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A confluence:  The junction of two rivers
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A Confluence of Ideas
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Stream I

Stream II

New Stream

Life in the Fast Lane:  Viewed from the Confluence Lens.  George Varghese, SIGCOMM CCR, 2015.

Inflection Point:
A change in the world.



A Confluence of Ideas
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New Stream

Inflection
Point

Impact

New Environment =
New Rules,
New Opportunities

Life in the Fast Lane:  Viewed from the Confluence Lens.  George Varghese, SIGCOMM CCR, 2015.

Stream II

Transformed Ideas

Impacting Stream

Main Stream

Stream I



Impressionism as Confluence
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Realistic Painting

Psychology

Invisible strokes
and a focus on
realistic detail

Realism (1800s)

Life in the Fast Lane:  Viewed from the Confluence Lens.  George Varghese, SIGCOMM CCR, 2015.

Photography
“Press a button, we do the rest” (Kodak 1888)



Impressionism as Confluence
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Realistic Painting

Psychology

Invisible strokes
and a focus on
realistic detail

Realism (1800s)

Psychology

Freud (1836-1934):  
emotion affects perception

Life in the Fast Lane:  Viewed from the Confluence Lens.  George Varghese, SIGCOMM CCR, 2015.

Photography
“Press a button, we do the rest” (Kodak 1888)



Impressionism as Confluence
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Psychology

Impressionism

Invisible strokes
and a focus on
realistic detail

Visible strokes,
emotion and
movement

Life in the Fast Lane:  Viewed from the Confluence Lens.  George Varghese, SIGCOMM CCR, 2015.

Realism (1800s)

Photography
“Press a button, we do the rest” (Kodak 1888)

Freud (1836-1934):  
emotion affects perception



Networked Vehicles as Confluence
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Threat model:
“watch out for
that horse”

Realistic PaintingMotorized
Vehicles



Networked Vehicles as Confluence
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Realistic PaintingMotorized
Vehicles

Threat model:
“watch out for
that horse”

cars go
online



Networked Vehicles as Confluence
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Realistic PaintingMotorized
Vehicles

New threat models:
Hackers remotely take
control of Jeep on highwayThreat model:

“watch out for
that horse”

cars go
online



Networked Vehicles as Confluence
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Realistic PaintingMotorized
Vehicles

PsychologyFormal methods

Threat model:
“watch out for
that horse”

cars go
online

New threat models:
Hackers remotely take
control of Jeep on highway



Networked Vehicles as Confluence
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High Assurance
Vehicular Systems

cars go
online

Motorized
Vehicles

Formal methods

Threat model:
“watch out for
that horse”

New threat models:
Hackers remotely take
control of Jeep on highway



Networked Vehicles as Confluence
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High Assurance
Vehicular Systems

Motorized
Vehicles

Formal methods

Basic PL Research

Application Domain

Threat model:
“watch out for
that horse”

cars go
online

New threat models:
Hackers remotely take
control of Jeep on highway



Operating System Reliability as Confluence
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Realistic Painting

Basic research breakthroughs:
• data structures
• algorithms
• abstraction

Operating System
Reliability

PsychologyModel Checking

Blue Screen of Death

Hardware:
• thanks Intel!

Testing is hopelessly incomplete



Operating System Reliability as Confluence
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Model Checking

Static Driver
Verification

Basic research breakthroughs:
• data structures
• algorithms
• abstraction

Hardware:
• thanks Intel!

Blue Screen of Death

Operating System
Reliability



Confluences in Programming Languages Research
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Basic PL Research

Application Domain

Application
Impact

Hardware Changes

Complexity Changes

Basic Research Breakthroughs:
New Techniques, Tools and Algorithms

Scale Changes

Economy Changes

Technology Changes
Inflection Point



Why Confluences?
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Inflection points separate fads from opportunity for real change.

Early access maximizes influence on thought leaders.

See inflection point

Exploit
Opportunities

Basic PL Research

Application Domain

Application
Impact



How Confluences?
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Can we really see these inflection points as they happen?

Basic PL Research

Application Domain

Application
Impact

Not always! We (often) can’t!

We can make friends.
Perhaps they can

Deep, general, reusable, 
hard-to-learn skills

Change the world
with collaborative
research
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Grad School:  Learning Skills
• Confluences in reliable systems implementation

• Inflection point:  a breakthrough in basic research 

Professor Life:  Making Friends
• Confluences in network configuration

• Inflection point:  growth of data centers & industrial networks

Two Confluences In My Career
And What I Learned From Them



Grad School:  Learning Skills
Confluences in Reliable Systems Implementation 

With Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, 
Fred Smith, Stephanie Weirich, Steve Zdancewic



Stream 1:  Basic Research:  Type Safety
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Type Safety



An Ever-So-Brief History of Modern
Type Safety Proofs
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JOURNAL OF COMPUTER AND SYSTEM SCIENCES 17, 348-375 (1978) 

A Theory of Type Polymorphism in Programming 

ROBIN MILNER 

Computer Science Department, Vm+ersity of Edinburgh, Edinburgh, Scotland 

Received October 10, 1977; revised April 19, 1978 

The aim of this work is largely a practical one. A widely employed style of programming, 
particularly in structure-processing languages which impose no discipline of types, 
entails defining procedures which work well on objects of a wide variety. We present a 
formal type discipline for such polymorphic procedures in the context of a simple pro- 
gramming language, and a compile time type-checking algorithm w which enforces the 
discipline. A Semantic Soundness Theorem (based on a formal semantics for the language) 
states that well-type programs cannot “go wrong” and a Syntactic Soundness Theorem 
states that if fl accepts a program then it is well typed. We also discuss extending these 
results to richer languages; a type-checking algorithm based on w is in fact already 
implemented and working, for the metalanguage ML in the Edinburgh LCF system, 

1. INTRODUCTION 

The aim of this work is largely a practical one. A widely employed style of programming, 
particularly in structure-processing languages which impose no discipline of types 
(LISP is a perfect example), entails defining procedures which work well on objects of 
a wide variety (e.g., on lists of atoms, integers, or lists). Such flexibility is almost essential 
in this style of programming; unfortunately one often pays a price for it in the time taken 
to find rather inscrutable bugs-anyone who mistakenly applies CDR to an atom in 
LISP, and finds himself absurdly adding a property list to an integer, will know the 
symptoms. On the other hand a type discipline such as that of ALGOL 68 [22] which 
precludes the flexibility mentioned above, also precludes the programming style which 
we are talking about. ALGOL 60 was more flexible-in that it required procedure 
parameters to be specified only as “procedure” (rather than say “integer to realprocedure”) 
-but the flexibility was not uniform, and not sufficient. 

An early discussion of such flexibility can be found in Strachey [19], who was probably 
the first to call it polymorphism. In fact he qualified it as “parametric” polymorphism, 
in contrast to what he called “adhoc” polymorphism. An example of the latter is the use 
of “+” to denote both integer and real addition (in fact it may be further extended to 
denote complex addition, vector addition, etc.); this use of an identifier at several distinct 
types is often now called “overloading,” and we are not doncerned with it in this paper. 

In this paper then, we present and justify one method of gaining type flexibility, but 
also retaining a discipline which ensures robust programs. We have evidence that this 

348 
0022-0000/78/0173-0348$02.00/0 
Copyright 8 1978 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

Semantic Domains:
    V = B0 + B1 + … + F + W
    F = Vª V
    W = { . }

Proof:
    A semantic relation,
    defined by induction on
    types connects denotations 
    to types.

History from:  A Syntactic Approach to Type Soundness.  Wright and Felleisen.  1994 

Type Assignment in 
Programming Languages

Luis Damas
PhD Thesis,1985

Semantic Domains:
    V = B0 + B1 + … + F + W + L
    F = VªSªV⊗S
    S = V*
    W = { . }
    L = N⊥

Proof:
    Induction on types fails.
    Categorical argument shows
    the existence of the 
    semantic relation.Dynamic Typing in a Statically Typed Language. 

Abadi, Cardelli, Pierce, Plotkin.

Semantic Domains:
    V = B0 + B1 + … + F + W + D
    F = VªV
    D = TypeCode x V 
    W = { . }

Proof:
    Metric space argument shows
    the existence of the semantic
    relation.



Where we were at:
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Milner

Damas

Tofte

Mitchell

MacQueen

Martin-Lof Kahn

Plotkin Harper
Lillibridge

Duba

Leroy

… Many More …Friedman

Felleisen

Talpin Gifford

Type Safety

Tiny, elegant languages

Hard proofs that are
getting harder and that
change with each new feature

Real systems,
Languages

gap



The Inflection Point: Simple Syntactic Methods
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A Syntactic Approach to Type Soundness.  
Wright, Felleisen.  Info. & Comp, 1994.
Key contributions:
• Semantics by syntactic program rewriting
• Check program states are well-typed at each step

• Modern Type Preservation
• Demonstrated reuse of the same technique on a
   variety of features and series of languages

A Simplified Account of Polymorphic References.
Robert Harper.  Information Processing Letters 1994

Modern Canonical Forms, Progress!
Harper, influenced by Martin-Löf, Plotkin

….



Confluences in Reliable Systems Implementation
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Type safety in practice:
• the foundation of mobile code security (Java & JVM)

• the foundation of promising systems architectures (SPIN OS)

• typed interfaces + type safety = secure, efficient sandboxes

But type checking happened at the source
• consumers had to trust a compiler to preserve safety invariants

• compilers are 100s of thousands, millions LOC — errors inevitable

Can we pull the compiler out of the trusted computing base?

Type Safety

Reliable Systems

Type-Safe Machine Code

Type Check Source

Type Check Target

Syntactic Methods



Typed Intermediate and Target Languages
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Source
Types

TIL: A Type-directed, Optimizing Compiler for ML.  Tarditi, Morrisett, Cheng, Stone, Harper, Lee. PLDI 96.
Safe Kernel Extensions without Run-time Checking.  George Necula, Peter Lee.  OSDI 96.
From System F to Typed Assembly Language. Morrisett, Walker, Crary, Glew.  POPL 98.

IR
Types

Target
Types

Source
Terms

IR
Terms

Target
Terms

Type Check

Type Check

Type Check

Optimize

Optimize

Translate 
Types and Terms



% if ebx=0, jump to ecx

% eax := eax + ebx

% decrement counter

% iterate loop

TALx86
% sum: eax + 1 + 2 + … + ebx
%
% eax: accumulator
% ebx: counter
% ecx: continue with result in eax

sum:

beq ebx, ecx

add eax, ebx

sub ebx, 1

jump sum

Register files R:

R ::= {eax = v, ebx = v, …}

Register file types Γ:  

Γ ::= {eax : τ, ebx : τ, …}

Machine value types:  

τ ::= int32
      | int64
      | float32
      | Γ
      | α
      | ∀α.τ

% code ptr
% abstract type
% universal



% if ebx=0, jump to ecx

% eax := eax + ebx

% decrement counter

% iterate loop

TALx86
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% sum: eax + 1 + 2 + … + ebx
%
% eax: accumulator
% ebx: counter
% ecx: continue with result in eax

sum’s code type:  
{

eax: int32,   
ebx: int32,   
ecx: {eax: int32}   

}

sum:

beq ebx, ecx

add eax, ebx

sub ebx, 1

jump sum



% if ebx=0, jump to ecx

% eax := eax + ebx

% decrement counter

% iterate loop

TALx86
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% sum: eax + 1 + 2 + … + ebx
%
% eax: accumulator
% ebx: counter
% ecx: continue with result in eax

sum’s code type:  
{

eax: int32,   
ebx: int32,   
ecx: {eax: int32}   

}

sum:

beq ebx, ecx

add eax, ebx

sub ebx, 1

jump sum

{ eax: int32,   ebx: int32,  ecx : {eax: int32} }



% if ebx=0, jump to ecx

% eax := eax + ebx

% decrement counter

% iterate loop

TALx86
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% sum: eax + 1 + 2 + … + ebx
%
% eax: accumulator
% ebx: counter
% ecx: continue with result in eax

sum’s code type:  
{

eax: int32,   
ebx: int32,   
ecx: {eax: int32}   

}

sum:

beq ebx, ecx

add eax, ebx

sub ebx, 1

jump sum

{ eax: int32,   ebx: int32,  ecx : {eax: int32} }

{ eax: int32,   ebx: int32,  ecx : {eax: int32} }



% if ebx=0, jump to ecx

% eax := eax + ebx

% decrement counter

% iterate loop

TALx86
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% sum: eax + 1 + 2 + … + ebx
%
% eax: accumulator
% ebx: counter
% ecx: continue with result in eax

sum’s code type:  
{

eax: int32,   
ebx: int32,   
ecx: {eax: int32}   

}

sum:

beq ebx, ecx

add eax, ebx

sub ebx, 1

jump sum

{ eax: int32,   ebx: int32,  ecx : {eax: int32} }

{ eax: int32,   ebx: int32,  ecx : {eax: int32} }

{ eax: int32,   ebx: int32,  ecx : {eax: int32} }

{ eax: int32,   ebx: int32,  ecx : {eax: int32} }



Modelling Calling Conventions
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% sum: eax + 1 + 2 + … + ebx
%
% eax: accumulator
% ebx: counter
% ecx: continue with result in eax

sum’s code type:  
{

eax: int32,   
ebx: int32,   
ecx: {eax: int32}   

}

a different calling convention: 
∀α.{

eax: int32,   
ebx: int32,   
ecx: {eax: int32, edx: α},
edx: α   

}

Callee (sum) saves register:  
Type abstraction requires the callee to act parametrically in α 
A Simple Proof  Technique for Certain Parametricity Results.  Karl Crary. ICFP 1999. 



Extensions: Stack Typing
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counter

accumulatoresp:

call
site

% sum: esp[0] + 1 + 2 + … + esp[4]
%
% esp[0]: accumulator
% esp[4]: counter
% esp[8]: continue with result in eax



Extensions: Stack Typing
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counter

accumulatoresp:

call
site

% sum: esp[0] + 1 + 2 + … + esp[4]
%
% esp[0]: accumulator
% esp[4]: counter
% esp[8]: continue with result in eax

modelling stacks s as lists:  

s ::= nil | v :: s

stack types σ via an algebra of lists:  

σ ::= nil 
      | τ :: σ   
      | ρ 
      | σ @ σ

% empty stack
% a value on top
% an abstract stack
% two stack segments



Extensions: Stack Typing
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counter

accumulatoresp:

call
site

stack-based sum’s code type:  
∀ρ.{

esp: int32 :: 
       int32 :: 
       {eax: int32, esp: ρ} :: 
       ρ,  

}

% sum: esp[0] + 1 + 2 + … + esp[4]
%
% esp[0]: accumulator
% esp[4]: counter
% esp[8]: continue with result in eax

ρ



Extensions: Stack Typing
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counter

accumulatoresp:

call
site

stack-based sum’s code type:  
∀ρ.{

esp: int32 :: 
       int32 :: 
       {eax: int32, esp: ρ} :: 
       ρ,  

}

% sum: esp[0] + 1 + 2 + … + esp[4]
%
% esp[0]: accumulator
% esp[4]: counter
% esp[8]: continue with result in eax

Parametric polymorphism prevents
the callee from trampling on the caller’s stack 

ρ

A Simple Proof Technique for Certain Parametricity Results.  Karl Crary. ICFP 1999. 



TALx86 Summary

37

More types:
• For closures, data types, arrays, exceptions

• Types and kinds for describing object sizes, memory allocation and initialization

• Linking

• …

Moral of the story:
• Basic research in types reused in an extreme new setting

• Impossible without syntactic proof techniques

• Biggest contribution:  
• Showing fully automatic proof of strong safety properties in general-

purpose assembly is possible



Non-technical Take-aways
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Learn a small number of highly reuseable skills really well.
• I learned one non-trivial proof technique:

• Progress and Preservation
• I practiced it over and over

• I learned how to develop small models:
• idealized operational models with abstract objects

• stacks, heaps, registers, …

• tiny type systems, simple algebras

• simplicity takes practice and experience
• nobody ever uses or remembers the complicated stuff

I have used almost nothing else for the rest of my career.
(perhaps I’m lazy)



The Confluence Continues

Safe Language Theory

System
Reliability

Unbreakable
Systems

Compcert
seL4
CertiKOS
RockSalt
DeepSpec

Logical Frameworks

Github,
Open Source Theorems

Improved Tools

Safer
Systems

Syntactic
Methods

Testing

Type
Checking

Theorem
Proving



Professor Life:  Making Friends
Confluences in Network Configuration

With Carolyn Jane Anderson, Ryan Beckett, Nate Foster, Michael Greenberg, 
Arjun Guha, Stephen Gutz, Rob Harrison, Jean-Baptiste Jeannin,
Naga Praveen Katta, Dexter Kozen, Mathew Meola, Chris Monsanto, 
Josh Reich, Mark Reitblatt, Jennifer Rexford, Cole Schlesinger, 
Alec Story, Todd Warszawski
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Network Configuration



Traditional Networks
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A

C
B

ospf interface ip metric 3
ospf … … …
…

ospf …
ospf …
ospf-passive … ip 10.0.0.0/24
ospf redistribute metric 10
bgp … x … C apply …

Each router: 

• maintains its own view of the world 

• uses a standard protocol to communicate with neighbours and select 
routes 

Network operators select from these standard, pre-defined protocols 

• Operators supply parameters to configure them 

Hardware vendors (eg, CISCO) control the software 

• Protocol standards evolve slowly
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Network Configuration

Data center infrastructure scales up

The Inflection Point

Owners of this infrastructure stand to
gain from customized and centralized 
network control algorithms.

Technological & Economic Changes:



Connecting Inter-continental Cloud Services

44B4: Experience with a Globally-Deployed Software-Defined WAN.  Jain et al  SIGCOMM 2013

Traditional WANs:
• No control over end hosts

• All bits treated the same

• 30-40% utilization achieved

• overprovisioning for fault tolerance

B4 WAN Connects Google’s Data Centers:
• Control over end applications — limit their sending rate

• Multiple traffic classes, treated differently

• user traffic: low volume, latency sensitive

• big data synchronization: high volume, latency insensitive, fault tolerant

• Through centralized route control and traffic engineering, link utilization nears 
100% on some links.  Averages 70% or more throughout. 2x-3x cost savings.



Software-Defined Networking (SDN):  
The Technology Behind B4
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A

C
B

Centralized,
General-purpose
Controller Machine

Centralized controller plans routes using global information
• Rather than configuring distributed algorithms, the controller tells each 

switch how to forward, modify or drop packets directly

• OpenFlow:  The new “network assembly language”

• simple

• yet expressive, capable of constructing any path

OpenFlow



Confluences in Network Configuration
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??

Network 
Configuration

Technology Change:
  OpenFlowDistributed

Protocols

Economic Changes:
  Network Infrastructure Growth
  Data Centers

??

Centralized
Control



Confluences in Network Configuration

47

Modular programming
and reasoning

Network 
Configuration

Modular Network
Programming Languages

Technology Change:
  OpenFlow

Economic Changes:
  Network Infrastructure Growth
  Data Centers

Centralized
Control

Distributed
Protocols



Software-Defined Network (SDN) Programming
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BA

Event
Install R1 on A
Install R2 on A
Install R3 on B
Install R4 on A
Remove R2 from A
…



SDN Programming
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BA

Event
Install R1 on A
Install R2 on A
Install R3 on B
Install R4 on A
Remove R2 from A
…

High variability in 
reaction time: seconds
or even minutes



SDN Programming
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BA

Event
Install R1 on A
Install R2 on A
Install R3 on B
Install R4 on A
Remove R2 from A
…

At the same time, switch 
continues processing incoming 
packets at line rate

High variability in 
reaction time: seconds
or even minutes



SDN Programming
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BA

Event
Install R1 on A
Install R2 on A
Install R3 on B
Install R4 on A
Remove R2 from A
…

Early SDN:  Event-driven, imperative, concurrent programming with 
distributed, stateful tables read asynchronously by other agents

The who’s who of 
hard programming tasks



Frenetic:  Structured SDN Programming
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BA

Event Compositional,
Global, Declarative Policy

A

C
BCompute

Frenetic: A Network Programming Language.  Foster, Harrison, Freedman, Monsanto, Rexford, Story, Walker. ICFP 2011



Frenetic:  Structured SDN Programming
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BA

Event Compositional,
Global, Declarative Policy

A

C
B

Compile
Update

Compute

Frenetic: A Network Programming Language.  Foster, Harrison, Freedman, Monsanto, Rexford, Story, Walker. ICFP 2011



Programmer’s View
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Event 1

A

C
B

X

Y



Programmer’s View
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… Event 1

A

C
B

Event 2…

X

Y
A

C
B

X

Y



Programmer’s View
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A

C
B

Packets in flight
We need some protocol for updating switches.

If we aren’t careful a lot of bad stuff could happen:
• packets from X to Y could be dropped
• packets could be mis-directed
• congestion?

Event 1

A

C
B

Event 2…

Underlying Physical Network

X

Y
A

C
B

X

Y

X

Y

Clearly, the protocol should preserve some “good” properties across updates



Preserving Properties
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What kinds of properties?
• Per-packet Path Properties (PPP):  Any property of a single packet, its path 

through the network, and modifications along the way
• Access control
• Reachability
• Way-pointing
• But not congestion (a property of many packets)

Which ones?
• All of them:  Preserve any PPP shared by 2 consecutive policies

• Advantage:  Programmers don’t need to supply invariants

• Advantage:  To check Inv is preserved forever, check all policies independently

How?
• Per-packet Consistent Update:  Ensure every packet traverses either the old 

policy or the new policy, not some mixture of both



Implementation Mechanism:  2-phase Commit
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Event 1Event 2…

Abstractions for Network Update.  Reitblatt, Foster, Schlesinger, Rexford, Walker, SIGCOMM 2012.

A

C
B

X

Y
A

C
B

X

Y

Preprocess every policy:
• Entry locations stamp policy version number on packets (green/blue)
• Internal location apply their policy if the packet carries the right number

To update from green to blue:
• Phase I:   Add new blue rules to internal switches, while packets continue 

to be stamped green and are processed by green rules
• Phase 2:  Overwrite entry location green-stamping rules with blue-

stamping rules



Improvements and Refinements
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Event 1Event 2…

Incremental updates trade time for space [Katta et al., HotSDN 2013]

Updates with congestion control [Hong et al., SIGCOMM 2013]

Dynamic update scheduling improves update time [Jin et al., SIGCOMM  2014]

Preserving user-supplied invariants instead of all invariants improves update time 
and space! [McClurg, PLDI 2015]

…

A

C
B

X

Y
A

C
B

X

Y



Consistent Updates:  Modular Reasoning in Time
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Frenetic Policy Lang’s:  Modular Reasoning in Space

A

C
B

A

C
B

+
A

C
B

=

Frenetic [ICFP 11], NetCORE [POPL 12], Pyretic [NSDI 13], NetKAT [POPL 14], 
SDX [SIGCOMM 14], Fast NetKAT [ICFP 15], Concurrent NetCORE [ICFP 15], 

CoVisor [NSDI 15], Kinetic [NSDI 15], Probabilistic NetKAT {ESOP 16], Path Queries [NSDI 16] …

Event 1Event 2…

A

C
B

X

Y
A

C
B

X

Y



Technical Take-aways

The networking community has embraced language-based 
approaches to network configuration.

ACM Symposium on SDN Research (SOSR) sponsored by SIGCOMM topics include:
• Programming languages, verification techniques and testing techniques for SDN

P4:  A Language-based “OpenFlow 2.0”
• start: a PL/networking group [SIGCOMM CCR 2014]

• now:  33 member organizations (as of Dec 14, 2015)
• several PL folks providing feedback

MOOC:  Software-Defined Networking
• Nick Feamster (Georgia Tech → Princeton)
• 870 students doing assignments, survey
• 217 full-time network operators
• 79% preferred Kinetic [NSDI 15] to current approaches
• 84% agreed it helped make it easier to verify policies



Non-Technical Take-aways
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Sometimes research is all about the detailed result:
• Progress and Preservation

But sometimes it is people and communication that matter most:
• We got in to SDN early when no one had written any programs.  How?  

• Our colleague Jen Rexford was at the forefront of the area
• She developed the intellectual precursors to SDN at AT&T
• She spotted the SDN inflection point
• She was open-minded

• We wrote a grant together
• We had beyond-brilliant colleagues (Nate Foster and others)

• Then we got mind share.  How?
• Jen gave early an keynote talk at the Open Networking Summit
• Followed up the next year by Nate Foster
• Jen gave many, many industrial talks; she has many friends

Moral: Make Friends



Summary:
Confluences in Programming Language Research
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Basic Research

Application Domain

Application
Impact

Learn re-useable PL skills

Make friends

Transform the world

Be open-minded
Watch for the inflection points



thank you


