
Infinite CacheFlow in Software-Defined Networks

Naga Katta1, Omid Alipourfard2, Jennifer Rexford1 and David Walker1

1Princeton University ({nkatta,jrex,dpw}@cs.princeton.edu)
2University of Southern California ({ecynics}@gmail.com)

ABSTRACT
Software-Defined Networking (SDN) enables fine-grained poli-
cies for firewalls, load balancers, routers, traffic monitoring,
and other functionality. While Ternary Content Address-
able Memory (TCAM) enables OpenFlow switches to pro-
cess packets at high speed based on multiple header fields,
today’s commodity switches support just thousands to tens
of thousands of rules. To realize the potential of SDN on this
hardware, we need efficient ways to support the abstraction
of a switch with arbitrarily large rule tables. To do so, we de-
fine a hardware-software hybrid switch design that relies on
rule caching to provide large rule tables at low cost. Unlike
traditional caching solutions, we neither cache individual
rules (to respect rule dependencies) nor compress rules (to
preserve the per-rule traffic counts). Instead we“splice” long
dependency chains to cache smaller groups of rules while
preserving the semantics of the network policy. Our design
satisfies four core criteria: (1) elasticity (combining the best
of hardware and software switches), (2) transparency (faith-
fully supporting native OpenFlow semantics, including traf-
fic counters), (3) fine-grained rule caching (placing popular
rules in the TCAM, despite dependencies on less-popular
rules), and (4) adaptability (to enable incremental changes
to the rule caching as the policy changes).

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Architecture and Design

Keywords
Rule Caching, Software-Defined Networking, OpenFlow, Com-
modity Switch, TCAM.

1. INTRODUCTION
Software-Defined Networking (SDN) enables a wide range

of applications by applying fine-grained packet-processing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotSDN’14, August 22, 2014, Chicago, IL, USA.
Copyright 2014 ACM 978-1-4503-2989-7/14/08 ...$15.00.
http://dx.doi.org/10.1145/2620728.2620734.

rules that match on multiple header fields [1]. For exam-
ple, an access-control application may match on the “five
tuple” (e.g., source and destination IP addresses, transport
protocol, and source and destination port numbers), while
a server load-balancing application may match on the des-
tination IP address and the source IP prefix. The finer the
granularity of the policies, the larger the number of rules
in the switches. More sophisticated SDN controller applica-
tions combine multiple functions (e.g., routing, access con-
trol, monitoring, and server load balancing) into a single set
of rules, leading to more rules at even finer granularity.

Hardware switches store these rules in Ternary Content
Addressable Memory (TCAM) [2] that performs a parallel
lookup on wildcard patterns at line rate. Today’s commod-
ity switches support just 2-20K rules [3]. High-end backbone
routers handle much larger forwarding tables, but typically
match only on destination IP prefix (and optionally a VLAN
tag or MPLS label) and are much more expensive. Con-
tinued advances in switch design will undoubtedly lead to
larger rule tables [4], but the cost and power requirements
for TCAMs will continue to limit the granularity of policies
SDNs can support. For example, TCAMs are 400X more
expensive [5] and consume 100X more power [6] per Mbit
than the RAM-based storage in servers.

On the surface, software switches built on commodity
servers are an attractive alternative. Modern software switches
process packets at a high rate [7–9] (about 40 Gbps on
a quad-core machine) and store large rule tables in main
memory (and the L1 and L2 cache). However, software
switches have relatively limited port density, and cannot
handle multi-dimensional wildcard rules efficiently. While
software switches like Open vSwitch cache exact-match rules
in the “fast path” in the kernel, the first packet of each mi-
croflow undergoes slower user-space processing (i.e., linear
search) to identify the highest-priority matching wildcard
rule [10].

Instead, we argue that the TCAM in the hardware switch
should handle as many of the packets as possible, and divert
the remaining traffic to a software switch (or software agent
on the hardware switch) for processing. This gives an un-
modified controller application the illusion of an arbitrarily
large rule table, while minimizing the performance penalty
for exceeding the TCAM size. For example, an 800 Gbps
hardware switch, together with a single 40 Gbps software
switch could easily handle traffic with a 5% “miss rate” in
the TCAM.

The two main approaches for managing rule-table space
are compression and caching. Rule compression combines

Figure 1: Example Rule Table

rules that perform the same actions and have related pat-
terns [11]. For example, two rules matching destination IP
prefixes 1.2.3.0/24 and 1.2.2.0/24 could be combined into a
single rule matching 1.2.2.0/23, if both rules forward to the
same output port. Unfortunately, we cannot freely combine
rules in our setting, because the SDN controller application
could query the traffic counters of either of the two origi-
nal rules at any time. Any viable solution for SDN must
preserve the semantics expected by controller applications.

As an alternative to rule compression, we treat the TCAM
as a cache that stores the most popular rules. However, we
cannot blindly apply existing cache replacement algorithms,
because the rules can have overlapping patterns, leading to
complex dependencies between multiple rules. While ear-
lier work on IP route caching [12–15] considered rule depen-
dencies, IP prefixes have simple “containment” relationships
rather than complex partial overlaps of rules. The partial
overlaps can also lead to long dependency chains. Sophis-
ticated SDN applications that combine multiple functions
can easily lead to even longer dependency chains. In this
setting, swapping entire groups of dependent rules in and
out of the cache would be extremely inefficient, especially if
most of these rules match very little traffic.

In this paper, we show how to analyze rule patterns to
compute a graph that captures all of the dependencies be-
tween the rules in a switch. Then, we introduce a novel
“splicing” technique that breaks long dependency chains, al-
lowing us to cache much smaller groups of rules. Splicing
involves creating a few new rules that “cover” a large num-
ber of unpopular rules in a dependency chain, to avoid pol-
luting the cache. Splicing preserves rule-table space for the
more important rules that match a large fraction of the traf-
fic, while still respecting rule dependencies. In addition, our
technique extends naturally to handle changes in the list of
rules over time. The dependency-graph representation is in-
herently modular, allowing our algorithm to compute the
dependency graph and the “cover” sets incrementally as the
rules change. Experiments with our prototype CacheFlow
implementation demonstrate the effectiveness of our algo-
rithm under realistic workloads.

We discuss the rule-dependency problem and various rule-
caching algorithms in section 2. We discuss the CacheFlow
system design, a prototype implementation and a simulated
evaluation in section 3. We then briefly discuss related work
in section 4 and conclude with section 5.

2. CACHEFLOW ALGORITHM
In this section, we present CacheFlow’s algorithm for plac-

ing rules in a TCAM with a limited space. CacheFlow selects
a set of important rules from among the rules given by the

// Add dependency edges
procedure add_dependency(P:Policy) {

deps = ∅;

// p.o : priority order
for each R in P in descending p.o
reaches = R.match;
for each Ri in P with Ri.p.o < R.p.o
in descending p.o:
if (reaches ∩ Ri.match) != ∅ then
deps = deps ∪ {(R,Ri)};
reaches = reaches - Ri.match;

return deps;
}

Figure 2: Building the Dependency Graph

controller to be cached in the TCAM, while redirecting the
cache misses to the software switches.

The input to the rule-caching problem is a prioritized list
of n rules R1, R2, . . . , Rn, where rule Ri has higher priority
than rule Rj for i < j. Each rule has a match and action,
and a weight wi that captures the volume of traffic matching
the rule. The output is a prioritized list of k rules to store
in the TCAM1. The objective is to maximize the sum of the
weights for traffic that “hits” in the TCAM, while process-
ing “hit” packets according to the semantics of the original
prioritized list.

2.1 Computing Rule Dependencies
At regular intervals, the update algorithm decides which

rules to cache in the TCAM, based on their weights. The
problem is easy to solve if the rules have disjoint patterns
(e.g., microflow rules with no wildcard bits). In this case,
each rule is independent, and a greedy algorithm could cache
the k rules with the highest weights.

However, the greedy algorithm is incorrect when rules
have dependencies. Figure 1 shows an example with six
rules that match on a ternary format. If the TCAM can
store four rules (k = 4), we cannot select the four rules with
highest weight (i.e., R3, R4, R5, and R6), because packets
that should match R1 (with pattern 0000) would match R3

(with pattern 000*); similarly, some packets (with pattern
11**) that should match R2 would match R4 (with pattern
1*1*). That is, rules R3 and R4 depend on rules R1 and R2,
respectively.

A dependency exists between any two rules if the matches
in the rules intersect (e.g., R6 is dependent on R4). When a
rule R is cached in the TCAM, the corresponding dependent
rules should also move to the TCAM. However, checking for
intersecting patterns does not capture all of the rule depen-
dencies. R6 also depends on R2 (even though the matches
of R2 and R6 do not intersect), because the match 11**
overlaps with that of R4 (1*1*). If the TCAM stored only
R4 and R6, packets that should match R2 would inadver-

1Note that CacheFlow does not simply install rules on a
cache miss. Instead, CacheFlow makes decisions based on
traffic measurements over the recent past. This is important
to defend against cache-thrashing attacks where an adver-
sary generates low-volume traffic spread across the rules.
In practice, CacheFlow should measure traffic over a time
window that is long enough to prevent thrashing, and short
enough to adapt to legitimate changes in the workload.

(a) Dependent-set Algo. (b) Cover-set Algo. (c) Dependent-set Cost (d) Cover-set Cost

Figure 3: Dependent-set vs. Cover-set Algorithms (L0 cache rules in red)

tently match R4. Therefore we need to define carefully what
constitutes a dependency to handle such cases properly.

The algorithm in Figure 2 captures all such dependencies.
Rather than considering the dependencies for each rule sep-
arately, our algorithm constructs a single dependency graph,
as shown in Figure 3(a). To find the rules that depend on R,
the algorithm scans the rules Ri with lower priority than R
in order of decreasing priority. As the algorithm proceeds, it
keeps track of the set of packets that can reach each succes-
sive rule (the variable reaches). For each such new rule, it
determines whether the predicate associated with that rule
intersects the set of packets that can reach that rule. If it
does, there is a dependency. Moreover, the rule Ri will oc-
clude lower-priority rules. Hence, we subtract Ri’s predicate
from the current reaches set.

2.2 Caching Groups of Dependent Rules
We first present a simple strawman algorithm to build

intuition, and then present a new algorithm that avoids
caching low-weight rules. Each rule is assigned a “cost” cor-
responding to the number of rules that must be installed to-
gether and a “weight” corresponding to the number of pack-
ets expected to hit that rule. For example, R5 depends on
R1 and R3, leading to a cost of 3, as shown in Figure 3(a).
In this situation, R5 and R6 hold the majority of the weight,
but cannot be installed simultaneously on the switch, as in-
stalling either has a cost of 3 and together they do not fit.
The best we can do is to install rules R1, R2, R4, and R6.
This maximizes total weight, subject to respecting all de-
pendencies. In order to do better, we must restructure the
problem.

The current problem of maximizing the total weight can
be formulated as a linear integer programming problem,
where each rule has a variable indicating whether the rule
is installed in the cache. The objective is to maximize the
sum of the weights of the installed rules, while installing at
most k rules; if rule Rj depends on rule Ri, rule Rj cannot
be installed unless Ri is also installed. The problem can be
solved with an O(nk) brute-force algorithm that is expensive
for large k.

The current problem, however, can also be reduced to an
all-neighbors knapsack problem [16], which is a constrained
version of the knapsack problem where a node is selected
only when all its neighbors are also selected 2. However, no

2The reduction involves modeling all the dependencies of a
node as its neighbors in the knapsack problem

polynomial time approximation scheme (PTAS) is known
for this problem. Hence, we use a heuristic that is modeled
on a greedy PTAS for the Budgeted Maximum Coverage
problem [17], which is a relaxed version of the all-neighbors
knapsack problem. In our greedy heuristic, at each stage,
the algorithm chooses a set of rules that maximizes the ratio
of combined rule weight to combined rule cost (∆W

∆C
), until

the total cost reaches k. This algorithm runs in O(nk) time.
On the example rule table, this greedy algorithm selects

R6 first (and its dependent-set {R2, R4}), and then R1 which
brings the total cost to 4. Thus the set of rules in the TCAM
are R1, R2, R4, and R6. We refer to this algorithm as the
dependent-set algorithm.

2.3 Splicing Long Chains of Dependent Rules
Respecting rule dependencies can lead to high costs, es-

pecially if a high-weight rule depends on many low-weight
rules. For example, consider a firewall that has a single low-
priority “accept” rule that depends on many high-priority
“deny” rules that match relatively little traffic. Caching the
one “accept” rule would require caching many “deny” rules.
We can do better than past algorithms by modifying the
rules in various semantics-preserving ways, instead of sim-
ply packing the existing rules into the available space—this
is the key observation that leads to our superior algorithm.
In particular, we“splice” the dependency chain by creating a
small number of new rules that cover many low-weight rules
and send the affected packets to the software switch.

For the example in Figure 3(a), instead of selecting all de-
pendent rules for R6, we calculate new rules that cover the
packets that would otherwise incorrectly hit R6. The extra
rules direct these packets to the software switches, thereby
breaking the dependency chain. For example, we can install
a high-priority rule R∗

4 with match 1*1* and action for-

ward_to_SW_switch,3 along with the low-priority rule R6.
Similarly, we can create a new rule R∗

3 to break dependencies
on R5. We avoid installing higher-priority, low-weight rules
like R2, and instead have the high-weight rules R5 and R6

inhabit the cache simultaneously, as shown in Figure 3(b).
More generally, the algorithm must calculate the cover-set

for each rule R. To do so, we find the immediate ancestors of
R in the dependency graph and replace the actions in these
rules with a forward_to_SW_switch action. For example,
the cover-set for rule R6 is the rule R∗

4 in Figure 3(b); sim-

3This is just a standard forwarding action out some port on
the hardware switch that is connected to a software switch.

ilarly, R∗
3 is the cover-set for R5. The rules defining these

forward_to_SW_switch actions may also be merged4, if nec-
essary, to reduce the cost even further. The cardinality of
the cover-set defines the new cost value for each chosen rule.
This new cost is strictly less than or equal to the cost in
the dependent-set algorithm. The new cost value is much
less for rules with long chains of dependencies. For example,
the old dependent-set cost for the rule R6 in Figure 3(a) is
3 as shown in the rule cost table whereas the cost for the
new cover-set for R6 in Figure 3(b) is only 2 since we only
need to cache R∗

4 and R6. To take a more general case, the
old cost for the red rule in Figure 3(c) was the entire set of
ancestors (in light red), but the new cost (in Figure 3(d)) is
defined just by the immediate ancestors (in light red).

Combining the best of the two techniques: Despite
decreasing the cost of caching a rule, the cover-set algorithm
may also decrease the weight by redirecting the spliced traffic
to the software switch. For example, for caching the rule R4

in Figure 3(b), the dependent-set algorithm is a better choice
because the traffic volume processed by the dependent-set
in the TCAM is higher, while the cost is the same as a
cover-set. As shown in Figure 3(d), cover-set seems to be
a better choice for caching a higher dependency rule (like
the red node) compared to a lower dependency rule (like
the blue node). As such, we consider a metric that chooses

the best of the two sets i.e., max(
∆Wdep

∆Cdep
, ∆Wcover

∆Ccover
). Then we

can apply the same greedy covering algorithm with this new
metric to choose the best candidate rules to cache. We refer
to this version as the mixed-set algorithm, and evaluate its
performance in Section 3.2.

2.4 Updating the Rules Incrementally
A key property of all the algorithms discussed so far, is

that each chosen rule and its cover/dependent-set can be
added/removed almost independently of the rest of the cho-
sen rules. In other words, the mixed-sets for two rules are
easily composable and decomposable. Composing two rules
to build a cache would simply involve merging the corre-
sponding two sets (and incrementing appropriate reference
counters for each rule) and decomposition would involve ref-
erence counting before removing a rule from the TCAM.
This makes the all the algorithms discussed here amenable
to incremental change. For example, in Figure 3(d), the red
rule and its cover-set can be easily added/removed without
disturbing the blue rule.

We also developed algorithms to incrementally maintain
the dependency graph so that when a new rule is inserted
or an old rule is removed from the dependency graph, the
graph is still maintained without incurring the complexity
of the static algorithm shown in Figure 2. But we omit these
ideas for lack of space. The key intuition is to store edge-
related metadata so that we can incrementally maintain the
graph while manipulating only the relevant edges.

3. CACHEFLOW SYSTEM DESIGN
CacheFlow combines the high speed of hardware switches

with the large rule tables of software switches, to offer the

4 To preserve OpenFlow semantics pertaining to hardware
packet counters, policy rules cannot be compressed. How-
ever, we can compress the intermediary rules used for for-
warding cache misses, since the software switch can track
the per-rule traffic counters.

Figure 4: CacheFlow Architecture

abstraction of a single, fast switch with arbitrarily large rule
capacity. CacheFlow consists of a CacheMaster module that
receives OpenFlow commands from the controller, and uses
the OpenFlow protocol to distribute rules to the underlying
switches, as shown in Figure 4. Having multiple software
switches allows CacheFlow to “shard” the cache-miss traf-
fic over multiple software switches (by assigning different
“cover” rules to different output ports), for higher through-
put and rule capacity. Packets stay in the “fast path” in the
data plane, reducing the performance penalty for a cache
miss.

3.1 Preserving OpenFlow Semantics
The algorithms in Section 2 preserve the semantics of

OpenFlow rule priorities and counters for the cache-hit traf-
fic. CacheFlow also ensures that the software switches han-
dle cache-miss traffic correctly, as well as other aspects of the
OpenFlow protocol (e.g., barriers, rule timeouts, etc.) are
handled correctly, so our system can work with unmodified
controller applications.

Preserving inports/outports: CacheFlow installs
three kinds of rules in the hardware switch: (i) fine-grained
rules that apply part of the policy (a “hit”), (ii) coarse-
grained rules that forward packets to a software switch (a
“miss”), and (iii) coarse-grained rules that direct return traf-
fic from the software switches to the right output port(s),
similar to the tunneling mechanisms used in DIFANE [18].
In addition to matching on packet-header fields, an Open-
Flow policy may match on the inport where the packet ar-
rives. Therefore, the hardware switch tags cache-miss pack-
ets with the input port (e.g., using a VLAN tag) so the
software switches can apply rules that depend on the in-
port5. The rules in the software switches apply any “drop”
or “modify”actions, tag the packets for proper forwarding at
the hardware switch, and direct the packet back to the hard-
ware switch. Upon receiving the return packet, the hard-

5Tagging the cache-miss packets with the inport can lead
to extra rules in the hardware switch. In several practical
settings, the extra rules are not necessary. For example, in
a switch used only for layer-3 processing, the destination
MAC address uniquely identifies the input port, obviating
the need for a separate tag. Also, CacheFlow does not need
to add a tag unless the affected portion of the policy actu-
ally differentiates by input port. Finally, newer version of
OpenFlow support switches with multiple stages of tables,
allowing us to use one table to push the tag and another to
apply the (cached) policy.

 0

 20

 40

 60

 80

 100

 0.5 1 2 5 10 25 50

%
 C

ac
he

-h
it

tr
af

fic

% TCAM Cache Size (Log scale)

Mixed-Set Algo
Cover-Set Algo

Dependent-Set Algo

Figure 5: ClassBench Access Control Policy

 0

 20

 40

 60

 80

 100

 1 2 5 10 25 50

%
 C

ac
he

-h
it

tr
af

fic

% TCAM Cache Size (Log scale)

Mixed-Set Algo
Cover-Set Algo

Dependent-Set Algo

Figure 6: Stanford Backbone Router Policy

ware switch simply matches on the tag, pops the tag, and
forwards to the designated output port(s). If a cache-miss
rule has an action that sends the packet to the controller,
the CacheMaster transforms the packet_in message from
the software switch by (i) copying the inport from the tag
into the inport of the packet_in message and (ii) stripping
the tag from the packet before sending the message to the
controller.

Traffic counts, barrier messages, and rule time-
outs: CacheFlow preserves the semantics of OpenFlow 1.0
constructs like queries on traffic statistics, barrier messages,
and rule timeouts by emulating all of these features in the
CacheMaster—i.e, the behavior of the switches maintained
by CacheFlow is no different from that of a single OpenFlow
switch with infinite rule space. For example, CacheMaster
maintains packet and byte counts for each rule installed by
the controller, updating its local information each time a
rule moves to a different part of the cache hierarchy. Simi-
larly, CacheFlow emulates rule timeouts by installing rules
without timeouts, and explicitly removing the rules when the
software timeout expires, similar to prior work on LIME [19].

3.2 Implementation and Evaluation
We implemented a prototype for CacheFlow in Python

on top of the Ryu controller platform. At the moment, the
prototype transparently supports the semantics of the Open-
Flow 1.0 features mentioned earlier, except rule timeouts
and barrier messages. We ran the prototype on a collection
of two Open VSwitch 1.10 instances where one switch acts as
the hardware cache (where the rule-table capacity is limited
by CacheFlow) and another acts as the software switch that
holds the cache-miss rules. We evaluate our prototype for
three algorithms (dependent-set, cover-set, and mixed-set)
and three policies, and measure the cache-hit rate.

The first policy is a synthetic Access Control List (ACL)
generated using ClassBench [20]. The policy has 10K rules
that match on the source IP address, with long dependency
chains with maximum depth of 10. In the absence of a traf-

 0

 20

 40

 60

 80

 100

 1 2 5 10 25 50

%
 C

ac
he

-h
it

tr
af

fic

% TCAM Cache Size (Log scale)

Mixed-Set Algo

Figure 7: REANNZ IXP Policy

fic trace, we assume the weight of each rule is proportional
to the portion of flow space it matches. Figure 5 shows
the cache-hit percentage across a range of TCAM sizes, ex-
pressed relative to the size of the policy. The mixed-set
and cover-set algorithms have similar cache-hit rates and do
much better than the dependent-set algorithm because they
splice the longer dependency chains in the policy. While
mixed-set and cover-set have a hit rate of around 87% for
1% cache size (of total rule-table), all three algorithms have
around 90% hit rate with just 5% of the rules in the TCAM.

Figure 6 shows results for a real-world Cisco router con-
figuration on a Stanford backbone router [21], which we
transformed into an OpenFlow policy. The policy has 5K
OpenFlow 1.0 rules that match on the destination IP ad-
dress, with dependency chains that vary in depth from 1 to
6. We analyzed the cache-hit ratio by assigning traffic vol-
ume to each rule proportional to the size of its flow space.
The mixed-set algorithm does the best among all three and
dependent-set does the worst because there is a mixture of
shallow and deep dependencies. While there are differences
in the cache-hit rate, all three algorithms achieve at least
70% hit rate with a cache size of 5% of the policy.

Figure 7 shows results for an SDN-enabled Internet eX-
change Point (IXP) that supports the REANNZ research
and education network [22]. This real-world policy has 460
OpenFlow 1.0 rules matching on multiple packet headers like
inport, dst_ip, eth_type, src_mac, etc. Most dependency
chains have depth 1. We replayed a two-day traffic trace
from the IXP, and updated the cache every two minutes
and measured the cache-hit rate over the two-day period.
Because of the shallow dependencies, all three algorithms
have the same performance and hence we only show the
mixed-set algorithm in the figure. The mixed-set algorithm
sees a cache hit rate of 75% with a hardware cache of just
2% of the rules; with just 10% of the rules, the cache hit
rate increases to as much as 97%.

4. RELATED WORK
Earlier work on IP route caching [12–15] store only a small

number of IP prefixes in the switch line cards and the rest
in inexpensive slow memory. Most of them exploit the fact
that IP traffic exhibits both temporal and spatial locality
to implement route caching. However, most of them do not
deal with cross-rule dependencies and none of them deal with
complex multidimensional packet-classification. The TCAM
Razor [11, 23] line of work compresses multi-dimensional
packet-classification rules to minimal TCAM rules using de-
cision trees and multi-dimensional topological transforma-
tion. Dong et. al. [24] proposes a caching technique for
ternary rules by creating new rules out of existing rules

that handle evolving traffic but requires special hardware
and does not preserve counters. In general, the above tech-
niques that use compression to reduce TCAM space suffer
from not being able to (i) preserve rule counters and (ii)
make efficient incremental changes. In recent SDN litera-
ture, DIFANE [18] advocates caching of ternary rules, but
uses TCAM to handle cache misses—leading to a TCAM-
hungry solution. Other work [25,26] shows how to distribute
rules over multiple switches along a path, but cannot handle
rule sets larger than the aggregate table size. vCRIB [27]
redirects packets over a longer path before the entire policy
is applied and their partitioning approach is not amenable
to incremental change or transparency.

5. CONCLUSION
CacheFlow enables fine-grained policies in SDNs by op-

timizing the use of the limited rule-table space in hard-
ware switches, while preserving the semantics of OpenFlow.
Cache “misses” could be handled in several different ways:
(i) an inline CPU or network processor in the data plane of
the hardware switch (if available), (ii) one or more software
switches (to keep packets in the “fast path”, at the expense
of introducing new components in the network), (iii) in a
software agent on the hardware switch (to minimize the use
of link ports and bandwidth, at the expense of imposing ex-
tra CPU and I/O load on the switch), or (iv) at the SDN
controller (to avoid introducing new components while also
enabling new network-wide optimizations, at the expense of
extra latency and controller load). In our ongoing work, we
plan to explore these trade-offs, and also evaluate our algo-
rithms under a wider range of SDN policies and workloads.

Acknowledgments. The authors wish to thank the HotSDN
reviewers and members of the Frenetic project for their feed-
back. We would especially like to thank Josh Bailey for giv-
ing us access to the REANZZ OpenFlow policy and for being
part of helpful discussions related to the system implemen-
tation. This work was supported in part by the NSF under
the grant TS-1111520; the ONR under award N00014-12-1-
0757; and a Google Research Award.

6. REFERENCES
[1] N. McKeown, T. Anderson, H. Balakrishnan,

G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner, “Openflow: Enabling innovation in campus
networks,” SIGCOMM CCR, vol. 38, no. 2, pp. 69–74,
2008.

[2] B. Salisbury, “TCAMs and OpenFlow: What every
SDN practitioner must know.” See
http://tinyurl.com/kjy99uw, 2012.

[3] B. Stephens, A. Cox, W. Felter, C. Dixon, and
J. Carter, “PAST: Scalable Ethernet for data centers,”
in ACM SIGCOMM CoNext, 2012.

[4] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,
N. McKeown, M. Izzard, F. Mujica, and M. Horowitz,
“Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,” in
ACM SIGCOMM, 2013.

[5] “SDN system performance.” See
http://pica8.org/blogs/?p=201, 2012.

[6] E. Spitznagel, D. Taylor, and J. Turner, “Packet
classification using extended TCAMs,” in ICNP, 2003.

[7] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun,
K. Fall, G. Iannaccone, A. Knies, M. Manesh, and
S. Ratnasamy, “RouteBricks: Exploiting parallelism to
scale software routers,” in SOSP, 2009.

[8] S. Han, K. Jang, K. Park, and S. Moon,
“PacketShader: A GPU-accelerated software router,”
in SIGCOMM, 2010.

[9] “Intel DPDK overview.” See
http://tinyurl.com/cepawzo.

[10] “The rise of soft switching.” See
http://tinyurl.com/bjz8469.

[11] A. X. Liu, C. R. Meiners, and E. Torng, “TCAM
Razor: A systematic approach towards minimizing
packet classifiers in TCAMs,” IEEE/ACM Trans.
Netw, Apr. 2010.

[12] N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and
X. Huang, “Leveraging Zipf’s law for traffic
offloading,” SIGCOMM Comput. Commun. Rev. 2012.

[13] C. Kim, M. Caesar, A. Gerber, and J. Rexford,
“Revisiting route caching: The world should be flat,”
in Passive and Active Measurement, 2009.

[14] D. Feldmeier, “Improving gateway performance with a
routing-table cache,” in INFOCOM, 1988.

[15] H. Liu, “Routing prefix caching in network processor
design,” in ICCN, 2001.

[16] G. Borradaile, B. Heeringa, and G. Wilfong, “The
knapsack problem with neighbour constraints,” J. of
Discrete Algorithms, vol. 16, pp. 224–235, Oct. 2012.

[17] S. Khuller, A. Moss, and J. S. Naor, “The budgeted
maximum coverage problem,” Inf. Process. Lett., Apr.
1999.

[18] M. Yu, J. Rexford, M. J. Freedman, and J. Wang,
“Scalable flow-based networking with DIFANE,” in
ACM SIGCOMM, 2010.

[19] E. Keller, S. Ghorbani, M. Caesar, and J. Rexford,
“Live migration of an entire network (and its hosts),”
in HotNets, Oct. 2012.

[20] D. E. Taylor and J. S. Turner, “Classbench: A packet
classification benchmark,” in IEEE INFOCOM, 2004.

[21] “Stanford backbone router forwarding configuration.”
http://tinyurl.com/o8glh5n.

[22] “REANZZ.” http://reannz.co.nz/.

[23] C. R. Meiners, A. X. Liu, and E. Torng, “Topological
transformation approaches to TCAM-based packet
classification,” IEEE/ACM Trans. Netw., vol. 19, Feb.
2011.

[24] Q. Dong, S. Banerjee, J. Wang, and D. Agrawal,
“Wire speed packet classification without TCAMs: A
few more registers (and a bit of logic) are enough,” in
ACM SIGMETRICS, 2007.

[25] Y. Kanizo, D. Hay, and I. Keslassy, “Palette:
Distributing tables in software-defined networks,” in
IEEE Infocom Mini-conference, Apr. 2013.

[26] N. Kang, Z. Liu, J. Rexford, and D. Walker,
“Optimizing the ’one big switch’ abstraction in
Software Defined Networks,” in ACM SIGCOMM
CoNext, Dec. 2013.

[27] M. Moshref, M. Yu, A. Sharma, and R. Govindan,
“Scalable rule management for data centers,” in NSDI,
2013.

http://tinyurl.com/kjy99uw
http://pica8.org/blogs/?p=201
http://tinyurl.com/cepawzo
http://tinyurl.com/bjz8469
http://tinyurl.com/o8glh5n
http://reannz.co.nz/

	Introduction
	CacheFlow Algorithm
	Computing Rule Dependencies
	Caching Groups of Dependent Rules
	Splicing Long Chains of Dependent Rules
	Updating the Rules Incrementally

	CacheFlow System Design
	Preserving OpenFlow Semantics
	Implementation and Evaluation

	Related Work
	Conclusion
	References

