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Abstract
We present Contra, a system for performance-aware routing
that can adapt to traffic changes at hardware speeds. While
point solutions exist for a fixed topology (e.g., a Fattree) with
a fixed routing policy (e.g., use least utilized paths), Con-
tra can operate seamlessly over any network topology and
a wide variety of sophisticated routing policies. Users of
Contra write network-wide policies that rank network paths
given their current performance. A compiler then analyzes
such policies in conjunction with the network topology and
decomposes them into switch-local P4 programs, which col-
lectively implement a new, specialized distance-vector proto-
col. This protocol generates compact probes that traverse the
network, gathering path metrics to optimize for the user pol-
icy dynamically. Switches respond to changing network con-
ditions by routing flowlets along the best policy-compliant
paths. Our experiments show that Contra scales to large net-
works, and that in terms of flow completion times, it is com-
petitive with hand-crafted systems that have been customized
for specific topologies and policies.

1 Introduction
Configuring a network to achieve a diverse range of ob-
jectives, such as routing constraints (e.g., traffic should go
through a series of middleboxes), and traffic engineering
(e.g., minimize latency and maximize throughput), is a chal-
lenging task. To handle this complexity, one approach has
been to use SDN solutions, which have a centralized point
for management [25, 26]. However, centralized controllers
are inherently too slow to respond to fine-grained traffic
changes, such as short traffic bursts. In fact, even the soft-
ware control planes locally on the switches are often limited
in their ability to select new routes fast enough.

Recent work has developed load-balancing mechanisms
that operate entirely in the data plane to enable real-time
adaptation [11, 30]. By making use of fine-grained perfor-
mance information on hardware timescales, these systems
can deliver considerable performance benefits over static
load-balancing mechanisms like ECMP. Unfortunately, ex-
isting systems, such as Conga [11] and Hula [30], are point
solutions that only work under specific assumptions about
the network topology, routing constraints, and performance

objectives—they only support a “least utilized shortest path”
policy on a data center topology. It is not obvious how to
adapt them for other kinds of topologies or policies.

In this paper, we describe Contra, a general and pro-
grammable system for performance-aware routing. Network
operators configure Contra by describing the network topol-
ogy as well as a high-level policy that defines routing con-
straints and performance objectives. Contra then generates
P4 programs for switches in the network, which execute in
a fully distributed fashion. Collectively, they implement a
specialized version of a distance-vector protocol that for-
wards traffic based on routing constraints and optimizes for
the user-defined performance objectives. This protocol op-
erates by generating periodic probes that traverse policy-
compliant paths and collect user-defined performance met-
rics. Switches analyze the incoming probes and rank paths
in real time, storing the current best next hop to reach any
given destination. Since the programs run in the data plane,
switches can react to performance changes quickly. Overall,
Contra is designed to achieve the following objectives:

• General – operates over a wide range of policies
• Reusable – works correctly for any topology
• Distributed – does not require central coordination
• Responsive – adapts to changing metrics quickly
• Implementable – on today’s programmable data planes
• Policy-compliant – packets only use allowed paths
• Loop-free – mitigates persistent/transient loops
• Optimal – converges to best paths under stable metrics
• Stable – mitigates oscillation under changing metrics
• Efficient – avoids undue traffic and switch overhead
• Ordered – limits out-of-order packet delivery

To achieve these objectives, we need to address several
challenges. First, to operate over arbitrary topologies, Contra
requires new techniques to search the set of possible paths for
optimal routes. State-of-the-art solutions, such as Conga [11]
and Hula [30], assume a tree-based data center topology,
which makes exploring possible paths, avoiding forward-
ing loops, and finding optimal routes straightforward. Sec-
ond, link and path metrics can change constantly, which may



Objective Key idea(s) Section(s)

General Language for performance-aware routing 2Policies as path-ranking functions
Reusable Policy analyzed jointly with topology 4.1
Distributed Synthesis of data-plane routing protocol

4.1–4.3Responsive & Periodic probes to collect path metrics
Implementable Implemented in P4

Policy-compliant Probes and packets carry policy states 4.1–4.3Switches keep track of state transitions

Loop-free
Monotonicity analysis

2, 5.1, 5.5Probes carry version numbers
Early loop breaking for flowlets

Optimal Isotonicity analysis
2, 5.2, 5.4Stable & Limit the frequency of probes

Efficient Failure detection and metric expiration
Ordered Policy-aware flowlet switching 5.3

Figure 1: Key ideas in Contra.

cause unsynchronized views at different switches. Making
forwarding decisions based on inconsistent views may lead
to forwarding loops or paths that violate the routing policy.
Third, a naı̈ve solution that constantly changes routes can
cause transient or even persistent chaos. We draw inspira-
tions from wireless network routing [16, 38, 39], and design
mechanisms that leverage programmable data planes to ad-
dress this. Finally, we develop policy-aware flowlet switch-
ing, which routes flowlets to mitigate out-of-order packet de-
livery while ensuring policy compliance.
Summary. We make several contributions in the design of
Contra, and Figure 1 summarizes the key ideas.

• We define a new programming abstraction that views
policies as path-ranking functions, and generalizes ex-
isting languages by allowing operators to specify path
constraints and dynamic metrics simultaneously.
• We design a new configurable, performance-aware,

distance-vector routing protocol.
• We develop compilation algorithms that generate

switch-local P4 programs that implement a particular
configuration of the protocol based on user policy.
• We have built a system prototype, and conducted thor-

ough experiments to demonstrate that Contra is compet-
itive with state-of-the-art systems that are customized
for a specific topology and routing policy.

Non-goals. There has been abundant recent research on ef-
ficient load-balancing strategies, especially in data centers.
The goal of this work is not to outperform such strategies in
the contexts for which they have been manually optimized.
Rather, our goal is to facilitate the deployment of such tech-
niques on a much broader set of networks and with a broader
collection of optimization criteria, and to do so without ask-
ing network operators to take the time, or acquire the exper-
tise necessary, to write “assembly-level” P4 programs.

2 Policy language
Contra includes a high-level language that can express a wide
range of user policies, which are functions that rank network
paths. Our compiler then ensures that switches always use
the best policy-compliant paths. Users can combine regular

expressions, which express hard constraints on the allowed
paths, with performance metrics to express dynamic prefer-
ences. As a concrete example, consider the following policy:

minimize( if A .∗ then path.util else path.lat )

It first classifies paths using a regular expression (A .*), and
then based on the classification, it defines the rank to be ei-
ther path utilization or latency. Each node will separately
choose its best paths according to this function. So node
A will always choose the least utilized path, while all other
nodes will select the path with the lowest latency.

The Contra language can also capture static policies in ex-
isting systems that are not related to performance. For in-
stance, FatTire [40] uses regular expressions to classify legal
and illegal paths (though it says nothing about the perfor-
mance of such paths). To route packets through a waypoint
W, a FatTire policy would be (.* W .*), which allows any
path through W but no other paths. Contra can represent this
by mapping all legal paths to 0 and illegal paths to ∞:

minimize( if .∗ W .∗ then 0 else ∞ )

This policy will ensure that every node always selects a path
through W if one exists in the network, and drops traffic oth-
erwise; no path is preferred to a path with rank ∞.

As another example, Propane [14] allows users to write
policies about failover preferences. A Propane policy (A

B D) >> (A C D) indicates a preference for sending traf-
fic through path A B D and only using A C D if the first path
is not available (e.g., a link has failed). In Contra, we can
achieve the same effect by ranking paths statically as below.

minimize( if A B D then 0 else if A C D then 1 else ∞ )

In Contra, it is also possible to rank paths based on multi-
ple metrics. For example, suppose we prefer that A reaches
D via B instead of via C, and we also prefer shorter, less
utilized paths. This can be achieved by lexicographically
ranking paths, e.g., prefer paths through B first, then shortest
paths, and finally, least utilized paths.

minimize( if A .∗ B .∗ D then (0, path.len, path.util)
else if A .∗ C .∗ D then (1, path.len, path.util)
else ∞ )

Ranking paths using regular expressions defines strict, in-
violate preferences; however, operators may have softer con-
straints based on path performance: e.g., one path may be
preferred up to a point, but if the utilization is too high then
some traffic should be shunted along another path instead.
For example, to prefer least-utilized paths when the network
load is light (utilization of the path is less than 80%), even
if those paths are long, but to prefer shortest paths when net-
work load is heavy (and hence to save bandwidth globally),
one might use the following policy.

minimize( if path.util < .8
then (1, 0, path.util)
else (2, path.len, path.util) )



Policy
pol ::= minimize(e) optimization
Expressions

e ::= n constant numeric rank
| ∞ infinite rank
| path.attr path attribute
| e1 ◦ e2 binary operation
| if b then e1 else e2 if statement
| (e1, . . . ,en) tuple

Boolean Tests
b ::= r | e1 ≤ e2 | not b | b1 or b2 | b1 and b2

Regular Paths
r ::= node id | . | r1 + r2 | r1 r2 | r∗

Figure 2: Syntax for Contra policies.

Finally, to steer traffic towards or away from particular
links, one may add or subtract weights. For instance, the fol-
lowing policy demonstrates how to add weight to costly links
AB and CD while otherwise using simple shortest paths.

minimize( (if .∗ AB .∗ then 10 else 0) +
(if .∗ CD .∗ then 20 else 0) + path.len )

Figure 2 presents the full language syntax, and Table 1
presents selected policy examples taken from the literature.
The key novelty of the language is that it can capture many of
the static conditions expressed by earlier work such as Fat-
Tire [40] or NetKAT [13] as well as the relative preferences
of Propane [14], and yet it also augment such policies with
dynamic preferences based on current network conditions.

Policy Implementation
P1. Shortest path routing [24] path.len
P2. Minimum utilization [30] path.util
P3. Widest shortest paths [32] (path.len, path.util)
P4. Waypointing [13] if .*(F1+F2).* then path.util else ∞

P5. Link preference [14] if .*XY.* then path.util else ∞

P6. Weighted link [19] (if .*XY.* then 10 else 0) + path.len
P7. Source-local preference [12] if X.* then path.util else path.lat
P8. Congestion-aware routing [27] if path.util < .8 then (1, 0, path.util)

else (2, path.len, path.util)

Table 1: Selected Contra policies.
Policy analysis and guarantees. Contra requires user poli-
cies to be monotonic (metrics do not improve for longer
paths) and isotonic (switches have consistent preferences).
If a policy is non-isotonic (e.g., P8), Contra will attempt to
decompose it into multiple isotonic subpolicies that can be
processed separately. Contra can do this for many condi-
tional policies (e.g., P8), but it will not always succeed, e.g.,
for “shortest widest paths”; see Appendix A for more discus-
sion. These algebraic constraints guarantee that when met-
rics are stable, new flows will be sent along globally optimal
paths [22]. Our system also guarantees that hard constraints
expressed by regular expressions are never violated. Under
changing metrics, when switches make distributed decisions
based on their local views, routes may be suboptimal [11].

3 Selected Challenges
Contra addresses three key challenges. To illustrate these
challenges, we first describe a simple strawman solution de-
signed for a specific topology (data center networks) and spe-
cific policy (use least utilized paths). Consider the simple
leaf-spine topology in Figure 3(a), where switch S wants to
send traffic to switch D over the least-utilized path:

minimize( if S.∗D then path.util else ∞)

One strawman solution is to use a distance-vector protocol,
where each switch propagates link metrics (i.e., utilization)
to its neighbors via periodic probes, and builds up a local
forwarding table of “best next hops” to reach other switches.

Concretely, at time 1, D sends two probes to A and B car-
rying utilizations u(A-D)=0.1 and u(B-D)=0.2, respectively.
Upon receiving a probe, a spine switch updates its metric,
and then disseminates the probe to its downstream neighbors.
The updated probe metric is the maximum of a) the original
probe metric, and b) the utilization of the inbound link from
the switch’s neighbor, so the probe always carries the utiliza-
tion of the bottleneck link on its traversed path. For instance,
when B receives the probe from D, it updates the utilization
to 0.3, which is the maximum of a) the original probe met-
ric, u(B-D)=0.2, and b) the utilization u(S-B)=0.3; when A
receives the probe from D, it updates the utilization in the
probe to be 0.4, which is the maximum of u(A-D)=0.1 and
u(S-A)=0.4. At time 2, both A and B disseminate the updated
probes to S. Now, S has received probes on both paths S-A-D
(u=0.4) and S-B-D (u=0.3), and it chooses B as the best next
hop to reach D due to its lower utilization. Changes in link
metrics are then propagated by the next round of probes. In
fact, this describes Hula [30], a state-of-the-art solution for
utilization-aware routing in data centers.
Challenge #1: Arbitrary topologies. On a tree topology,
simple mechanisms (e.g., defining a set of “downstream”
and “upstream” neighbors for each switch) suffice to ex-
plore paths and prevent forwarding loops [30], but on a non-
hierarchical topology, it is insufficient.

Consider the sequence of events in Figures 3(b)-(e), where
S prefers the least-utilized path to D. Suppose that at time 1,
D sends out probes to A and S, and A propagates D’s probe
to B and S, with the utilizations shown in Figure 3(b); now,
both B and S prefer to reach D via A. At time 2, S propa-
gates A’s probe to B about S-A-D (u=0.1), so B changes its
preference to go through S; B then propagates S’s probe to A
(u=0.2), but it gets delivered only at time 4. At time 3, u(A-
D) increases to 0.5, which is discovered by a new periodic
probe from D to A and S. From A’s perspective, the best path
to reach D is still A-D, except that now the utilization is 0.5
instead. At time 4, when B’s (old) probe to A arrives with
u=0.2, A mistakenly thinks that it should instead reach D via
B, not knowing that A is itself on B’s best path to reach D.
As a result, a forwarding loop S-A-B-S would form, and it
will persist as long as the link utilizations remain stable.
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Figure 3: Supporting sophisticated policies over arbitrary topologies is challenging. (Solid, red arrows represent probes, and
dotted, green arrows represent packet forwarding. Links are labeled with performance metrics.)

It might seem that path-vector protocols would address
this problem, where probes record their traversed paths, and
switches avoid picking paths that involve themselves. How-
ever, the root cause of transient loops is the inconsistent
views during network convergence; so transient loops can
still form even with path-vector protocols [37]. Carrying the
path traversed by the probe would also increase traffic over-
heads and the complexity for processing probes.

Solution. Our solution is inspired by DSDV [39] and a more
recent proposal Babel [16], which were originally developed
for wireless mesh networks. At a high level, switches as-
sign version numbers to probes, so that they can identify and
avoid using outdated probes. In addition, Contra uses flowlet
switching [44] to pin traffic to particular paths and avoid out-
of-order packet delivery. Still, because flowlet entries expire
at different times, it is possible for transient loops to form on
rare occasions. Contra quickly detects and breaks such loops
by monitoring hop counts.

Challenge #2: Constrained routing. Supporting routing
policies with path constraints leads to additional challenges.
Consider the scenario in Figure 3(f), where the policy is not
only to prefer least-utilized paths, but also that traffic should
never first go through B and then A due to security concerns:

minimize(if .∗B.∗A.∗ then ∞ else path.util)

Under this policy, S can only send traffic to D via a) S-D,
b) S-A-D, c) S-B-D, or d) S-A-B-D; initially, S prefers c)
(u=0.1). Now consider the sequence of events shown in Fig-
ures 3(f)-(h). Suppose that at time 1, the traffic from S arrives
at B. At time 2, the u(B-D) increases to 0.7, and u(S-D) de-
creases to 0.1, so B updates its best next hop (to reach D) to
be S, preferring the path B-S-D. At time 3, B sends the traf-
fic back to S, which already forms a loop. But things can get
even worse: at time 3, u(S-D) increases to 0.3, so S changes
its preference to be S-A-D (u=0.2). So the traffic has been
forwarded along a path S-B-S-A-D, which not only contains
a loop but also violates the intended policy.

Solution. Contra compiles the regular expression con-
straints in the user policy into automata, and intersects these

automata with the network topology to obtain a product
graph [45, 14], which specifies a probe and packet tagging
scheme for each switch. Intuitively, tags represent states of
the user-defined automata; by checking that probes and pack-
ets carry the right state when arriving at a switch, it is possi-
ble to enforce the global user policy in a distributed fashion.
This tagging scheme guarantees that no packet ever deviates
from a user’s regular expression constraints in the policy.

Challenge #3: Custom performance metrics. Support-
ing custom performance metrics also introduces new chal-
lenges. As discussed earlier, a switch only propagates the
probe with the best metric to its neighbors. However, such
local decisions do not always give rise to globally optimal
results, unless the policy is isotonic [22] (i.e., roughly speak-
ing, downstream nodes respect the preferences of upstream
nodes). Unfortunately, some useful policies, such as some
congestion-aware routing schemes, are not isotonic [27].

Solution. Contra analyzes the user policy to determine if
it is isotonic. If not, Contra decomposes the non-isotonic
policy into multiple isotonic subpolicies. Information about
each subpolicy is propagated separately in different classes
of probe and the best probe from each class is chosen locally.
The classes are recombined and a route corresponding to the
best current path is chosen only at a traffic source. Hence,
if metrics are stable, then new flows will be sent along glob-
ally optimal paths. To avoid packet reordering due to un-
stable metrics, we follow Conga and Hula’s strategy and
use flowlet switching, which trades the fact that packets in
pinned flowlets may follow suboptimal paths for stability.

4 Compilation: Stable metrics
The goal of the compiler is to generate a particular configu-
ration of the Contra protocol that efficiently implements the
desired policy in the data plane. We describe compilation in
two phases. First, in this section, we describe an algorithm
that operates as if link metrics do not change, so probes only
need to be propagated once. The next section explains how
this algorithm is extended to handle changing metrics.

Challenge. One key challenge during compilation involves



Figure 4: Naı̈ve solutions may lead to suboptimal paths.
Node A uses ABCD even though a better path ABD exists.

policies with conditional regular expression matches, such as
(if r then m1 else m2), because nodes may rank paths
differently based on the branch of the conditional they use. In
fact, conditional regular expression matches are one source
of non-isotonicity: if every node selects the best next hop
according to its own preferences alone, other nodes might
wind up with suboptimal routes. For example, consider the
following policy when applied to the topology in Figure 4:

minimize( if (A B D) then 0 else path.util)

In this example, A prefers path ABD, but B prefers the least uti-
lized path BCD. The correct behavior in this scenario would
be for B to carry A’s traffic along path ABD while simultane-
ously sending its own traffic along path BCD.

However, a naı̈ve (and erroneous) implementation may
disseminate probes along the paths DB and DCB1 and ask B

to decide which path is best. In this case, B would use the
probe from DCB and discard the one from DB. However, if
the latter probe is discarded, A will not receive information
about its preferred route! To avoid this, another naı̈ve solu-
tion would be to propagate probes along all possible paths
in the network to avoid missing good paths. For instance, B
might send every probe it receives to A. However, this would
lead to far too many probes, as the number of paths in a graph
may be exponential in the number of nodes.
Solution. Instead, for a conditional (if r then m1 else

m2), if one could determine the path with minimal metric m1
that matches r using one probe, and separately determine the
path with minimal metric m2 that does not match r using an-
other probe, then nodes could delay choosing their best path
until both probes have been received and only then combine
the information to make a decision. This is one concrete in-
stance where Contra needs to decompose the non-isotonic
policy (due to regular expressions) into multiple isotonic
subpolicies. Contra achieves this by creating an efficient data
structure that combines all regular expressions appearing in
a policy with the network topology, and by sending separate
probes for different regular expression matches.

4.1 Finding policy-compliant paths
Inspired by Merlin [45] and Propane [14], Contra constructs
a data structure called a product graph (PG), which com-
pactly represents all paths allowed by the policy.

1Recall that probes travel in the opposite direction to actual traffic.

Policy automata. A policy’s regular expressions define the
different ways the shape of a path can affect its ranking. To
process a policy, we first convert all such regular expressions
into finite automata. Because probes disseminate informa-
tion starting from the destination, but policies describe the
direction of traffic that flows in the opposite direction, we
actually construct an automaton for the reverse of each reg-
ular expression. Each automaton is a tuple (Σ,Qi,Fi,q0i ,σi).
Σ is the alphabet, where each character represents a switch
ID in the network. Qi is the set of states in automaton i. The
initial state is q0i . Fi is the set of accepting / final states.
σi : Qi×Σ→ Qi is the transition function. Consider the ex-
ample policy in Figure 5(b), which a) allows A to reach D via
the path A-B-D, b) allows B to reach D via any path with the
least utilization, and c) disallows all other paths. The Contra
compiler would generate the automata in Figure 5(c).

Network topology. The construction of the automata has
not considered the actual network topology, so not all au-
tomaton transitions are legitimate. For instance, although the
automaton for D.*B could in principle accept a sequence of
transitions D-A-B, this sequence would never happen on the
network shown in Figure 5(a), simply because D is not di-
rectly connected to A. Therefore, our compiler merges the
topology with the automata and prunes invalid transitions.

Product graph (PG). If there are k automata (one for each
regular expression used in the policy), then each state in the
PG would have k + 1 fields, (X ,s1, · · · ,sk), where the first
field X is a topology location, and si is a state in the i-th
automaton; there is a directed edge from (X ,s1, · · · ,sk) to
(X ′,s′1, · · · ,s′k), if a) X −X ′ is a valid link on the topology,
and b) for each automaton i, we have σi(si,X ′) = s′i.

Concretely, in the PG in Figure 5(d), every edge repre-
sents both valid transitions on the two policy automata and
a valid forwarding action on the topology. As examples, no
edges exist from any (D,*,*) state to (A,*,*) state, be-
cause they have been eliminated due to topology constraints;
also, there is a transition between node D0 and B0 because a)
the topology connects D and B, and b) applying B to each au-
tomaton from state 1 leads to state 2. We use the symbol “−”
to denote the special “garbage” state—the state from which
there is no valid transition in an automaton.

Virtual nodes. We distinguish PG nodes (“virtual nodes”)
from topology locations (“physical nodes”). A physical node
X may have multiple virtual nodes, because probes could ar-
rive via different paths, and reach different automaton states
as a result. For instance, the physical node B has two virtual
nodes (B0,-,2) and (B1,2,2); we have labeled their loca-
tion fields as B0, B1 to capture this, and we call them tags.
If multiple virtual nodes exist, then probes must be dupli-
cated to traverse paths that satisfy different constraints. For
instance, B will receive a probe for B0 representing a path on
the way to matching regex ABD, and a second probe for B1
representing a path on the way to matching regex B.*D.



Figure 5: A running example of the compilation algorithm.

Probe sending states. If a physical node X is a valid des-
tination allowed by the policy, then exactly one of its vir-
tual nodes is a probe sending state. This state has the
form (X0,σ0(q00 ,X), · · · ,σk(q0k ,X)); all probes that origi-
nate from X initially carry this state. This is because, when
probes start at the originating node, they have only traversed
the first hop “X” from the initial automata states q0i .

Policy compliance. Any path in the PG from an accepting
state to a probe sending state is a policy-compliant path. All
policy-compliant physical paths also exist in the PG.

4.2 Packet forwarding
Before describing the protocol itself, we first describe the
structure of the forwarding (FwdT) tables on each switch.
The compiler only generates the table layout, and then ac-
tual entries are populated at runtime based on link metrics,
which we describe in the next subsection.

An entry in the forwarding table has the form
[dst∗,tag∗,pid∗,mv,ntag,nhop], where the star fields
are table lookup keys. Each row of the table indicates where
the given switch will send packets destined for dst when
those packets carry a PG node tag and probe number id
pid. The sender of packets will set the initial tag and the
probe number based on its best path. At each intermediate
hop, when a packet with a given dst, tag, and pid matches
an entry in FwdT, the switch looks up the next tag (ntag) and
replace the packet’s tag with it; it also forwards the packet to
the next hop (nhop). The metrics vector (mv) is not used for
packet forwarding, but for populating the entries. A property
of FwdT is that any tag-ntag pair in this table corresponds
to a PG edge, and when a ntag is written into a packet it
is then forwarded out the nhop port that leads to a topology
node corresponding to that ntag. This process implies that
forwarding will always follow edges in the PG.

As an example, consider the FwdT table for switch B: the
policy allows B to reach D either through a) B-D, satisfying
(part of) the regular expression ABD, or through b) the best
of B-D, B-C-D, and B-A-C-D, satisfying the regular expres-

sion B.*D. The former corresponds to the virtual node B0 in
the PG, and the latter is implemented by a combination of
both B0 and B1. Hence, the reader may observe that it is
possible for nodes of the product graph to contribute to the
implementation of more than one regular expression in the
policy—this sharing improves algorithm performance as a
single probe can contribute to uncovering information useful
in more than one place in the policy.

Ignoring for now how the forwarding entries were popu-
lated, consider the first entry in B’s table in Figure 5(e). The
entry is generated from the virtual node B0: if a packet is at B
with tag=B0 and a destination D, then either that packet was
sent from A, and traveled to B or it was sent directly from B.
In either case, the current best path is through the next hop
nhop=D with a metric mv=0.3. Moreover, before B sends the
packet to D, it should update the tag to the new virtual node’s
tag D0. The second entry in B’s table is generated from B1.
When packets are tagged with B1, there are two paths they
could take to D: B-C-D and B-A-C-D. Currently, the least
utilized path is B-C-D, so nhop=C and mv=0.2. The updated
tag will then be C0. For this policy, only one probe is needed
(carrying utilization), so there is only a single probe id (pid)
of 0. The asterisk next to the B1 entry indicates that B prefers
B-C-D over B-D, which is determined after evaluating the
user policy on both paths. Hence, traffic sourced from B will
choose B-C-D. Note that each source can determine its own
preference: although B prefers C, A can still use A-B-D since
A’s traffic will be forwarded using the B0 entry.

Function SWIFORWARDPKT in Figure 6 summarizes the
packet forwarding logic. When a packet first arrives at the
switch from a host, it is treated differently. In this case, this
first switch must determine the preferred path for the packet
(with each path having a representative destination, PG start
node and probe id), which is stored in the BestT table.

4.3 Sending probes
While the forwarding tables compactly encode how devices
should forward traffic in a policy-compliant way, we have
yet to describe how these tables are populated. To this end,



function INITPROBE(PGNode n, ProbeId pid)
if n.isPrbSendingState then

p.origin← TOTOPONODE(n)
p.pid← pid
p.tag← n.tag
p.mv← INITMVEC
MULTICASTPROBE(n, p)

function MULTICASTPROBE(PGNode n, Probe p)
pg neighbors← GETPGOUTNEIGHBORS(n)
topo neighbors← TOTOPONODES(pg neighbors)
MULTICAST(p→topo neighbors)

function PROCESSPROBE(Switch S, Probe p)
n← NEXTPGNODE(S, p.tag)
p.mv← UPDATEMVEC(p.inport)
key← (p.origin, n.tag, p.pid)
(mv, ntag, nhop)← FwdT[key]
if f(p.pid, p.mv) < f(p.pid, mv) then

FwdT[key]← (p.mv, p.tag, p.inport)
oldKey← BestT[p.origin]
if s(key) < s(oldKey) then

BestT[p.origin]← key
p.tag← n.tag
MULTICASTPROBE(n, p)

function SWIFORWARDPKT(Packet p, Switch S)
key← (p.dst, p.tag, p.pid)
if fromHost(p.inport) then

key← BestT[S]
p.pid← key.pid

(mv, ntag, nhop)← FwdT[key]
p.tag← ntag
SENDPKT(p, nhop)

Figure 6: Pseudocode for the synthesized switch-local programs. Underlined variables are PG states.

the Contra compiler generates protocol logic for propagating
probes from probe sending states in order to populate the
tables with the best paths to each destination.

At a high level, each node in the PG propagates probes to
its neighbors. For instance, a probe starts at D0 (D with tag
0) and is sent to B0 and C0. C0 updates the utilization to be
0.1 and adds this entry to its forwarding table before sending
a new probe to A0 and B1. Similarly, B0 adds an entry for
the probe it received from D0 with utilization now 0.3 before
sending a new probe to A1. A1 receives a probe from B0 and
adds an entry with utilization 0.5, etc. A0 receives a probe
from C0 with metric now 0.4 and adds this entry to its table
before sending the probe to C0 and B1. Probes will continue
to propagate through the PG so long as they decrease the best
available metric for that probe type and PG node. Since a
static analysis ensures that policy metrics are monotonically
increasing, probes will not be propagated endlessly in loops.

To determine which entry to use for forwarding local traf-
fic, switches compute the best path by keeping a pointer to
their overall best entry (the asterisks in Figure 5(e)). For
example, consider the node A. Evaluating the policy on A0

results in ∞ because A0 is not an accepting state for regex
ABD or B.*D. On the other hand, evaluating the policy in A1

results in 0 (the best rank) because A1 is an accepting state
for regex ABD. Hence, the asterisk appears by A1.

Probe generation. Probes are generated from initial PG
states (e.g., (D0,1,1) in our example). These sending states
use the procedure in INITPROBE to initiate probes, and use
MULTICASTPROBE to multicast the probes along the outgoing
PG edges to all downstream neighbors. Each probe carries
four fields: (1) origin denotes the topology location of the
sending switch (i.e., D for the state (D0,1,1)); (2) pid is
the probe id, as obtained from the policy decomposition; (3)
mv denotes the metrics vector used in the policy (i.e., utiliza-
tion in the example, which is initialized to a default value 0);
and (4) tag denotes the id of the PG node the probe is at.

Probe dissemination. The PROCESSPROBE algorithm de-
scribes how a switch processes a probe from its neighbor.
It first obtains the PG node for the neighbor (n). Next, it up-
dates the metrics in the probe based on the port at which the
probe arrived, e.g., the maximum of the probe’s carried uti-
lization and the local port’s utilization. If this probe (with id

i and tag t) contains a better metric according to f than what
is currently associated with i and t, then it updates its FwdT
table with the new nhop, ntag, and mv based on this probe.
The switch also checks if an update affects its overall best
choice (i.e., where the asterisk points to), as recorded in the
BestT. The switch looks up the existing value and compare
it to the current probe using the function s that checks the
overall value of the probe (not just per tag / probe id). Fi-
nally, the probe tag is updated to the correct value for n, and
the probe is multicast to all PG neighbors.

5 Compilation: Unstable metrics
Consider using the same solution as described in Section 4,
but instead of sending just one probe, sending many probes
periodically, one per time interval. This introduces new com-
plications due to the lack of synchronization; certain parts of
the network may be working with outdated information. In
fact, the example sequence from Section 3, Figure 3(b)-(f)
demonstrates exactly how a problem can arise—the example
culminates with the forwarding loop S-A-B-S. Notice also
that this loop is technically policy-compliant because any
path from S to D is allowed, so the packet tagging mecha-
nism would not prohibit it.

The key issue is that when switches use old probes to make
decisions, loops can form. In Figure 3(b), the probe p from
B to A took a long time to propagate; by the time p arrived
at A, the metrics had already changed again. Concretely, p
was computed using an old metric u(A-D)=0.1, which had
since changed to 0.5; but A still used this outdated probe and
thought D was a better next hop.

5.1 Preventing persistent loops
To prevent loops, we draw on ideas from Babel [16], which
distinguishes outdated probes from new ones using a ver-
sion number, and discards outdated probes. In our scenario,
this suggests A should discard p because it has an older ver-
sion number, and should continue to use D as the next hop,
thereby avoiding the loop. When a round of probes is still
in propagation, switches may have temporarily inconsistent
views, so a packet may experience a transient (yet policy-
compliant) loop. However, versioned probes would guaran-
tee that persistent loops would not form [16].



We note that there is a long body of work on loop preven-
tion in routing protocols with tradeoffs being made in terms
of space overhead and convergence time. Contra’s compi-
lation algorithm can potentially be integrated with different
loop prevention techniques. For example one could prevent
loops by adding a bit vector to each probe to record visited
nodes (i.e., a path-vector protocol) at the cost of greatly in-
creased probe overhead (one bit for every router). We opt for
our approach to limit the space overhead of probes.

Refinement (Versioned probes). As before, except that a)
switches attach version numbers to the probes, which in-
crease for each round; b) the FwdT table records the version
number of the probe that was used to compute each entry;
and c) before a switch updates an entry with version v with
a probe of version v′, it needs to check that v′≥v.

5.2 Probe frequency
Versioning the probes, however, leads to an additional com-
plexity: a node may not always be able to pick the best path.
Consider a case where D sends probes to S every 0.2 ms
along two available paths: a) p1 with utilization of 0.4 and
a latency of 0.1 ms, and b) p2 with utilization of 0.1 but a
latency of 0.2 ms. Due to the higher latency of p2, whenever
S receives a probe from this path, it would find the probe to
be outdated, since newer probes had arrived from p1. As a
result, S ends up always using p1 which has a higher utiliza-
tion, even if the policy prefers the least-utilized path p2.

We observe that this problem can be addressed by ensur-
ing (with high probability) that old probes are fully prop-
agated throughout the network before new probes are sent
out. In the above scenario, if we set the probe period to be
0.2 ms or larger, then S would instead pick p2 to be the better
path after both probes have been received.

Refinement (Limited probe frequency). As before, except
that the probe period needs to be larger than or equal to
0.5× RT T , where RT T is the highest round-trip time be-
tween any pair of switches in the network.

5.3 Policy-aware flowlet switching
Since Contra can spread traffic in the same flow across mul-
tiple paths, it is important to mitigate the potential out-of-
order packet delivery. One classic approach is flowlet switch-
ing [44], where packets in the same flow are grouped in
bursts/flowlets and the same forwarding decision is applied
to the entire flowlet. By doing so, the first packet in the
flowlet is always forwarded to the best path, and subsequent
packets in the same flowlet would inherit this (slightly out-
dated) forwarding decision. This also increases network sta-
bility: although each switch’s best path is constantly fluctu-
ating, at any given point, much of the current network traffic
is pinned to a particular path. Only new flowlets will make
use of the current path information.
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Figure 7: Challenges due to flowlet switching.

A first attempt to implement flowlet switching in Contra
would be to have each switch maintains a table of the form
[fid∗,nhop,t], where fid is the flowlet ID (from hash-
ing a packet’s five tuple), nhop is the temporarily “pinned”
next hop, and t is the timestamp of the last packet in fid.
When the next packet in fid arrives, the switch computes
the gap between its timestamp and t: if the gap is small,
this packet will use the current nhop; otherwise, the switch
expires this entry and starts a new flowlet. Perhaps surpris-
ingly, deploying such a flowlet switching mechanism with
Contra may result in policy violations. Consider the exam-
ple in Figure 7(a), where the policy prefers the least utilized
of the upper or lower paths, but avoids the “zigzag” path.

if SCEFD + SAEBD then path.util else ∞

Suppose that at t=1, S sends traffic to D via the lower
path due to its lower utilization; using flowlet switching, all
switches temporarily pin this flowlet to their respective next
hops along the path when they receive the first packet in the
flowlet (e.g., A pins to E at t=1.1, which expires at t=2.1; E
pins to B at t=1.2, which expires at t=2.2; and so forth). At
t=2, S discovers that the utilization of the upper path has im-
proved, and changes its preference to D instead. However,
if the packets from S arrive at E before t=2.2, which is its
flowlet switching expiration time, E will continue to forward
these packets to the lower path, causing a policy violation.

The fundamental reason for this is that flowlet switch-
ing is oblivious to routing constraints. Our solution makes
it policy-aware by adding PG tags to flowlet entries. Con-
cretely, policy-aware flowlet switching extends the table for-
mat to be [tag∗,pid∗,fid∗,nhop,t], where tag and pid

are obtained from the probe that created the forwarding en-
try, and tag, pid, and fid are match keys. This enables
flowlet switching within each policy constraint and probe
type. Now, when E processes the packet at t=2.2, it would
see that the packet was constrained to traverse the upper path
and use the flowlet entry for that path.

Refinement (Policy-aware flowlet switching). As before,
except that switches perform policy-aware flowlet switching
by maintaining multiple entries for the same flowlet, each for
a different path constraint/tag and probe type.



5.4 Handling failures
Switches also need to discover new best paths when links or
switches fail. Suppose that the best path for S to reach D is
S-A-D, but the link A-D goes down at some point. We need
to ensure that S will learn about the failure and change to
another available path if one exists. Our solution is to first
detect failed links, and then to expire flowlet entries when
their next hop is along a link that is believed to be failed.

Refinement (Expiration). As before, except that a flowlet
entry is expired when a packet arrives at a switch and is go-
ing to be forwarded by the flowlet entry, and the next hop is
along a failed link.

Handling failures, of course, requires the existence of a
failure detection mechanism. The specific link failure de-
tection methods are beyond the scope of Contra; the above
approach merely ensures that switch routes around detected
failures for future flowlets. In our implementation of Con-
tra, a switch marks a link as failed when there have been no
probes along the link for k probe periods, where k is a param-
eter that determines how fast failures should be discovered.

5.5 Breaking transient loops
As we discussed, transient loops may still occur when probes
are in propagation. Figure 7(b) is a concrete example. At
t=1, the best path for S to reach D is S-B-A-D. Then, at t=2,
A receives a probe from D carrying a worse metric, so it
propagates the probe to S and B. Before this probe arrives at
S and B, A learns of the better path through S, and traffic that
is already in flight will be forwarded along a transient loop
S-B-A-S; this loop will be broken once S and B receive the
new probe because it has a higher version number.

Interestingly, flowlet switching may lengthen the duration
of transient loops because flowlet switching decisions may
expire at different times across hops. Suppose that A’s timer
expires at t=3, and it starts using the new best next hop S to
reach D; however, the timers at S and B do not expire until
t=4. Then the traffic would continue to be forwarded in the
loop S-B-A-S regardless of the newer probe, until S and B
have updated their flowlet switching decisions.

We address this by detecting loops lazily and flush-
ing the offending flowlet switching entries upon detection.
Concretely, each switch maintains a loop detection table
{flow hash∗,maxttl,minttl}, which maps a flow’s CRC
hash to the maximum and minimum TTL values seen at this
switch. δ=maxttl-minttl should be stable in the absence
of loops: it is the difference between the longest and the
shortest paths packets could have traversed to reach the cur-
rent switch. However, when there is a loop, δ would con-
tinue to grow. Therefore, switch detects a potential loop
(with false positives) when its δ exceeds a threshold. When
this happens, the switch expires its flowlet switching deci-
sion, and starts a new flowlet using the latest metric in the
FwdT table. Hence, we arrive at our final solution below.

Final solution. As before, except that switches use loop de-
tection tables to detect and break loops by refreshing their
flowlet switching decisions using the latest metrics.

6 Evaluation
We aim to answer three main questions in our evaluation: a)
How well does Contra scale to large networks? b) How com-
petitive is Contra compared to hand-crafted systems? and c)
How well does Contra work on general topologies? Due to
space constraints, some results appear in the Appendix.

6.1 Prototype implementation and setup
Our prototype [3] consists of 7485 lines of code in F# [6],
which processes policy and topology descriptions, and gen-
erates switch-local P4 programs. The compilation also min-
imizes the number of tags and forwarding table sizes.
Experimental setup. We have used three types of topolo-
gies: a) data center topologies, b) random graphs, and c) real-
world topologies (e.g., Abilene [1] and those from Topol-
ogy Zoo [7]). Our baseline systems for data center networks
are ECMP and Hula [30], load-balancing schemes for a Fat-
tree topology. ECMP balances traffic randomly without con-
sidering network load, and Hula is load-aware and always
chooses the least-utilized path among all shortest paths. Our
baseline system for arbitrary graphs is SPAIN [35], which
statically (i.e., independently of network load) selects multi-
ple paths to route traffic. We used two workloads obtained
from production networks for our evaluation: a web search
workload [12], and a cache workload [43].
Simulation vs. Emulation. For simulation, we have used a
customized version of ns-3 [4] that implements P4 switches
using the bmv2 model, and it runs on a Dell server with six
Intel i7-8700 CPU cores and 16 GB of RAM. For emulation,
we have used the bmv2 switches in a Mininet [34] cluster on
15 CloudLab [17] servers, each with eight cores and 128 GB
of RAM. The simulation allows us to conduct experiments
at high link speeds (up to 40 Gbps), as traffic forwarding
is simulated in an idealized environment. The emulation,
on the other hand, generates and forwards real network traf-
fic across machines. This allows us to evaluate the systems
in a high-fidelity environment [34], albeit with lower link
speeds (50 Mbps) to avoid causing bottlenecks in the soft-
ware switches.

We have replicated the emulation setup (45 switches in
a 6-ary Fattree) in our simulator, and measured for eight
setups (workloads+policies) the Pearson correlation coeffi-
cient (PCC) [42] between the emulated and simulated results.
Seven of the setups produced PCC values of 0.99+, and the
other produced 0.98 (1.0 means perfect correlation). This
“meta” experiment confirms that the simulation and emula-
tion results closely mirror each other, and that our observa-
tions are consistent across setups. Below, after presenting
compiler results (§6.2), we first describe our simulation re-
sults (§6.3-§6.5), and then the high-fidelity emulation (§6.6).
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Figure 8: Contra achieves a similar FCT as Hula, outper-
forming ECMP considerably.

6.2 Compiler scalability
To test the scalability of our compiler, we used topologies
of varying sizes from 20 to 500 nodes. For each topology,
we evaluated three different policies: a) minimum utiliza-
tion (MU: no regular expressions, single performance met-
ric), b) waypointing (WP: three regular expressions, single
performance metric), and c) congestion-aware routing (CA:
no regular expression, non-isotonic policy with two perfor-
mance metrics). The concrete numbers are included in Fig-
ure 14 in Appendix C, and we summarize the key takeaways
here: The compiler scales roughly linearly with topology
size, and completes in seconds on topologies with hundreds
of nodes. Use of regular expressions increases product graph
size and hence compilation time. Non-isotonic policies add
some overhead due to the additional policy analysis.

We have also measured the switch state used by the gener-
ated P4 programs (Figure 15 in Appendix C). At a high level,
WP and CA require more state than MU: WP’s regular ex-
pressions require tracking automaton states. and CA’s non-
isotonic policy requires a separate table for each metric in the
decomposed policy (i.e., separate entries for different pid
values). However, no more than 70 kB of switch state was
necessary in any experiment—a tiny fraction of the available
memory on modern switches (tens of megabytes) [2].

6.3 Performance: Data center topology
We compare Contra with ECMP and Hula in terms of their
flow completion time (FCT) in simulation. In our topol-
ogy (Figure 13a), we used 32 hosts with 10 Gbps links, with
10 Gbps links between switches, and an oversubscription ra-
tio of 4:1. Half of these hosts were configured as senders,
and the other half receivers. We set the probe period to
256µs and flowlet timeout to 200µs for both Contra and
Hula. All links have a queue buffer size of 1000 MSS by
default. Moreover, we tuned the desired network load from
10% to 90% by adjusting the flow arrival times, and obtained
the FCT for each setting. The policy used in Contra is widest
shortest paths (WSP; policy P3 in Table 1), which picks the
least-utilized shortest paths and is equivalent to Hula; we
found that the performance of Contra with the MU policy
(P2 in Table 1) is similar to WSP in this setup.

Symmetric Fattrees. Figure 8 shows that both Contra and

0

100

200

300

20 40 60 80 100

A
v
e
ra
g
e

 F
C
T

 (
m
s
)

Network load (%)

ECMP
Contra
Hula

(a) The web search workload

 1

 10

 100

 1000

20 40 60 80 100

A
v
e
ra
g
e

 F
C
T

 (
m
s
)

Network load (%)

ECMP
Contra
Hula

(b) The cache workload

Figure 9: Contra achieves a significantly shorter FCT than
ECMP on an asymmetric topology with a failed link.

Hula outperform ECMP considerably because they balance
traffic based on network load. At 90% load, they reduce
the average FCT by 30% for the web search dataset and by
47% for the cache dataset. Hula outperforms Contra slightly,
by 0.33% on average across different datasets and network
loads. This is because Hula knows statically what paths are
shortest paths (and hence what ports to send probes from),
whereas Contra has to discover this information dynamically
(i.e., by carrying the path length as well as the utilization, and
also by sending probes both “up” and “down” at each level in
the datacenter)—hence Contra sends more probes than Hula
in order to achieve generality over different topologies and
policies. Further compiler optimizations could likely reduce
this gap further (e.g., by identifying shortest paths statically).
We also refer interested readers to Appendix I for detailed
breakdown of probe and tag overheads.

Asymmetric Fattrees. Next, we ran the same experiment af-
ter injecting a failure on a link between an aggregation switch
and a core switch, so that the topology became asymmetric.
Figure 9 shows the FCT for this setting. In this case, we
found that ECMP incurred heavy traffic loss beyond 50%
network load, even though 75% of all capacity remains after
the link failure. The average FCT increased by 3.18× for the
web search dataset and 8.72× for the cache dataset. In con-
trast, Contra and Hula only had an increase of 1.80× for the
web search dataset and 1.67× for the cache dataset, relative
to the FCTs on the symmetric topology.

We further measured the queue growths under ECMP and
Contra with 60% workload on the web search dataset without
bounding the maximum queue sizes (see Figure 16 in Ap-
pendix D). We found that Contra’s queue lengths never ex-
ceeded 1000 MSS, whereas ECMP saw queue lengths larger
than 1000 MSS more than 97% of the time, which can cause
heavy traffic loss when the queues are full.

In order to measure Contra’s response time to link failures,
we sent UDP workloads at 4.25 Gbps rate, and brought down
an aggregate-core link. Contra successfully detected the link
failure after 800µs, which is close to the failure detection
threshold (3×probe period=768µs) that we used. Upon de-
tection, Contra routed around the failure and recovered the
throughput within 1 ms. We found that Hula performs simi-
larly as Contra (Figure 17 in Appendix D).



6.4 Performance: Arbitrary topologies
We now evaluate the performance of Contra on general
topologies. We modeled our network after the Abilene [1]
topology, configured all links to be 40 Gbps, and randomly
chose four pairs of senders/receivers. Since Hula is special-
ized to a Fattree topology and will not work outside of this
context, and since ECMP will not load balance when there is
only a single shortest path, we have used two other baselines:
a) shortest path routing (SP), which simply sends traffic to
the shortest paths, and b) SPAIN [35], which precomputes
all paths using (static) heuristics that avoid overlap, and then
load balances between these paths.
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Figure 10: Contra outperforms SPAIN in FCT.

Figure 10 shows the FCT for these different systems. A
naı̈ve strategy that simply chooses shortest paths performs
the worst. Since SPAIN can utilize multipath routing, it out-
performs SP by 32.5% on average for the web search work-
load and 26.9% on for the cache workload. Contra achieves
the best performance among the three: it evenly distributes
traffic based on path utilization, and reduces FCT relative to
SPAIN by 31.3% on average for the web search workload
and 13.8% for the cache workload.

6.5 Protocol dynamics
Next, we study the network dynamics of performance-aware
routing. The high-level note here is that, if a policy uses m
as the metric, then paths with better m values may not nec-
essarily be shorter and have lower end-to-end latency. The
MU policy is a case in point, because 1) a least-utilized path
could be a non-shortest path; and 2) compared to a slightly
more utilized shortest path, the non-shortest path may also
have higher end-to-end delay if its extra propagation delay
offsets its lower queueing delay. Finally, when nodes are
temporarily out of sync (§5.5), transient loops may arise.
Transient loops. We first quantify the amount of pack-
ets forwarded in transient loops. Under the MU policy on
the Fattree and Abilene topologies at 60% load, only tiny
fractions of traffic (0.024% and 0.021%, respectively) expe-
rienced loops. Compared to the shortest paths, these packets
traversed 3.15 more hops on average for the Fattree, and 3.09
for Abilene. They also experienced an increase in end-to-end
latency by 72.4µs (Fattree) and 65.2µs (Abilene). Our loop
detection mechanisms successfully broke these loops.
Non-shortest paths. Packets could also traverse non-
shortest paths without experiencing loops. We observed that

the fractions of such packets are 16.6% for Fattree and 39.8%
for Abilene. These packets also experienced latency in-
creases of 42.3µs (Fattree) and 39.3µs (Abilene). An inter-
esting observation here is that the application performance
(in terms of FCT) depends on the tradeoff between propa-
gation delay and queueing delay. In other words, if least-
utilized paths happen to have high propagation delays, then
the MU policy may not always lead to FCT improvement.
We have observed both cases in our experiments with differ-
ent topologies, path latencies, and number of shortest paths.

Contra, Hula, ECMP. Figure 11a shows the end-to-end la-
tency packets experienced in Contra for two policies (WSP
and MU) on the Fattree, and shows the breakdown for the
MU policy (shortest paths, non-shortest paths, and transient
loops). As expected, packets never experienced loops un-
der WSP, which routes traffic to the least utilized of shortest
paths. For Contra (MU), packets forwarded in loops took
more time than those on non-shortest paths, and both took
longer than those on shortest paths; they experienced slightly
higher latency than in Hula. Nevertheless, Contra (MU) still
outperforms ECMP significantly, because shortest paths with
high utilization in ECMP have higher queuing delays than
non-shortest paths with low utilization. (Results for Abilene
are similar; see Figure 19a in Appendix E.)

Network loads. We also found that more packets tend
to traverse longer paths as the network load increases (Fig-
ures 19b and 19c; in Appendix E). Across all scenarios, 12%-
16% traffic took longer paths in the Fattree; within such traf-
fic, 93%-98% took 2 extra hops and the rest took 4 extra
hops. On Abilene, where shortest paths are fewer, 32%-50%
traffic took longer paths; within this, 97%-99% took fewer
than 4 extra hops and the longest path had 9 extra hops.

Load imbalance. Next, we focus on understanding the
load imbalance over small timescales in ECMP, Hula, and
Contra. Figure 11b shows the CDF of load imbalance of
the four aggregate-core links on the Fattree topology at 70%
load. We measured the throughput of these links for each
100µs interval for 1 second; we then computed the through-
put differences between the most and least loaded links, and
normalized them by the average throughput across the links.
As we can see, Contra and Hula perform similarly, and they
both balance the load much more evenly than ECMP. In par-
ticular, this shows that packets traversing non-shortest paths
or transient loops in Contra do not lead to notable load im-
balance even at small timescales.

6.6 High-fidelity emulation
We have set up a high-fidelity emulator on 15 CloudLab [17]
servers using a distributed cluster of Mininet [34]. Our topol-
ogy is a 6-ary Fattree with 45 switches running P4 bmv2 [5]
and 57 end-hosts with 1:1 oversubscription. We have set the
link speeds to be 50 Mbps and verified that this is the highest
link speed achievable in our testbed without causing bottle-
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Figure 11: Packets that experience transient loops or non-
shortest paths spent more time in the network (a); but they
do not lead to notable load imbalance (b).

necks in the software switches. As discussed before, we have
mirrored the same setup in simulation and conducted exper-
iments in both settings. The highest-level takeway is that
we observed similar results on both setups. Below, we sum-
marize the key findings, and note that the full set of figures
(Figures 20-25) are in Appendix F.
Symmetric Fattree. Contra and Hula outperform ECMP
considerably in FCT, and they perform similar to each other.
At 90% load for the web search workload, they improve the
performance of small flows (<100 kB) by 21%, large flows
(>10 MB) by 12.7%, and 13.7% across flows.
Asymmetric Fattree. We then re-ran the FCT experi-
ments, after bringing down three out of 27 aggregate-core
links (11.1% reduction to overall capacity). Compared to the
topology without failures, at 90% load, the average FCT in-
creased by 15% for the web search dataset and 23% for the
cache dataset in ECMP. Contra, on the other hand, only in-
creased by 6% (web search) and 9% (cache), respectively.
Arbitrary topologies. We have also set up the Abilene
topology in emulation and compared Contra with SPAIN,
and note again that Hula only works on a tree topology. We
found that at 90% load, Contra reduces FCT by 22.0% (web
search) and 45.7% (cache) under the MU policy. For the web
search (cache) dataset, it achieves 11.0% (36.5%) speedup
for small flows, and 20.9% (46.1%) speedup for large flows.

7 Related Work
Traffic engineering and load balancing. Contra is different
from centralized TE solutions, such as B4 [26], SWAN [25],
Hedera [9], MicroTE [15], and Gvozdiev [23], as well as dis-
tributed TE solutions, such as TeXCP [28], MATE [18], and
Halo [33], in that Contra performs fine-grained load balanc-
ing in the data plane. Contra borrows a similar load bal-
ancing mechanism from Hula [30] and Conga [11], so their
characteristics are similar in terms of dynamics and perfor-
mance benefits. The main novelty of Contra over all of these
systems is to generalize point solutions to a wide range of
policies and arbitrary topologies.
Routing. Existing work has studied loop prevention in
distance-vector routing [21, 36, 10, 39, 16, 38] with differ-

ent overhead, convergence, and stability tradeoffs. Contra
is most related to DSDV [39], AODV [38], and Babel [16],
which use sequence numbers on route updates for conver-
gence. The novelty of Contra lies in its use of programmable
data planes to implement a wide array of distance-vector pro-
tocols in the presence of unstable metrics, and its design of
policy-aware flowlet switching mechanisms.
Regular languages for networking. NetKAT [13], Mer-
lin [45], FatTire [40], and Propane [14] all use regular ex-
pressions to specify path constraints, but none of them sup-
ports dynamic preferences based on network conditions.

8 Discussion
Correctness guarantees. Contra guarantees that traffic al-
ways follows policy-compliant paths even in the presence of
unstable metrics. In terms of performance, previous work
has shown that when switches make distributed decisions,
the resulting mechanism is not globally optimal [11]. How-
ever, as demonstrated in our experiments as well as previous
work [11, 30], performance-aware routing still leads to FCT
improvements compared to static routing.
Policy changes. Policy changes can be handled by recompi-
lation, which would generate new switch programs. As we
demonstrated in the experiments, policy compilation is fast
and scales to large networks. We expect policy changes to
happen infrequently and only on a larger timescale. In or-
der to implement the updates, Contra may be able to borrow
existing work on consistent update algorithms [41].
Traffic classes. Contra currently does not support traffic
classes. Adding such support would require extending the
language with header predicates [20, 13], and designing new
mechanisms to prioritize one traffic class over another.

9 Conclusion
We have presented Contra, a system for specifying and en-
forcing performance-aware routing policies. Policies in Con-
tra are written in a declarative language, and compiled to
switch programs that run on the data plane to implement a
variant of distance-vector protocols. These programs gener-
ate probes to collect path metrics, and dynamically choose
the best paths along which to forward traffic. Our evaluation
shows that Contra scales well to large topologies, and that
the synthesized switch programs can achieve performance
competitive with hand-crafted solutions that are specialized
to particular topologies and hard-coded policies. Contra is
also substantially more general, supporting a wide range of
policies over arbitrary topologies.
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R. Soulé. YATES: Rapid prototyping for traffic engi-
neering systems. In Proc. SOSR, 2018.

https://web.archive.org/web/20120324103518/http://www.internet2.edu/pubs/200502-IS-AN.pdf
https://web.archive.org/web/20120324103518/http://www.internet2.edu/pubs/200502-IS-AN.pdf
https://web.archive.org/web/20120324103518/http://www.internet2.edu/pubs/200502-IS-AN.pdf
https://www.barefootnetworks.com/technology/#tofino
https://www.barefootnetworks.com/technology/#tofino
https://github.com/alex1230608/contra
https://github.com/alex1230608/contra
https://www.nsnam.org/
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
http://fsharp.org/
http://fsharp.org/
http://www.topology-zoo.org/
http://www.topology-zoo.org/
https://www.cloudlab.us/


[32] Q. Ma and P. Steenkiste. Quality-of-service routing
for traffic with performance guarantees. In Proc. IFIP
Workshop on Quality of Service, 1997.

[33] N. Michael and A. Tang. Halo: Hop-by-hop adaptive
link-state optimal routing. IEEE/ACM Transactions on
Networking, 23(6), 2014.

[34] Mininet. http://mininet.org/.

[35] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C.
Mogul. SPAIN: COTS data-center Ethernet for multi-
pathing over arbitrary topologies. In Proc. NSDI, 2010.

[36] S. Murthy and J.J.Garcia-Luna-Aceves. A loop-free
routing protocol for large-scale internets using distance
vectors. Computer Communications, 21(2), 1998.

[37] D. Pei, X. Zhao, D. Massey, and L. Zhang. A study
of BGP path vector route looping behavior. In Proc.
ICDCS, 2004.

[38] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-
Demand Distance Vector (AODV) Routing. RFC 3561.

[39] C. E. Perkins and P. Bhagwat. Highly dynamic
destination-sequenced distance-vector routing (DSDV)
for mobile computers. In Proc. SIGCOMM, 1994.

[40] M. Reitblatt, M. Canini, A. Guha, and N. Foster. Fat-
Tire: Declarative fault tolerance for software-defined
networks. In Proc. HotSDN, 2013.

[41] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for network update. In Proc.
SIGCOMM, 2012.

[42] J. L. Rodgers and W. A. Nicewander. Thirteen ways to
look at the correlation coefficient. The American Statis-
tician, 42(1):59–66, 1988.

[43] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Sno-
eren. Inside the social network’s (datacenter) network.
In Proc. SIGCOMM, 2015.

[44] S. Sinha, S. Kandula, and D. Katabi. Harnessing TCP’s
burstiness with flowlet switching. In Proc. HotNets,
2004.
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A Policy analysis and decomposition
At a high level, the Contra compiler implements the poli-
cies in a distance-vector protocol, where switches propagate
periodic probes and compute a best next hop for each des-
tination using the path metrics. To avoid flooding the net-
work with probes, a switch will only disseminate the best
probe in a batch and discard the rest. Moreover, if a pol-
icy uses multiple metrics, each probe will carry all metrics
to further reduce traffic. However, these techniques are not
always safe—the policy needs to be isotonic, because oth-
erwise downstream switches can wind up with suboptimal
paths. The policy also needs to be monotonic, because oth-
erwise loops may form.

Monotonicity. A policy f is monotonic iff. extending a
path p by an additional link l does not result in a better
ranked path, i.e., f (p) ≤ f (p · l); f is strictly monotonic if
f (p) < f (p · l). Strict monotonicity ensures that loops will
not form in distance-vector protocols (assuming static met-
rics that do not change), because a path’s rank only degrades
as it gets longer [22]. In principle, one could write a policy
that is not monotonic, such as minimize (- path.len),
but in practice, we are not aware of such policies actually in
use. On the other hand, there are practical policies such as
minimize (path.util) that are not strictly monotonic. To
ensure safety, the Contra compiler implements a conserva-
tive monotonicity analysis and alerts a programmer of a po-
tential error if the policy is non-monotonic. But our compiler
accepts non-strict monotonic programs: our probe propaga-
tion mechanism associates an “age” with each probe stored
in a switch, and break ties by rejecting more recent probes
if they have the same value as the currently used metric, be-
cause they may have traversed zero-weight cycles.

C

D

"#: "(:

%:

u=0.5,	l=5 u=0.6,	l=4

u=0.9

A B

Figure 12: Contra requires (sub)policies to be isotonic.

Isotonicity. A policy f is isotonic iff. for any paths p1, p2,
and any link l, extending both paths by l preserves the orig-
inal relative ranking, i.e., f (p1) ≤ f (p2) ⇐⇒ f (p1 · l) ≤
f (p2 · l). Isotonicity guarantees convergence to the best
paths [22] even if a switch discards suboptimal probes. Fig-
ure 12 demonstrates the idea: if C prefers the probe from
path p1 over that from p2 and discards the latter, then its
downstream neighbor D must have the same preference, or
else it would miss a path with a better metric. However, there
are some useful policies that are non-isotonic, such as the

following congestion-aware routing policy [27] that switches
between metrics depending on the network condition.

if path.util < .8 then (1, path.util) else (2, path.len)

To see why the policy is non-isotonic, consider the switch
C in Figure 12 that receives two probes with metrics
{u=0.5,l=5} and {u=0.6,l=4}. C prefers the first probe
because path.util < 0.8 evaluates to true for both probes
and the two probes will be ranked based on utilization. How-
ever, C cannot simply discard the second probe, because all
paths to its downstream neighbor D may be highly congested
(e.g., u(D-S)=0.9). In this case, path.util < 0.8 evalu-
ates to false at D for both probes, causing D’s preference to
be inverted.
Policy decomposition. The Contra compiler tries to decom-
pose non-isotonic policies into multiple isotonic (and mono-
tonic) subpolicies, and generates different types of probes to
propagate each subpolicy. If such a decomposition is impos-
sible, then it rejects the policy. For instance, the compiler
decomposes the previous policy as follows:

if path.util 0<.8 then (1, path.util 0) else (2, path.len 1)

where type-0 probes carry path.util, and type-1 probes
carry path.len. Switches can discard suboptimal probes
within each type, but must propagate both types of probes.
The complete policy is only evaluated at source nodes. We
only attempt this analysis on conditional policies, such as
the one above. There remain non-isotonic policies such as
“shortest widest paths” (path.util, path.len) that the Contra
compiler is unable to implement.

More generally, our compiler performs an analysis to try
to decompose f to a collection of subpolicies (s, f1, . . . , fn),
where each fi is monotonic and isotonic, and s combines the
subpolicies such that f (p) = s( f1(p), . . . , fn(p)). For this de-
composition to be correct, s needs to be strictly increasing in
each of its arguments, i.e., for any xi ≤ x′i, we need to have
s(x1, . . . ,xi−1,xi,xi+1,xn) ≤ s(x1, . . . ,xi−1,x′i,xi+1,xn). Intu-
itively, this condition allows a switch to safely discard any
non-minimum xi values of each probe type.
Limitations. Currently, Contra does not support traffic clas-
sification, but extending the language with header predicates
as in prior work [20, 13] should not present any significant
intellectual challenge. A more notable limitation involves
policies that prioritize one traffic class over another. For in-
stance, B4 [26] prioritizes small, latency-sensitive user re-
quests over large, latency-insensitive bulk transfers. Cur-
rently, Contra ranks paths and selects the best path for each
flowlet, but does not compare different types of traffic in or-
der to prefer one over the other. We leave integration of such
policies into our framework to future work.

B Key topologies for experimental evaluation
We briefly talked about our experimental setups in Sec-
tion 6.1. Here, we provide more details of topologies we
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Figure 13: The topologies we have used in the simulation
environment.

have used. We conducted our experiments in simulation (ns-
3) and emulation (bmv2 in Mininet) using two topologies—a
Fattree network and the Abilene network. Figure 13 shows
topologies we used in simulation setup. The links between
switches in both topologies operate at high speed: 10 Gbps
in Fattree and 40 Gbps in Abilene . The emulation envi-
ronment, on the other hand, uses a 6-ary Fattree with 45
switches (not shown, see [8] for more details), as well as the
Abilene topology (Figure 13b). In both emulated topologies,
the links operate at lower speed (50 Mbps) to avoid causing
bottlenecks in the software switches.

C Compiler scalability
We tested Contra compiler scalability (more details in Sec-
tion 6.2) using topologies of varying sizes from 20 to 500
nodes. Figure 14 shows the time to compile P4 programs
from high-level policies as topology size increases. Fig-
ure 15 shows the amount of resources used by the P4 pro-
grams compiled for different policies.
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Figure 14: The Contra compiler scales well to large network
sizes and sophisticated policies (unit: seconds).

D Link failure
To understand the degree of congestion when topology be-
comes asymmetric due to link failures, we injected a link
failure between aggregation and core switches, and then
measured queue lengths of other links. Figure 16 shows the
CDF of queue lengths for Contra (under the WSP policy:
widest shortest paths) and ECMP when there is a link fail-
ure. As we can see, Contra has much shorter queues than
ECMP, and Contra queue length is less than 1000 MSS. Note
that we have not bounded to queue sizes in order to study the
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Figure 15: The Contra compiler generates programs with
low memory overhead (unit: kB).

queue growths in different systems. Figure 17 shows the ag-
gregate throughput before and after a link failure. Contra
successfully detected this failure in 800 µs and recovered its
throughput in 1 ms.
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E Protocol dynamics
Previously, in Section 6.5 we have summarized the results
of network dynamics experiments. Here, we present the full
results across network loads. Figures 18a and 19a show the
end-to-end latency packets experience in the Fattree topol-
ogy and the Abilene topology at 60% network load (dataset:
web search). For MU policy, we further break down the
number of extra hops in transient loops and non-shortest
paths for both topologies: Figures 18b and 19b show number
of extra hops in non-shortest paths as network load increases;
Figures 18c and 19c show the number of extra hops in tran-
sient loops.
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Figure 18: (a): Contra (MU) packets that traverse transient loops and non-shortest paths spent more time in the Fattree network
when traffic load is 60%. (b)-(c): breakdowns of extra hops as network load increases; the numbers in the legends denote
numbers of extra hops.
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Figure 19: (a): Contra (MU) packets that traverse transient loops and non-shortest paths spent more time in the Abilene
network when traffic load is 60%. (b)-(c): breakdowns of extra hops as network load increases; the numbers in the legends
denote numbers of extra hops.

F High-fidelity emulation
In the main paper, Section 6.6 already summarized the key
FCT results obtained in our emulation testbed. Here, we
show the full results across workloads, network loads, and
Contra policies. All results are obtained over four runs.
Figure 20 and Figure 22 show the FCT results for web search
and cache workloads in 6-ary symmetric Fattree topology.
Figure 21 and Figure 23 show the FCT results for web search
and cache workloads in 6-ary asymmetric Fattree topology.
Figure 24 and Figure 25 show the FCT results for web search
and cache workloads in the Abilene topology.

G Comparison with the FMCF solution
Although the experiments on flow completion times already
demonstrate that Contra can boost application performance,
we would like to further investigate how Contra performs
when compared to an idealized solution for which we can
derive an optimal bound. To this end, we use a Fractional
Multi-Commodity Flow problem (FMCF) [29] to model this
scenario, and note that similar formulations have been used

in other projects [31, 47]. An MCF problem takes as input
the (fixed) demand for sender/receiver pairs and the network
topology, and computes the optimal traffic splitting across
paths in order to minimize the utilization of the most con-
gested link. The fractional version of MCF simply means
that a flow can be split across different paths as well. This
formulation makes several simplifying assumptions, which
require minor modifications to the tested systems. Neverthe-
less, we believe that the results we obtain are still illustrative,
as these assumptions make it possible to derive an optimal
solution to compare against. The policy we have used in
Contra is WSP (widest shortest paths) for Fattree, and MU
(Minimum Utilization) for Abilene.

G.1 The FMCF formulation

We have used the same formulation as the Linear Program-
ming Formulation (LPF) in [46]. This formulation models
the physical network as G(V,E), where V denotes the set of
switches and E denotes the set of links. For each link (i, j),
ci j represents its link capacity. Xk

i j ∈ [0,1] is the percentage
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Figure 20: FCT results for web search workload in 6-ary Fattree topology.
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Figure 21: FCT results for web search workload in asymmetric 6-ary Fattree topology.
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(c) Large flows (>= 1 MB)
Figure 22: FCT results for cache workload in 6-ary Fattree topology.
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Figure 23: FCT results for cache workload in asymmetric 6-ary Fattree topology.
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Figure 24: FCT results for web search workload in Abilene topology.
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Figure 25: FCT results for cache workload in Abilene topology.



of traffic a solution sends to link (i, j) for a given commod-
ity flow from the source sk to the destination tk, where k ∈ K
represents a commodity flow chosen from the set K of flows
to be sent. The total demand for a flow k is dk. Our goal is to
minimize the maximum link utilization α ∈ [0,1] across the
network.

The problem can then be formulated as follows:

min(α) (1)
s.t.

∑
j:(i, j)∈E

Xk
i j− ∑

j:( j,i)∈E
Xk

ji = 0, k ∈ K, i 6= sk, tk (2)

∑
j:(i, j)∈E

Xk
i j− ∑

j:( j,i)∈E
Xk

ji = 1, k ∈ K, i = sk (3)

∑
k∈K

dkXk
i j ≤ ci jα, (i, j) ∈ E (4)

0≤ Xk
i j ≤ 1,α ≥ 0.

Equations 1 and 4 define α as the maximum link utiliza-
tion and set the objective function to minimize this. Equa-
tion 2 encodes the flow conservation principle, which speci-
fies that all nodes should have the same amount of incoming
and outgoing traffic, except for the sources and destinations.
Equation 3 specifies the source switch of each flow.

Simplifying assumptions: We note that this formulation
makes several simplifying assumptions when testing the sys-
tems. In order to ensure that the created demands are static,
we used UDP instead of TCP to avoid its flow control al-
gorithm, and we artificially made the buffers deep enough to
avoid packet loss. Given that the FMCF formulation does not
have the notion of flowlets (which requires reasoning with
timing behaviors), we have configured ECMP, SPAIN, and
Contra to perform per-packet load balancing to emulate the
problem that FMCF models. This configuration significantly
disadvantages Contra, because unlike ECMP, SPAIN, which
are inherently multipath, Contra is designed to spread traf-
fic per-flowlet over time, and it only changes paths based on
periodic probes. Since this feature is disabled, we instead
measured the utilization of all systems at a coarser timescale
over multiple RTTs, so that Contra is given an opportunity to
balance the load. Despite the above simplifications, we be-
lieve that the results we obtain are still illustrative, as these
assumptions make it possible to derive an optimal solution
that we can compare the actual systems against.

G.2 Experimental results for FMCF
Figures 27 and 28 show three setups where the optimal so-
lutions returned by our solver are 20%, 40%, and 60%, re-
spectively. For each setup, we have tested the systems on a
Fattree topology and on Abilene. On a Fattree, both ECMP
and Contra are very close to the optimum: they are 0.049%
and 0.16% higher than optimum on average. Since ECMP
splits traffic on a per-packet basis, it is expected to achieve
almost perfect load balancing; Contra underperforms slightly
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Figure 26: Selection of sender/receiver pairs on Abilene.
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Figure 27: The performance of Contra is close to the opti-
mum in the FMCF formulation (Fattree topology).

since it only changes forwarding decisions based on periodic
probes, but it performs close to ECMP and the optimum.

On a general topology, the performance of SPAIN is
highly dependent on the locations of senders and re-
ceivers, as its load balancing mechanism precomputes non-
overlapping paths when possible. We found that, when alter-
native paths in SPAIN do not overlap, it performs very close
to optimum (worse only by 2.53%), but when paths overlap,
SPAIN could underperform by as much as 6.55%. Contra,
on the other hand, has consistent performance, and achieves
similar performance with the same scenarios used to evaluate
SPAIN. Compared to the optimum, the results for Contra are
2.41% and 2.36% higher, respectively. Figure 26 shows the
two setups we have used for the experiments with SPAIN.

H Waypoint policy
The performance evaluation in our main paper has focused
on policies that do not involve regular expressions, because
regular expressions constrain paths rather than optimize for
performance. Nevertheless, we have conducted a set of ex-
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Figure 28: The performance of Contra is close to the opti-
mum in the FMCF formulation (Abilene topology).
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Figure 29: FCT for the waypoint policy (workload: web
search)
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Figure 30: FCT for the waypoint policy (workload: cache)
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Figure 31: FCT for the waypoint policy on an asymmetric
topology (workload: web search)

periments on such policies, and report the key findings in
this section. We have used the waypoint policy (WP) with
one regular expression, and measured the performance and
protocol overhead in different workloads.

Flow completion time. Figures 29 and 30 show the FCT
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Figure 32: FCT for the waypoint policy on an asymmetric
topology (workload: cache)

1

1.04

1.08

Web search 10% Cache 10% Web search 60% Cache 60%

T
ra
ff
c
 o
v
e
rh
e
a
d

Workloads

ECMP
Hula

Contra (WSP)
Contra (WP)

Figure 33: The tags in the waypoint (WP) policy introduce
more traffic overhead.

achieved by the WP policy on a symmetric data center topol-
ogy, on the web search and cache datasets, respectively. As
we can see, on the symmetric topology, WP performs simi-
larly to Hula and WSP on both workloads. Figures 31 and
32 show the FCT results for the asymmetric topology, where
we have injected a failed link. When the topology is asym-
metric, WP performs worse than ECMP. This is expected, as
WP imposes additional path constraints.
Protocol overhead. Figure 33 shows the traffic overhead of
the WP policy. As we can see, WP sends more traffic than
WSP because it tags packets with policy states and creates
separate probes for different regular expression matches. At
10% load, 92% of the traffic overhead is due to probes and
8% due to tags; at 60% load, 70% of the traffic overhead is
due to probes and 30% due to tags.

I Traffic overhead
To evaluate the traffic overhead incurred by Contra due to
additional probes (the policies below do not require tags),
we measured the amount of traffic sent over the network by
Contra, Hula, and ECMP at 10% and 60% network load.
Figure 34 shows the results a normalized by the traffic sent
by ECMP (i.e., no extra tags or probes). Across workloads,
Contra incurred 0.79% more traffic than ECMP, and 0.44%
more than Hula, which seems to be reasonable.

We also evaluated the traffic overhead of SPAIN and Con-
tra on the Abilene network, at 10% and 60% network load.
Figure 35 shows the results. We found that only 0.54% of
traffic is due to the extra probes in Contra. Interestingly, al-
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Figure 34: The traffic overhead of Contra is low.

though SPAIN did not use any extra probes, the amount of
traffic SPAIN sent across the network is higher than that of
Contra, and even higher than the total traffic of Contra. This
is because SPAIN’s paths are on average longer than these
used in Contra. As a result, Contra requires 6.65% less net-
work bandwidth than SPAIN.
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Figure 35: The traffic overhead of Contra and SPAIN on the
Abilene network
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