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Introduction
An ad hoc data source is any semistructured data source for
which useful data analysis and transformation tools have
not yet been defined. XML, HTML and CSV are not ad hoc
data sources as there are numerous programming libraries,
query languages, manuals and other resources dedicated to
helping analysts manipulate data in these formats. How-
ever, ad hoc data does arise often in many fields ranging
from computational biology to finance to networking.

The goal of the PADS project (PADS Project, 2007) is to
improve the productivity of data analysts who need to deal
with new and evolving ad hoc data sources on a daily ba-
sis. Our central technology is a domain-specific language
in which programmers can specify the structure and ex-
pected properties of ad hoc data sources, whether they be
ASCII, binary, Cobol or a mixture of formats. These spec-
ifications, which resemble extended type declarations from
conventional programming languages, are compiled into a
suite of programming libraries, such as parsers and print-
ers, and end-to-end data processing tools including a query
engine and several format translators.

Unfortunately, it often takes substantial time, energy and
expertise to write a PADS description for a new ad hoc data
source – days or even weeks for complex sources that have
little or no documentation, a common scenario in the world
of ad hoc data. Consequently, we have begun to study tech-
niques for automatic inference of PADS descriptions from
example data, focusing for now on ASCII data sources.
The rest of this paper describes our efforts to do so.

1 This material is based upon work supported by DARPA un-
der grant FA8750-07-C-0014 and the NSF under grants 0612147
and 0615062. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and
do not necessarily reflect the views of DARPA or the NSF.

The PADS Language
Before outlining the main ideas in description inference,
we explain the structure of the PADS specification lan-
guage in greater detail. As mentioned in the introduction,
PADS specifications are related to conventional type decla-
rations.2 For example, PADS has a number built-in base
types for atomic items ranging from integers of various
kinds (Puint32 for a 32-bit unsigned integer; Pint64
for a signed 64-bit integer), strings with different termi-
nation conditions (Pstring(’ ’) terminates on seeing
a space character) and more complex items such as dates
(Pdate) and times (Ptime). To describe complex for-
mats, PADS contains a number of type constructors includ-
ing Pstruct and Parray to describe sequences of items
in a file, and Punion, Pswitch, Penum to describe var-
ious sorts of choices in a file. Programmers can also attach
arbitrary constraints to descriptions.

As an example, consider the common log format for Web
server logs. A typical record looks like the following:

207.136.97.49 - - [15/Oct/2006:18:46:51]
"GET /tk/p.txt HTTP/1.0" 200 30

This record contains the IP address of the requester, a pair
of dashes, the date and time of the request, the request
string itself, a response code and the number of bytes trans-
mitted. A fragment of the PADS description for such a data
source follows.

Pstruct webRecord {
Pip ip; " - - [";
Pdate(’:’) date; ":";
Ptime(’]’) time; "]";
httpMeth meth; " ";
Puint8 code; " ";
Puint8 size; " "; };

Parray webLog { webRecord[] };

This description gives a definition for the webLog type,
which is a sequence (a Parray) of arbitrarily many
webRecords. The definition for the webRecord type
includes an ip address, a date, a time and some other items.
Notice there are two sorts of fields in the Web record struc-
ture: named fields (such as the field named ip with type
Pip) and unnamed fields (such as " - - ["). The for-

2Though there are two versions of PADS, one for C and one
for O’CAML, we restrict ourselves to discussion of the C version,
which should be more familiar to most readers.



Title Suppressed Due to Excessive Size

Figure 1. Architecture of the format inference engine

mer hold data that programmers or generated tools may ac-
cess; the latter serve as syntactic separators read by gen-
erated parsers and printed by generated printers. The type
httpMeth is another user-defined type not shown here.

The Inference Engine
Figure 1 gives an overview of our format inference archi-
tecture. The input data, or “training set,” is first “chunked”
into records where each record is a piece of recurrent data
such as a line, a paragraph, or a file (if the input consists
of multiple files). The user specifies the unit of repetition
when invoking our learning tool. Each record is then bro-
ken down into a series of tokens where each token can be
a punctuation symbol, a number, a date, a time, or a num-
ber of other basic types. Our learning system has a ba-
sic tokenization scheme skewed toward systems data, but
users may specify a different scheme for their own domain
through a configuration file. For example, computational
biologists may want to specify new base types for DNA
strings or other common recurring patterns.

In the structure discovery phase, we use a top-down,
divide-and-conquer scheme inspired in part by the work of
Arasu on information extraction from web pages (Arasu &
Garcia-Molina, 2003). This scheme calculates frequency
distributions for tokens within records, and using this in-
formation, chooses a simple type constructor such as a
Pstruct, Punion, or Parray to describe the top-level
structure of the record. When a type constructor has been
chosen, the data is partitioned accordingly and the algo-
rithm recursively analyzes subparts. This rough structure
is represented in an intermediate representation (IR) that
has similar expressive power to the PADS language.

The format refinement phase analyzes the IR produced by
structure discovery and repeatedly applies rewrite rules.
There are two sorts of rewriting rules: value-independent
rules and value-dependent rules. The value-independent
rules examine the inferred description structure to find
ways to merge or rearrange components to improve the

description. Value-dependent rules analyze both the in-
ferred description and the underlying training data look-
ing for fields with little or no variation in order to intro-
duce constants and enumerations. The value-dependent
rules also infer inter-field dependency information. At any
given point during the refinement process, many rewriting
rules may apply; our algorithm repeatedly chooses the one
that optimizes an information-theoretic scoring function we
have defined. In effect, this refinement phase is equivalent
to a greedy, local search procedure aimed at improving the
quality of the inferred format. Below is a fragment of the
IR learned from web log data similar to the data illustrated
above. In this case, the learning system was quite success-
ful; the only mistake it made was over-specializing the re-
sponse code to the specific integer constant 200. It did so
because the records in the training data contained no varia-
tion in this field.

Pstruct
[IP]; [StringConst] " - - [";
[Date]; [StringConst] ":";
[Time]; [StringConst] "]";
...
[IntConst] [200]; [StringConst] " "
[Pint];

End Pstruct

Finally, after no more refinement is possible, a pretty
printer translates the IR into a working PADS specification,
which can be used to generate a suite of useful tools. Here
is the final result for our running example.

Pstruct Struct_29 {
Pip var_0; " - - [";
Pdate(’:’) var_7; ’:’;
Ptime(’]’) var_9; "] ";
...
Puint8 var_26 : var_26 == 200; ’ ’;
Pint64 var_28;

};
Parray entries_t { Struct_29[]; };

Conclusions
The primary conclusion of our preliminary study is that it
is possible to infer useful PADS descriptions from a suffi-
ciently large corpus of training data. Indeed, with just a
push of a button, we can now automatically generate tools
that convert raw data into XML and generate statistical re-
ports. Where it once took days or weeks to access and
transform ad hoc data, it now takes seconds.
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