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Abstract. We present the propositional fragment CLF0 of the Concurrent
Logical Framework (CLF). CLF extends the Linear Logical Framework to
allow the natural representation of concurrent computations in an object
language. The underlying type theory uses monadic types to segregate
values from computations. This separation leads to a tractable notion of
definitional equality that identifies computations differing only in the order
of execution of independent steps. From a logical point of view our type
theory can be seen as a novel combination of lax logic and dual intuitionistic
linear logic. An encoding of a small Petri net exemplifies the representation
methodology, which can be summarized as “concurrent computations as
monadic expressions”.

1 Introduction

A logical framework is a meta-language for deductive systems. It is usually defined
as a formal meta-logic or type theory together with a representation methodology.
A single implementation of a logical framework can then be used to study a va-
riety of deductive systems, thereby factoring the effort that would be required to
implement each deductive system separately. Applications of logical frameworks
lie mostly in logic and programming languages, where deductive systems have be-
come a common conceptual tool and presentation device. Examples are rules of
logical inference, typing rules, and rules specifying the operational semantics of
a programming language. Tasks carried out with the help of logical frameworks
include proof checking, proof search, and establishing meta-theoretic properties of
deductive systems. For an overview and introduction to logical frameworks, their
applications, and further pointers to the literature see [4, 32, 29].

The language features provided by a logical framework have a major impact
on each task it supports. The right features can help make representation of de-
ductive systems clear, direct, concise, and therefore easy to read and understand.
Such elegance can, in turn, make an enormous difference when it comes to proof
checking, proof search, and constructing meta-theoretic proofs. Still, each feature
we add to a logical framework must be well justified as the design effort is signifi-
cant and a robust framework must satisfy many subtle properties. Hence, to design
an effective framework, we should identify features that most effectively support
recurring idioms in the definition and manipulation of deductive systems.



Some of the most commonly recurring concepts in deductive systems are pa-
rameterization and variable binding : quantified formulas are pervasive in logic;
programming languages contain parameterized expressions such as functions, ob-
jects, modules, and others; and inference rules and deductions themselves are often
parameterized. LF [18] and other frameworks provide intrinsic support for param-
eterized objects through dependent functions. Common tasks such as renaming
variables and substitution need not be coded up explicitly, as they are handled
automatically by the framework when the appropriate representation strategy is
chosen. With this support, simple phenomena such as α-convertibility and syn-
tactic substitution have simple representations in the framework, so users of the
framework can focus their efforts on truly complex phenomena of the system under
investigation.

With dependent functions alone, however, representation of stateful program-
ming languages can be clumsy and complex. In order to better accommodate
reasoning with state, LF has been extended with selected constructs from linear
logic, giving rise to the logical frameworks LLF [12] and RLF [21]. In these frame-
works, users can represent state as linear hypotheses and imperative computations
as linear functions, yielding more concise representations than are possible in LF.
Since the state concept pervades deductive systems of many different kinds, we
judge this extension to be justified, though at present there is much less practical
experience with such linear frameworks.

Unfortunately, LF, as well as LLF and RLF, lack effective support for represent-
ing or manipulating systems involving concurrency, which has come to be nearly as
pervasive as state. The obvious encodings of concurrent programming languages in
LLF force a transformation of the operational semantics into continuation-passing
style (see the example in Section 2.1), thereby fixing the order of all steps in a
concurrent computation. This amounts to an interleaving semantics for concur-
rency rather than a truly concurrent one. While it is possible to develop, within
the framework, explicit judgments specifying which computations should be con-
sidered equivalent, reasoning with or about such a specification can be exceedingly
cumbersome.

Concurrent LF (CLF), the topic of this paper, is a new logical framework that
extends LLF with additional linear constructs (A1 ⊗ A2, 1, and ∃x :A1. A2) that
make it possible to represent concurrent computations in a natural and convenient
fashion. However, if they were added freely, these new connectives would inter-
fere with standard representation techniques and would destroy one of the most
fundamental properties of an LF-style framework: namely, that the structure of a
canonical form is essentially determined by its type. To avoid these problems, we
take the further step of encapsulating these new primitives by means of a monad
that protects the conventional LF and LLF fragments of the framework. Within
the monad, the natural equational theory of our additional operators gives rise to
a notion of definitional equality that makes representations of concurrency ade-
quate by ensuring that different interleavings of independent concurrent steps are
indistinguishable. Although monads have been used to separate pure and effect-
ful computations in functional programming languages, to the authors’ knowledge
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this is their first use in a logical framework or theorem-proving environment to
separate one logic from another.

Developing a logical framework goes beyond assembling a toolkit of useful
representation mechanisms. The bulk of the effort consists of proving that the
resulting language is well behaved for the purposes of both representation and
computation. For example, it is highly desirable that type checking be decidable
in a logical framework based on type theory. As the language expands, going from
LF to LLF to CLF, the difficulty of this meta-theoretic investigation grows at an
alarming rate, even for experienced researchers. In order to offset this increasing
complexity the present paper also introduces a new methodology for developing
the meta-theory of LF-style logical frameworks. It is based on the observation
that, since LF-style representations rely exclusively on canonical forms, there is
no need for the framework to define—or the meta-theory to investigate—anything
but canonical forms. This is accomplished using an inductive notion of instan-
tiation, replacing normalization with respect to β-reduction used in traditional
presentations.

The present paper concentrates on CLF0, the propositional sublanguage of
CLF, which already exhibits the principal phenomena concerning concurrency.
The use of the framework is illustrated by an encoding of Petri-net computations,
a simple but fundamental model of concurrency. The interested reader is referred
to the accompanying technical reports [36, 13] for the definition of full CLF, the
development of its meta-theory [36], and a number of larger examples [13]. These
examples include an encoding of a version of ML that supports suspensions with
memoization, mutable references, futures in the style of Multilisp [17], concurrency
in the style of CML [35], and more. They also include a language for the represen-
tation of security protocols based on multiset rewriting [11], and representations
of the synchronous and asynchronous π-calculus [26].

The remainder of this paper is organized as follows. In Section 2 we define
CLF0, including its syntax, typing rules, and definitional equality. Section 3 de-
velops the meta-theory of CLF0, proving decidability of typing and definitional
equality. This is followed by a discussion of related work in Section 4 and a con-
clusion (Section 5) with some comments on future work.

2 Propositional CLF

We introduce the propositional fragment of the concurrent logical framework in
stages. In the first stage, we briefly review the linear logical framework (LLF), its
properties, and its shortcomings with respect to concurrency. The following stages
describe the extensions yielding CLF, which aim to address these shortcomings.

2.1 The Linear Fragment

The propositional fragment LLF0 of the linear logical framework [12] is based
on unrestricted and linear hypothetical judgments Γ ; ∆ `Σ M : A where Γ
is a context of unrestricted hypotheses u :A (subject to exchange, weakening, and
contraction), ∆ is a context of linear hypotheses x∧:A (subject only to exchange), M
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is an object and A is a type. The signature Σ declares the base types and constants
from which objects are constructed. Under the Curry-Howard isomorphism, M can
also be read as a proof term, and A as a proposition of intuitionistic linear logic
in its formulation as DILL [3].

Since the signature is fixed for a given typing derivation, we henceforth suppress
it for the sake of brevity. In addition, syntactic objects are considered only up to
α-equivalence of their bound variables. Exchange is not noted explicitly in the
typing rules, and only instances of the typing rules for which all variables in the
contexts have unique names are allowed.

The LF representation methodology establishes a bijection between canonical
objects of appropriate type and the terms and deductions of an object language
to be represented. The appropriate notion of “canonical” turns out to be long
βη-normal form. In order to define these inductively, the single typing judgment
Γ ; ∆ `M : A is refined into two judgments:

Γ ; ∆ ` N ⇐ A N is canonical of type A
Γ ; ∆ ` R⇒ A R is atomic of type A

A canonical object N is an introduction form or is an atomic object of base type.
An atomic object R is a sequence of elimination forms applied to a variable or
constant. Further judgments check that types, contexts, and signatures are well-
formed; they are omitted, being entirely straightforward for the propositional frag-
ment.

The types of LLF0 are freely generated from the constructors −◦, →, & and >
and base types. These comprise the largest fragment of intuitionistic linear logic
with traditional connectives for which unique canonical forms exist. This property
is essential for the use of LLF0 as a logical framework, because of the central role
of canonical forms in its representation methodology. The syntax and the typing
rules for the canonical variant of LLF0 are shown in Figure 1.

Example. The Petri net in Figure 2 will serve as a running example of the various
encoding techniques used in this paper. The representation of Petri nets in linear
logic goes back to Mart́ı-Oliet and Meseguer [24] and has been treated several times
in the literature. Familiarity with Petri nets is assumed, and their encoding is only
given by example. We shall however stress that we are adopting the “individual
token philosophy” [8] by which the tokens within a place are not interchangeable.
A planned extension of CLF with the notion of proof irrelevance [31, 34] would
allow a direct encoding of the more mainstream “collective token philosophy”.
Further details may be found in the companion technical report [13].

Each place in a Petri net is represented by a type constant p. The state of the
net is encoded as a collection of linear hypotheses: there is an assumption x∧:p for
every token in place p. There is also a separate type constant X representing an
(unspecific) goal state.

For each transition t there is an object constant4

t : (q1 −◦ . . .−◦ qn −◦ X)−◦ (p1 −◦ . . .−◦ pm −◦ X)
4 We adopt the convention that the connective −◦ is right associative.
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A, B, C ::= a | A−◦B | A→ B | A & B | >
Γ ::= Γ, u :A | ·
∆ ::= ∆, x∧:A | ·

N ::=
∧
λx. N | λu. N | 〈N1, N2〉 | 〈〉 | R

R ::= c | u | x | R∧N | R N | π1R | π2R

Σ ::= Σ, a : type | Σ, c :A | ·

Γ ; ∆, x∧:A ` N ⇐ B

Γ ; ∆ `
∧
λx. N ⇐ A−◦B

−◦I Γ, u :A; ∆ ` N ⇐ B

Γ ; ∆ ` λu. N ⇐ A→ B
→ I

Γ ; ∆ ` N1 ⇐ A Γ ; ∆ ` N2 ⇐ B

Γ ; ∆ ` 〈N1, N2〉 ⇐ A & B
&I

Γ ; ∆ ` 〈〉 ⇐ > >I
Γ ; ∆ ` R⇒ a

Γ ; ∆ ` R⇐ a
⇒⇐

Γ ; · ` c⇒ Σ(c)
c

Γ ; · ` u⇒ Γ (u)
u

Γ ; x∧:A ` x⇒ A
x

Γ ; ∆1 ` R⇒ A−◦B Γ ; ∆2 ` N ⇐ A

Γ ; ∆1, ∆2 ` R∧N ⇒ B
−◦E Γ ; ∆ ` R⇒ A→ B Γ ; · ` N ⇐ A

Γ ; ∆ ` R N ⇒ B
→ E

Γ ; ∆ ` R⇒ A & B

Γ ; ∆ ` π1R⇒ A
&E1

Γ ; ∆ ` R⇒ A & B

Γ ; ∆ ` π2R⇒ B
&E2

Fig. 1. The LLF0 Language

expressing that the goal state X can be reached from a state with tokens in places
p1, . . . , pm if the goal can be reached from the state with tokens in places q1, . . . , qn

instead. Such a rule can be read as removing tokens from p1, . . . , pm and placing
them on q1, . . . , qn.

The initial state of the net in Figure 2 is represented by

∆0 = r1
∧:r, n1

∧:n, n2
∧:n, b1

∧:b, b2
∧:b, b3

∧:b, a1
∧:a

and the transitions are represented by the following signature.

P : (r −◦ X)−◦ (p−◦ X)
R : (p−◦ n−◦ b−◦ X)−◦ (r −◦ X)

A : (c−◦ X)−◦ (b−◦ b−◦ a−◦ X)
C : (a−◦ X)−◦ (c−◦ X)

The adequacy theorem for this representation states that:

Final state q1, . . . , qn can be reached from initial state p1, . . . , pm iff there
is a canonical object N such that

·; · ` N ⇐ (q1 −◦ . . .−◦ qn −◦ X)−◦ (p1 −◦ . . .−◦ pm −◦ X)

Moreover, there is a bijection between sequences of firings of the transition
rules of the Petri net (according to the individual token philosophy) and
such canonical objects.

By forcibly distinguishing sequences of firings, the LLF0 representation fails to
capture the inherent concurrency of a Petri net. For example, in the state in
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Fig. 2. A Producer/Consumer Petri Net with Labeled Marking

Figure 2, the R and A transitions can both fire, and do not interfere with each other.
However, our current representation yields different terms for the two interleavings:

·; ∆0, f
∧:(c−◦ b−◦ b−◦ n−◦ n−◦ n−◦ p−◦ X)

` R∧(
∧
λp1.

∧
λn3.

∧
λb4.A

∧(
∧
λc1. f

∧c1
∧b3

∧b4
∧n1

∧n2
∧n3

∧p1)∧b1
∧b2

∧a1)∧r1 ⇐ X
·; ∆0, f

∧:(c−◦ b−◦ b−◦ n−◦ n−◦ n−◦ p−◦ X)
` A∧(

∧
λc1.R

∧(
∧
λp1.

∧
λn3.

∧
λb4. f

∧c1
∧b3

∧b4
∧n1

∧n2
∧n3

∧p1)∧r1)∧b1
∧b2

∧a1 ⇐ X

The only way to identify these executions in LLF is to write higher-level judg-
ments explicitly relating the representations of admissible interleavings of the same
trace. This is undesirable for two reasons: first these declarations are complicated
even for simple nets; second, we would need to rewrite them from scratch for every
new net we consider. Note that this also forces us to abandon the propositional
language LLF0 for the dependently typed LLF.

Given how pervasive this problem is when analyzing concurrent systems, we
devised an extension of LLF0 that views executions such as the above as partial
orders, identifying all of their admissible interleavings. We will describe this lan-
guage, CLF0, in the next two sections: we first introduce sufficient infrastructure
to provide an alternative to the continuation-passing style of representation forced
by LLF (as witnessed by the spurious goal state X). We then adjust the notion of
definitional equality so that independent steps can commute.

2.2 The Monadic Fragment

A simple attempt to represent Petri nets without the continuation-passing trans-
formation would introduce the linear logic connective ⊗ and its unit 1 to the
framework [9]. The LLF0 transition

t : (q1 −◦ . . .−◦ qn −◦ X)−◦ (p1 −◦ . . .−◦ pm −◦ X)

would then be replaced with the more straightforward

t′ : p1 ⊗ . . .⊗ pm −◦ q1 ⊗ . . .⊗ qn
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However, this language does not meet the criteria we require of a logical frame-
work. Modeling reachability is not enough: we also want to establish a bijection
between Petri net computations and appropriately typed objects in the frame-
work. If LLF0 is extended with all (or even some) additional connectives of dual
intuitionistic linear logic a number of problems establishing adequate encodings
arise. The most immediate is that adding an object with any of these types can
destroy the adequacy of completely unrelated encodings in the framework.

Observing the declarations

c : 1
nat : type

z : nat
s : nat→ nat

we see that nat contains not only terms such as z and s z but also (let 1 = c in z).
There is no longer a bijective correspondence of the type nat with the set of
natural numbers.5 Similar examples would arise in the presence of a constant of
type A ⊗ B or !A. While such a language might technically be conservative over
LLF0, it would be impossible to embed an LLF0 encoding in a larger signature
using the new types—the adequacy of the LLF0 encoding would be destroyed.

The underlying issue here is difficult to characterize formally, but it can be
stated informally as follows: the structure of canonical forms should be type-
directed. This leads to the inversion principles necessary to prove the adequacy
of encodings. For example, we would like to know that every term of type nat
is of the form z or s t where t : nat. It is easy to see that the unrestricted use
of elimination forms such as (let 1 = t in t′) subverts this principle, because the
subterm t is not constrained by the type of the overall term.

In order to obtain a tractable, yet sufficiently expressive type theory we employ
a technique familiar from functional programming, which does not appear to have
been used in logical frameworks or theorem provers: use a monad [27] to encapsu-
late the effects of concurrency. This encapsulation protects the equational theory
of LLF0. Moreover, the notion of canonical form outside the monad extends the
prior notions conservatively. This property of the method should not be underesti-
mated, because it means that all encodings already devised for LF or LLF remain
adequate, and their adequacy proofs can remain exactly the same!

We write {A} for the monad type, which in lax logic would be written ©A [33].
But which types should be available inside the monad? They must be expressive
enough to represent the state after a computation step in the concurrent object
language. This is most naturally represented by the multiplicative conjunction ⊗.
Then our transition rule can be written

t′′ : p1 −◦ . . .−◦ pm −◦ {q1 ⊗ . . .⊗ qn}

where currying eliminates the use of ⊗ on the left-hand side. In order to cover the
case n = 0 the multiplicative unit 1 is included. Though it does not arise in this
example, a transition could also generate an element of persistent (unrestricted)
type, so we also allow types !A. We call the new types synchronous, borrowing

5 Examples such as (
∧
λx. let 1 = x in z : 1−◦nat) show that the term above cannot simply

be equal to z.
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. . .

A, B, C ::= . . . | {S}
S ::= S1 ⊗ S2 | 1 | !A | A
Ψ ::= p∧:S, Ψ | ·

N ::= . . . | {E}
E ::= let {p} = R in E |M
p ::= p1 ⊗ p2 | 1 | !u | x

M ::= M1 ⊗M2 | 1 | !N | N

· · ·
Γ ; ∆ ` E ← S

Γ ; ∆ ` {E} ⇐ {S} {}I
Γ ; ∆1 ` R⇒ {S0} Γ ; ∆2; p∧:S0 ` E ← S

Γ ; ∆1, ∆2 ` (let {p} = R in E)← S
{}E

Γ ; ∆ `M ⇐ S

Γ ; ∆ `M ← S
⇐← Γ ; ∆ ` E ← S

Γ ; ∆; · ` E ← S
←←

Γ ; ∆; p1
∧:S1, p2

∧:S2, Ψ ` E ← S

Γ ; ∆; p1 ⊗ p2
∧:S1 ⊗ S2, Ψ ` E ← S

⊗L
Γ ; ∆; Ψ ` E ← S

Γ ; ∆; 1∧:1, Ψ ` E ← S
1L

Γ, u :A; ∆; Ψ ` E ← S

Γ ; ∆; !u∧: !A, Ψ ` E ← S
!L

Γ ; ∆, x∧:A; Ψ ` E ← S

Γ ; ∆; x∧:A, Ψ ` E ← S
AL

Γ ; ∆1 `M1 ⇐ S1 Γ ; ∆2 `M2 ⇐ S2

Γ ; ∆1, ∆2 `M1 ⊗M2 ⇐ S1 ⊗ S2
⊗I

Γ ; · ` 1⇐ 1
1I

Γ ; · ` N ⇐ A

Γ ; · ` !N ⇐ !A
!I

Fig. 3. The CLF0 Extensions to LLF0

terminology from Andreoli [2], and denote them by S. The resulting extension to
the language of types is shown in Figure 3.

The language of objects is extended accordingly. The synchronous types S
type monadic expressions E. The introduction forms M are constructors for mul-
tiplicative pairs, the multiplicative unit, and the unrestricted modality (!). The
elimination form is a let binding eliminating the monad and matching the syn-
chronous constructors against a pattern p. To our knowledge, this canonical for-
mulation of the proof term assignment for lax logic is novel. Patterns are classified
by synchronous types S and are collected into a context Ψ .

There are three typing judgments in addition to the judgments already noted
for LLF0:

Γ ; ∆ `Σ E ← S Γ ; ∆; Ψ `Σ E ← S Γ ; ∆ `Σ M ⇐ S

The extended language CLF0 inherits all the typing rules already presented
for LLF0. The additional typing rules are shown in Figure 3. First, there are
introduction and elimination rules for {} ({}I {}E). We can see that a monadic
expression is a sequence of let forms, ending in a monadic object. Immediately
after each let the pattern is decomposed into assumptions of the form x∧:A or
u :A and the body of the let is checked. This is the purpose of the judgment
Γ ; ∆; Ψ ` E ← S, defined by the next group of rules (⊗L 1L !L AL). These
correspond to left rules in a sequent calculus. Finally, there are rules to introduce
the monadic objects at the end of a sequence of {}E eliminations (⊗I 1I !I).
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Example revisited. The Petri net in Figure 2 is now represented almost as in
dual intuitionistic linear logic [3], except that the right-hand sides of the linear
implications use the monad.

P : p−◦ {r}
R : r −◦ {p⊗ n⊗ b}

A : b−◦ b−◦ a−◦ {c}
C : c−◦ {a}

The monadic encapsulation and the canonical forms of monadic expressions
tightly constrain the form of objects constructed from this signature. Adopting
α-equivalence—for the moment—as the framework’s definitional equality, there is
an analog of the earlier adequacy theorem.

The example firings are rewritten as follows.

·; ∆0 ` {let {p1 ⊗ n3 ⊗ b4} = R∧r1 in
let {c1} = A∧b1

∧b2
∧a1 in

c1 ⊗ b3 ⊗ b4 ⊗ n1 ⊗ n2 ⊗ n3 ⊗ p1} ⇐ {c⊗ b⊗ b⊗ n⊗ n⊗ n⊗ p}
·; ∆0 ` {let {c1} = A∧b1

∧b2
∧a1 in

let {p1 ⊗ n3 ⊗ b4} = R∧r1 in
c1 ⊗ b3 ⊗ b4 ⊗ n1 ⊗ n2 ⊗ n3 ⊗ p1} ⇐ {c⊗ b⊗ b⊗ n⊗ n⊗ n⊗ p}

With the introduction of synchronous connectives, and their encapsulation
within the monadic construction, we have achieved a simple encoding of Petri
nets and provided a syntax for executions that is separate from the traditional
LLF0 terms. However, α-equivalence still distinguishes the two executions above
despite the fact that their R and A transitions are independent. Since the two lets
bind and use different variables, we should be able to identify their permutations,
with the sandboxing effect of the monad protecting the surrounding LLF0 terms.
We will now formalize this intuition.

2.3 Concurrent Equality

In essence, our objective is to identify all the usual commuting conversions between
synchronous operators, but have them stop at the monadic membrane. In keeping
with the philosophy espoused here of presenting the core concepts of the framework
computationally, we give a direct definition of this concurrent equality as a decision
procedure. Figure 4 shows the new syntax and inference rules associated with the
definition.

The definition relies on the subsidiary concept of a concurrent context. As usual,
the notation ε[E] stands for the expression constructed by replacing the hole [] in
ε with E.

The judgment E1 =c E2 holds when E1 and E2 represent the same underlying
concurrent computation even though their syntactic representations may differ.
The rule marked (*) is subject to the side condition that no variable bound by p
be free in the conclusion or bound by the context ε, and that no variable free in
R2 be bound by the context ε. Intuitively, this rule expresses that we have to find
a subcomputation R2 of the right-hand side that starts with the same step R1 as
the left-hand side. Furthermore, the remaining computation E1 on the left-hand
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ε ::= [] | let {p} = R in ε

M1 = M2

M1 =c M2

R1 = R2 E1 =c ε[E2]

(let {p} = R1 in E1) =c ε[let {p} = R2 in E2]
*

E1 =c E2

E1 = E2

(*) No variable bound by p is free in the conclusion or bound by the context ε, and no
variable free in R2 is bound by the context ε.

Fig. 4. Concurrent Equality

side must equal the remaining computation on the right-hand side, which consists
of the steps preceding R2 (in ε) and those following R2 (in E2) composed in ε[E2].

There are also unmarked equality judgments N1 = N2, R1 = R2, and M1 = M2

and congruences for them (not shown). An equality judgment is not taken to mean
anything in particular unless the subjects of the judgment are well typed. A typed
equality judgment Γ ; ∆ ` N1 = N2 ⇐ A can then be defined by (Γ ; ∆ ` N1 ⇐
A) ∧ (Γ ; ∆ ` N2 ⇐ A) ∧ (N1 = N2).

Returning to the Petri-net example developed in Section 2.2, it is easy to show
that the two CLF0 objects corresponding to the two different interleavings of the
example Petri net execution are concurrently equal. This is crystallized as a better
adequacy theorem:

Final state q1, . . . , qn can be reached from initial state p1, . . . , pm iff there
is a canonical object N such that

·; · ` N ⇐ p1 −◦ . . .−◦ pm −◦ {q1 ⊗ . . .⊗ qn}

Moreover, there is a bijection between concurrent executions ( traces) of
the transition rules of the Petri net (according to the individual token phi-
losophy) and equivalence classes of such canonical objects modulo =.

3 Meta-theory

This section sketches the meta-theory of the canonical formulation of CLF0. Ad-
ditional details and a development of the dependent case may be found in the
companion theory technical report [36].

3.1 Identity and substitution properties

As discussed in Section 2, the CLF0 framework—and full CLF as well—syntactically
restrict the form of objects so that they will always be canonical. This is a good
design choice in the logical frameworks context, but it carries with it the obliga-
tion to ensure that the underlying logic (via the Curry-Howard isomorphism, if
you like) is sensible. In particular, the principles of identity and substitution must
hold.
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Identity. Unrestricted case: For any Γ and A, Γ, u :A; · ` N ⇐ A for
some N . Linear case: For any Γ and A, Γ ; x∧:A ` N ⇐ A for some N .

Substitution. Unrestricted case: if Γ ; · ` N0 ⇐ A and Γ, u :A; ∆ ` N ⇐
C then Γ ; ∆ ` N ′ ⇐ C for some N ′. Linear case: if Γ ; ∆1 ` N0 ⇐ A and
Γ ; ∆2, x

∧:A ` N ⇐ C then Γ ; ∆1,∆2 ` N ′ ⇐ C for some N ′.

In the standard reduction-oriented treatment of proofs, these are fairly trivial,
because variables and general terms are in the same syntactic category. Substi-
tution simply syntactically replaces the target variable with the substituend—
possibly creating redices. Here, redices are not syntactially allowed, and variables
are syntactically atomic while general terms are syntactically normal, so it is not
possible to directly replace a variable with a substituend. By the same token, a
variable of higher type cannot stand by itself as a canonical object—canonical ob-
jects of higher type must be introduction forms—so the identity principle cannot
be witnessed by a bare variable.

Instead, the meta-theory of CLF relies on algorithms that compute witnesses
to the identity and substitution principles. These are, respectively, the expansion
algorithm and the instantiation algorithm.6

Principle Algorithm Supersedes Notation
Substitution Instantiation β-normalization inst nA(x.N,N0) ≡ N ′

Identity Expansion η-normalization expandA(R) ≡ N

Think of the instantiation operator inst nA(x.N,N0) as computing the canon-
ical form of the result of instantiating the variable x in the object N with the
object N0. The instantiation operator is indexed by the type A of the substituend
N0. If A is a base type, we have inst nA(x.N,N0) = [N0/x]N ; that is, instantiation
reduces to ordinary syntactic substitution. At higher type more complex situations
arise.

Dually, we think of the expansion operator expandA(R) as computing the
canonical form of the atomic object R of putative type A. This is analogous to
η-expansion, except that the term R and its expansion inhabit different syntactic
categories if A is a higher type.

These algorithms must be (and are) effectively presented, because the typing
judgment of the full dependent type theory appeals to instantiation, and effective
typing is central to the logical framework concept. The use of the instantiation
algorithm in dependent typing has a further important ramification: the instantia-
tion algorithm must be effective on ill-typed terms. Otherwise, there is a circularity
between instantiation and typing, leading to a very complex meta-theory.7 Since
the substitution principle does not hold for ill-typed terms, we allow the witnessing
instantiation algorithm to report failure or yield garbage on ill-typed input; e.g.,
inst nA(x. x x, λx. x x) ≡ fail. Garbage in, garbage out, but at least we get our
garbage out in finite time!
6 Here and in the reminder we use x generically for either a linear or unrestricted variable.
7 This circularity, which the present treatment of CLF avoids, is analogous to the dif-

ficulties encountered in the early reduction-oriented treatments of LF, where typing
refers to equality, which is decided by normalization, but normalization is only effective
for well-typed terms.
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treduceA(x. R) ≡ B [Type reduction]

treduceA(x. x) ≡ A

treduceA(x. R N) ≡ C if treduceA(x. R) ≡ B → C

reduceA(x. R, N0) ≡ N ′ [Reduction]

reduceA(x. x, N0) ≡ N0

reduceA(x. R N, N0) ≡ inst nB(y. N ′, inst nA(x. N, N0))

if treduceA(x. R) ≡ B → C and reduceA(x. R, N0) ≡ λy. N ′

inst rA(x. R, N0) ≡ R′ [Atomic object instantiation]

inst rA(x. c, N0) ≡ c

inst rA(x. y, N0) ≡ y if y is not x

inst rA(x. R N, N0) ≡ (inst rA(x. R, N0)) (inst nA(x. N, N0))

inst nA(x. N, N0) ≡ N ′ [Normal object instantiation]

inst nA(x. λy. N, N0) ≡ λy. inst nA(x. N, N0) if y /∈ FV(N0)

inst nA(x. R, N0) ≡ inst rA(x. R, N0) if head(R) is not x

inst nA(x. R, N0) ≡ reduceA(x. R, N0) if treduceA(x. R) ≡ a

Fig. 5. Instantiation, LF0

3.2 Instantiation

Space constraints preclude the incorporation of all the cases of the definitions of
these operators. Full details are available, of course, in our technical report [36].

We begin by examining the cases for the LF0 fragment of instantiation, shown
in Figure 5. The recurrence defining instantiation is based on the observation,
exploited in cut elimination proofs on the logical side [30], but not so well known on
the type theoretic side, that the canonical result of substituting one canonical term
into another can be defined by induction on the type of the term being substituted.
Accordingly, the instantiation operators are defined as a family parameterized
over the type of the object being substituted. In the notation inst cA(x.X, N) this
type A appears as a subscript. Here c is replaced by a mnemonic for the particular
syntactic category to which the instantiation operator applies. The variable x is to
be considered bound within the term X (of whatever category) being substituted
into. The operators defined in this section should be thought of as applying to
equivalence classes of concrete terms modulo α-equivalence on bound variables.

Together with the instantiation operators, and defined by mutual recursion
with them, is a reduction operator reduceA(x.R,N) that computes the canonical
object resulting from the instantiation of x with N in the case that the head vari-
able head(R) of the atomic object R is x. Thus, roughly speaking, it corresponds
to the idea of weak head reduction for systems with β-reduction. The instantiation
operator inst rA(x. R,N), by contrast, is only defined if the head of R is not x. An-
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inst nA(x. N, N0) ≡ N ′ [Normal object instantiation, extended]

inst nA(x. {E}, N0) ≡ {inst eA(x. E, N0)}

inst mA(x. M, N0) ≡M ′ [Monadic object instantiation]

inst mA(x. M1 ⊗M2, N0) ≡ inst mA(x. M1, N0)⊗ inst mA(x. M2, N0)

inst mA(x. 1, N0) ≡ 1

inst mA(x. !N, N0) ≡ !(inst nA(x. N, N0))

inst mA(x. N, N0) ≡ inst nA(x. N, N0)

inst eA(x. E, N0) ≡ E′ [Expression instantiation]

inst eA(x. let {p} = R in E, N0) ≡ (let {p} = inst rA(x. R, N0) in inst eA(x. E, N0))

if head(R) is not x,

and FV(p) ∩ FV(N0) is empty

inst eA(x. let {p} = R in E, N0) ≡ match eS(p. inst eA(x. E, N0), E
′)

if treduceA(x. R) ≡ {S}, reduceA(x. R, N0) ≡ {E′},
and FV(p) ∩ FV(N0) is empty

inst eA(x. M, N0) ≡ inst mA(x. M, N0)

match mS(p. E, M0) ≡ E′ [Match monadic object]

match mS1⊗S2(p1 ⊗ p2. E, M1 ⊗M2) ≡ match mS2(p2. match mS1(p1. E, M1), M2)

if FV(p2) ∩ FV(M1) is empty

match m1(1. E, 1) ≡ E

match m!A(!x. E, !N) ≡ inst eA(x. E, N)

match mA(x. E, N) ≡ inst eA(x. E, N)

match eS(p. E, E0) ≡ E′ [Match expression]

match eS(p. E, let {p0} = R0 in E0) ≡ let {p0} = R0 in match eS(p. E, E0)

if FV(p0) ∩ FV(E) and FV(p) ∩ FV(E0) are empty

match eS(p. E, M0) ≡ match mS(p. E, M0)

Fig. 6. Instantiation, extended
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expandA(R) ≡ N [Expansion]

expanda(R) ≡ R

expandA−◦B(R) ≡
∧
λx. expandB(R∧(expandA(x))) if x /∈ FV(R)

expandA→B(R) ≡ λx. expandB(R (expandA(x))) if x /∈ FV(R)

expandA&B(R) ≡ 〈expandA(π1R), expandB(π2R)〉
expand>(R) ≡ 〈〉
expand{S}(R) ≡ (let {p} = R in pexpandS(p))

pexpandS(p) ≡M [Pattern expansion]

pexpandS1⊗S2
(p1 ⊗ p2) ≡ pexpandS1

(p1)⊗ pexpandS2
(p2)

pexpand1(1) ≡ 1

pexpand!A(!x) ≡ !(expandA(x))

pexpandA(x) ≡ expandA(x)

Fig. 7. Expansion

other distinguishing feature is that reduction on an atomic object yields a normal
object, while instantiation on an atomic object yields an atomic object.

Finally, there is a type reduction operator treduceA(x.R) that computes the pu-
tative type of R given that the head of R is x and the type of x is A. Type reduction
is used in side conditions that ensure that the recurrence defining instantiation is
well-founded.

The recurrence defining these operators is based on a structural induction.
There is an outer induction on the type subscripting the operators, and an inner
simultaneous induction on the two arguments. Noting first that if treduceA(x. R)
is defined, it is a subterm of A, the fact that the recurrence relations respect
this induction order can be verified almost by inspection. The only slightly subtle
case is the equation for reduceA(x.R N,N0), which is the only case in which
the subscripting type changes. Here the side condition treduceA(x. R) ≡ B → C
ensures that B must be a strict subterm of A for the reduction to be defined. An
instantiation such as inst nA(x. x x, λx. x x) is guaranteed to fail the side condition
after only finitely many expansions of the recurrence.

Another way in which an instance of the instantiation operators might fail
to be defined would be if the recursive instantiation inst rA(x. R,N0) in the same
equation failed to result in a manifest lambda abstraction λy. N ′. In fact, this could
only happen if the term N0 failed to have the ascribed type A. So instantiation
always terminates, regardless of whether its arguments are well typed, but it is not
defined in all cases. After the meta-theory is further developed, it can be shown
that instantiation is always defined on well-typed terms when the types match in
the appropriate way.

The cases of instantiation involving the monad, shown in Figure 6, are not
without interest. These lean heavily on prior work on proof term assignments for
modal logics [33].
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In order to extend instantiation to the full CLF0 language, with its pattern-
oriented destructor for the monadic type, it is necessary to introduce matching
operators match cS(p.E, X), where X is either an expression or a monadic object.
The matching operator computes the result of instantiating E according to the
substitution on the variables of p generated by matching p against X. (The variables
in p should be considered bound in E.) In the case that X is a monadic object
M0, this is straightforward: the syntax of monadic objects corresponds precisely
to that of patterns. But in the case that X is a let binding, an interesting issue
arises:

match eS(p. let {p1} = R1 in E1, let {p2} = R2 in E2) ≡ ?

The key is found in Pfenning and Davies’ non-standard substitutions for the
proof terms of the modal logics of possibility and laxity [33]. These analyze the
structure of the object being substituted, not, as in the usual case, the term being
substituted into. The effect is similar to a commuting conversion:

match eS(p. let {p1} = R1 in E1, let {p2} = R2 in E2) ≡
(let {p2} = R2 in match eS(p. let {p1} = R1 in E1, E2))

It is interesting that both non-standard substitution and pattern matching—
the latter not present in Pfenning and Davies’ system—rely in this way on an
analysis of the object being substituted rather than the term being substituted
into. In a sense, this commonality is what makes the harmonious interaction be-
tween CLF’s modality and its synchronous types possible.

The induction order mentioned above leads immediately to the following the-
orem.

Theorem 1 (Definability of instantiation). The recurrence for the reduction,
instantiation, and matching operators uniquely determines the least partial func-
tions (up to α-equivalence) solving them.

Proof. The proof is by an outer structural induction on the type subscript, and
an inner simultaneous structural induction on the two arguments. ut

3.3 Expansion

The definition of expansion is shown in Figure 7. In some cases, new bound vari-
ables are introduced on the right-hand side of an equation. Any new variables in
an instance of such an equation are required to be distinct from one another and
from any other variables in the equation instance.

Again there is a definability theorem based on the induction order implicit in
the equations.

Theorem 2 (Definability of expansion).

1. If pexpandS(p1) and pexpandS(p2) are both defined then p1 and p2 are the same
up to variable renaming.

2. Given S, there is a pattern p, fresh with respect to any given set of variables,
such that pexpandS(p) is defined.
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3. The recurrence for expansion uniquely determines it as a total function up to
α-equivalence.

Proof. The first part is by induction on S. The second and third parts are by
induction on the type subscript, using the first part to ensure that the result of
expand{S}(R) is unique up to α-equivalence. ut

3.4 Further results

The following theorem is proved in the full generality of the dependent case in the
technical report [36]. The identity and substitution principles follow immediately.

Theorem 3 (Identity and substitution principles). The following rules are
admissible.

Γ ; ∆ ` R⇒ A

Γ ; ∆ ` expandA(R)⇐ A

Γ ; · ` N0 ⇐ A Γ, x :A; ∆ ` N ⇐ C

Γ ; ∆ ` inst nA(x. N,N0)⇐ C

Γ ; ∆1 ` N0 ⇐ A Γ ; ∆2, x
∧:A ` N ⇐ C

Γ ; ∆1,∆2 ` inst nA(x.N,N0)⇐ C

Proof. By straightforward inductions. ut

In the dependently-typed case, lemmas concerning the algebraic laws satisfied
by expansion and instantiation (roughly analogous to confluence results) and con-
cerning the interaction of equality and instantiation are required. Other notable
theorems (which, in the dependently-typed case, are actually needed to prove the
theorem above) include the following.

Theorem 4 (Decidability of equality). Given N1 and N2, it is decidable whe-
ther N1 = N2.

Proof. The formulation of the equality rules is nearly syntax-directed, so a simul-
taneous structural induction on the subjects of the judgment suffices. It remains
only to observe that an expression can be decomposed into a concurrent context
and subexpression in finitely many ways. ut

Theorem 5 (Decidability of instantiation and expansion). It is decidable
whether any instance of the instantiation and expansion operators is defined, and
if so, it can be effectively computed.

Proof. For instantiation, this is proved by a simultaneous structural induction
on the substituend, the term substituted into, and the putative type of the sub-
stituend. For expansion, the induction is over the structure of the type. ut

Theorem 6 (Decidability of typing). It is decidable whether any instance of
the typing judgments is derivable.

Proof. By structural induction on the subject of the judgments. ut
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In the dependently-typed case, the inference rules for typing are also structured
in a syntax-directed manner, leading to a very simple proof of decidability [36].
This is a substantial technical improvement over prior presentations of even the
LF sublanguage alone.

The interaction of equality and substitution is particularly important, since
CLF’s equality is where concurrency enters. Thus, the following theorems describe,
in essence, how concurrent computations modeled in our framework compose.

Theorem 7. Concurrent equality N1 = N2 is an equivalence relation.

Proof. Reflexivity, symmetry, and transitivity can each be proved by structural
inductions (with appropriate lemmas, also proved by structural induction) [36].

ut

Theorem 8. If N = N ′ and N0 = N ′
0 then inst nA(x.N,N0) = inst nA(x.N ′, N ′

0),
assuming one side or the other is defined.

Proof. The proof appeals to composition laws for instantiation and a number of
other technical lemmas. The inductive proofs of these lemmas and the main the-
orem follow the same induction order as for the decidability result [36]. ut

Theorem 9. If R = R′ then expandA(R) = expandA(R′).

Proof. This follows by structural induction on A. ut

4 Related Work

Past research has identified two main approaches to encoding concurrent com-
putations in linear logic. Abramsky’s proofs-as-processes [6] assumes a functional
perspective where process interaction is captured by cut-elimination (normaliza-
tion) steps over linear logic derivations. A second direction, which may be identified
with the slogan proofs-as-traces (and formulas-as-processes), models dynamic pro-
cess behaviors as proof-search, generally in the style of (linear) logic programming
[24, 2, 25, 22, 14, 9].

CLF follows this second path, stressing a one-to-one correspondence between
CLF proof-terms and process executions (traces) [13]. CLF differs from most of
these proposals in two respects: first, it is a fully dependent logical framework,
which means that it expresses not only the constructs of an object process calculus
and their behavior, but also executions themselves and meta-reasoning about them.
Second, the concurrent equality intrinsically supports true concurrency.

To the authors’ knowledge, Honsell et. al. [20] describe the most significant
application of a logical framework in the sphere of concurrency. They elegantly
encode the π-calculus with substantial meta-theory in the calculus of construc-
tions with inductive/coinductive types (CC(Co)Ind). However, since the notion of
equality of CC(Co)Ind does not identify permutable computations, more advanced
meta-theoretic investigations would require tedious coding of an equivalence sim-
ilar to CLF’s concurrent equality.
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The idea of monadic encapsulation goes back to Moggi’s monadic meta-language
[27, 28] and is used heavily in functional programming. Our formulation follows the
judgmental presentation of Pfenning and Davies [33], which completely avoids the
need for commuting conversions, but the latter treats neither linearity nor the
existence of normal forms. The exploration of monads in logic programming by
Bekkers and Tarau [5] concentrates on the use of monads for data structures and
all-solution predicate. This is quite different from our application and concerned
neither with additional logical connectives nor a true extension of the operational
semantics. Benton and Wadler [7] explore the relationship of Moggi’s monadic
meta-language and term calculi for linear logic with Benton’s adjoint calculus,
which bears some intriguing similarities with CLF. However, it is not a type the-
ory, and the logical connectives (such as implication) common to lax logic and
linear logic retain separate identities, rather than being combined, as in CLF.

The method of defining a type theory by a typed operational semantics goes
back to the Automath languages [15] and has been applied to LF by Felty [16].
Our canonical formulation significantly extends and streamlines the ideas behind
Felty’s canonical LF and its extension to LLF [12]; the need for confluence and β-
normalization results is eliminated. A similar philosophical outlook, but different
technical realizations underly PAL+ [23] and work by Adams [1], who also consider
frameworks restricted to normal forms.

5 Conclusion

In this paper, we have presented the basic design of a logical framework that in-
ternalizes parametric and hypothetical judgments, linear hypothetical judgments,
and true concurrency. This supports representation of a wide variety of concepts
related to logic and computation in a natural and concise manner. It also poses a
host of new questions.

One of the practically important features of the linear logical framework is its
operational interpretation as a logic programming language using goal-directed
proof search [19, 10]. We conjecture that CLF supports a conservative extension of
this operational semantics. We have already constructed a representation of Mini-
ML with concurrency and parallelism anticipating such an interpretation [13].

Concurrent computations in an object language are internalized as monadic
expressions in CLF. The framework allows type families indexed by objects con-
taining such expressions, which means it is possible to formulate properties of
concurrent computations and relations between them. Examples are safety and
possibly liveness properties, bisimulations, and other translations between models
of computations.

Petri nets and other case studies have shown that, in many cases, computations
should be indistinguishable also when threads interact over isomorphic objects. It
appears that this can be achieved by integrating the notion of proof irrelevance [31,
34] within CLF. Once this extension has been fully worked out, CLF would be
able to provide an adequate representation to Petri nets under the collective token
philosophy, for example.
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