇓ τ prog indicates
that the IPADS program p is encoded as DDCα type τ , while t ⇓ τ does the same for IPADS
types t. These judgments are defined in Figure 19.

Because much of the elaboration is straightforward, we mention only a few important
points. Notice we add bottom as the last branch of the DDCα sum when elaborating
Punion so that the parse will fail if none of the branches match rather than returning the
result of the last branch. We base this behavior directly on the actual PADS/C language.
In the elaboration of Pwhere, we only check the constraint if the underlying value parses
with no errors. For Parrays, we add simple error recovery by scanning for the separator
type. This behavior allows us to easily skip erroneous elements. We use the scan type in
the same way for Plit, as literals often appear as field separators in Pstructs. We also
absorb the literal, as its value is known statically. We use the function Ty(c) to determine
the correct type for the particular literal. For example, a string literal would require a
Pstring type.

Journal of the ACM, Vol. V, No. N, Month 20YY.

30 · K. Fisher, Y. Mandelbaum and D. Walker

prog ⇓ τ prog

t ⇓ τ
t ⇓ τ prog

PROG-ONE
p[t/α] ⇓ τ prog
α = t; p ⇓ τ prog

PROG-DEF
p[Prec α.t/α] ⇓ τ prog
Prec α = t; p ⇓ τ prog

PROG-RECDEF

t ⇓ τ

C(e) ⇓ C(e)
BASE

t ⇓ τ
Pfun(x : σ) = t ⇓ λx.τ PFUN

t ⇓ τ
t e ⇓ τ e APP

ti ⇓ τi
Pstruct{x1:t1 . . . xn:tn} ⇓

Σ x1:τ1. · · ·Σ xn−1:τn−1.τn

PSTRUCT
ti ⇓ τi

Punion{x1:t1 . . . xn:tn} ⇓
τ1 + · · ·+ τn + bottom

PUNION

ti ⇓ τi
Palt{x1:t1 . . . xn:tn} ⇓ τ1& . . .&τn

PALT
t ⇓ τ

Popt t ⇓ τ + unit
POPT

t ⇓ τ
t Pwherex.e ⇓ {x:τ | if isOk(x.pd) then e else true}

PWHERE

t ⇓ τ tsep ⇓ τs tterm ⇓ τt (f = λx.false)

t Parray(tsep, tterm) ⇓ τ seq(scan(τs), f, τt)
PARRAY

Pcompute e:σ ⇓ compute(e:σ)
PCOMPUTE

(Ty(c) = τ)

Plit c ⇓ scan(absorb({x:τ |x = c})) PLIT
α ⇓ α VAR

t ⇓ τ
Prec α.t ⇓ µα.τ PREC

Fig. 19. Encoding IPADS in DDCα

6.2 Beyond IPADS

This section defines four features not found in IPADS: PADS/C switched unions, PADS/ML
polymorphic, recursive datatypes, DATASCRIPT arrays, and PACKETTYPES overlays.

PADS/C switched unions. A switched union, like a Punion, describes variability in the
data format with a set of alternative formats (branches). However, instead of trying each
branch in turn, the switched union takes an expression that determines which branch to
use. Typically, this expression depends upon data read earlier in the parse. Each branch
is preceded by a tag, and the first branch whose tag matches the expression is selected.
If none match then the default branch tdef is chosen. The syntax of a switched union is
Pswitch e {−−−−−→e⇒ x:t tdef}.

To aid in our elaboration of Pswitch, we define a type if e then t1 else t2 that
allows us to choose between two types conditionally:

t1 ⇓ τ1 t2 ⇓ τ2 (c = compute(if e then 1 else 2 :Pint))

if e then t1 else t2 ⇓ c ∗ ({x:unit | not e}+ τ1) & ({x:unit | e}+ τ2)

The computed value c records which branch of the conditional was selected during parsing.
If the condition e is true, c will be 1, the left-hand side of the intersection will parse τ1 and
the right will parse nothing. Otherwise, c will be 2, the left-hand side will parse nothing
and the right τ2.
Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 31

Now, we can encode Pswitch as syntactic sugar for a series of cascading conditional
types.

Pswitch e {
e1 ⇒ x1:t1
. . .
en ⇒ xn:tn
tdef}

=

if e = e1 then t1 else

. . .
if e = en then t1 else

tdef

Note that we can safely replicate e as the host language is pure.

PADS/ML polymorphic, recursive datatypes. We have also developed an encoding of
PADS/ML’s polymorphic, recursive datatypes. We present this encoding in two steps. First,
we extend IPADS with type abstraction and application, and specify their elaboration into
DDCα. Notice that IPADS type abstractions can have multiple parameters.

Types t ::= ... | PFun (−→α) = t | t (
−→
t)

t ⇓ τ
PFun(−→α) = t ⇓

−−→
λα.τ

t ⇓ τ
−−→
t ⇓ τ

t (
−→
t) ⇓ τ −→τ

Next, we extend IPADS programs to include datatype bindings. Datatype bindings in-
clude the name of the type, α, a list of type parameters (−→α), a single value parameter x, and
a body that consists of a list of named variants (xv1, xv2, . . .). As with Prec bindings, we
do not specify the meaning of datatype bindings in DDCα directly. Rather, we decompose
a given datatype into a compound IPADS type, which is then substituted into the remainder
of the program.

Programs p ::= ... | Pdatatype α (−→α)(x : σ) = {−−→xv:t}; p

p[t′/α] ⇓ τ prog (t′ = PFun (−→α) = Pfun(x : σ) = t′′)

(t′′ = Prec α.Punion{
−−−−−−−−→
xv:t[α/α−→α]})

Pdatatype α (−→α) (x : σ) = {−−→xv:t}; p ⇓ τ prog

There are two important points to notice about the decomposition. First, a datatype
is decomposed into no less than four IPADS (and, by extension, DDCα) types. Second,
and more subtly, the recursive type is nested inside of the abstractions, thereby preventing
the definition of nonuniform, or nested, datatypes [Bird and Meertens 1998]. Indeed, the
name of the bound datatype, α, plays two distinct roles – within the recursive type, it is a
monomorphic type referring only to the recursive type itself, while within the rest of the
program it is a polymorphic type referring to the entire type abstraction. However, in order
to allow the user to write the type in the same way in both circumstances, we substitute α
for α−→α in the union branches.

DATASCRIPT arrays. Next, we introduce DATASCRIPT-style arrays t [length], which
are used to describe binary data. Such arrays are parameterized by an optional length field,
rather than by a separator and terminator. If the user supplies the length of the sequence, the
array parser reads exactly that number of elements. Arrays with the length field specified

Journal of the ACM, Vol. V, No. N, Month 20YY.

32 · K. Fisher, Y. Mandelbaum and D. Walker

can be encoded in a straightforward manner with DDCα sequences:

t ⇓ τ (f = λ((len,),).(len = length))
t [length] ⇓ τ seq(unit, f, bottom)

As these arrays have neither separators nor terminators, we use unit (always succeeds,
parsing nothing) and bottom (always fails, parsing nothing), respectively, for separator
and terminator. The function f takes a pair of array representation and PD and compares
the sequence length recorded in the representation (len) to length .

Arrays of unspecified length are more difficult to encode as they must check the next el-
ement for parse errors without consuming it from the data stream. A termination predicate
cannot encode this check as they cannot perform lookahead. Therefore, we must use the
terminator type to look ahead for an element parse error. For this purpose, we construct a
type which succeeds where τ fails and fails where τ succeeds:

{x:τ + unit | case x.rep of (inl ⇒ false | inr ⇒ true)}

Abbreviated not(τ), this type attempts to parse a τ . On success, the representation will be
a left injection. The constraint in the constrained type will therefore fail. If a τ cannot be
parsed, the sum will default to unit, the rep will be a right injection, and the constraint will
succeed. The use of the sum in the underlying type is critical as it allows the constrained
type to be error free even when parsing τ fails.

With not, we can encode the unbounded DATASCRIPT array as follows:

t ⇓ τ
t [] ⇓ τ seq(unit, λx.false, not(τ))

Note that the termination predicate is trivially false, as we use the lookahead-terminator
exclusively to terminate the array.

PACKETTYPES overlays. Finally, we consider the overlay construct found in PACKET-
TYPES. An overlay allows description authors “to merge two type specifications by em-
bedding one within the other, as is done when one protocol is encapsulated within another.
Overlay[s] introduce additional substructure to an already existing field.” [McCann and
Chandra 2000]. For example, consider a network packet from a fictional protocol FP,
where the packet body is represented as a simple byte-array.

FPPacket = Pstruct {
header : FPHeader;
body : Pbyte Parray(Pnosep,Peof);

}
IPinFP = Poverlay FPPacket.body with IPPacket

Type Pnosep indicates that there are no separators between elements of the byte array and
type Peof indicates that the array is terminated by the end-of-file. They can be encoded
in DDCα using unit and bottom, respectively. The overlay creates a new type IPinFP
where the body field is an IPPacket rather than a simple byte array.

We have developed an elaboration of the overlay syntax into DDCα. In essence, overlays
are syntactic sugar: overlaying a subfield of a given type replaces the type of that subfield
with a new type. However, despite the essentially syntactic nature of overlays, we dis-
covered a critical subtlety of semantic significance, not mentioned by the PACKETTYPES
authors. Any expressions in the original type that refer to the overlayed field may no longer
Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 33

be well typed after applying the overlay. For example, consider extending FPPacketwith
a field that is constrained to be equal to the checksum of the body:

FPPacket = Pstruct {
header : FPHeader;
body : Pbyte Parray(Pnosep,Peof);
checksum : Pint Pwhere cs.cs = checksum(body);

}

The checksum function requires that body be a byte array. Therefore, if we overlay
body with a structured type like IPPacket, then body will no longer be a byte array
and, so, the application of checksum to body will be ill-formed. We thought to disallow
such expressions in the overlayed type. However, we found this to be a difficult, if not
impossible task. More importantly, such a restriction is unnecessary. Instead, the new
type can be checked for well formedness after the overlay process, an easy task in DDCα

framework.
At this point, we have described the elaborations of some of the more interesting features

of the languages that we have studied. However, to give a fuller sense of what is possible,
we briefly list additional features of DATASCRIPT and PACKETTYPES for which we have
found encodings in DDCα:

—PACKETTYPES: arrays, where clauses, structures, overlays, and alternation.

—DATASCRIPT: constrained types (enumerations and bitmask sets), value-parameterized
types (which they refer to as “type parameters”), arrays, constraints, and (monotonically
increasing) labels. These labels allow users to specify the location of a data element
within the data source. They can be used, for example, to describe a data source that
begins with a header specifying the location of the remaining data elements in the data
source.

We know of a couple of features from data description languages that DDCα does not
support in a straightforward manner. One such feature is a label construct that permits the
user to specify the form of data at computed offsets. A second such feature is a forall
construct that allows users to express constraints between different elements of an array.
While DDCα does not currently support these important features directly, we believe it
provides a solid semantic framework in which such variations might be analyzed, explored
and modeled in the future. For instance, one could investigate adding the forall constraint
found in both DATASCRIPT and PADS/C to the DDCα host language (or perhaps coding
forall directly as a fold) and using it in conjunction with DDCα set types to try to express the
kind of array constraints that Back shows are useful in a number of binary formats [Back
2002]. However, we leave such investigations to future work: Like the basic λ-calculus
or π-calculus, DDCα is intended to capture the most common language features, while
remaining simple enough that it can be extended with new features relatively easily.

7. APPLICATIONS OF THE SEMANTICS

The development of DDCα and the definition of a semantics for IPADS has had a substantial
impact on the PADS/C and PADS/ML implementations. It has helped improve the imple-
mentations in a number of ways, which we now discuss.

Journal of the ACM, Vol. V, No. N, Month 20YY.

34 · K. Fisher, Y. Mandelbaum and D. Walker

7.1 Bug Hunting

We developed DDCα, in part, through a line-by-line analysis of key portions of the PADS/C
implementation. In the process of trying to understand and formalize the implicit invariants
in this code, we realized that our error accounting methodology was inconsistent, partic-
ularly in the case of arrays. When we realized the problem, we were able to formulate a
clear rule to apply universally: each subcomponent adds 1 to the error count of its parent
if and only if it has errors. If we had not tried to formalize our semantics, it is unlikely we
would have made the error accounting rule precise, leaving our implementation buggy.

The semantics also helped us avoid potential nontermination of array parsers. In the
original implementation of PADS/C arrays, it was possible to write nonterminating arrays,
a bug that was only uncovered when it hung a real program. In particular, given the type
nothing that consumes no input, the type nothing array(nothing,eof) would
not terminate in the original system. A careful read of the DDCα semantics of arrays,
which has now been implemented in PADS/C, shows that array parsing terminates after an
iteration in which the array parser reads nothing. We have since fixed the bug and verified
the revised implementation using the semantics.

7.2 Principled Language Implementation

Unlike the rest of PADS/C, the semantics of recursive types preceded the implementation.
We used the semantics to guide our design decisions in the implementation, particularly
as related to the structure of parse descriptors for recursive types. When we started, it
was not obvious whether recursive-type parse descriptors should have their own headers,
or whether they could use the header available through a single unfolding of the type.
Ultimately, we chose the latter, but this required that we carefully design our system so as
to ensure that said header would be available.

In our first version of DDCα, DDC, we included a so-called contractiveness condition
to ensure the desired parse descriptor structure [Fisher et al. 2006]. However, when we
added polymorphic types to DDC, we found that the contractiveness condition was un-
suited to polymorphism, specialized, as it was, to recursive types2. We therefore revis-
ited the treatment of type variables and devised a uniform method of ensuring appropriate
parse-description structure, that was appropriate for both recursive and polymorphic types.
Specifically, we limited type abstraction for parse descriptors to abstraction over the body
of the descriptors, and included the header explicitly in the PD-translation of type variables.
This subtle interaction between type abstraction and parse descriptor structure would have
been very difficult both to notice and to reason in about in the context of a full implemen-
tation. The abstraction provided by the semantics was critical in enabling us to effectively
redesign this element of the system and to subsequently be confident in its correctness.

Perhaps more significantly, the semantics was used in its entirety to guide the imple-
mentation of PADS/ML. The semantics of type abstractions were particularly helpful, as
they are a new feature not found in PADS/C. Before working through the formal semantics,
we struggled to disentangle the invariants related to polymorphism, as discussed. After
we had defined the calculus, we were able to implement support for type abstractions in
approximately a week. Additionally, the implementation of PADS/ML’s plist type is an

2The condition was overly restrictive; extended naively to type functions it would have disallowed many useful
functions, including, for example, the identity function.

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 35

almost literal translation of the semantics of pseq into OCAML. We hope the calculus will
serve as a guide for implementations of PADS in other host languages.

7.3 Distinguishing the Essential from the Accidental

In his 1965 paper, P.J. Landin asks “Do the idiosyncrasies [of a language] reflect basic
logical properties of the situations that are being catered for? Or are they accidents of
history and personal background that may be obscuring fruitful developments?”

The semantics helped us answer this question with regard to the Pomit and Pcompute
qualifiers of PADS/C. Originally, these qualifiers were only intended to be used on fields
within Pstructs. By an accident of the implementation, they appeared in Punions as
well, but spread no further. However, when designing DDCα, we followed the principle of
orthogonality, which suggests that every linguistic concept be defined independently of ev-
ery other. In particular, we observed that “omitting” data from, or including (“computing”)
data in, the internal representation is not dependent upon the idea of structures or unions.
Furthermore, we found that developing these concepts as first-class constructors absorb
and compute in DDCα allowed us to encode the semantics of other PADS/C features ele-
gantly (literals, for example). In this case, then, the DDCα highlighted that the restriction
of Pomit and Pcompute to mere type qualifiers for Punion and Pstruct fields was
an “accident of history,” rather than a “basic logical property” of data description.

We conclude with an example of another feature to which Landin’s question applies,
but for which we do not yet know the answer. The Punion construct chooses between
branches by searching for the first one without errors. However, this semantics ignores
situations in which the correct branch in fact has errors. Often, this behavior will lead to
parsing nothing and flagging a failure, rather than parsing the correct branch to the best of
its ability. The process of developing a semantics brought this fact to our attention and it
now seems clear we would like a more robust Punion, but we are not currently sure how
to design one.

8. RELATED WORK

The primary purpose of this article is to develop a semantic theory for type-based data de-
scription languages. To the best of our knowledge, there is no other comparable semantic
theory for this family of languages. Existing theories of regular expressions, context-free
grammars, parsing expression grammars [Birman and Ullman 1973; Ford 2004; 2002;
Grimm 2004] or even context-sensitive grammars specify what strings can be recognized
by a grammar, but such a specification only captures half of the semantics of languages like
PADS or PACKETTYPES. In contrast, there exist formalisms for specifying programming
languages as algebras, in which a single language specification captures both the concrete
and abstract syntax of the language being specified. However, these systems target pro-
gramming languages (and the like), not data formats. Our new theory gives a complete
explanation of data description languages both in terms of the strings that are recognized
and the properties of internal data structures that are generated, and in a manner appropriate
to data formats.

In the following paragraphs, we compare and contrast our semantics and the design of
data description languages like PADS to more traditional grammar-based parser generators,
algebraic specification formalisms, and other related technologies such as parser combina-
tor libraries, type-directed programming techniques, and XML-based tools.

Journal of the ACM, Vol. V, No. N, Month 20YY.

36 · K. Fisher, Y. Mandelbaum and D. Walker

Grammar-based Parser Generators. Some of the oldest tools for describing data for-
mats are parser generators for compiler construction such as LEX and YACC. While excel-
lent for parsing programming languages, LEX and YACC are too heavyweight for parsing
many of the simpler ad hoc data formats that arise in areas like networking, the compu-
tational sciences and finance. The user must learn both the lexer generator and the parser
generator, and then specify the lexer and the parser separately, in addition to the glue code
to use them together. Moreover, LEX and YACC do not support data-dependent parsing,
do not generate internal representations automatically, and do not supply a collection of
value-added tools. Consequently, in our experience, programmers simply do not use tools
such as LEX and YACC for managing ad hoc data.

More modern parser generators alleviate several of the problems of LEX and YACC by
providing more built-in programming support. For instance, the ANTLR parser genera-
tor [Parr and Quong 1995] allows the user to add annotations to a grammar to direct con-
struction of a parse tree. However, all nodes in the abstract syntax tree have a single type,
hence the guidance is rather crude when compared with the richly-typed structures that can
be constructed using typed languages such as PADS/C, PADS/ML, DATASCRIPT or DDCα.
The SABLE/CC compiler construction tool [Agnon 1998] goes beyond ANTLR by produc-
ing LALR(1) parsers along with richly-typed ASTs quite similar to those of PADS/C. Also
like PADS/C or PADS/ML, descriptions do not contain actions. Instead, actions are only
performed on the generated ASTs. DEMETER [Lieberherr 1988] is another parser gener-
ator in the same general tradition as Lex, Yacc, ANTLR and SABLE/CC in that it is based
on context-free grammars. However, DEMETER’s class dictionaries are even more power-
ful than previous systems as they automatically generate visitor functions that traverse the
internal representation of parsed data.

Despite their many benefits, all of the context-free grammar-based tools — LEX, YACC,
ANTLR, SABLE/CC, and DEMETER — have some deficiencies when compared with tools
built on the type theory described by DDCα. In particular, none of them include depen-
dent or polymorphic data descriptions directly in their specification language (though some
forms of dependency can be “hacked,” at least in LEX and YACC, by programming arbitrary
host language code in the semantic actions). Moreover, while the semantics of context-free
grammars are obviously well understood, the semantics of the tools themselves, including
the semantic actions that generate internal data structures, have not been as thoroughly
studied. For instance, we know of no proof that ANTLR- or SABLE/CC-generated parsers
are type safe. Finally, the error handling strategies for conventional parser generators are
different than those of the PADS languages. Traditional parsers do not provide the program-
mer with programmatic access to errors, as PADS/ML or PADS/C do through the use of their
parse descriptors. That said, such a laundry list of technical differences risks obscuring the
essential points – that these tools are based on a completely different semantic foundation
and have a far different overall “look and feel.”

Parsing Theory. To the best of our knowledge, our work on DDCα is the first to provide
a formal interpretation of dependent types as parsers and to study the properties of these
parsers including error correctness and type safety. Of course, there are other formalisms
for defining parsers, most famously, regular expressions and context-free grammars. In
terms of recognition power, these formalisms differ from our type theory in that they have
nondeterministic choice, but do not have dependency or constraints. We have found that
dependency and constraints are absolutely essential for describing many of the ad hoc
Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 37

data sources we have studied, particularly binary formats in which length fields are used
pervasively. Perhaps more importantly though, unlike standard theories of context-free
grammars, we do not treat our type theory merely as a recognizer for a collection of strings.
Our type-based descriptions define both external data formats and rich invariants on the
internal parsed data structures. This dual interpretation of types lies at the heart of tools
such as PADS, DATASCRIPT and PACKETTYPES.

Parsing Expression Grammars (PEGs) form the basis for yet another class of parsers.
This formalism was studied in the early 70s [Birman and Ullman 1973] and was revital-
ized more recently by Ford [Ford 2004]. Like the DDCα, PEGs are notable for having
greedy, prioritized choice as opposed to the nondeterministic choice found in regular ex-
pressions or context-free grammars. Greedy, prioritized choice resolves ambiguities that
would otherwise arise essentially by defining them away. PEGs also have syntactic looka-
head operators and may be parsed in linear time through the use of “packrat parsing”
techniques [Ford 2002; Grimm 2004]. Once again, however, the multiple interpretations
of types in DDCα makes our theory substantially different from the theory of PEGs.

Algebraic Specification Formalisms. Early results demonstrating a correspondence be-
tween algebras and languages (for example, Rus [Rus 1972]) led to the development of
a number of systems for specifying languages based on algebraic principles. From a se-
mantic perspective, these algebraic specification formalisms are closer to DDCα than parser
generator languages. We briefly discuss one such system: the Syntax Definition Formalism
SDF2 [Visser 1997] and its companion system ASF, the Algebraic Specification Formal-
ism [Bergstra et al. 1989]. For a more detailed discussion of earlier systems, we refer the
reader to Visser’s Thesis [Visser 1997]. SDF2 differs from most parser generator systems
in both its scope and its feature set. SDF2+ASF provides extensive support for specify-
ing algebraic systems and associated properties, including the syntax and semantics. As
with DDCα, elements defined in SDF2 have both concrete (raw) and abstract (parsed) in-
terpretations, a property common to algebraic specification languages. Moreover, SDF2
provides language designers with a variety of tools based on a declarative SDF2 specifica-
tion. Additionally, SDF2 specifications, like DDCα types, are scannerless – that is, they do
not require a separate lexer – and support polymorphic syntax definitions [Visser 1998].

For all of SDF2’s power and overlap with DDCα features, it lacks some of the essential
features that make DDCα uniquely suited to data description languages: support for depen-
dency, an explicit specification of the connection between DDCα types and the underlying
host language, and an explicit accounting of error-handling.

Parser Combinators. Of all parsing technologies, the DDCα most closely resembles li-
braries of functional parser combinators, which have been extensively studied in the litera-
ture, dating back at least as early as 1975 [Burge 1975]. In particular, the parsing semantics
of the DDCα could rather easily be redefined in terms of monadic parser combinators, like
those of the popular Parsec library [Leijen and Meijer 2001]. Indeed, Oury et al. [Oury
and Swierstra 2008] have presented a reformulation of our theory along these lines by
embedding DDCα into the dependently-typed programming language Agda. However, an
essential feature of DDCα that distinguishes it from parser combinator libraries is its simul-
taneous interpretation of type declarations as parsers and as internal representation types.
Moreover, this dual semantics has quite an impact on the user experience — the “look
and feel” of DDCα, and related systems such as PADS and PACKETTYPES, is quite different

Journal of the ACM, Vol. V, No. N, Month 20YY.

38 · K. Fisher, Y. Mandelbaum and D. Walker

from Parsec, for instance, because these systems exploit programmer intuitions concerning
the meaning of types directly. This makes such languages a good fit for users that have not
been exposed to combinator libraries before.

Despite this principal difference, we believe it is important to compare and contrast
DDCα with the literature on parser combinators in some depth. To do so, we begin by
noting the salient distinguishing characteristics of many parser combinator libraries and
then note where DDCα fits with regard to these characteristics.

(1) Are alternatives explored depth-first or breadth-first?

(2) How much lookahead is supported?

(3) What are the semantics of choice?

(4) Does the algorithm support ambiguity?

(5) Does the algorithm support left recursion?

(6) How does the parser handle errors in the input?

(7) Does the library support context-sensitive parsing?

The first two questions are closely related, because lookahead is often integrated with
the parsing process by speculatively continuing parsing at each branch point. DDCα uses
a depth first approach to parsing alternatives – it tries the branches of each alternative in
order, choosing the first branch to parse successfully. Therefore, it supports unlimited
lookahead, because each branch can consume arbitrary quantities of input. The depth-
first approach to alternatives is quite common in parser combinators [Wadler 1985; Hutton
1992; Hutton and Meijer 1998; Fokker 1995]. Some libraries support a combination of
these approaches. Parsec, for example, employs a breadth-first, single-token lookahead
as standard, but also allows explicit invocation of depth-first, arbitrary-length lookahead
through the try combinator [Leijen and Meijer 2001]. Swierstra et al. explore more
sophisticated breadth-first parsing, based on continuations, in a series of papers [Swierstra
and Duponcheel 1996; Swierstra 2001; Hughes and Swierstra 2003].

The third question to consider is the semantics of the choice operator. In DDCα, the
choice operator is deterministic and greedy: it accepts the first branch that succeeds, even
if accepting a later branch might ultimately lead to a longer total parse. While this form
of choice is limiting, it reflects the reality of what is supported by existing data description
languages. This semantics is a common choice in parser combinator libraries. For example
try p <|> q in Parsec and p +++ q in Hutton and Meijer’s combinators [Hutton and
Meijer 1998], both behave like DDCα’s choice operator.

Regarding the question of support for ambiguity, DDCα’s support for only deterministic
choice removes the possibility of ambiguous grammars. In contrast, many of the basic
parser combinator formulations since Wadler [Wadler 1985] support ambiguity and return
all possible parses. However, given the efficiency impacts of such an approach, later work
tries to limit the amount of ambiguity supported [Swierstra and Azero Alcocer 1999; Leijen
and Meijer 2001], provide the user with more fine grained control over its use [Hughes
and Swierstra 2003], or generally improve the efficiency of ambiguous parsers [Peake and
Seefried 2004; Frost et al. 2008].

Left-recursion is not supported by most parser combinators, and the DDCα is no excep-
tion. This shortcoming is mitigated by the fact that most instances of left recursion can
be elegantly rewritten using some form of repetition operator, like DDCα’s seq type or
Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 39

Fokker’s listOf and chainl combinators [Fokker 1995]. However, there are new tech-
niques for directly supporting left recursion in parser combinators [Frost et al. 2008].

Two of the essential features of DDCα parsers are the detailed error reporting through
parse descriptors and the robustness to errors. The various parser combinator libraries take
a variety of approaches to error handling and reporting, none of them quite like DDCα’s.
The Parsec library uses predictive parsing to ensure that when an error is encountered, it
is clear exactly where in the input the error occurred. However, this advantage comes at
the cost of requiring the grammar to be in (almost) LL(1) form. Moreover, when an error
occurs, parsing stops. Swierstra, et al. [Swierstra and Azero Alcocer 1999], similarly rely
on predictive parsing to pinpoint errors, but add error correction – through token insertion
and deletion – to increase parser robustness. All corrective actions are reported to the user
via error messages. Later variations of this approach [Swierstra and Duponcheel 1996;
Swierstra 2001] eliminate the requirement of predictive parsing by performing a breadth
first search of all possible parses (including error correcting parses). These combinators
also go beyond earlier ones by reporting all errors, with corresponding corrections, in a
special-purpose data structure, rather than simple strings.

The approach to error correction taken by Swierstra et al. is closely related to that of
DDCα. Both attempt to recover from errors via a combination of terminal and nonterminal
insertion and terminal deletion. Both provide detailed reports as to the nature and location
of errors and the corresponding corrective actions. Nevertheless, the differences are signif-
icant. First, they differ in their approach to choosing particular insertions and deletions. In
DDCα, insertions happen implicitly and for any type – when a parser returns data with er-
rors and parsing continues, an insertion has implicitly occurred. Deletion points, however,
must be marked explicitly, through the scan type. In contrast, Swierstra et al. completely
automate the choice of insertion and deletion, relying, in part, on an analysis of the input
grammar. The second difference lies in the nature of the error-reporting data structure. In
DDCα, that data structure is the parse descriptor, and is specialized to the input grammar.
As a result, the error data structure reflects the shape of the output data. In contrast, Swier-
stra et al. employ a single data structure for all error reporting, and relate errors to the
raw input data, rather than the structured output data. This difference in error reporting is
necessary, in part, because parse combinators abstract over the structure of the output data.

The final distinguishing characteristic of parser-combinator libraries is support for con-
text sensitive parsing. Leijen and Meijer [Leijen and Meijer 2001] distinguish between
monadic-style combinators, like Parsec and those of Hutton and Meijer [Hutton and Mei-
jer 1998], which support context sensitive parsing, and arrow-style combinators, like those
of Swierstra et al., which do not. The conventional wisdom is that monadic-style combi-
nators are not amenable to the analyses employed for arrow-style combinators [Leijen and
Meijer 2001; Swierstra and Azero Alcocer 1999]. DDCα is most similar to monadic-style
combinators.

Marshalling and Unmarshalling. Marshalling libraries such as Java’s JXM library [JXM
2003] allow programmers to serialize objects on disk in a fixed format. Unmarshalling li-
braries read this fixed format back into memory. Although useful for saving or otherwise
communicating the state of a program, this technology does not help solve the problem of
how to interpret data that arrives in a non-standard, ad hoc format.

Languages such as ASDL [ASDL] and ASN.1 [Dubuisson 2001] are somewhat related
to marshallers. Both of these languages specify the logical in-memory representation of

Journal of the ACM, Vol. V, No. N, Month 20YY.

40 · K. Fisher, Y. Mandelbaum and D. Walker

data and then automatically generate a physical on-disk representation. Another language
in this category is the Hierarchical Data Format 5 (HDF5) [Hierarchical Data Format 5
2007]. This file format allows users to store scientific data, but it does not help users deal
with legacy ad hoc formats. Like marshalling tools, ASDL, ASN.1 and related technolo-
gies do not help users who need to parse and process non-standard, ad hoc data.

Type-Directed Programming. Type-directed or generic programming techniques [Jans-
son and Jeuring 1997; 1999; Jansson 2000; Hinze 2000; Jansson and Jeuring 2002; Lämmel
and Peyton Jones 2003] allow users to define algorithms by induction over the structure of
a type rather than by induction (or recursion) over the structure of a value. Of particular
interest is the work by Jansson and Jeuring on polytypic data conversions [Jansson and
Jeuring 1997; 1999; Jansson 2000; Jansson and Jeuring 2002]. These authors demonstrate
how to program a variety of data transformation functions together with their inverses in
PolyP, a type-directed extension of Haskell. For instance, they describe a generic com-
pressing printing/parsing algorithm, a generic noncompressing printing/parsing algorithm,
and a data extraction algorithm that separates primitive data from its containing structure.

Also of interest is the work of van Weelden et al [van Weelden et al. 2005]. They
investigated the use of type-directed programming to produce a parser for a language based
only on the specification of its AST type(s). In this way, the AST types themselves serve
as the grammar for the language. They also investigate applying this approach to other
compiler-related analyses, like scope checking and type inference.

The parsers defined by DDCα are defined by induction over the structure of types and
hence may be thought of as type-directed programs. However, there are a number of rea-
sons why one might prefer a domain-specific language like PADS or DDCα over a generic
programming framework. From a programmer’s perspective, the specialized syntax makes
writing descriptions, particularly descriptions with nested literals, regular expressions,
functions and dependencies, relatively easy. From an implementer’s perspective, PADS is
a relatively simple, light-weight language extension: Implementing a PADS-style language
for any standard imperative, functional or object-oriented language requires no changes to
the underlying host language type system or run-time. In contrast, type-directed program-
ming languages normally need sophisticated, non-standard type systems or modifications
to the run-time to function correctly. In the paper “Generics for the Masses” [Hinze 2004],
Hinze cites these complications as his motivation for the design of a new generic program-
ming environment for Haskell, but unfortunately, the new design is still Haskell-specific,
as it makes essential use of polymorphic data structures and type classes.

XML-based tools. Rather than programming directly with data in its ad hoc format, it
may be useful to convert it first to XML. Once in XML, any one of hundreds of XML-based
tools may be used to manipulate the data. XSugar [Brabrand et al. 2005] is one tool that
allows users to specify an alternative non-XML syntax for XML languages using a context-
free grammar. This tool automatically generates conversion tools between XML and non-
XML syntax. Another such tool is the Binary Format Description language (BFD) [Myers
and Chappell 2000]. BFD is able to convert raw binary or ASCII data into XML-tagged
data where it can then be processed using XML-processing tools. While both these tools
are useful for many tasks, conversion to XML is not always the answer. Such conversion
often results in an 8-10 times blowup in data size over the native form. Moreover, for
programmers not familiar with XML, there is a high barrier to entry — not only do they
Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 41

have to learn the ad hoc format, but they must also learn XML and the XML conversion tool.
Altogether, this overhead is too heavy for many simple data processing tasks.

Two other related XML-based specification languages are DFDL [Global Grid Forum
2005; Beckerle and Westhead 2004] and XDTM [Moreau et al. 2005; Zhao et al. 2005].
Like PADS or PACKETTYPES, DFDL is a language for specifying data formats. It has a rich
collection of base types and supports a variety of ambient codings. Early versions of DFDL
did not allow dependent constraints, but they were later added, perhaps because PADS
had demonstrated how effective they can be. XDTM uses XML Schema to describe the
locations of a collection of sources spread across a local file system or distributed across a
network of computers. However, XDTM has no means of specifying the contents of files,
so XDTM and PADS solve complementary problems. The METS schema [METS 2003]
is similar to XDTM as it describes metadata for objects in a digital library, including a
hierarchy of such objects.

Databases. Commercial database products provide support for parsing data in external
formats so the data can be imported into database systems, but these products typically
support only a limited number of formats. Also, they do not expose a declarative descrip-
tion of the original format for use apart from the database, and they provide only fixed
methods for coping with erroneous data. For these reasons, type-based data description
languages are complementary to database systems. We strongly believe that in the future,
commercial database systems could and should support a PADS-like description language
that allows users to import information from almost any format.

9. CONCLUSION

Ad hoc data is pervasive and valuable: in industry, in medicine, and in scientific research.
Such data tends to have poor documentation, to contain various kinds of errors, and to be
voluminous. Unlike well-behaved data in standardized relational or XML formats, such
data has little or no tool support, forcing data analysts and scientists to waste valuable time
writing brittle custom code, even if all they want to do is convert their data into a well-
behaved format. To improve the situation, various researchers have developed type-based
data description languages like PADS, DATASCRIPT, and PACKETTYPES. These languages
allow analysts to write terse, declarative descriptions of ad hoc data. A compiler then
generates a parser and customized tools. Because these languages are tailored to their
domain, they can provide useful services automatically while a more general purpose tool,
such as LEX/YACC or PERL, cannot.

In the spirit of Landin, we have taken the first steps toward specifying a semantics for
this class of languages by defining the data description calculus DDCα. This calculus,
which is a dependent type theory with a simple set of orthogonal primitives, is expressive
enough to describe the features of PADS, DATASCRIPT, and PACKETTYPES. In keeping
with the spirit of type-based data description languages, our semantics is transformational:
instead of simply recognizing a collection of input strings, we specify how to transform
those strings into canonical in-memory representations annotated with error information.
Furthermore, we prove that the error information is meaningful, allowing analysts to rely
on the error summaries rather than having to re-vet the data by hand.

We have already used the semantics to identify bugs in the implementation of PADS/C
and as a guide for the design of a whole new language, PADS/ML. In the future, we hope
DDCα will serve as a solid foundation for the next 700 data description languages.

Journal of the ACM, Vol. V, No. N, Month 20YY.

42 · K. Fisher, Y. Mandelbaum and D. Walker

Acknowledgments

We appreciate the insights and thoughtful reviews of the program committee for the 33rd

ACM Symposium on Principles of Programming Languages, who commented on an earlier
version of this work. We would also like to thank Robert Gruber, Mary Fernández, Mark
Daly, and Kenny Zhu for all their work on the PADS project over the years. Finally,
thanks to Andrew Appel for suggesting we refer to Landin’s seminal paper on the next 700
programming languages.

REFERENCES

AGNON, E. 1998. SableCC: An object oriented compiler framework. M.S. thesis, School of Computer Science,
McGill University, Montreal.

ASDL. Abstract syntax description language. http://sourceforge.net/projects/asdl.
BACK, G. 2002. DataScript: A specification and scripting language for binary data. In Generative Programming

and Component Engineering. Vol. 2487. Lecture Notes in Computer Science, 66–77.
BECKERLE, M. AND WESTHEAD, M. 2004. Global Grid Forum DFDL primer. http://www.ggf.org/
Meetings/GGF11/Documents/DFDL_Primer_v2.pdf.

BERGSTRA, J. A., HEERING, J., AND KLINT, P. 1989. Algebraic Specification. ACM Press Frontier Series.
ACM Press in co-operation with Addison-Wesley, Chapter 1, 1–66.

BIRD, R. AND MEERTENS, L. 1998. Nested datatypes. In Proceedings 4th Int. Conf. on Mathematics of
Program Construction, MPC’98, Marstrand, Sweden, 15–17 June 1998, J. Jeuring, Ed. Vol. 1422. Springer-
Verlag, Berlin, 52–67.

BIRMAN, A. AND ULLMAN, J. D. 1973. Parsing algorithms with backtrack. Information and Control 23, 1
(Aug.), 1–34.

BRABRAND, C., MØLLER, A., AND SCHWARTZBACH, M. I. 2005. Dual syntax for XML languages. In Tenth
International Symposium on Database Programming Languages. Lecture Notes in Computer Science, vol.
3774. Springer-Verlag, 27–41.

BURGE, W. 1975. Recursive Programming Techniques. Addison Wesley.
DUBUISSON, O. 2001. ASN.1: Communication between heterogeneous systems. Morgan Kaufmann.
FERNÁNDEZ, M. F., SIMÉON, J., CHOI, B., MARIAN, A., AND SUR, G. 2003. Implementing XQuery 1.0:

The Galax experience. In Proceedings of the 29th International Conference on Very Large Data Bases. ACM
Press, 1077–1080.

FISHER, K. AND GRUBER, R. 2005. PADS: A domain specific language for processing ad hoc data. In ACM
Conference on Programming Language Design and Implementation. ACM Press, 295–304.

FISHER, K., MANDELBAUM, Y., AND WALKER, D. 2006. The next 700 data description languages. In ACM
Symposium on Principles of Programming Languages. ACM Press, 2–15.

FOKKER, J. 1995. Functional parsers. In Advanced Functional Programming, First International Spring School
on Advanced Functional Programming Techniques-Tutorial Text. Springer-Verlag, London, UK, 1–23.

FORD, B. 2002. Packrat parsing: Simple, powerful, lazy, linear time. In ACM International Conference on
Functional Programming. ACM Press, 36–47.

FORD, B. 2004. Parsing expression grammars: A recognition-based syntactic foundation. In ACM Symposium
on Principles of Programming Languages. ACM Press, 111–122.

FROST, R. A., HAFIZ, R., AND CALLAGHAN, P. 2008. Parser combinators for ambiguous left-recursive gram-
mars. In Practical Aspects of Declarative Languages. Lecture Notes in Computer Science. Springer.

Gene Ontology Consortium. Gene ontology project. http://www.geneontology.org/.
GIRARD, J.-Y. 1972. Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre

supérieur. Ph.D. thesis, Thèse d’état, Université Paris VII. Summary in Proceedings of the Second Scan-
dinavian Logic Symposium (J.E. Fenstad, editor), North-Holland, 1971 (pp. 63-92).

Global Grid Forum 2005. Data format description language (DFDL): A proposal, working draft. https:
//forge.gridforum.org/projects/dfdl-wg/document/DFDL_Proposal/en/2.

GRIMM, R. 2004. Practical packrat parsing. Tech. Rep. TR2004-854, New York University.
GUSTAFSSON, P. AND SAGONAS, K. 2004. Adaptive pattern matching on binary data. In European Symposium

on Programming. Springer, 124–139.

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 43

HARPER, R. 2005. Programming Languages: Theory and Practice. Unpublished. Available at http://
www-2.cs.cmu.edu/˜rwh/.

Hierarchical Data Format 5 2007. Hierarchical data format 5. National Center for Supercomputing Applications
(NCSA) at the University of Illinois at Urbana-Champaign (UIUC). http://hdf.ncsa.uiuc.edu/
HDF5/.

HINZE, R. 2000. A new approach to generic functional programming. In ACM Symposium on Principles of
Programming Languages. ACM Press, 119–132.

HINZE, R. 2004. Generics for the masses. In ACM International Conference on Functional Programming. ACM
Press, 236–243.

HUGHES, R. J. M. AND SWIERSTRA, S. D. 2003. Polish parsers, step by step. In ACM International Conference
on Functional Programming. ACM Press, 239–248.

HUTTON, G. 1992. Higher-order functions for parsing. Journal of Functional Programming 2, 3 (July), 323–
343.

HUTTON, G. AND MEIJER, E. 1998. Monadic parsing in Haskell. Journal of Functional Programming 8, 4
(July), 437–444.

IGARASHI, A., PIERCE, B., AND WADLER, P. 1999. Featherwieght Java: A minimal core calculus for Java
and GJ. In ACM Conference on Object-oriented Programming, Systems, Languages, and Applications. ACM
Press, 132–146.

JAMES, R. AND MALPANI, P. 2003. Enter the data definition language: A developer perspective. .NET Devel-
opers’s Journal.

JANSSON, P. 2000. Functional polytypic programming. Ph.D. thesis, Chalmers University of Technology and
Göteborg University.

JANSSON, P. AND JEURING, J. 1997. PolyP: A polytypic programming language extension. In ACM Symposium
on Principles of Programming Languages. ACM Press, 470–482.

JANSSON, P. AND JEURING, J. 1999. Polytypic compact printing and parsing. In European Symposium on
Programming. Number 1576 in Lecture Notes in Computer Science. 273–287.

JANSSON, P. AND JEURING, J. 2002. Polytypic data conversion programs. Science of Computer Program-
ming 43, 1, 35–75.

JXM 2003. Java XML mapping. http://jxm.sourceforge.net/manual.html.
KRISHNAMURTHY, B. AND REXFORD, J. 2001. Web Protocols and Practice. Addison Wesley.
LÄMMEL, R. AND PEYTON JONES, S. 2003. Scrap your boilerplate: A practical design pattern for generic

programming. In ACM SIGPLAN Workshop on Types in Language Design and Implementation. ACM Press,
26–37.

LANDIN, P. J. 1966. The next 700 programming languages. Communications of the ACM 9, 3 (Mar.), 157 –
166.

LEIJEN, D. AND MEIJER, E. 2001. Parsec: Direct style monadic parser combinators for the real world. Tech.
Rep. UU-CS-2001-27, Department of Computer Science, Universiteit Utrecht.

LIEBERHERR, K. 1988. Object-oriented programming with class dictionaries. Lisp and Symbolic Computa-
tion 1, 185–212.

MANDELBAUM, Y. 2006. The theory and practice of data description. Ph.D. thesis, Princeton University.
MANDELBAUM, Y., FISHER, K., WALKER, D., FERNÁNDEZ, M., AND GLEYZER, A. 2007. PADS/ML: A

functional data description language. In ACM Symposium on Principles of Programming Languages. ACM
Press, 77–84.

MCCANN, P. AND CHANDRA, S. 2000. PacketTypes: Abstract specification of network protocol messages. In
ACM Conference of Special Interest Group on Data Communications. ACM Press, 321–333.

METS 2003. METS: An overview and tutorial. http://www.loc.gov/standards/mets/
METSOverview.v2.html.

MOREAU, L., ZHAO, Y., FOSTER, I., VOECKLER, J., AND WILDE, M. 2005. XDTM: The XML data type and
mapping for specifying datasets. In European Grid Conference.

MYERS, J. AND CHAPPELL, A. 2000. Binary format definition (BFD). http://collaboratory.emsl.
pnl.gov/sam/bfd/.

Newick data 2003. Tree formats. Workshop on Molecular Evolution web site. http://workshop.
molecularevolution.org/resources/fileformats/tree_formats.php.

Journal of the ACM, Vol. V, No. N, Month 20YY.

44 · K. Fisher, Y. Mandelbaum and D. Walker

OURY, N. AND SWIERSTRA, W. 2008. The power of Pi. In ACM International Conference on Functional
Programming. ACM, New York, NY, USA, 39–50.

PARR, T. J. AND QUONG, R. W. 1995. ANTLR: A predicated- ll(k) parser generator. Software: Practice and
Experience 25, 7 (July), 789–810.

PEAKE, I. AND SEEFRIED, S. 2004. A combinator parser for Earley’s algorithm. http://goanna.cs.
rmit.edu.au/˜ipeake/pubs/earley-cps.pdf. Work in progress.

PIERCE, B. C. 2002. Types and Programming Languages. The MIT Press.
REYNOLDS, J. C. 1974. Towards a theory of type structure. In Paris Colloquium on Programming. Springer-

Verlag, 141–156.
RUS, T. 1972. ΣS-Algebra of a formal language. Bulletin Mathematique de la Societe de Science, Bucharest.
SWIERSTRA, S. D. 2001. Combinator parsers: From toys to tools. In 2000 ACM SIGPLAN Haskell Workshop.

Electronic Notes in Theoretical Computer Science, vol. 41. Elsevier, 38–59.
SWIERSTRA, S. D. AND AZERO ALCOCER, P. R. 1999. Fast, error correcting parser combinatiors: A short

tutorial. In Proceedings of the 26th Conference on Current Trends in Theory and Practice of Informatics on
Theory and Practice of Informatics. Springer-Verlag, 112–131.

SWIERSTRA, S. D. AND DUPONCHEEL, L. 1996. Deterministic, error-correcting combinator parsers. In Ad-
vanced Functional Programming, Second International School-Tutorial Text. Springer-Verlag, 184–207.

VAN WEELDEN, A., SMETSERS, S., AND PLASMEIJER, R. 2005. Polytypic syntax tree operations. In Im-
plementation and Application of Functional Languages, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 4015. Springer.

VISSER, E. 1997. Syntax definition for language prototyping. Ph.D. thesis, University of Amsterdam.
VISSER, E. 1998. Polymorphic syntax definition. Theoretical Computer Science 199, 57–86.
WADLER, P. 1985. How to replace failure with a list of successes. In Functional Programming Languages and

Computer Architecture. Lecture Notes in Computer Science, vol. 201. Springer-Verlag, 113–128.
WIKSTRÖM, C. AND ROGVALL, T. 1999. Protocol programming in Erlang using binaries. In Fifth International

Erlang/OTP User Conference.
ZHAO, Y., DOBSON, J., FOSTER, I., MOREAU, L., AND WILDE, M. 2005. A notation and system for expressing

and executing cleanly typed workflows on messy scientific data. ACM SIGMOD Record 34, 3, 37–43.

A. EXTENDED METATHEORY

In this appendix, we sketch the proofs of the theorems of Section 5 and state a number
of lemmas about DDCα which we found essential in constructing those proofs. For more
detailed proofs, as well as lemmas and theorems about Fω on which we have relied, we
refer the reader to Mandelbaum’s thesis [Mandelbaum 2006].

We start by stating some basic assumptions. First, we assume that all variable names
introduced by the parsing semantics function come from a separate syntactic domain from
the variables that appear in ordinary expressions. These names are therefore by definition
“fresh” with respect to any expressions that can be written by the user. Second, for those
types with bound variables, the potential alpha-conversion when performing a substitution
on the type exactly parallels any alpha-conversion of the same variable where it appears in
the translation of the type. Last, all constructors, support functions and base-type parsers
are closed with respect to user-defined variable names.

Next, we require that DDCα base types satisfy the properties that we desire to hold of the
rest of the calculus. Note that the interface Bopty specifies the types of base-type parsers.

Condition 7 (Conditions on Base-types)
(1) dom(Bkind) = dom(Bimp).
(2) If Bkind(C) = σ → T then Bopty(C) = σ → [[C(e):T]]PT (for any e of type σ).
(3) ` Bimp(C) : Bopty(C).
Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 45

A number of DDCα properties involve reasoning about terms that are equivalent up-to
equivalent typing annotations. We formally define this equivalence below.

Definition 8 (Expression Equivalence)
e ≡ e′ iff e is syntactically equal to e′ modulo alpha-conversion of bound variables and
equivalence of typing annotations.

Next, we show that substitution commutes with all of the semantic interpretations of
DDCα. For clarity, we first introduce two substitution-related abbreviations:

〈τ/α〉 = [[[τ]]rep/αrep][[[τ]]PDb/αPDb]
{τ/α} = [[[τ]]rep/αrep][[[τ]]PDb/αPDb][[[τ]]P/parseα]

Lemma 9 (Commutativity of Substitution and Semantic Interpretation)
(1) [[τ [τ ′/α]]]rep = [[τ]]rep〈τ ′/α〉.
(2) If ∆; Γ ` τ : κ then [[τ [τ ′/α]]]rep = [[τ]]rep[[[τ ′]]rep/αrep].
(3) If ∃σ s.t. [[τ]]PD = σ and ∃σ s.t. [[τ ′]]PD ≡ pd hdr ∗ σ then [[τ [τ ′/α]]]PD ≡ [[τ]]PD〈τ ′/α〉 =

[[τ]]PD[[[τ]]PDb/αPDb].
(4) If ∃σ s.t. [[τ]]PD = σ and ∃σ s.t. [[τ ′]]PD ≡ pd hdr ∗ σ then [[τ [τ ′/α]]]P ≡ [[τ]]P{τ ′/α}.
(5) [[τ [v/x]]]rep = [[τ]]rep.
(6) [[τ [v/x]]]PD = [[τ]]PD.
(7) [[τ [v/x]]]P = [[τ]]P[v/x].

PROOF. Parts 1,3-7: By induction on structure of types. Part 2 is proven by induction
on the height of the kinding derivation. The most interesting case is compute, as it is the
only construct in which a variable of the form αPDb might appear. However, as the type is
well-formed, we know from the kinding rules that the only type variables allowed in σ are
of the form αrep. For part 4, note that variables of the form parseα cannot appear in any
τ – they can only be introduced by the parsing semantics function. For part 7, note that the
open variables in [[τ]]P are exactly those that are open in τ itself, as none are introduced in
the translation.

We also require a similar commutativity result for the [[· : ·]]PT function.

Lemma 10
If [[τ]]PD = σ1 and [[τ ′]]PD ≡ pd hdr ∗ σ2 then [[τ [τ ′/α]:κ〈τ ′/α〉]]PT = [[τ :κ]]PT〈τ ′/α〉.

PROOF. By induction on the size of the kind, using Lemma 9 for T case.

Lemma 11
The function [[·]]rep is total.

PROOF. By induction on the structure of types.

We are now in a position to present some standard type-theoretic results for DDCα kind-
ing and normalization, as well as key substitution lemmas.

Lemma 12 (DDCα Preservation)
If ` τ : κ and τ →∗ ν then ` ν : κ.

Journal of the ACM, Vol. V, No. N, Month 20YY.

46 · K. Fisher, Y. Mandelbaum and D. Walker

PROOF. By induction on the kinding derivation.

Lemma 13 (DDCα Inversion)
All kinding rules are invertible. That is, given a proof of any rule’s conclusion we have a
proof of the rule’s premises.

PROOF. By inspection of the kinding rules; in particular, the fact that they are syntax
directed.

Lemma 14 (DDCα Canonical Forms)
If ` ν : κ then either

—κ = T, or

—κ = σ → κ and ν = λx.τ ′, or

—κ = T→ κ and ν = λα.τ ′.

PROOF. By kinding rules and grammar of normalized types ν.

Lemma 15 (DDCα Substitution)
(1) If ∆; Γ, x:σ ` τ : κ and [[∆]]Fω

; Γ ` v : σ then ∆; Γ ` τ [v/x] : κ.

(2) If ∆, α:T; Γ,Γ′ ` τ : κ and ∆; Γ ` τ ′ : T then ∆; Γ,Γ′[τ ′/α] ` τ [τ ′/α] : κ[τ ′/α].

PROOF. For both parts, by induction on the first derivation, using standard Fω substitu-
tion properties as needed.

Finally, we state another commutativity property for the semantic functions. In essence,
it says that evaluation commutes with semantic interpretation. This result has inherent
value for reasoning about DDCα, as it allows one to reason about the semantics of DDCα

functions directly in terms of the stated normalization rules, rather than indirectly through
semantic interpretation and the evaluation/equivalence rules of the semantic domain. Note
that the premise of the lemma involves parser evaluation because that is what is needed for
later use.

Lemma 16 (Commutativity of Evaluation and Semantic Interpretation)
If ` τ : κ and [[τ]]P →∗ v then ∃ ν such that

(1) τ →∗ ν,

(2) v ≡ [[ν]]P,

(3) [[τ]]rep ≡ [[ν]]rep, and

(4) [[τ]]PD ≡ [[ν]]PD.

PROOF. By induction on the number of steps in the evaluation. Within the induction,
we proceed using a case-by-case analysis of the possible structures of type τ .

Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 47

A.1 Type Correctness

Our first key theoretical result is that the various semantic functions we have defined are
coherent. In particular, we show that for any well-kinded DDCα type τ , the correspond-
ing parser is well typed, returning a pair of the corresponding representation and parse
descriptor.

Demonstrating that generated parsers are well formed and have the expected types is
nontrivial primarily because the generated code expects parse descriptors to have a par-
ticular shape, and it is not completely obvious they do in the presence of polymorphism.
Hence, to prove type correctness, we first need to characterize the shape of parse descrip-
tors for arbitrary DDCα types. The particular shape required is that every parse descriptor
be a pair of a header and an (arbitrary) body. The most straightforward characterization of
this property is too weak to prove directly, so we instead characterize it as a logical relation
in Definition 17. Lemma 21 establishes that the logical relation holds of all well-formed
DDCα types by induction on kinding derivations, and the desired characterization follows
as a corollary.

Definition 17
—H(τ : T) iff ∃σ s.t. [[τ]]PD ≡ pd hdr ∗ σ.
—H(τ : T→ κ) iff ∃σ s.t. [[τ]]PD ≡ σ and ∀ τ ′.H(τ ′ : T) implies H(τ τ ′ : κ).
—H(τ : σ → κ) iff ∃σ′ s.t. [[τ]]PD ≡ σ′ and H(τ e : κ) for any expression e.

Lemma 18
If H(τ : T) then ∃σ s.t.[[τ]]PD = σ.

PROOF. Follows immediately from definition of H(τ : T).

Note that we implicitly demand that [[τ]]PD is well defined in the hypothesis of the lemma.
We cannot assume that it is well-defined, even for well-formed τ , as that is part of what we
are trying to prove.

Lemma 19
If [[τ]]PD ≡ [[τ ′]]PD then H(τ : T) iff H(τ ′ : T).

PROOF. By induction on the structure of the kind.

Lemma 20
If H(τ : κ) and H(τ ′ : T) then H(τ [τ ′/α] : κ).

PROOF. By induction on the structure of the kind.

Lemma 21
If ∆; Γ ` τ : κ then H(τ : κ).

PROOF. By induction on the height of the kinding derivation.

Corollary 22
—If ∆; Γ ` τ : κ then ∃σ.[[τ]]PD = σ.
—If ∆; Γ ` τ : T then ∃σ.[[τ]]PD ≡ pd hdr ∗ σ.

Journal of the ACM, Vol. V, No. N, Month 20YY.

48 · K. Fisher, Y. Mandelbaum and D. Walker

PROOF. Immediate from definition of H(τ : κ) and Lemma 21.

We can now prove a general result stating that if a type is well formed, then its type
interpretations will be well formed, and that the kind of the type will correspond to the
kinds of its interpretations. We first state this correspondence formally and then state and
prove the lemma.

Definition 23 (DDCα Kind Interpretation in Fω)
—K(T) = T

—K(σ → κ) = K(κ)
—K(T→ κ) = T→ K(κ)

Lemma 24 (Representation-Type Well Formedness)
If ∆; Γ ` τ : κ then

—[[∆]]rep ` [[τ]]rep :: K(κ)
—[[∆]]PD ` [[τ]]PD :: K(κ)
—If κ = T then [[∆]]PD ` [[τ]]PDb :: T.

PROOF. By induction using Lemma 21 and properties of Fω type equality.

We continue by stating and proving that parsers are type correct. However, to do so,
we must first establish some typing properties of the representation and parse-descriptor
constructors, as at least one of them appears in most parsing functions. In particular, we
prove that each constructor produces a value whose type corresponds to its namesake DDCα

type. For clarity, we occasionally abbreviate pd hdr ∗ σ as pdσ.

Lemma 25 (Types of Constructors)
—Runit : unit→ unit

—Punit : offset→ pd hdr ∗ unit
—Rbottom : unit→ none

—Pbottom : offset→ pd hdr ∗ unit
—RΣ : ∀α, β.α ∗ β → α ∗ β
—PΣ : ∀α, β.pdα ∗ pdβ → pd (pdα ∗ pdβ)
—R+left : ∀α, β.α→ α+ β

—R+right : ∀α, β.β → α+ β

—P+left : ∀α, β.pdα→ pd hdr ∗ (pdα+ pdβ)
—P+right : ∀α, β.pdβ → pd hdr ∗ (pdα+ pdβ)
—R& : ∀α, β.α ∗ β → α ∗ β
—P& : ∀α, β.pdα ∗ pdβ → pd hdr ∗ (pdα ∗ pdβ).
—Rcon : ∀α.bool ∗ α→ α+ α

—Pcon : ∀α.bool ∗ pdα→ pd hdr ∗ pdα
—Rseq init : ∀α.unit→ int ∗ α seq
—Pseq init : ∀α.offset→ pd hdr ∗ (arr pd (pdα))
—Rseq : ∀α.(int ∗ α seq) ∗ α→ int ∗ α seq
Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 49

—Pseq : ∀αelt, αsep.(pd hdr ∗ (arr pd (pdαelt))) ∗ pdαsep ∗ pdαelt →
pd hdr ∗ (arr pd pdαelt)

—Rcompute : ∀α.α→ α

—Pcompute : offset→ pd hdr ∗ unit
—Rabsorb : ∀α.pdα→ unit + none

—Pabsorb : ∀α.pdα→ pd hdr ∗ unit
—Rscan : ∀α.α→ α+ none

—Pscan : ∀α.int ∗ pdα→ pd hdr ∗ ((int ∗ pdα) + unit)
—Rscan err : ∀α.unit→ α+ none

—Pscan err : ∀α.offset→ pd hdr ∗ ((int ∗ α) + unit)

PROOF. By typing rules of Fω .

With our next lemma, we establish the type correctness of the generated parsers. We
prove the lemma using a general induction hypothesis that applies to open types. This
hypothesis must account for the fact that any free type variables in a DDCα type τ will
become free function variables in [[τ]]P. To that end, we define the function [[∆]]PT which
maps the set of type-variable bindings in a DDCα context ∆ to a corresponding set of
function-variable bindings in an Fω context Γ.

[[·]]PT = · [[∆, α:T]]PT = [[∆]]PT, parseα:[[α:T]]PT

Lemma 26 (Type Correctness Lemma)
If ∆; Γ ` τ : κ then [[∆]]Fω

,Γ, [[∆]]PT ` [[τ]]P : [[τ :κ]]PT

PROOF. By induction on the height of the kinding derivation.

Theorem 27 (Type Correctness of Closed Types)
If ` τ : κ then ` [[τ]]P : [[τ :κ]]PT.

A.2 Canonical Forms

DDCα parsers generate pairs of representations and parse descriptors designed to satisfy
a number of invariants. Of greatest importance is the fact that when the parse descriptor
reports that there are no errors in a particular substructure, the programmer can count on
the representation satisfying all of the syntactic and semantic constraints expressed by
the dependent DDCα type description. When a parse descriptor and representation satisfy
these invariants and correspond properly, we say the pair of data structures is canonical or
in canonical form.

The canonical form for each DDCα type is defined via the relation Canon(r, p) : τ ,
which defines the canonical form of a representation r and a parse descriptor p at type τ .
This relation is defined for all closed types τ with base kind T. The definition excludes
types with higher kind, such as abstractions, because such types cannot directly produce
representations and PDs. All but one case of the relation apply to normalized types, ν.
The final case is the case of an arbitrary type, τ . It normalizes τ to a ν, thereby elimi-
nating outermost type and value applications. Then, the requirements on ν are given by
Canon(r, p) : ν.

For brevity in the definitions, we write p.h.nerr as p.nerr and use pos to denote the
function that returns zero when passed zero and one when passed another natural number.

Journal of the ACM, Vol. V, No. N, Month 20YY.

50 · K. Fisher, Y. Mandelbaum and D. Walker

Definition 28 (Canonical Forms)
Canon(r, p) : τ holds if and only if exactly one of the following is true:

— τ = unit and r = () and p.nerr = 0.
— τ = bottom and r = none and p.nerr = 1.
— τ = C(e) and r = inl c and p.nerr = 0.
— τ = C(e) and r = inr none and p.nerr = 1.
— τ = Σx:τ1.τ2 and r = (r1, r2) and p = (h, (p1, p2)) and h.nerr = pos(p1.nerr) +
pos(p2.nerr), Canon(r1, p1) : τ1 and Canon(r2, p2) : τ2[(r1, p1)/x].

— τ = τ1 + τ2 and r = inl r′ and p = (h, inl p′) and h.nerr = pos(p′.nerr) and
Canon(r′, p′) : τ1.

— τ = τ1 + τ2 and r = inr r′ and p = (h, inr p′) and h.nerr = pos(p′.nerr) and
Canon(r′, p′) : τ2.

— τ = τ1 & τ2, r = (r1, r2) and p = (h, (p1, p2)), and h.nerr = pos(p1.nerr) +
pos(p2.nerr), Canon(r1, p1) : τ1 and Canon(r2, p2) : τ2.

— τ = {x:τ ′ | e}, r = inl r′ and p = (h, p′), and h.nerr = pos(p′.nerr), Canon(r′, p′) :
τ ′ and e[(r′, p′)/x]→∗ true.

— τ = {x:τ ′ | e}, r = inr r′ and p = (h, p′), and h.nerr = 1 + pos(p′.nerr),
Canon(r′, p′) : τ ′ and e[(r′, p′)/x]→∗ false.

— τ = τe seq(τs, e, τt), r = (len, [~ri]), p = (h, (neerr, len, [~pi])),
neerr =

∑len
i=1 pos(pi.nerr), Canon(ri, pi) : τe (for i = 1 . . . len), and h.nerr ≥

pos(neerr).
— τ = µα.τ ′, r = fold[[[µα.τ ′]]rep] r′, p = (h, fold[[[µα.τ ′]]PD] p′), p.nerr = p′.nerr

and Canon(r′, p′) : τ ′[µα.τ ′/α].
— τ = compute(e:σ) and p.nerr = 0.
— τ = absorb(τ ′), r = inl (), and p.nerr = 0.
— τ = absorb(τ ′), r = inr none, and p.nerr > 0.
— τ = scan(τ ′), r = inl r′, p = (h, inl (i, p′)), h.nerr = pos(i) + pos(p′.nerr), and

Canon(r′, p′) : τ ′.
— τ = scan(τ ′), r = inr none, p = (h, inr ()), and h.nerr = 1.
— τ 6= ν, τ →∗ ν, and Canon(r, p) : ν.

We first prove that the representation and parse-descriptor constructors, under the ap-
propriate conditions, produce values in canonical form.

Lemma 29 (Constructors Produce Values in Canonical Form)
—Canon(Rtrue(), Ptrue(ω)) : unit.
—Canon(Rfalse(), Pfalse(ω)) : bottom.
—If Canon(r1, p1) : τ1 and Canon(r2, p2) : τ2[(r1, p1)/x] then

Canon(RΣ(r1, r2), PΣ(p1, p2)) : Σx:τ1.τ2.
—If Canon(r, p) : τ then Canon(R+left(r), P+left(p)) : τ + τ ′.
—If Canon(r, p) : τ then Canon(R+right(r), P+right(p)) : τ ′ + τ .
—If Canon(r1, p1) : τ1 and Canon(r2, p2) : τ2 then

Canon(R&(r1, r2), P&(p1, p2)) : τ1 & τ2.
Journal of the ACM, Vol. V, No. N, Month 20YY.

The Next 700 Data Description Languages · 51

—If Canon(r, p) : τ and e[(r, p)/x]→∗ c then
Canon(Rset(c, r), Pset(c, p)) : {x:τ | e}

—Canon(Rseq init(), Pseq init(ω)) : τ seq(τs, e, τt).
—If Canon(r, p) : τ seq(τs, e, τt) and Canon(r′, p′) : τ then, for any p′′,

Canon(Rseq(r, r′), Pseq(p, p′′, p′)) : τ seq(τs, e, τt).
—Canon(Rcompute(e), Pcompute(ω)) : compute(e:σ).
—Canon(Rabsorb(p), Pabsorb(p)) : absorb(τ).
—If Canon(r, p) : τ then Canon(Rscan(r), Pscan(i, p)) : scan(τ).
—Canon(Rscan err(), Pscan err(ω)) : scan(τ).

PROOF. By inspection of the constructor functions.

In addition, we require that base-type parsers produce values in canonical form:

Condition 30 (Base Type Parsers Produce Values in Canonical Form)
If ` v : σ, Bkind(C) = σ → T and Bimp(C) v (B,ω) →∗ (ω′, r, p) then Canon(r, p) :
C(v).

Theorem 31 is our final result. It states that the parsers for well-formed types (of base
kind) will produce a canonical pair of representation and parse descriptor, if they produce
anything at all.

Theorem 31 (Parsing to Canonical Forms)
If ` τ : T and [[τ]]P (B,ω)→∗ (ω′, r, p) then Canon(r, p) : τ .

PROOF. By induction on the height of the second derivation – that is, the number of
steps taken to evaluate. Within the induction, we proceed using a case-by-case analysis of
the possible structures of type τ .

Journal of the ACM, Vol. V, No. N, Month 20YY.

