
Concurrent NetCore: From Policies to Pipelines

Cole Schlesinger
Princeton University

35 Olden St.
Princeton, NJ 08540

cschlesi@cs.princeton.edu

Michael Greenberg
Princeton University

35 Olden St.
Princeton, NJ 08540

mg19@cs.princeton.edu

David Walker
Princeton University

35 Olden St.
Princeton, NJ 08540

dpw@cs.princeton.edu

Abstract
In a Software-Defined Network (SDN), a central, computationally
powerful controller manages a set of distributed, computationally
simple switches. The controller computes a policy describing how
each switch should route packets and populates packet-processing
tables on each switch with rules to enact the routing policy. As
network conditions change, the controller continues to add and
remove rules from switches to adjust the policy as needed.

Recently, the SDN landscape has begun to change as several
proposals for new, reconfigurable switching architectures, such as
RMT [5] and FlexPipe [14] have emerged. These platforms pro-
vide switch programmers with many, flexible tables for storing
packet-processing rules, and they offer programmers control over
the packet fields that each table can analyze and act on. These
reconfigurable switch architectures support a richer SDN model
in which a switch configuration phase precedes the rule popu-
lation phase [4]. In the configuration phase, the controller sends
the switch a graph describing the layout and capabilities of the
packet processing tables it will require during the population phase.
Armed with this foreknowledge, the switch can allocate its hard-
ware (or software) resources more efficiently.

We present a new, typed language, called Concurrent NetCore,
for specifying routing policies and graphs of packet-processing
tables. Concurrent NetCore includes features for specifying se-
quential, conditional and concurrent control-flow between packet-
processing tables. We develop a fine-grained operational model
for the language and prove this model coincides with a higher-
level denotational model when programs are well-typed. We also
prove several additional properties of well-typed programs, includ-
ing strong normalization and determinism. To illustrate the utility
of the language, we develop linguistic models of both the RMT and
FlexPipe architectures and we give a multi-pass compilation algo-
rithm that translates graphs and routing policies to the RMT model.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages

General Terms Design, Languages, Theory

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICFP ’14, September 1–6, 2014, Gothenburg, Sweden.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2873-9/14/09. . . $15.00.
http://dx.doi.org/10.1145/2628136.2628157

Keywords Software-defined networking; network programming
languages; OpenFlow; Frenetic

1. Introduction
Over the past several years, a new networking technology known
as Software-Defined Networking (SDN) has emerged as a viable
competitor to traditional networking infrastructure. In a software-
defined network, a logically centralized controller machine (or
cluster of machines) manages a distributed collection of switches.
The controller is a general-purpose server whose primary job is to
decide how to route packets through the network while avoiding
congestion, managing security, handling failures, monitoring load,
and informing network operators of problems. The switches, on the
other hand, are specialized hardware devices with limited compu-
tational facilities. In general, a switch implements a collection of
simple rules that match bit patterns in the incoming packets, and
based on those bit patterns, drop packets, modify their fields, for-
ward the packets on to other switches, or send the packet to the
controller for additional, more general analysis and processing. The
switch itself does not decide what rules to implement—that job lies
with the controller, which sends messages to the switches to in-
stall and uninstall the packet-forwarding rules needed to achieve its
higher-level, network-wide objectives. SDN is distinguished from
traditional networks by its centralized, programmatic control. In
contrast, traditional networks rely on distributed algorithms imple-
mented by the switches, and network administrators manually con-
figure each switch in the hope of inducing behavior that conforms
to a global (and often poorly specified) network policy.

SDN has had a tremendous impact in the networking commu-
nity, both for industry and academia. Google has adoped SDN
to manage its internal backbone, which transmits all its intra-
datacenter traffic—making it one of the largest networks in the
world [9], and many other major companies are following Google’s
lead. Indeed, the board of the Open Networking Foundation
(ONF)—the main body responsible for defining SDN standards,
such as OpenFlow [10]—includes the owners of most of the largest
networks in the world (Google, Facebook, Microsoft, etc) and its
corporate membership numbers over a hundred. On the academic
side, hundreds of participants have attended the newly-formed
HotSDN workshop, and several tracks of top networking confer-
ences, such as NSDI and SIGCOMM, are dedicated to research in
SDN. But at its heart, management of Software-Defined Networks
is an important new programming problem that calls for a vari-
ety of new, high-level, declarative, domain-specific programming
languages, as well as innovation in compiler design and implemen-
tation.

OpenFlow 1.0: successes and failures. The OpenFlow protocol
is a popular protocol for communication between the controller and
switches. The first version, OpenFlow 1.0 [10], supported a simple

abstraction: Each switch is a single table of packet-forwarding
rules. Each such rule can match on one or more of twelve standard
packet fields (source MAC, destination MAC, source IP, destination
IP, VLAN, etc.) and then execute a series of actions, such as
dropping the packet, modifying a field, or forwarding it out a port.
A controller can issue commands to install and uninstall rules in
the table and to query statistics associated with each rule (e.g., the
number of packets or bytes processed).

The single table abstraction was chosen for the first version of
OpenFlow because it was a “least common denominator” inter-
face that many existing switches could support with little change.
It worked, and OpenFlow switches from several hardware ven-
dors, including Broadcom and Intel, hit the market quickly. The
simplicity of the OpenFlow 1.0 interface also made it a relatively
easy compilation target for a wave of newly-designed, high-level
SDN programming languages, such as Frenetic [7], Procera [15],
Maple [16], FlowLog [13] and others.

Unfortunately, while the simplicity of the OpenFlow 1.0 inter-
face is extremely appealing, hardware vendors have been unable to
devise implementations that make efficient use of switch resources.
Packet processing hardware in most modern ASICs is not, in fact,
implemented as a single match-action table, but rather as a collec-
tion of tables. These tables are often aligned in sequence, so the
effects of packet processing by one table can be observed by later
tables, or in parallel, so non-conflicting actions may be executed
concurrently to reduce packet-processing latency.

Each table within a switch will typically match on a fixed subset
of a packet’s fields and will be responsible for implementing some
subset of the chip’s overall packet-forwarding functionality. More-
over, different tables may be implemented using different kinds of
memory with different properties. For example, some tables might
be built with SRAM and only capable of exact matches on certain
fields—that is, comparing fields against a single, concrete bit se-
quence (eg. 1010001010). Other tables may use TCAM and be ca-
pable of ternary wildcard matches, where packets are compared to
a string containing concrete bits and wildcards (e.g. 10?1??1001?)
and the wildcards match either 0 or 1. TCAM is substantially more
expensive and power-hungry than SRAM. Hence, TCAM tables
tend to be smaller than SRAM. For instance, the Broadcom Trident
has an L2 table with SRAM capable of holding ∼100K entries and
a forwarding table with TCAM capable of holding∼4K entries [6].

In addition to building fixed-pipeline ASICs, switch hard-
ware vendors are also developing more programmable hardware
pipelines. For example, the RMT design [5] offers a programmable
parser to extract data from packets in arbitrary application-driven
ways, and a pipeline of 32 physical match-action tables. Each phys-
ical table in this pipeline may be configured for use in different
ways: (1) As a wide table, matching many bits at a time, but con-
taining fewer rows, (2) as a narrower table, matching fewer bits
in each packet but containing more rows, (3) as multiple paral-
lel tables acting concurrently on a packet, or (4) combined with
other physical tables in sequence to form a single, multi-step log-
ical table. Intel’s FlexPipe architecture [14] also contains a pro-
grammable front end, but rather than organizing tables in a sequen-
tial pipeline, FlexPipe contains a collection of parallel tables to
allow concurrent packet processing, a shorter pipeline and reduced
packet-processing latency.

In theory, these multi-table hardware platforms could be pro-
grammed through the single-table OpenFlow 1.0 interface. How-
ever, doing so has several disadvantages:

• The single OpenFlow 1.0 interface serves as a bottleneck in the
compilation process: Merging rules from separate tables into
a single table can lead to an explosion in the number of rules
required to represent the same function as one might represent
via a set of tables.

Table	

phase	
 1:	

table	
 configura4on	

phase	
 2:	

rule	
 popula4on	

Generated	
 Rule	

Translator	

Table	
 Table	

Compiler/	

Table	
 Layout	
 Planner	

OpenFlow	
 2.0	

Switch	

SDN	
 Controller	

Table	

Figure 1. Architecture of an OpenFlow 2.0 System

• Once squeezed into a single table, the structure of the rule set
is lost. Recovering that structure and determining how to split
rules across tables is a non-trivial task, especially when the rules
appear dynamically (without advance notice concerning their
possible structure) at the switch.
• Newer, more flexible chips such as RMT, FlexPipe or NetFP-

GAs have a configuration stage, wherein one plans the configu-
ration of tables and how to allocate different kinds of memory.
The current OpenFlow protocol does not support configuration-
time planning.

Towards OpenFlow 2.0. As a result of the deficiencies of the
first generation of OpenFlow protocols, a group of researchers have
begun to define an architecture for the next generation of OpenFlow
protocols [4] (See Figure 1). In this proposal, switch configuration
is divided into two phases: table configuration and table population.

During the table configuration phase, the SDN controller de-
scribes the abstract set of tables it requires for its high-level routing
policy. When describing these tables, it specifies the packet fields
read and written by each table, and the sorts of patterns (either exact
match or prefix match) that will be used. In addition, the table con-
figuration describes the topology of the abstract tables—the order
they appear in sequence (or in parallel) and the conditions neces-
sary for executing the rules within a table.

We call the tables communicated from controller to switch ab-
stract, because they do not necessarily correspond directly to the
concrete physical tables implemented by the switch hardware. In
order to bridge the gap between abstract and concrete tables, a com-
piler will attempt to find a mapping between what is requested by
the controller and what is present in hardware. In the process of de-
termining this mapping, the compiler will generate a function capa-
ble of translating sets of abstract rules (also called an abstract pol-
icy) supplied by the controller, and targeted at the abstract tables,
into concrete rules/policy implementable directly on the concrete
tables available in hardware. After the table configuration phase,
and during the table population phase, the rule translator is used to
transform abstract rules into concrete ones.

The configuration phase happens on a human time scale: a net-
work administrator writes a policy and a controller program and
runs the compiler to configure the switches and SDN controllers on
her network appropriately. Rule population, on the other hand, hap-
pens on the time scale of network activity: a controller’s algorithm
may install, e.g., new firewall or NAT rules after observing a single
packet—concrete examples of these and other rule installations can
be found in Section 2.

Contributions of this paper. The central contribution of this pa-
per is the design of a new language for programming OpenFlow

2.0 switches. This compiler intermediate language is capable of
specifying high-level switch policies as well as concrete, low-level
switch architectures. We call the language Concurrent NetCore (or
CNC, for short), as it is inspired by past work on NetCore [7, 11]
and NetKAT [3].1 Like NetCore and NetKAT, Concurrent NetCore
consists of a small number of primitive operations for specifying
packet processing, plus combinators for constructing more com-
plex packet processors from simpler ones. Concurrent NetCore in-
troduces the following new features.

• Table specifications: Table specifications act as “holes” in an
otherwise fully-formed switch policy. These tables can be filled
in (i.e., populated) later. Policies with tables serve as the phase-
1 configurations in the OpenFlow 2.0 architecture. Ordinary,
hole-free policies populate those holes later in the switch-
configuration process.
• Concurrent composition: Whereas NetCore and NetKAT have

a form of “parallel composition,” which copies a packet and
performs different actions on different copies, CNC also pro-
vides a new concurrent composition operator that allows two
policies to act simultaneously on the same packet. We use con-
current composition along with other features of CNC to model
the RMT and Intel FlexPipe packet-processing pipelines.
• Type System: Unlike past network programming languages,

CNC is equipped with a simple domain-specific type system.
These types perform two functions: (1) they determine the kinds
of policies that may populate a table (which fields may be read
or written, for instance), and thereby guarantee that well-typed
policies can be compiled to the targeted table, and (2) they
prevent interference between concurrently executing policies,
thereby ensuring that the overall semantics of a CNC program
is deterministic.

The key technical results of the paper include the following:

• Semantics for Concurrent NetCore: We define a small-step op-
erational semantics for CNC that captures the intricate interac-
tions between (nested) concurrent and parallel policies. In order
to properly describe interacting concurrent actions, this seman-
tics is structured entirely differently from the denotational mod-
els previously defined for related languages.
• Metatheory of Concurrent NetCore: The metatheory includes a

type system and its proof of soundness, as well as several auxil-
iary properties of the system, such as confluence and normaliza-
tion of all well-typed policies. We derive reasoning principles
relating the small-step CNC semantics to a NetKAT-like deno-
tational model.
• Multipass compilation algorithm: We show how to compile

high-level abstract configurations into the constrained lower-
level concrete configuration of the RMT pipeline [5]. In doing
so, we show how to produce policy transformation functions
that will map abstract policy updates into concrete policy up-
dates. We have proven many of our compilation passes correct
using reasoning principles derived from our semantics. We of-
fer this compilation as a proof of concept of “transformations
within CNC” as a compilation strategy; we believe that many
of our algorithms and transformations will be reusable when
targeting other platforms.

A technical appendix is available that includes a full presentation
of the compilation algorithm, theorems, and proofs [1].

1 Because we focus on programming individual switches in this paper, our
language does not contain Kleene Star, which is more useful for specifying
paths across a network than policies on a single switch. Hence, our language
is a NetCore as opposed to a NetKAT.

Figure 2. A simple network.

The following section introduces CNC in greater detail through
a series of examples, while Section 3 presents a formal semantics
for CNC, and Section 4 describes its metatheory. The models of
both the RMT and Intel FlexPipe architectures are described in
Section 5, followed by our compilation algorithm in Section 6.
Section 7 describes related work, and we conclude in Section 8.

2. CNC by example
In this section, we introduce CNC through a series of examples,
starting with user policies that define high-level packet process-
ing, and then showing how CNC can model low-level switching
hardware. Because CNC can model both ends of the spectrum, it
can serve as a common intermediate language within an OpenFlow
2.0 compilation system. Section 6 will illustrate this idea via algo-
rithms that demonstrate how to transform our high-level user poli-
cies into components for placement in RMT tables.

2.1 Simple switch policies
Consider the picture in Figure 2. This picture presents several
devices, a switch, a controller, a server and a DPI2 box, as well
as a link to “the internet.” The switch has four ports (labelled 1, 2,
3, 4 in the picture) that connect it to the other devices and to the
internet. Our goal is to write a policy for the switch to specify how
it forwards packets in and out of its ports.

In general, we model packets as records with a number of fields
which map to values drawn from a finite set. Our examples typi-
cally use an idealized collection of fields such as src (the packet’s
source IP address), in (the port the packet arrives on), and out (the
port a packet should leave on). 3 Switch policies are functions that
map packets to sets of packets. For example, a policy that drops all
packets will map any packet to the empty set of packets. A policy
that forwards packets from the internet (port 1) to the server (port
2) will map packets with in field 1 to a packet with out 2. A pol-
icy that forwards packets from the internet to both the DPI box and
the server will map packets with in = 1 to a pair of packets with
out = 2 and out = 3.

We build our policies out of a collection of primitive opera-
tions and policy combinators. The simplest primitive filters packets
based on the contents of a single field. For example, when applied
to a packet pk , the test src = 10.0.0.1 returns {pk} when pk ’s
src field is 10.0.0.1 and returns the empty set of packets otherwise.
Using such tests as well as standard boolean connectives and (;),
or (+) and not (¬), one can easily build up a function on packets
that implements a firewall (either dropping each packet or returning
it unchanged). For example, we might want to implement the fol-
lowing firewall w on the switch in Figure 2. It admits ssh or http
traffic on port 1, but blocks all other traffic arriving on port 1. All

2 DPI is deep packet inspection, a form of network security monitoring that
inspects not just packet headers but their payloads as well.
3 Using in and out fields to designate ingress and egress ports rather than
a single port field that indicates where the packet is “right now” deviates
slightly from past presentations of NetCore and NetKAT, but more faithfully
models our hardware targets.

traffic on ports other than 1 is allowed.

w = in = 1; (typ = ssh+ typ = http) + ¬(in = 1)

In order to make changes to packets, we use the assignment
primitive f ← value. Complex policies may perform the actions
of a set of simpler policies in series using the sequential compo-
sition operator (p1; p2). Alternatively, a policy may copy a packet
and perform both p1 and p2 on the separate copies, taking the union
of their results (p1 + p2). We have reused the symbols “;” and “+”
(conjunction and disjunction) here as it turns out their semantics as
logical predicates coincides with their semantics as policy combi-
nators (the boolean algebra is a sub-algebra of the policy algebra).

As an example, to define a static routing policy r for our switch,
we might write the following policy.

r = in = 1; out← 2 + in = 2; out← 1

The policy above has the effect of routing packets from port 1 to
port 2 and from port 2 to port 1. In more detail, it first copies the
incoming packet (+). Then, in the first branch, it tests whether the
input port is 1; if not, the packet is dropped; if so, the out field is
assigned 2. The second branch is dual, forwarding packets from
port 2 to port 1. The guards on each branch guarantee that the
‘copying’ is purely notional; in general, one codes the conditional
statement if a then p1 else p2 as a; p1 + ¬a; p2.

The above features are not new—they are present in Net-
Core [11, 12] and NetKAT [3]. However, in order to serve as a
configuration language for OpenFlow 2.0, we require a couple of
additional features, as well as the development of a simple type
system for policies. First, the policies so far are completely static.
They offer no room for populating new packet-processing rules at
run time. To admit this kind of dynamic extension of static poli-
cies, we add typed table variables, which we write (x : τ). For
example, we write (x : ({typ, src} , {out})) to indicate that the
controller may later install new rules in place of x, and any such
rules will only read from the typ and src header fields and write
to the out field. The controller could use this table to dynamically
install rules that forward selected subsets of packets to the DPI box
for additional scrutiny. The typing information informs the switch
of the kind of memory it needs to reserve for the table x (in this
case, memory wide enough to be able to hold patterns capable of
matching on both the typ and src fields). We model rule population
as a set of table bindings b, i.e., a closing substitution.

A second key extension is concurrency, written p1 || p2. In
order to reduce packet-processing latency within a switch, one may
which to execute p1 and p2 concurrently on the same packet (rather
than making copies). The latter is only legal provided there is no
interference between subpolicies p1 and p2. In CNC, interference
is prevented through the use of a simple type system. This type
system prevents concurrent writes and ensures determinism of the
overall packet-processing policy language.

As an example, consider the following policy p, which assem-
bles each of the components described earlier. This policy checks
for compliance with the firewall w while concurrently implement-
ing a routing policy. The routing policy statically routes all packets
to the server (this is the role of r) while dynamically selecting those
packets to send to the DPI box (this is the role of x).

m = (x : ({typ, src} , {out}))
p = w || (r +m)

In essence, we have a form of speculative execution here. The
policy r+m is speculatively copying the packet and modifying it’s
out field while the firewall decides whether to drop it. If the firewall
ultimately decides to drop the packet, then the results of routing
and monitoring are thrown away. If the firewall allows the packet,
then we have already computed how many copies of the packet are

going out which ports. This kind of speculative execution is safe
and deterministic when policies are well-typed.

2.2 Modeling programmable hardware architectures
In addition to providing network administrators with a language for
defining policies, our language of network policies aptly describes
the hardware layout of switches’ packet-processing pipelines. In
this guise, table variables represent TCAM or SRAM tables, and
combinators describe how these hardware tables are connected.
The key benefit to devising a shared language for describing both
user-level programs and hardware configurations is that we can de-
fine compilation as a semantics-preserving policy translation prob-
lem, and compiler correctness as a simple theorem about equiva-
lence of input and output policies defined in a common language.
Below, we demonstrate how to model key elements of the RMT [5]
and FlexPipe [14] architectures. Both chips offer differently archi-
tectured fixed pipelines connecting reconfigurable tables.

RMT. In RMT (as well as in FlexPipe), multicast is treated spe-
cially: the act of copying and buffering multiple packets during a
multicast while processing packets as quickly as they come in (“at
line rate”) is the most difficult element of chip design.

The RMT multicast stage consists of a set of queues, one per
output port. Earlier tables in the pipeline indicate the ports on which
a packet should be multicast by setting bits in a metavariable bitmap
we call outi. The multicast stage consists of a sum, where each
summand corresponds to a queue on a particular output port—when
the ith out bit is set, the summand tags the packet with a unique
identifier and sets its output port out to i accordingly.

multicast = (out1 = 1; ftag ← v1; out← 1)
+ (out2 = 2; ftag ← v2; out← 2)
+ . . .

In addition to the multicast processor, the RMT architecture pro-
vides thirty-two physical tables, which may be divided into se-
quences in the ingress and egress pipelines. Overall, the RMT
pipeline consists of the ingress pipeline, followed by the multicast
stage, followed by the egress pipeline.

pipeline = (x1 : τ1); . . . ; (xk : τk);
multicast;
(xk+1 : τk+1); . . . ; (x32 : τ32)

FlexPipe. The FlexPipe architecture makes use of concurrency by

arranging its pipeline into a diamond shape. Each point of the di-
amond is built from two tables in sequence, with incoming pack-
ets first processed by the first pair, then concurrently by the next
two pairs, and finally by the last pair. This built-in concurrency
optimizes for common networking tasks, such as checking pack-
ets against an access control list while simultaneously calculating
routing behavior.

pairi = (xi,1 : τi,1); (xi,2 : τi,2)
diamond = pair1; (pair2 || pair3); pair4

The FlexPipe multicast stage occurs after the diamond pipeline
and, like the RMT multicast stage, relies on metadata set in the
ingress pipeline to determine multicast. FlexPipe can make up to
five copies (“mirrors”) of the packet that can be independently
modified, but each copy can be copied again to any output port,
so long as no further modifications are required.

multicast = mirror; egress; flood
pipeline = diamond; multicast

We present models of both RMT and FlexPipe (including mirror,
egress and flood) in greater detail in Section 5.

Fields f ∈ F ::= f1 | · · · | fk
Packets pk ∈ PK ::= F ⇀ Val

Variables x, y ∈ Var

Types τ ∈ P(R)× P(W)

Predicates a, b ::= id Identity (True)
| drop Drop (False)
| f = v Match
| ¬a Negation
| a+ b Disjunction
| a; b Conjunction

Policies p, q ::= a Filter
| f ← v Modification
| (x : τ) Table variable
| p+ q Parallel composition
| p; q Sequential composition
| pWp||Wq q Concurrent composition

States σ ::= 〈p, δ〉
Packet trees δ ::= 〈PK,W〉 Leaves

| 〈par δ1 δ2〉 Parallel processing
| 〈notPK δ〉 Pending negation
| 〈conW δ1 δ2〉 Concurrent processing

Figure 3. Packets, types, and predicate/policy syntax

3. Concurrent NetCore
We define the syntax of Concurrent NetCore in Figure 3. The lan-
guage is broken into two levels: predicates and policies. Predicates,
written with the metavariables a and b, simply filter packets with-
out modifying or copying them. Policies, written with the metavari-
ables p and q, can (concurrently) modify and duplicate packets. Ev-
ery predicate is a policy—a read-only one. Both policies and pred-
icates are interpreted using a set semantics, much like NetKAT [3].
Policies are interpreted as functions from sets of packets to sets
of packets, while predicates have two interpretations: as functions
from sets of packets to sets of packets, but also as Boolean propo-
sitions selecting a subset of packets. A packet, written with the
metavariable pk , is finite partial function from fields to values. We
fix a set of fields F, from which we draw individual fields f . We
will occasionally refer to sets of fields using the metavariables R
and W when they denote sets of readable or writable fields, respec-
tively. We do not have a concrete treatment for values v ∈ Val,
though Val must be finite and support a straightforward notion of
equality. One could model both equality and TCAM-style wildcard
matching, but for simplicity’s sake, we stick with equality only.

As explained in Section 2, the policies of Concurrent NetCore
include the predicates as well as primitives for field modification,
tables (x : τ), sequential composition (;), parallel composition (+),
and concurrency (||). One difference from our informal presenta-
tion earlier is that concurrent composition p Wp||Wq q formally re-
quires a pair of write sets Wp and Wq where Wp denotes the set of
fields that p may write and Wq denotes the set of fields that q may
write. Our operational semantics in Section 3.1 will in fact get stuck
if p and q have a race condition, e.g., have read/write dependencies.

Table variables (x : τ) are holes in a policy to be filled in by
the controller with an initial policy, which the controller updates
as the switch processes packets. The type τ = (R,W) constrains
the fields that the table may read from (R) and write to (W). For
example, the rules that populate the table (x : ({src, typ} , {dst}))
can only ever read from the src and typ fields and can only ever
write to the dst fields. In practice, this means that the controller
can substitute in for x any policy matching its type (or with a more
restrictive type).

A note on packet field dependences. Packet formats often have
complex dependencies, e.g., if the Ethertype field is 0x800, then
the Ethernet header is followed by an IP protocol header. Switches
handle attempts to match or modify a missing field at run time,
although the specific behavior varies by target architecture. In the
RMT chip, for instance, there is a valid bit indicating the presence
(or absence) of each possible field. In OpenFlow 1.0 architectures,
matching against a missing field always succeeds. In both cases,
writing to a missing field is treated as a non-operation. Hence,
we assume that each packet arriving at each switch contains fields
f1, . . . , fk, although in practice the value associated with each field
(which we treat abstractly) may be a distinguished “not present”
value.

3.1 Small-step operational semantics
We give a small-step semantics for closed policies, i.e., policies
where table variables have been instantiated with concrete policies.

Just like the switches we are modeling, our policies actually
work on packets one at a time: switches take an input packet and
produce a (possibly empty) set of (potentially modified) output
packets. As a technical convenience, our operational semantics
generalizes this, modeling policies as taking a set of packets to a set
of packets. Making this theoretically expedient choice—as we will
show in Lemma 3—doesn’t compromise our model’s adequacy.

While other variants of NetCore/NetKAT use a denotational
semantics, we use a completely new small-step, operational se-
mantics in order to capture the interleavings of concurrent reads
and writes of various fields of a packet. The interaction between
(nested) concurrent processing of shared fields and packet-copying
parallelism is quite intricate and hence deserves a faithful, fine-
grained operational model. In Section 4, we define a type system
that guarantees the strong normalization of all concurrent execu-
tions, and show that despite the concurrency, we can in fact use a
NetKAT-esque set-theoretic denotational semantics to reason about
policies at a higher level of abstraction if we so choose.

Using PK to range over sets of packets, we define the states
σ for the small-step operational semantics σ → σ′ in Figure 3.
These states σ = 〈p, δ〉 are pairs of a policy p and a packet tree δ.
Packet trees represent the state of packet processing: which packets,
or packet components, are the different branches of the parallel and
concurrent compositions working on? When processing a negation,
from what set of packets will we take the complement?

The leaves of packet trees are of the form 〈PK,W〉, where PK
is a set of packets and W is a set of fields indicating the current
write permission. The write permission indicates which fields may
be written; other fields present in the packets pk ∈ PK may be read
but not written. Packet processing is done when we reach a terminal
state, 〈id, 〈PK,W〉〉.

There are three kinds of packet tree branches. The packet tree
branch 〈par δ1 δ2〉 represents a parallel composition p+ q where p
is operating on δ1 and q is operating on δ2. The packet tree branch
〈notPK δ〉 represents a negation ¬a where a is running on δ—
when a terminates with some set of packets PK′, we will compute
PK\PK′, i.e., those packets not satisfying a. The packet tree branch
〈conW δ1 δ2〉 represents a concurrent composition p Wp||Wq q
where p works on δ1 with write permission Wp and q works on δ2
with write permission Wq . We also store W, the write permission
before concurrent processing, so we can restore it when p and q are
done processing.

We write σ → σ′ to mean that the state σ performs a step of
packet processing and transitions to the state σ′. Packet processing
modifies the packets in a state and/or reduces the term. The step
relation relies on several auxiliary operators on packets and packet
sets. We read pk [f := v] as, “update packet pk ’s f field with the
value v;” and pk \ F as, “packet pk without the fields in F;” and

PK \ F as, “those packets in PK without the fields in F,” which
lifts pk \ F to sets of packets. Finally, we pronounce × as “cross
product.” Notice that PK\F only produces the empty set when PK
is itself empty—if every packet pk ∈ PK has only fields in F, then
PK \ F = {⊥}, the set containing the empty packet. Such a packet
set is not entirely trivial, as there remains one policy decision to
be made about such a set of packets: drop (using drop) or forward
(using id)? On the other hand, ∅ × PK = PK× ∅ = ∅.

With these definitions to hand, we define the step relation in Fig-
ure 4. The following invariants of evaluation and well-typed poli-
cies may be of use while reading through Figure 4 the following.

• Policy evaluation begins with a leaf 〈PK,W〉 and ends with a
leaf 〈PK′,W〉 with the same write permissions W.
• Policies may modify the values of existing fields within packets,

but they cannot introduce new packets nor new fields—policies
given the empty set of packets produce the empty set of packets.

The first few rules are straightforward. The (DROP) rule drops all its
input packets, yielding ∅. In (MATCH), a match 〈f = v, 〈PK,W〉〉
filters PK, producing those packets which have f set to v. In
(MODIFY), a modification 〈f ← v, 〈PK,W〉〉 updates packets with
the new value v. Both (MATCH) and (MODIFY) can get stuck: the
former if f is not defined for some packet, and the latter if the
necessary write permission (f ∈W) is missing.

Sequential processing for p; q is simpler: we run p to completion
(SEQL), and then we run q on the resulting packets (SEQR). A
special packet tree branch is not necessary, because q runs on
any and all output that p produces. Intuitively, this is the correct
behavior with regard to drop: if p drops all packets, then q will run
on no packets, and will therefore produce no packets.

The parallel composition p + q is processed on 〈PK,W〉 in
stages, like all of the remaining rules. First, (PARENTER) introduces
new packet tree branch, 〈par 〈PK,W〉 〈PK,W〉〉, duplicating the
original packets: one copy for p and one for q. PARL and PARR
step p and q in parallel, each modifying its local packet tree. When
both p and q reach a terminal state, PAREXIT takes the union of
their results. Note that PAREXIT produces the identity policy, id,
in addition to combining the results of executing p and q, and we
restore the initial write permissions W. As with NetKAT, p+ q has
a set semantics, rather than bag semantics. If p and q produce an
identical packet pk , only one copy of pk will appear in the result.

Negation ¬a, like parallel composition, uses a special packet
tree branch (not)—in this case, to keep a copy of the original
packets. Running ¬a on PK, we first save a copy of PK in the
packet tree 〈notPK 〈PK,W〉〉 (NOTENTER), preserving the write
permissions. We then run a on the copied packets (NOTINNER).
When a finishes with some PKa, we look back at our original
packets and return the saved packets not in PKa (NOTEXIT).

Concurrent composition is the most complicated of all our poli-
cies. To run the concurrent composition p Wp||Wq q on packets PK
with write permissions W, we first construct an appropriate packet
tree (CONENTER). We split the packets based on two sets of fields:
those written by p, Wp, and those written by q, Wq . We also store
the original write permissions W—a technicality necessary for the
metatheory, since in well typed programs W = Wp ∪ Wq (see
(CON) in the typing rules in Figure 5, Section 4). The sub-policies
p and q run on restricted views of PK, where each side can (a) read
and write its own fields, and (b) read fields not written by the other.
To achieve (a), we split W between the two. To achieve (b), we re-
move certain fields from each side: the sub-policy p will process
PK \ Wq under its own write permission Wp (CONL), while the
sub-policy q will process PK \Wp under its own write permission
Wq (CONR). Note that it is possible to write bad sets of fields for
Wp and Wq in three ways: by overlapping, with Wp and Wq shar-
ing fields (stuck in (CONENTER)); by dishonesty, where p tries to

write to a field not in Wp (stuck later in (MODIFY)); and by mis-
take, with p reading from a field in Wq (stuck later in (MATCH)).
While evaluation derivations of such erroneous programs will get
stuck, our type system rules out such programs (Lemma 1). When
both sides have terminated, we have sets of packets PKP and PKq ,
the result of p and q processing fragments of packets and concur-
rently writing to separate fields. We must then reconstruct a set of
complete packets from these fragments. In (CONEXIT), the cross
product operator × merges the writes from PKp and PKq . We take
every possible pair of packets pkp and pkq from PKp and PKq and
construct a packet with fields derived from those two packets. (It
is this behavior that leads us to call it the ‘cross product’.) In the
merged packet pk , there are three ways to include a field:

1. We set pk .f to be pkp.f when f 6∈ Dom
(
pkq
)
. That is, f is in

Wp and may have been written by p.

2. We set pk .f to be pkq.f when f 6∈ Dom
(
pkp
)
. Here, f ∈Wq ,

and q may have written to it.

3. We set pk .f to pkp.f , which is equal to pkq.f . For a f to be
found in both packets, it must be that f 6∈Wp ∪Wq—that is, f
was not written at all.

This accounts for each field in the new packet pk , but do we have
the right number of packets? If p ran a parallel composition, it may
have duplicated packets; if q ran drop, it may have no packets at all.
One guiding intuition is that well typed concurrent compositions
p || q should be equivalent to p; q and q; p. (In fact, all interleavings
of well typed concurrent compositions should be equivalent, but
sequential composition already gives us a semantics for the ‘one
side first’ strategy.) The metatheory in Section 4 is the ultimate
argument, but we can give some intuition by example:

• Suppose that PK = {pk} and that p = f1 ← v1 and
q = f2 ← v2 update separate fields. In this case PKp =
{(pk \ {f2})[f1 := v1]} and PKq = {(pk \ {f1})[f2 := v2]}.
Taking PKp × PKq yields a set containing a single packet pk ′,
where pk ′(f1) = v1 and pk ′(f2) = v2, but pk ′(f) = pk(f) for
all other—just as if we ran p; q or q; p.
• Suppose that p = id and q = drop. When we take PKp×PKq ,

there are no packets at all in PKq , and so there is no output.
This is equivalent to running id; drop or drop; id.
• Suppose that p = f1 ← v1 + f1 ← v′1 and q = f2 ← v2.

Running p {f1}||{f2} q on PK will yield

PKp = {pk [f1 := v1] | pk ∈ PK \ {f2}} ∪
{pk [f1 := v′1] | pk ∈ PK \ {f2}}

PKq = {pk [f2 := v2] | pk ∈ PK \ {f1}}
PKp × PKq = {pk [f2 := v2][f1 := v1] | pk ∈ PK} ∪

{pk [f2 := v2][f1 := v′1] | pk ∈ PK}

Which is the same as running p; q or q; p.

We should note that p Wp||Wq q is not the same as p; q when Wp

and Wq are incorrect, e.g., when p tries to write a field f 6∈Wp, or
when q tries to read a field f ∈ Wp. Sequential composition may
succeed where concurrent composition gets stuck!

3.2 Modeling the SDN controller
The operational semantics is defined on closed policies—that is,
policies without table variables. At configuration time, the con-
troller installs a (possibly open) policy on each switch, which tells
the switch how to arrange its packet processing pipeline. Next, at
population time, the controller will send messages to the switch
instructing it to replace each abstract table variable with a con-
crete (closed) policy, after which packet processing proceeds as de-
scribed by the operational semantics from Figure 4.

Packet operations

pk [f := v] = λf ′ .

{
v f = f ′

pk(f ′) otherwise
pk \ F = λf .

{
⊥ f ∈ F

pk(f) otherwise
PK \ F = {pk \ F | pk ∈ PK}

pk1 × pk2 = λf .


pk1(f) when f 6∈ Dom (pk2)

pk2(f) when f 6∈ Dom (pk1)

pk1(f) when pk1(f) = pk2(f)

PK1 × PK2 = {pk1 × pk2| pk1 ∈ PK1, pk2 ∈ PK2}

Reduction relation
σ1 → σ2

〈drop, 〈PK,W〉〉 → 〈id, 〈∅,W〉〉
DROP

〈f = v, 〈PK,W〉〉 → 〈id, 〈{pk ∈ PK | pk(f) = v},W〉〉
MATCH

f ∈W

〈f ← v, 〈PK,W〉〉 → 〈id, 〈{pk [f := v] | pk ∈ PK},W〉〉
MODIFY

〈p, δ〉 → 〈p′, δ′〉
〈p; q, δ〉 → 〈p′; q, δ′〉

SEQL
〈id; q, δ〉 → 〈q, δ〉

SEQR

〈p+ q, 〈PK,W〉〉 → 〈p+ q, 〈par 〈PK,W〉 〈PK,W〉〉〉
PARENTER

〈p, δp〉 → 〈p′, δ′p〉
〈p+ q, 〈par δp δq〉〉 → 〈p′ + q, 〈par δ′p δq〉〉

PARL

〈q, δq〉 → 〈q′, δ′q〉
〈p+ q, 〈par δp δq〉〉 → 〈p+ q′, 〈par δp δ

′
q〉〉

PARR
〈id + id, 〈par 〈PKp,W〉 〈PKq ,W〉〉〉 → 〈id, 〈PKp ∪ PKq ,W〉〉

PAREXIT

〈¬a, 〈PK,W〉〉 → 〈a, 〈notPK 〈PK,W〉〉〉
NOTENTER

〈a, δ〉 → 〈a′, δ′〉
〈a, 〈notPK δ〉〉 → 〈a′, 〈notPK δ

′〉〉
NOTINNER

〈id, 〈notPK 〈PKa,W〉〉〉 → 〈id, 〈PK \ PKa,W〉〉
NOTEXIT

Wp ∩Wq = ∅ Wp ∪Wq ⊆W

〈p Wp||Wq q, 〈PK,W〉〉 → 〈p Wp||Wq q, 〈conW 〈PK \Wq ,Wp〉 〈PK \Wp,Wq〉〉〉
CONENTER

〈p, δp〉 → 〈p′, δ′p〉
〈p Wp||Wq q, 〈conW δp δq〉〉 → 〈p′ Wp||Wq q, 〈conW δ′p δq〉〉

CONL
〈q, δq〉 → 〈q′, δ′q〉

〈p Wp||Wq q, 〈conW δp δq〉〉 → 〈p Wp||Wq q
′, 〈conW δp δ

′
q〉〉

CONR

〈id Wp||Wq id, 〈conW 〈PKp,Wp〉 〈PKq ,Wq〉〉〉 → 〈id, 〈PKp × PKq ,W〉〉
CONEXIT

Figure 4. Concurrent NetCore operational semantics

Definition 1. Population-time updates and closing functions.

Popluation-time updates b ∈ Var ⇀ Policy
Closing functions Tb ∈ Policy→ Policy

We model population-time updates as partial functions mapping
table variables to closed policies. The function Tb (p) structurally
recurses through a policy p, replacing each table variable x with
b(x). That is, the policy p is a configuration-time specification, and
Tb (p) is an instance of that specification populated according to the
update function b. Population-time updates and closing functions
will play a large role in Section 6, when we present a compilation
algorithm for transforming a policy (and subsequent updates) to fit
on a fixed target architecture.

4. Metatheory
The operational semantics of Section 3.1/Figure 4 defines the be-
havior of policies on packets. A number of things can cause the
operational semantics to get stuck, which is how we model errors:

1. Unsubstituted variables—they have no corresponding rule.

2. Reads of non-existent fields—(MATCH) can’t apply if there are
packets pk ∈ PK such that f 6∈ Dom (pk), as might happen if
CONENTER were to split packets incorrectly.

3. Writes to fields without write permission—(MODIFY) only al-
lows writes to a field f if f ∈W.

4. Race conditions—concurrency splits the packet tree based
on the write permissions of its subpolicies, and incorrect an-
notations can lead to stuckness via being unable to apply
(CONENTER), which requires that Wp ∩ Wq = ∅, or via get-
ting stuck on (2) or (3) later in the evaluation due to the reduced
fields and permissions each concurrent sub-policy runs with.

We define a type system in Figure 5, with the aim that well typed
programs won’t get stuck—a property we show in our proof of nor-
malization, Lemma 1. First, we define entirely standard typing con-
texts, Γ. We will only run policies typed in the empty environment,
i.e., with all of their tables filled in. Before offering typing rules for
policies, we define well formedness of types and typing of packet
sets. A type τ = (R,W) is well formed if R and W are subsets of a
globally fixed set of fields F and if R∩W is empty. A set of packets
PK conforms to a type τ = (R,W) if every packet pk ∈ PK has
at least those fields in R ∪W.

The policies id and drop can both be typed at any well formed
type, by (ID) and (DROP), respectively. Table variables (x : τ)
are typed at their annotations, τ . The matching policy f = v is
well typed at τ when f is readable or writable (MATCH). Similarly,
f ← v is well typed at τ when f is writable in τ (MODIFY).

Γ ::= · | Γ, (x : τ)

(R1,W1) ∪ (R2,W2) = ((R1 \W2) ∪ (R2 \W1),W1 ∪W2)

` τ ` PK : τ

R,W ⊆ F R ∩W = ∅
` (R,W)

∀pk ∈ PK. R ∪W ⊆ Dom (pk)

` PK : (R,W)

Γ ` p : τ

` τ
Γ ` id : τ

ID
` τ

Γ ` drop : τ
DROP

(x : τ) ∈ Γ ` τ
Γ ` x : τ

VAR

` (R,W) f ∈ R ∪W

Γ ` f = v : (R,W)
MATCH

` (R,W) f ∈W

Γ ` f ← v : (R,W)
MODIFY

Γ ` a : (R, ∅)
Γ ` ¬a : (R,W)

NOT
Γ ` p : τ1 Γ ` q : τ2

Γ ` p+ q : (τ1 ∪ τ2)
PAR

Γ ` p : τ1 Γ ` q : τ2

Γ ` p; q : (τ1 ∪ τ2)
SEQ

Γ ` p : (Rp,Wp) Γ ` q : (Rq ,Wq)
Wp ∩Wq = ∅ Wp ∩ Rq = ∅ Rp ∩Wq = ∅

Γ ` p Wp||Wq q : ((Rp,Wp) ∪ (Rq ,Wq))
CON

Figure 5. Concurrent NetCore typing rules

Negations ¬a are well typed at τ = (R,W) by (NOT) when a is
well typed at the read-only version of τ , i.e., (R, ∅). We restrict the
type to being read-only to reflect the fact that (a) only predicates
can be negated, and (b) predicates never modify fields.

If p is well typed at τ1 and q is well typed at τ2, then their
parallel composition p+ q is well typed at τ1 ∪ τ2. Union on types
is defined in Figure 4 as taking the highest privileges possible: the
writable fields of τ1 ∪ τ2 are those that were writable in either τ1
or τ2; the readable fields of the union are those fields that were
readable in one or both types but weren’t writable in either type.
We give their sequential composition the same type.

Concurrent composition has the most complicated type—we
must add (conservative) conditions to prevent races. Suppose Γ `
p : (Rp,Wp) and Γ ` q : (Rq,Wq). We require that:

• There are no write-write dependencies between p and q (Wp ∩
Wq = ∅; a requirement of (CONENTER).
• There are no read-write or write-read dependencies between p

and q (Wp ∩ Rq = ∅ and Rp ∩Wq = ∅). This guarantees that
(MATCH) won’t get stuck trying to read a field that isn’t present.

If these conditions hold, then we say the concurrent composition is
well typed: Γ ` p Wp||Wq q : (Rp,Wp) ∪ (Rq,Wq). Note that this
means that the W stored in the con packet tree will be Wp ∪Wq ,
and well typed programs meet the Wp ∪ Wq ⊆ W requirement
of (CONENTER) exactly. These conditions are conservative—some
concurrent compositions with overlapping reads and writes are
race-free. We use this condition for a simple reason: switches make
similar disjointness restrictions on concurrent tables.

Two metatheorems yield a strong result about our calculus:
strong normalization. We first prove well typed policies are nor-
malizing when run on well typed leaves 〈PK,W〉—they reduce to
the terminal state 〈id, 〈PK′,W〉〉 with some other, well typed set of
packets PK′ and the same write permissions W.

Lemma 1 (Normalization). If

` τ = (R,W) and ` PK : τ and · ` p : τ

then 〈p, 〈PK,W〉〉 →∗ 〈id, 〈PK′,W〉〉 such that

1. ` PK′ : τ , and
2. PK′ \W ⊆ PK \W.

Proof. By induction on the policy p, leaving τ general. The only
difficulty is showing that (CONEXIT) can always successfully merge
the results of well typed concurrency, which can be seen by a
careful analysis of the cross product, using part (2) of the IH to
show that fields not in the write permission W are “read-only”.

Next we show that our calculus is confluent—even for ill typed
terms. This result may be surprising at first, but observe that concur-
rency is the only potential hitch for confluence. A concurrent com-
position with an annotation that conflicts with the reads and writes
of its sub-policies will get stuck before ever running (CONEXIT).
Even ill typed programs will be confluent—they just might not be
confluent at terminal states. We can imagine an alternative seman-
tics, where concurrency really worked on shared state—in that for-
mulation, only well typed programs would be confluent.

Lemma 2 (Confluence). If σ →∗ σ1 and σ →∗ σ2 then there
exists σ′ such that σ1 →∗ σ′ and σ2 →∗ σ′.

Proof. By induction on the derivation of σ →∗ σ1, proving the
(stronger) single-step diamond property first.

Normalization and confluence yield strong normalization. Even
though our small-step operational semantics is nondeterministic,
well typed policies terminate deterministically. We can in fact do
one better: our small-step semantics (without concurrency) co-
incides exactly with the denotational semantics of NetKAT [3],
though we (a) do away with histories, and (b) make the quantifi-
cation in the definition of sequencing explicit. Since our policies
are ‘switch-local’, we omit Kleene star.

Lemma 3 (Adequacy). If · ` p : τ = (R,W) with no concurrency,
then for all packets ` PK : τ , if 〈p, 〈PK,W〉〉 →∗ 〈id, 〈PK′,W〉〉
then PK′ =

⋃
pk∈PK JpK pk , where:

JpK ∈ PK→ P(PK)
JidK pk = {pk}

JdropK pk = ∅

Jf = vK pk =

{
{pk} pk(f) = v

∅ otherwise
Jf ← vK pk = {pk [f := v]}

J¬aK pk = {pk} \ (JaK pk)
Jp+ qK pk = JpK pk ∪ JqK pk

Jp; qK pk =
⋃

pk′∈JpKpk JqK pk ′

Proof. By induction on · ` p : τ .

The set-based reasoning principles offered by the denotational
semantics are quite powerful. We can in fact characterize the be-
havior of well typed concurrent compositions as:

q
p Wp||Wq q

y
, Jp; qK (Lemma 5)
= Jq; pK (Lemma 4)

Lemma 4 (Concurrency commutes). If ` PK : τ then

` p Wp||Wq q : τ and 〈p Wp||Wq q,PK〉 →∗ 〈id,PK′〉
⇐⇒ ` q Wq||Wp p : τ and 〈q Wq||Wp p,PK〉 →∗ 〈id,PK′〉.

Proof. We reorder the congruence steps so that whenever we use
CONL in one derivation, we use CONR in the other, and vice versa.
Confluence (Lemma 2) proves the end results equal.

Lemma 5 (Concurrency serializes). If ` p Wp||Wq q : (R,W)
and ` PK : τ then 〈p Wp||Wq q, 〈PK,W〉〉 →∗ 〈id, 〈PK′,W〉〉 iff
〈p; q, 〈PK,W〉〉 →∗ 〈id, 〈PK′,W〉〉.

Proof. Rewriting derivations by confluence (Lemma 2) to run p us-
ing (CONL/SEQL) and then q (nesting in CONR under concurrency).
We rely on auxiliary lemmas relating, for all p, p’s behavior on
PK \Wq and on PK (when Rp ∩Wq = Wp ∩Wq = ∅).

5. Modeling RMT and FlexPipe architectures
In addition to serving programmers at a user level, our language
of network policies can model the hardware layout of a switch’s
packet-processing pipeline. When we interpret Concurrent NetCore
policies as pipelines, table variables represent TCAM or SRAM
tables, and combinators describe how tables are connected.

Figure 6 presents models for the RMT and FlexPipe architec-
tures at a finer level of detail than in Section 2.2. Both the RMT
and FlexPipe architectures share some physical characteristics, in-
cluding the physical layout of hardware tables. These physical ta-
bles are built from SRAM or TCAM memory and hold rules that
match on packet header fields and, depending on the results of the
match, modify the packet header. Each table has a fixed amount
of memory, but it can be reconfigured, in the same way the height
and width of a rectangle can vary as the area remains constant. The
width of a table is determined by the number of bits it matches on
from the packet header, and the height determines the number of
rules it can hold. Hence, knowing in advance that the controller
will only ever install rules that match on the src is valuable in-
formation, as it allows more rules to be installed. Although both
chips support complex operations—such as adding and removing
fields, arithmetic, checksums, and field encryption—we only model
rewriting the value of header fields.

Physical tables are so-called match/action tables: the table com-
prises an ordered list of rules matching some fields on the header of
a packet. The table selects a matching rule and executes its corre-
sponding action. We model physical tables in the pipeline as table
variables, so we must be careful that our compiler only substitutes
in policies that look like rules in a match/action table. In an imple-
mentation of a compiler from Concurrent NetCore to a switch, we
would have to actually translate the rule-like policies to the switch-
specific rule population instructions. In our model and the proofs
of correctness, we treat policies of the form

matches; crossbar; actions

as rules (the translation to syntactically correct OpenFlow rules is
straightforward enough at this point). The matches policy matches
some fields and selects actions to perform; the crossbar policy col-
lects the actions selected, and then the actions policy runs them.
(We elaborate on these phases below.) We believe that this is an ad-
equate model, since it would not be hard to translate CNC policies
in this form to rules for a particular switch. Our model requires that
run-time updates to physical tables be of the form above; i.e., the
binding b(x : τ) (Definition 1) has a rule-like tripartite structure.

If statements. Before examining each physical table stage in
detail, it is worth noting that the multicast combinator also serves
as a form of disjunction. For example, consider the policy a; p +
¬a; q. The packet splits into two copies, but the predicates on
the left- and right-hand sides of + are disjoint—at least one copy
will always be dropped. Hence, this particular form never actually
produces multiple packet copies. It is useful to know syntactically
that no multicast happens—as we will see, it turns out that physical
table stages contain sequences of nested if statements. We write
(if a then p else q) for (a; p+ ¬a; q).

Physical tables. Each variable mapped to a physical table by the
binding b(x : τ) comprises three stages. The match stage is first. A
single match (matchi) sets the metadata field acti based on a subset
of fields drawn from the packet header. These fields implicitly
determine the width of the match. The metadata field acti holds
an action identifier Ajk, a stand-in for the slightly more structured
action languages of the RMT and FlexPipe chips. By convention,
the j index of action identifiers groups updates to the same fields.
For example, A11 . . . A1k might correspond to updating the src
field, A21 . . . A2j the dst field, and so on. By construction, action
selection is written to a metadata field acti that is unique to that
match, allowing for the match stage to execute multiple matches
concurrently. Once the acti fields are set, the physical table has a
crossbar that combines the metadata fields and selects the actions
to execute—which we model with metadata fields doAjk , one for
each Ajk. Each field doAjk is consumed by an action stage, which
runs the corresponding actions on the packet. Each actionf stage
tests for actions denoting updates to field f , which allows actions
to execute concurrently.

As an example, suppose we would like to compile the routing
and firewall policies (r || w) from Figure 2 as a single physical
table.

r = in = 1; out← 2 + in = 2; out← 1
w = in = 1; (typ = ssh+ typ = http) + ¬(in = 1)

First, let’s fix four concrete action values—we’ll say that a value
of 11 means “modify the out field to 1” (out ← 1); a value of
12 means “modify the out field to 2” (out ← 2); a value of 31
means “do nothing” (id); and a value of 41 means “drop the packet”
(drop). We begin by defining two concurrent match stages, one
each for r and w.

matchr = if in = 1 then actr ← 12
else if in = 2 then actr ← 11
else actr ← 41

matchw = if in = 1; typ = ssh then actw ← 31
else if in = 1; typ = http then actw ← 31
else if in = 1 then actw ← 41
else actw ← 31

matches = matchr ||matchw

The matchr construct mirrors the structure of r, but rather than
directly modifying the out field directly, it assigns an action iden-
tifier to the actr metadata field. Encoding w is slightly more com-
plex, thanks to the presence of disjunction (+) and negation. But
it follows a similar pattern: In addition to converting w to a se-
quence of nested if statements, matchw assigns an action identifier
to the actw metadata field in place of taking an action directly. The
matches stage is made up of matchr and matchw composed con-
currently.

The crossbar stage collects the action values assigned in the
matches stage in order to communicate them to the actions stage,
where modifications to the packet header fields occur.

crossbar = if actr = 11 + actw = 11 then do11 ← 1
else if actr = 12 + actw = 12 then do12 ← 1
else if actr = 31 + actw = 31 then do31 ← 1
else if actr = 41 + actw = 41 then do41 ← 1
else drop

The actions stage consumes the output of the crossbar in order
to effect modifications to the header fields. Actions on the same
field are grouped; in this case, modifications to the out field are
handled by actionout. This allows each action group to be executed
concurrently, because they operate on different fields by construc-

Physical tables
matchi = if f11 = v11; . . . ; f1n = v1n

then acti ← Aj1
else if f21 = v21; . . . ; f2m = v2m
then acti ← Ak2
else . . .

matches = match1 ||match2 || . . .
crossbar = if act1 = A11 + act2 = A11 + . . .

then doA11
← 1

else if act1 = A21 + act2 = A21 + . . .
then doA21 ← 1
else . . .

actionj = if doAj1
= 1 then perform Aj1’s writes

else if doAj2
= 1 then perform Aj2’s writes

. . .

actions = action1 || action2 || . . .
physical = x : τ

Tb (physical) = matches; crossbar; actions

RMT model
multicast = (out1 = 1; ftag ← v1; out← 1)

+ (out2 = 2; ftag ← v2; out← 2)
+ . . .

pipeline = physical1; . . . ; physicalk; multicast;
physicalk+1; . . . ; physical32

where k ≤ 16

FlexPipe model
mirror = m = 0 +

∑
imi = 1;m← i

egress = if f11 = v11; . . . ; f1n = v1n
then f ′11 ← v′11; . . . ; f ′1n ← v′1n
else if f21 = v21; . . . ; f2m = v2m
then f ′21 ← v′21; . . . ; f ′2n ← v′2n
else . . .

flood =
∑
i outi = 1; out← i

pair = physical1; physical2

diamond = pair1; (pair2 || pair3); pair4

pipeline = diamond; mirror; egress; flood

Figure 6. Modeling RMT and Intel FlexPipe.

tion.

actionout = if do11 = 1 then out← 1
else if do12 = 1 then out← 2
else id

actionid = if do31 = 1 then id
else id

actiondrop = if do41 = 1 then drop
else id

actions = actionout || actionid || actiondrop

Separating tables into three stages may seem excessive, but suppose
r also modified the typ field. In this case, r || w is no longer
well typed (because r writes to typ while w reads from it), but
we may still extract concurrency from w; r: By splitting reading
and writing into separate phases, the match stage for applying
the access control policy (matchw) can run concurrently with the
match determining the output port (matchr) with little change from
the example above. Concurrent processing like this is a key feature
of both the RMT and FlexPipe architectures.

RMT. The RMT chip provides a thirty-two table pipeline divided
into ingress and egress stages, which are separated by a multicast
stage. As a packet arrives, tables in the ingress pipeline act upon
it before it reaches the multicast stage. To indicate that the packet
should be duplicated, ingress tables mark a set of metadata fields
corresponding to output ports on the switch. The multicast stage
maintains a set of queues, one per output port. The chip enqueues
a copy of the packet (really a copy of the packet’s header and
a pointer to the packet’s body) into those queues selected by the
metadata, optionally marking each copy with a distinct tag. Finally,
tables in the egress pipeline process each copy of the packet.

We model the multicast stage as the parallel composition of
sequences of tests on header and metadata fields followed by the
assignment of a unique value tag and an output port, where each
summand corresponds to a queue in the RMT architecture. We
model the ingress and egress pipelines as sequences of tables,
where each of the thirty-two tables may be assigned to one pipeline
or the other, but not both. The RMT architecture makes it possible
to divide a single physical table into pieces and assign each piece
to a different pipeline. We leave modeling this as future work.

FlexPipe. While physical tables have built-in concurrency within
match and action stages, the FlexPipe architecture also makes use
of concurrency between physical tables. The ingress pipeline is ar-
ranged in a diamond shape. Each point of the diamond is built from
two tables in sequence, with incoming packets first processed by
the first pair, then concurrently by the next two pairs, and finally
by the last pair. This built-in concurrency is optimized for common
networking tasks, such as checking packets against an access con-
trol list while simultaneously calculating routing behavior—as in
our firewall example of Figure 2.

The FlexPipe architecture breaks multicast into two stages sep-
arated by a single egress stage. The mirror stage makes up to four
additional copies of the packet. Each copy sets a unique identifier to
a metadata field m and writes to a bitmap out corresponding to the
ports on which this copy will eventually be emitted—this allows for
up to five potentially modified packets to be emitted from each port
for each input packet. The egress stage matches on the metadata
field m and various other fields to determine which modifications
should be applied to the packet, and then applies those correspond-
ing updates. Finally, the flood stage emits a copy of each mirrored
packet on the ports set in its out bitmap.

6. Compilation
Compilation consists of several passes, each of which addresses a
discrepancy between the expressivity of the high-level policy and
the physical restrictions of the hardware model. In this section, we
target the RMT architecture.

• Multicast consolidation transforms a policy with arbitrary oc-
currences of multicast (+) into a pipelined policy wherein mul-
ticast occurs at just a single stage.
• Field extraction moves modifications of a given field to an

earlier stage of a pipelined policy.
• Table fitting partitions a pipelined policy into a sequence of

tables, possibly combining multiple policy fragments into a
single table.

Each pass takes a well-typed policy as input and produces an
equivalent, refactored policy as well as a binding transformer as
output.

Definition 2 (Binding transformer). A binding transformer θ is an
operator on table bindings b.

θ ∈ (Var ⇀ Policy)→ Var ⇀ Policy

Binding transformers play the role of the “generated rule trans-
lator” from Figure 1. In other words, during the switch population
phase, the controller will issue table bindings b—essentially, clos-
ing substitutions, see Definition 1—in terms of the original policy,
pre-compilation. It is the binding transformer θ’s job to transform
these table bindings so that they can be applied sensibly to the post-
compilation pipeline configured on the switch.

6.1 Multicast consolidation
There are two important differences between the kind of multicast
that Concurrent NetCore offers and the kind supported by the
RMT pipeline. First, multicast may not occur arbitrarily in the
RMT pipeline; rather, there is a fixed multicast stage sandwiched
between two pipelines. Second, the multicast stage must know
the destination output port of each packet copy at the time the
packet is copied. We use multicast consolidation to rewrite a high-
level policy into a form with a distinct multicast stage. The next
section describes how we use field extraction to extract potential
modifications to a given field from a subpolicy—which we will use
to isolate writes to the output port to the multicast stage.

Informally, multicast consolidation works as follows. Suppose a
policy p contains two instances of parallel composition, along with
subpolicies q, r, and s that do not contain parallel composition.

p = q + r + s

Multicast consolidation rewrites p into two stages: the consolida-
tion stage makes three copies of the packet and sets a fresh metadata
field unique to each packet.

pc = f1 ← 1 + f2 ← 1 + f3 ← 1

Next, the egress stage replaces the original occurrences of multicast
in p with a sequence of tests on the new metadata fields.

pe = if f1 = 1 then q else id;
if f2 = 1 then r else id;
if f3 = 1 then s else id

The consolidation and egress stages are composed sequentially. By
convention, fresh metadata fields are initialized to zero. Hence,
pc; pe acts equivalently to p, producing at most three packets: one
processed by q, another by r, and a third by s.

To capture this formally, we define syntactically restricted forms
for the consolidation and egress stages that model consolidated
packet duplication and tagging. The consolidation form is similar
to the multicast stage presented in Figure 6 but slightly higher-
level, in that it may contain table variables and additional field
modifications—later compilation phases will factor these out.

Definition 3 (Multicast consolidation stages).
consolidation sequence s ::= Πifi ← 1 | (x : τ); Πifi ← 1

consolidation stage m ∈ M ::=
∑
i ai; si

egress stage n ∈ N ::= id | x : τ | n; r
| n; if Πifi = 1 then r else id

A consolidation stage is the sum of zero or more predicated
consolidation sequences, each of which assigns to a set of fields
(used for tagging each packet copy for later processing). We use
the product notation Πifi ← vi to stand for a sequence of field
modifications f1 ← v1; . . . ; fn ← vn. Sequences may optionally
begin with tables, which allows for multicast to be increased or
decreased at run time.

An egress stage consists of a sequence of smaller policies. The
sequence may begin with a table, which allows the egress stage

to grow or shrink at population time; otherwise, it begins with id.
Each remaining subpolicy takes one of two forms. Either it is drawn
from the fragment of CNC that does not contain multicast, which
we represent with the metavariable r, or it may be a multicast-free
fragment embedded within an if statement that tests some subset
of the metadata fields set in the consolidation stage. Intuitively, r
alone represents a part of the original policy to be applied to all
multicast copies of the packet, whereas an if statement selectively
applies the policy it wraps to some copies of the packet, leaving
others untouched.

Definition 4 (Multicast consolidation).

pipeline :: (Var→ Nat)→ Policy→ (M× N×Θ)

Given an arbitrary policy p, the function pipeline s p factors the
policy into a consolidation stage m followed by an egress stage n.
The argument s is a user-supplied hint mapping each table to the
number of copies it may make of a packet. The pipeline function
is syntax-directed and presented in its entirety in the technical
appendix; we highlight two interesting cases here. As one might
expect, the bulk of the work takes place in the multicast case:

pipeline s (p+ q) =
let f = a fresh metadata field in
let (

∑
imi), n1, θ1 = pipeline s p in

let (
∑
jmj), n2, θ2 = pipeline s q in

let n3, θ3 = qualify(f = 0, n1) in
let n4, θ4 = qualify(f = 1, n2) in
((
∑
imi; f ← 0) + (

∑
jmj ; f ← 1), n3;n4,

θ1 ◦ θ2 ◦ θ3 ◦ θ4)

Given a policy p + q, our strategy is as follows. First, recursively
consolidate p and q. Then, pick a fresh field f that neither p nor q
use. For each summand in the consolidation stage produced from p,
set f to 0, and assign 1 to f in summands produced from q. Finally,
predicate each egress pipeline from p with f = 0 and from q with
f = 1—the qualify function transforms if a then n else id into
an egress pipeline n′ with the predicate a conjoined to the guard
in each subseqent if statement. Finally, note that by construction,
θ functions extend the domain of table bindings to accommodate
new table variables. Hence, we can simply compose the θ functions
produced by recursive compilation.

Table variables are the other tricky case—we must use the
s argument to see how much more multicast has been reserved,
deferring some of the multicast consolidation to rewrites that will
occur during the population phase.

pipeline s (x : τ) =
let fs = s(x) fresh metadata fields in
let tm = y : ({} , fs) in
let tn = z : (τ.1 ∪ fs, τ.2) in
let θ′ = (λb, w.let m,n, θ = pipeline s (b x) in

if w = y then m else if w = z then n else Tθ b w) in
(tm, tn, θ

′)

Applied to a table variable, the pipeline function produces a θ
function that, in turn, compiles all future table updates—using the
s map to preallocate metadata fields for future updates. A key
property of table updates is that they produce closed terms—hence,
invoking pipeline inside θ on the updated table b x runs no risk of
divergence.

Example. As a brief example, let’s look at how multicast consoli-
dation will work on the r+m fragment of the example policy from
Section 2. Recall that m contains a table variable—which may in-
troduce more multicast later. The compiler relies on a hint, s, that
pre-allocates metadata fields corresponding to the amount of mul-
ticast that future updates may contain. Let fs = s x be a set of such

fields. The policy produced by pipeline s (r +m) will be

(f ← 0 + y : ({typ, src} , fs); f ← 1);
(if f = 0 then r else id);
(if f = 1 then z : ({typ, src} ∪ fs, {out}) else id),

and the binding transformer θ will be

(λb, w.let q, r, θ′ = pipeline s (Tb x) in
if w = y then q else if w = z then r elseTb w).

We introduce a fresh metadata field f to consolidate multicast in
a single stage and tag each packet copy, and the remainder of the
policy uses the tag to determine whether to apply r or m to each
fragment. Because m contains a table variable x, we also add new
tables y and z to handle any multicast that m may contain in the
future—and we produce a function θ to ensure this.

Suppose an update arrives to x in as part of a table binding, b.
Applying θ b to the compiled policy will consolidate any multicast
present in b and install appropriate policies in y and z. Since Tb x
produces a closed policy, θ′ is always the identity function.

Proof of semantic preservation. Finally, we prove that the origi-
nal policy is equivalent to the compiled policy for all table updates.
We use z to model the fact that metadata is initially assigned a value
of 0 when the packet arrives at the switch, and that metadata is not
observable once the packet has left the switch. The proof proceeds
by induction on the structure of the policy p.

Lemma 6 (Multicast consolidation preserves semantics). Let fs
be the metadata fields used to tag multicast packets, and let z =
Πf∈fs f ← 0. If ` p : τ and m,n, θ = pipeline s p, then
Tb (z; p; z) ≡ Tθ b (z;m;n; z).

Proof. By induction on the structure of p, relying on Lemmas 4 and
5 and the axioms of NetKAT [3] to establish equivalence.

6.2 Field extraction
The RMT architecture also requires that the output port of each
packet be set during the multicast stage. Field extraction examines
a policy to determine all the conditions under which a given field
modification may take place, and then rewrites the policy so that
modifications to that field happen first. For example, suppose we
wish to extract modifications to the field f from this policy.

if b then f ← v1; p else f ← v2; q

Either f is set to v1 or v2, and the predicate b determines which
occurs. Using a fresh field f ′, we can rewrite this policy.

(b; f ← v1; f ′ ← 0+¬b; f ← v2; f ′ ← 1); if f ′ = 0 then p else q

Introducing f ′ is necessary because b may depend on the value of
f . For example, suppose b is f = v3. The clause f ′ = 0 in the if
statement ensures that p is executed if f was set to v1.

We define a modification stage as a sum of all the conditions
leading to a given field being modified, coupled with the modifica-
tion. The function extf p splits a policy p into a modification stage
for the field f followed by the remainder of the policy.

Definition 5 (Modification stage).

modification sequence s ::= Πifi ← vi
| (x : τ); Πifi ← vi

modification sum e ∈ E ::=
∑
j aj ; sj

Definition 6 (Field extraction).

extf :: Policy→ (E× Policy ×Θ)

The interesting case lies in extracting modification conditions from
within an if statement.

extf (if b then p else q) =
let f ′ = a fresh metadata field in
let (

∑
i a1i;m1i), p1, θ1 = extf p in

let (
∑
j a2j ;m2j), q2, θ2 = extf q in

let e =
∑
i b; a1i;m1i; f

′ ← 0 +∑
j ¬b; a2j ;m2j ; f

′ ← 1 in
(e, if f ′ = 0 then p1 else q2, θ2 ◦ θ1)

In this case, we begin by recursively extracting any modifications
from the branches of the if statement. We then sequence the pred-
icate b with the conditions produced from the true branch and
¬b with those from the false branch. However, modifications m1i

(from the recursive call extf p) or m2j (from the recursive call
extf q) might affect the predicate b. We therefore save b’s pre-
modification value in a fresh field f ′. After we’ve run the modi-
fication sums from p and q, we produce a conditional that now tests
f ′, which holds the original result of the predicate b.

As with multicast consolidation, we show that when metadata
has been zeroed at the beginning and end of the policy, the inter-
pretation of the original and compiled forms are equivalent for all
table updates.

Lemma 7 (Field extraction preserves semantics). Let fs be the
metadata fields used to tag field extraction, and let z = Πf∈fs f ←
0. If ` r : τ and e, r′, θ = pipeline s r, then Tb (z; r; z) ≡
Tθ b (z; e; r′; z).

Proof. By induction on the structure of p, relying on Lemmas 4 and
5 and the axioms of NetKAT [3] to establish equivalence.

Composing multicast consolidation with field extraction (on
the out field) produces two large summations. The next step is
to factor the summations and group summands by output port. It
is unclear whether/how the RMT architecture supports emitting
multiple copies of a packet out the same output port, and so we
reject programs of that shape here—we stick to a set semantics,
though we can simulate a bag semantics with metadata fields. Now,
valid policies consist of a single large summation of tests followed
by modifications, ending with modification of the out field.∑

i

Πjfij = vij ; Πkfik ← vik; out← i

A final transformation splits this summation into a sequence of
three smaller summations, of which the middle aligns precisely
with the multicast stage of the RMT pipeline.

(
∑
i Πjfij = vij ; outi ← 1);

(
∑
i outi = 1; ftag ← i; out← i);

(
∑
i ftag = i; Πkfik ← vik)

We have not yet proved that this transformation is semantics pre-
serving, although we expect that doing so is straightforward. The
next section presents techniques for compiling these, and other
policies, to physical table format.

6.3 Table fitting
At this stage of the compilation process, every occurrence of par-
allel composition has been consolidated to a single multicast stage,
appropriate for deployment to the RMT’s multicast stage. What
remains are table variables, predicates, field modifications, and if
statements joined by sequential and concurrent combinators. Two
tasks remain to match the policy with the architecture model. First,
predicates, field modifications, and if statements must be replaced

by table variables. A binding transformer will reinstate these pol-
icy fragments into the tables at population time. Second, the table
variables in the user policy must be fitted to the table variables in
the architecture model.

Both steps depend on a second compilation algorithm to com-
pile a table-free user policy to a single physical table. With a few
small modifications, we can adapt the compilation algorithm de-
scribed in [3] for compiling policies to a physical table format. We
call this single table compilation.

single table :: Policy→ Policy

The resulting policy fits the shape of the matches; crossbar; actions
table format described in Figure 6. The extension to the algorithm
described in [3] is straightforward, and we defer a complete pre-
sentation to a technical report.

Table insertion. At configuration time, the RMT switch consists
solely of tables arranged via sequential and concurrent compo-
sition. Non-table elements in the user policy are fixed—i.e., the
topology of tables cannot at population time (when the switch is
“running”)—but they cannot be installed directly on the switch at
configuration time. Rather, they must be replaced by table vari-
ables, and then reinstalled at population time by a binding transfor-
mation. As a small example, consider the policy typ = http;x : τ .
No matter which policies are installed into x at population time,
they will always be preceded by the filter on the typ field. Hence,
we can produce a new policy with a fresh table variable, y :
({} , {typ});x : τ , and a binding transformation

(λb, w.if w = y then typ = http else Tb w).

Definition 7 (Table insertion).
insert table p; q = let p′, θp = insert table p in

let q′, θq = insert table q in
(p′; q′, θp ◦ θq)

insert table p || q = let p′, θp = insert table p in
let q′, θq = insert table q in
(p′ || q′, θp ◦ θq)

insert table p = (x : τ, (λb, w.
if w = x then single table (Tb p)
else Tb w))

After completing this step, the transformed user policy consists
of table variables and sequential and concurrent combinators. We
don’t define a case for parallel composition because all of the
multicast has already been consolidated.

Table fitting. Single-table compilation comes with a cost—the
number of rules in the compiled table grows exponentially with
the number of sequential combinators in the original policy. How-
ever, thanks to the concurrency inherent within physical tables,
the policy p || q does not incur any overhead when installed in
a single table. This leads to a choice. Suppose we have a policy
(p; (q || r)) : τ that we would like to compile to a sequence of two
tables, (x1 : τ); (x2 : τ). Recall that concurrency is commutative
(Lemma 4) and equivalent to sequential composition (Lemma 5).
Hence, there are four ways we might compile this policy.

In the first case, p is compiled to x1 and q || r to x2. The cost
of p (written |p|) refers to the number of TCAM or SRAM rows
the compiled policy fills. The cost of placing q and r in the same
table is |q|+ |r|. In the next, the division is p; q and r, and here, the
cost of placing p and q in the same table is multiplicative in their
sizes. Similarly, p; r might be placed in x1 and q in x2 at the cost
|p| ∗ |r| + |q|. Finally, the RMT chip has the capability to join its
physical stages together to emulate a single, larger “logical stage.”
That capability provides a final option, which is to compile p, q,
and r to a single table (paying the largest overhead of |p| ∗ |q| ∗ |r|).
If p, q, and r are of equal size, then the first option is most efficient.

But when p is small and x1 has space remaining, it may make sense
to pay the cost of compiling p; q or p; r to x1. The RMT “logical
table” feature is suitable for cases in which p, q, or r are too large to
fit in a single physical table. The RMT chip has a limited number
of bits a table can match and the number of rules it can hold—each
match stage stage has sixteen blocks of 40b by 2048 entry TCAM
memory and eight 80b by 1024 entry SRAM blocks—so deciding
how to partition a policy into tables matters.

Since there are many choices about how to fit a collection
of tables, we have defined a dynamic programming algorithm to
search for the best one. The goal of the algorithm is to fit a well-
typed policy, without parallel composition, into as few tables as
possible.

Definition 8 (TCAM cost measurement).

table cost ∈ Var→ N
height x = table cost x
height p; q = height p ∗ height q
height p || q = height p+ height q
blocks p = d(width p)/40e ∗ d(height p)/2048e

As input, the algorithm relies on a user-supplied annotation
predicting the maximum size of each user table at population time,
written table cost x. We also rely on several utility functions. The
width of a policy (width p) returns the number of bits it matches,
while the height (height p) uses the user-supplied annotation to
gauge the number of entries that will ever be installed into the
policy at population time. Together, they calculate the number
of TCAM blocks necessary to implement a policy (blocks p).
Similar measurements exist for compiling to SRAM, but we focus
on TCAM here.

As input, the algorithm also takes a policy containing only
sequences of tables. The policy AST is a tree with combinators at
the nodes and tables at the leaves. We need to flatten this tree into
the RMT pipeline. To do so, we must consider different groupings
of the tree’s fringe. For convenience, let tij represent an in-order
numbering of the leaves of the abstract syntax tree, starting with
t11 as the leftmost leaf. For example, given a policy (x : τx); (y :
τy); (z : τz), then t23 would be (y : τy); (z : τz).

input : A sequence of t1n
input : table cost

1 let m[1 . . . n, 1 . . . n] and s[1 . . . n− 1, 2 . . . n] be new
tables;

2 for i = 1 to n do
3 m[i, i] = d(blocks ti)/16e;
4 end
5 for l = 2 to n do
6 for i = 1 to n− l + 1 do
7 j = i+ l − 1;
8 m[i, j] =∞;
9 for k = i to j − 1 do

10 q =
min(m[i, k] +m[k + 1, j], dblocks tij/16e);

11 if q < m[i, j] then
12 m[i, j] = q;
13 s[i, j] = k;
14 end
15 end
16 end
17 end
18 return m and s

Algorithm 1: Table fitting.

The algorithm proceeds by building a table m, where each cell
m[i, j] holds the smallest number of tables into which the sequence
tij can fit. The crux of the algorithm lies on line 10. Given a
sequence tij for which the optimal fit for each subsequence has
been computed, either the entire sequence may be compiled to a
single logical table that can be deployed across dblocks tij/16e
physical tables, or there exists a partitioning tik, tkj where both
subsequences fit into sets of tables, and so the entire sequence fits
into the sum of the size of the sets. The algorithm contains three
nested loops iterating over t1n, giving it a complexity on the order
of O(n3), where n is size of the policy AST’s fringe. The table s
records the best partition chosen at each step, from which we can
reconstruct the sets of subsequences to compile to each table.

It remains to convert a user policy with concurrent and sequen-
tial composition to one without concurrent composition. We apply
a brute-force approach. For each concurrent operator p || q, produce
two sequences, p; q and q; p. Apply Algorithm 1 to each, and select
the smallest result. There are on the order of O(2m) sequences,
where m is the number of concurrency operators, and so this final
determinization step runs in O(2mn3). Fortunately, in our experi-
ence, policies tend to have on the order of tens of tables, although
the tables themselves may hold many more rules.

7. Related work
NetCore [7, 11, 12] is a simple compositional language for specify-
ing static data plane forwarding policy. NetKAT [3] extended Net-
Core with Kleene star, and a sound and complete equational theory
for reasoning about networks. Concurrent NetCore shares a com-
mon core with NetCore (and NetKAT), but adds table specifica-
tions, concurrency, and a type system. These additions necessitate
a new approach to the semantics—the denotational techniques used
for NetCore and NetKAT do not extend easily to models of concur-
rency. Moreover, these new features make it possible to express
controller requirements as well as next generation switch hardware
features. We have focused on specifying the properties of individ-
ual switches here, so Kleene star is unnecessary, but it would be
interesting to investigate adding it in the future to facilitate reason-
ing about networks of multi-table switches.

Concurrent Kleene Algebra (CKA) [8] is a related calculus that
latter offers four composition operators: sequential composition,
alternation, disjoint parallel composition and fine-grained concur-
rent composition. One key difference between NetCore/KAT and
CKA (as well as other interpretations of Kleene algebra we are
aware of) is that NetCore interprets “alternation” (disjunction) in
a non-standard way as “copying parallel” composition. This leads
to new and interesting interactions with our concurrent composi-
tion, which is most similar to CKA’s disjoint parallel composition.
Concurrent NetCore also has a type system and interpretation spe-
cialized to network programming, while CKA is presented at an
extremely high level of abstraction.

Bossart et al. [4] recently proposed an architecture for pro-
gramming OpenFlow 2.0 switches, which we follow in this pa-
per. Bossart’s configuration language includes components for pro-
gramming the packet parser as well as the match-action packet pro-
cessing. We focus on just the match-action processing here, but
provide a formal semantics and metatheoretic analysis of our work,
whereas they provide no semantics. We also consider concurrent
and parallel composition, which they do not. Another important in-
spiration is the ONF’s ongoing work on typed table patterns [2].

8. Conclusion
Concurrent NetCore offers at once (a) a language for specifying
routing policies and (b) packet-processing pipelines. It’s novel op-
erational semantics and type system recover strong reasoning prin-

ciples. As such, it is an excellent intermediate language for compil-
ing routing policies—since CNC can express both high-level poli-
cies and low-level pipelines, a multipass compiler can use the same
reasoning principles throughout.

Acknowledgments
This work stemmed from many stimulating discussions with Nick
Feamster, Muhammad Shahbaz, and Jennifer Rexford. We would
also like to thank Pat Bossart, Dan Daly, Glen Gibb, Nick McKe-
own, Dan Talayco, Amin Vahdat, and George Varghese for conver-
sations on this topic. This work is supported in part by the NSF un-
der grants CNS-1111520, and SHF-1016937, the ONR under award
N00014-12-1-0757, and a Google Research Award. Any opinions,
ndings, and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reect the views
of the NSF or Google.

References
[1] Concurrent netcore: From policies to pipelines. See http://

tinyurl.com/k2z8lz5.
[2] Openflow forwarding abstractions working group charter, April 2013.

See http://goo.gl/TtLtw0.
[3] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jean-

nin, Dexter Kozen, Cole Schlesinger, and David Walker. NetKAT:
Semantic foundations for networks. In POPL, January 2014.

[4] Pat Bosshart, Dan Daly, Martin Izzard, Nick McKeown, Jennifer
Rexford, Dan Talayco, Amin Vahdat, George Varghese, and David
Walker. Programming protocol-independent packet processors. See
http://arxiv.org/abs/1312.1719, December 2013.

[5] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick
McKeown, Martin Izzard, Fernando A. Mujica, and Mark Horowitz.
Forwarding metamorphosis: fast programmable match-action process-
ing in hardware for SDN. In SIGCOMM, pages 99–110, 2013.

[6] Broadcom BCM56846 StrataXGS 10/40 GbE switch. See http://
www.broadcom.com/products/features/BCM56846.php, 2014.

[7] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Mon-
santo, Jennifer Rexford, Alec Story, and David Walker. Frenetic: A
network programming language. In ICFP, September 2011.

[8] C. A. R. Hoare, Bernhard M oller, Georg Struth, and Ian Wehrman.
Concurrent kleene algebra. In CONCUR, pages 399–414, 2009.

[9] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan
Zhou, Min Zhu, Jonathan Zolla, Urs Hölzle, Stephen Stuart, and Amin
Vahdat. B4: Experience with a globally-deployed software defined
WAN. In SIGCOMM, 2013.

[10] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
OpenFlow: Enabling innovation in campus networks. SIGCOMM
Computing Communications Review, 38(2):69–74, 2008.

[11] Christopher Monsanto, Nate Foster, Rob Harrison, and David Walker.
A compiler and run-time system for network programming languages.
In POPL, January 2012.

[12] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford,
and David Walker. Composing software-defined networks. In NSDI,
April 2013.

[13] Tim Nelson, Arjun Guha, Daniel J. Dougherty, Kathi Fisler, and Shri-
ram Krishnamurthi. A balance of power: Expressive, analyzable con-
troller programming. In HotSDN, 2013.

[14] Recep Ozdag. Intel Ethernet Switch FM6000 Series - software defined
networking. See goo.gl/AnvOvX, 2012.

[15] Andreas Voellmy, Hyojoon Kim, and Nick Feamster. Procera: A
language for high-level reactive network control. In HotSDN, pages
43–48, 2012.

[16] Andreas Voellmy, Junchang Wang, Y. Richard Yang, Bryan Ford, and
Paul Hudak. Maple: Simplifying SDN programming using algorithmic
policies. In SIGCOMM, 2013.

