
A Theory of Aspects

David Walker
∗

Princeton University

dpw@cs.princeton.edu

Steve Zdancewic
University of Pennsylvania

stevez@cis.upenn.edu

Jay Ligatti
Princeton University

jligatti@cs.princeton.edu

Abstract
This paper define the semantics of MinAML, an idealized
aspect-oriented programming language, by giving a type-
directed translation from its user-friendly external language
to its compact, well-defined core language. We argue that
our framework is an effective way to give semantics to aspect-
oriented programming languages in general because the trans-
lation eliminates shallow syntactic differences between re-
lated constructs and permits definition of a clean, easy-to-
understand, and easy-to-reason-about core language.

The core language extends the simply-typed lambda cal-
culus with two central new abstractions: explicitly labeled
program points and first-class advice. The labels serve both
to trigger advice and to mark continuations that the advice
may return to. These constructs are defined orthogonally to
the other features of the language and we show that our ab-
stractions can be used in both functional and object-oriented
contexts. The labels are well-scoped and the language as a
whole is well-typed. Consequently, programmers can use
lexical scoping in the standard way to prevent aspects from
interfering with local program invariants.

Categories and Subject Descriptors
D.3.1 [Formal Definitions and Theory]: Semantics; D.3.3
[Language Constructs and Features]: Control struc-
tures; F.3.2 [Semantics of Programming Languages]:
Operational semantics

General Terms
Languages, Design, Theory

Keywords
Aspects, Aspect-oriented Programming, Operational Seman-
tics, Type Theory

∗This research was supported in part by National Science
Foundation CAREER grant No. CCR-0238328.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFP 2003
Copyright 2003 ACM 1-58113-756-7/03/0008 ...$5.00.

1. Introduction
Aspect-oriented programming languages (AOPL) [3], such

as AspectJ [10] and Hyper/J [13], provide the facility to in-
tercept the flow of control in an application and insert new
computation at that point. In this approach, certain control-
flow points, called join points, are designated as special—
typically, join points include the entry and exit points of
functions. Computation at these control flow points may be
intercepted by a piece of advice, which is a piece of code that
can manipulate the surrounding local state or cause global
effects. Advice is triggered only when the run-time context
at a join point meets programmer-specified conditions, mak-
ing advice a useful way to instrument programs with debug-
ging information, performance monitors, or security checks.
An aspect is a collection of advice and corresponding join
points that apply to a particular program.

Much of the research on aspect-oriented programming has
focused on applying aspects in various problem domains and
on integration of aspects into full-scale programming lan-
guages such as Java. However, aspects are a very power-
ful and complex language mechanism, combining features
of both dynamic scoping and continuation manipulation.
While recent research efforts [6, 9, 14, 16] have made sig-
nificant progress on understanding some of the semantic is-
sues involved, the theoretical underpinnings for this novel
paradigm lag well behind practical implementation efforts.

The primary goal of this paper is to distill aspect-oriented
programming into its fundamental components: (1) a means
of designating “interesting” control-flow points, and (2) a
way of manipulating the data and computation at those
points. The goal is to obtain a clear, reusable semantic
framework, but there are at least two significant difficulties:

1. Most object-oriented AOPL specify that there are join
points at the entry- and the exit-points of every method.
Such a definition of join points breaks the principle
of orthogonality, which suggests that each program-
ming language construct should be understood inde-
pendently of other programming language constructs.
Tightly coupling join-point definition with the seman-
tics of methods and objects makes it impossible to un-
derstand aspects without first understanding methods
and objects, which are complicated in isolation.

2. There are several different and relatively complex va-
rieties of advice one can give to any particular join
point. For instance, AspectJ allows programmers to
specify advice before, after and around its various join
points. While each sort of advice has a similar “feel,”

they are sufficiently different that they appear to re-
quire independent semantic analysis.

To resolve these difficulties, we adopt the central ideas of
a type-theoretic semantic framework defined by Harper and
Stone for Standard ML [8]. Rather than give a semantics
directly to a large and relatively complex AOPL with several
different kinds of advice and join points, we translate the
unwieldy external language into a simpler core language and
then provide a precise and elegant operational semantics
for the core. The translation eliminates shallow syntactic
differences between similar constructs, thereby shrinking the
number of features in the core and effectively modularizing
the overall semantics. We also use the translation as an
implementation strategy for the source language.

This core language defines two central new abstractions.

1. Explicit, labeled join points that are defined orthogo-
nally from the other constructs in the language, and

2. A single kind of first-class advice that, together with
labeled join points, gives meaning to the before, after
and around advice that one finds in AspectJ.

The main contributions of this paper include:

• A type-theoretic interpretation of an idealized, but
useful aspect-oriented language called MinAML that
includes advice, functions, and objects.

• A minimalist core aspect language with a well-defined
operational interpretation, and a sound type system.

• Evidence that our core language is general, expressive,
and scalable. The paper gives a number of examples
written in our aspect framework. It also shows that
enriching the point-cut language with context-sensitive
predicates and adding features such as objects does not
change the central machinery needed for aspects.

• A prototype implementation of a toy functional, aspect-
oriented language, AspectML (AML) that includes ad-
vice and point-cut declarations. The implementation
comes in two parts, mirroring our theoretical develop-
ment. The core language is implemented as a library
for SML/NJ, and AML is translated into SML by a
simple rewriter that inserts calls to the core library.

The next section introduces the features of the core aspect
calculus and its syntax, largely via examples. These exam-
ples motivate the design of the operational semantics and
type system, which are described in Sections 2.1 and 2.2.
Section 3 defines the external language, MinAML. Subse-
quent sections generalize the core calculus and MinAML by
extending them to include objects (Section 3.2) and richer
point-cut designators (Section 4). The paper concludes with
a description of a prototype implementation in SML/NJ and
discussion of related and future work (Sections 5 and 6).

2. Core aspect calculus
Labeled join points l〈e〉 are the essential mechanism of

the core aspect calculus. The labels, which are drawn from
some infinite set of identifiers, serve several purposes: They
mark the points at which advice may be triggered, they pro-
vide the appropriate contextual information for trigger pred-
icates, and they mark points to which control may be trans-
ferred when some advice decides to abort part of the current

computation. For example, in the expression v1 + l〈e2〉, af-
ter e2 has been evaluated to a value v2, evaluation of the
resulting subterm l〈v2〉 causes any advice associated with
the label l to be triggered. This construct permits the un-
ambiguous marking of any control flow point rather than
relying upon some a priori designation of the “interesting
control flow points,” which are hard-wired in most aspect-
oriented languages.

Advice, at the most fundamental level, is a computation
that exchanges data with a particular join point, and hence
a piece of advice is similar to a function. However, there are
some subtleties involved in the definition. Advice can not
only manipulate the data at the point, it can also influence
the control flow—perhaps by skipping code that would have
been run in the advice’s absence.

The advice {l.x → e} indicates that it will be triggered
when control flow reaches a point labeled l. The variable x
is bound to the data at that point, and evaluation proceeds
with the expression e, the body of the advice. Assuming
that the advice {l.x → e} has been installed in the program’s
dynamic environment, the example v1 + l〈v2〉 evaluates to
v1 + e{v2/x}. Note that the advice computes a value of
the same type as its argument, in this case an integer—
importantly, advice can be composed with other advice.

The same label may be used to tag distinct control flow
points, as long as those points indicate computations of the
same type. For example, the program l〈v1〉 + l〈v2〉 causes
two instances of the advice {l.x → e} to be run, but one
instance will be passed v1 and the other will be passed v2

Multiple pieces of advice may apply at the same control-
flow point. Because, in general, advice may have effects, the
order in which they run is important. It therefore seems
natural that there should be at least two ways to install
advice in the run-time environment, one that runs the new
advice prior to any other and one that runs it after any
other. (One could imagine generalizations of this idea, but
this simple scheme suffices for many interesting applications
of aspects.) Accordingly, the core aspect language includes
expression forms a << e and a >> e to respectively install the
advice a prior to and after the other advice. In both cases
running the advice a is delayed until the corresponding join
point is reached; the program continues as expression e.

The following examples show how advice precedence works
(assuming that there is no other advice associated with label
l in the environment).1

{l.x → x + 1} << {l.y → y ∗ 2} << l〈3〉 7−→∗ 7
{l.x → x + 1} << {l.y → y ∗ 2} >> l〈3〉 7−→∗ 8

Because it can be difficult to reason about the behavior
of a program when the advice associated with a label is
unknown, it is useful to introduce a scoping mechanism for
labels. The expression new p : t. e allocates a fresh label that
is bound to the variable p in the expression e. Labels are
considered first class values, so the example above can be
rewritten as follows:

new p :int. {p.x → x + 1} << {p.y → y ∗ 2} << p〈v〉

This ensures that only the advice explicitly declared in the
scope of the new get triggered at the location p〈v〉. The

1The operators << and >> are left-associative, and eval-
uation proceeds from left to right. Hence, a1 << a2 << e
installs a1 in the environment first and a2 in the environ-
ment second, before proceeding with evaluation of e.

variables bound by the new expression α-vary, providing for
modular program design.

With the features described so far, it is easy to see that as-
pects are a powerful (and potentially dangerous) tool. Con-
sider the following example:

new p :bool. {p.x → p〈x〉} << p〈true〉

This program immediately goes into an infinite loop, even
though the underlying program to which the advice applies,
true, is already a value. Wand and others [16] have ob-
served that aspects can be used to implement arbitrary fix-
points of functions using this technique. As another exam-
ple of the power of aspects, the program below shows how to
encode a (somewhat inefficient) implementation of reference
cells using the state provided by advice. A reference cell is
represented as a pair of functions, the first dereferences the
cell and the second updates the cell’s contents. The data is
stored in advice associated with label ref ; the last advice to
be run returns the current contents of the reference.

makeref
def
=

λinit :t. new ref :t.
{ref .x → init} <<

let get = λ_ :unit.ref 〈init〉 in

let set = λy′ :t.{ref .y → y′} >> () in (get,set)

As these examples show, aspects can radically alter the se-
mantics of a given programming language. Part of the con-
tribution of this work is to provide a framework that makes
studying these issues straightforward.

It is sometimes desirable for advice to suppress the exe-
cution of a piece of code or replace it altogether. The last
feature of the core aspect calculus, written return v to l,
allows such alterations to the control flow of the program.
Operationally, return is very similar to throwing a value
to a continuation or raising an exception. The value v is
directly passed to the nearest enclosing control-flow point
labeled l, bypassing any intervening pending computation.
If there is no point with label l, the program halts with an
error (this is analogous to an uncaught exception). As an
example, the following program evaluates to the value 3:

new p :int. p〈4 + (return 3 to p)〉

A second example (below) shows how to instrument a
function f = λx : bool. e of type bool → t so that if its
argument is true then e proceeds as usual, otherwise some
alternative code e′ is run.

new fpre: bool.

new fpost: bool.

{fpre.x→if x then x else return e′ to fpost}
>>

λx:bool.fpost〈let x = fpre〈x〉 in e〉

The strategy is to use two labels, fpre and fpost, that get
triggered at the function’s entry and exit. The advice asso-
ciated with the precondition checks the value of x and, if it
is true simply returns control to the body of the function.
If x is false, the advice runs e′ and returns the result directly
to the point labeled fpost. The function is instrumented by
adding the label fpre, which will trigger the precondition ad-
vice to inspect the function argument x, and by adding the
label fpost around the entire function body, which specifies
the return point from the function.

2.1 Operational Semantics
This section describes the operational semantics for the

core language, whose grammar is summarized below. For
simplicity, the base language is chosen to be the simply-
typed lambda calculus with Booleans and n-tuples.

l ∈ Labels
v ::= {v.x → e} | b | l | λx : t. e | (~v)
e ::= x | v | if e1 then e2 else e3 | e1 e2

| (e1, . . . , en)
(n≥0) | let(~x :~t)= e1 in e2

| new x : t. e | e1〈e2〉 | return e1 to e2

| {e1.x → e2} | e1 >> e2 | e1 << e2

Let b range over the Boolean values true and false and
a range over advice values {v.x → e2}. The other syntac-
tic categories in the language include labels for control-flow
points (l), values (v) and expressions (e). If ~e is a vector of
expressions e1, e2, . . . , en for n ≥ 0, then(~e)creates a tuple.
The expression let(~x : ~t) = e1 in e2 binds the components
of a tuple e1 to the vector of variables ~x in the scope of e2.
Types on let-bound variables are often omitted when they
are clear from context.

The point cut language has been reduced to the barest
minimum for the core calculus. However, the language de-
sign and semantics are completely compatible with more
expressive point cuts; Section 4 investigates several alterna-
tives. Note that point cuts, advice and labels are first-class
values; these values may be passed to and from functions
just as any other data structure.

The operational semantics uses evaluation contexts (E)
defined according to the following grammar:

E ::= [] | ifE then e2 else e3 | E e | v E
| (~v, E,~e) | E << e | E >> e | E〈e〉 | l〈E〉
| {E.x → e} | return E to e | return v to E

These contexts give the core aspect calculus a call-by-value,
left-to-right evaluation order, but that choice is orthogonal
to the design of the language. The only requirement is that
evaluation be allowed to proceed under labeled points: l〈E〉
should be an evaluation context. This requirement ensures
that the evaluation contexts accurately describe the nesting
of labels as they appear in the call stack.

The operational semantics must keep track of both the
labels that have been generated by the new construct and
the advice that has been installed into the run-time envi-
ronment by the program. An allocation-style semantics [12]
keeps track of a set L of labels (and their associated types).
Similarly, A is an ordered list of installed advice—the <<

and >> operators respectively add advice to the head (left)
and tail of this list. Finally, the abstract machine states
or configurations C used in our operational semantics are
triples, 〈L, A, e〉.

L ::= · | L, l : t A ::= · | A, a C ::= 〈L, A, e〉

Because the return operation needs to pass control to the
nearest enclosing labeled point, it is convenient to define a
function stack(E) that takes an evaluation context E and
returns the stack of labels appearing in the context. Such
stacks s, are given by the following grammar:

s ::= · | l | s1 :: s2

The top of the stack is to the left of the list. Stack con-
catenation, written s1 :: s2, is associative with unit ·. The

function stack(E) is inductively defined on the structure of
E, where the only interesting cases are:

stack([]) = · stack(l〈E〉) = stack(E) :: l

For the other evaluation context forms, stack(E) simply re-
turns the recursive application of stack(−) to the unique
subcontext: stack(E << e) = stack(E), etc. As an example,

stack(l1〈(λx : t. l3〈e〉) l2〈[]〉〉) = · :: l2 :: l1

The operational semantics of the core aspect calculus is a
transition relation 〈L, A, e〉 7−→ 〈L′, A′, e′〉 between machine
configurations consisting of the set of allocated labels, the
list of installed advice, and the running program.

Most of the rules are straightforward. An auxiliary rela-
tion 7−→β , defined below, gives the primitive β reductions
for the language.

〈L, A, (λx : t. e) v〉 7−→β 〈L, A, e{v/x}〉
〈L, A, if true then e1 else e2〉 7−→β 〈L, A, e1〉
〈L, A, if false then e1 else e2〉 7−→β 〈L, A, e2〉

〈L, A, let (~x)=(~v) in e〉 7−→β 〈L, A, e{~v/~x}〉
(l 6∈ L) 〈L, A, new x : t. e〉 7−→β 〈(L, l : t), A, e{l/x}〉

〈L, A, a << e〉 7−→β 〈L, (a, A), e〉
〈L, A, a >> e〉 7−→β 〈L, (A, a), e〉

The first four rules are the usual β-rules for the lambda
calculus with Booleans and tuples, where e{v/x} is capture-
avoiding substitution of the value v for the variable x in
the expression e. The fifth rule allocates a fresh label l
and substitutes it for the variable x in the scope of the new

operator. The last two rules simply add the advice a to the
appropriate end of the list. Advice at the head of the list
will be run before advice at the tail.

The β-reductions apply in any evaluation context, as ex-
pressed by the following rule:

〈L, A, e〉 7−→β 〈L′, A′, e′〉
〈L, A, E[e]〉 7−→ 〈L′, A′, E[e′]〉

The remaining constructs, advice invocation and the return
expression, require more complex evaluation semantics.

Because multiple pieces of advice may be triggered at a
single point, the operational semantics must compose them
together in the order indicated by the list A. To do so, the
advice {p.x → e} is treated as a function λx : t. e, which
can be combined with other advice using standard function
composition. The composition is well defined because advice
that accepts input of type t must produce an output of type
t (or return to a point lower in the stack).

This behavior is captured by two auxiliary definitions.
The first, A[[A]]C = e′, takes a list of advice A and returns a
function e′ that is the composition of the applicable advice
in the state C. The second judgment has the form C |= p
and is valid if the point-cut p is satisfied by the configuration
C. In general, the satisfaction relation may be an arbitrary
predicate on the current state of the abstract machine; Sec-
tion 4 details some more point-cuts. However, in this core
language, the satisfaction relation is simply defined to be
the equality relation between p and the label at the cur-
rent program point. The advice composition and point-cut

satisfaction are defined by the following rules.

A[[·]]〈L,A,E[l〈v〉]〉 = λx :L(l). x

C |= v A[[A]]C = λy : t. e′

A[[{v.x → e}, A]]C = λx : t. ((λy : t. e′) e)

C 6|=v A[[A]]C = e′

A[[{v.x → e}, A]]C = e′
l = p

〈L, A, E[l〈v〉]〉 |= p

With these definitions, the evaluation rule for l〈v〉 simply
applies the function resulting from interpreting the advice
list to the value v.

A[[A]]〈L,A,E[l〈v〉]〉 = e

〈L, A, E[l〈v〉]〉 7−→ 〈L, A, E[e v]〉

The expression return v to l immediately hands the value
v to the nearest enclosing program point labeled by l. Using
evaluation contexts and the stack(−) function, this behavior
is expressed by the following rule:

(l 6∈ stack(E)) 〈L, A, l〈E[return v to l]〉〉 7−→β 〈L, A, l〈v〉〉

Here, the program consists of a return expression in a con-
text E labeled by l. Because the stack of labels in E does
not contain the label l, the point labeled by l must be the
closest such point to the return expression. The program
thus steps immediately to the point labeled l, discarding the
context E. This semantics is essentially the same as those
used for exception handlers. Note that if there is no point
labeled l in the context of the return this rule does not
apply and the program will get stuck.

2.2 Type System
The type system for the core aspect calculus is a very

simple extension of the type system for the base language
(in this case, the simply typed lambda calculus). The main
consideration is that because it is necessary to pass data
back and forth between the join point of interest and the
advice, the advice and control flow points must be in agree-
ment with respect to the type of data that will exchanged.
The three new types are t label, the type of labels that can
annotate program contexts of type t, t pc, the type of point
cuts matching program contexts of type t, and advice, the
type of advice. Types and typing contexts are given by the
following grammar:

t ::= bool | (t1, . . . , tn)(n≥0) | t1 → t2
| t label | t pc | advice

Γ ::= · | Γ, x : t

Figure 1 contains the typing rules for the new aspect ex-
pressions. These rules make use of the standard judgments
of the form Γ ` e : t, indicating that term e can be given
type t in context Γ. Boolean and tuple typing (not shown)
are standard. Tuple expressions are typed by a vector of
types ~t, where · is the empty tuple of types (i.e. unit, inhab-

ited by ()), and if ~t and ~t′ are tuple types, then ~t, ~t′ is their
concatenation.

For simplicity, the type system is parameterized by a map
L from labels to the types of the expressions they may mark.
A concrete label value l is given the type t label whenever
L(l) = t. The new expression simply introduces a new vari-
able of type t label. An expression of type t label may
be used to label another expression of type t. Since point

L(l) = t

Γ ` l : t label

Γ, x : t label ` e : t′

Γ ` new x : t. e : t′

Γ ` e1 : t label Γ ` e2 : t

Γ ` e1〈e2〉 : t
Γ ` e : t label

Γ ` e : t pc

Γ ` e1 : t pc Γ, x : t ` e2 : t

Γ ` {e1.x → e2} : advice

Γ ` e1 : advice Γ ` e2 : t

Γ ` e1 << e2 : t

Γ ` e1 : advice Γ ` e2 : t

Γ ` e1 >> e2 : t

Γ ` e1 : t Γ ` e2 : t label

Γ ` return e1 to e2 : t′

Figure 1: Type system

cuts are simply labels here, the type t pc is implemented by
t label: Any expression with type t label may be consid-
ered to have type t pc.

Advice associated with a point cut of type t pc is con-
structed from code that expects a variable of type t. The
body of advice must produce a result suitable for returning
to the point from which the advice was triggered. Thus,
the body of the advice must itself be of type t. Note that
because all advice associated with a point cut p accept and
produce values of the same type, it is possible to compose
them in any order—the soundness of the composition used
in the operational semantics follows from this constraint.

The rules for installing advice permit the program to be
executed in the presence of the advice to have any type.

Lastly, the value returned to a label marking a context of
type t should itself have type t. However, as with exception
or continuation invocation, the return expression itself may
be used in any context.

These rules lead to a straightforward soundness proof in
the style of Wright and Felleisen [17]. A finished configura-
tion is one that is either of the form 〈L, A, v〉 or of the form
〈L, A, E[return v to l]〉 where l 6∈ stack(E).

A configuration 〈L, A, e〉 is well typed if, for all advice
a ∈ A it is the case that · ` a : advice and · ` e : t for
some t (where L is the label–type map that parameterizes
these type checking judgments). Given these definitions, the
standard lemmas can easily be proved.

Theorem 2.1 (Progress).
If C is well typed then either the configuration is finished,

or there exists another configuration C′ such that C 7−→ C′.

Theorem 2.2 (Preservation).
If 〈L, A, e〉 is well typed and 〈L, A, e〉 7−→ 〈L′, A′, e′〉 then

L′ extends L and 〈L′, A′, e′〉 is well typed.

3. MinAML
This section gives a semantics for a concrete AOPL called

MinAML by translating it into the core aspect calculus.
Figure 2 displays the MinAML syntax. The base types

are Booleans and functions. Booleans are as usual. Func-
tion declarations define a (non-recursive) value and also im-
plicitly declare a program point f that can be referred to by
advice. Otherwise, functions are treated normally.

MinAML allows programmers to define static, second-
class advice—unlike in the more general core language, pro-
grams may not manipulate advice at run-time in any signif-
icant way. Advice is immediately appended to the advice

types t ::= bool | t1 → t2
terms e ::= x | b | if e1 then e2 else e3

| let ds in e | e1 e2

decls ds ::= ·
| (boolx = e) ds
| (fun f(x : t1): t2 = e) ds
| ad ds

prog pts p ::= f
aspects ad ::= before p(x)= e

| after p(x)= e
| around p(x)= e
| around p(x)= e1; proceed y → e2

Figure 2: MinAML Syntax

store when it is declared. In this respect, MinAML is quite
similar to AspectJ.

Also like AspectJ, MinAML has three sorts of aspects:
those that give advice before execution of point cut p (for
now, p is limited to be a function call), those that give advice
after execution of p, and those that give advice around p.
In the first and third cases, the bound variable x will be
replaced by the argument of p when the advice is triggered.
In the second case, x will be replaced by p’s result. When
declaring around advice, the programmer can choose either
to replace p entirely or to perform some pre-computation,
proceed with p and then perform some post-computation.2

In the latter case, after proceeding with p, a fresh variable
y is bound to the result of the function.

Unlike AspectJ, which allows programmers to refer to any
method that appears anywhere in their program, even pri-
vate methods of classes, the functions referred to by Mi-
nAML advice must be in scope. This decision allows pro-
grammers to retain some control over basic information hid-
ing and modularity principles in the presence of aspects. For
instance, a programmer can declare a nested utility function
and be assured that no advice interferes with its execution.
The programmer can also decide to expose the function dec-
laration to manipulation by advice by declaring it in an
outer scope. The decision to make the external language
well scoped truly is an external language design decision:
we believe the core aspect calculus is rich enough to express
AspectJ-style, scopeless advice by using a slightly different
translation strategy.3

3.1 MinAML Interpretation
We give a semantics to well-typed MinAML programs by

defining a type-directed translation into the core language.
The translation is defined by mutually recursive judg-

2It is straightforward to permit the proceed command to
appear in arbitrary expressions inside advice, but doing so
needlessly complicates the presentation without adding any
further insight.
3Allowing programmers to reference variables defined in in-
ner scopes would pose some (again, external language) dif-
ficulties as any simple scheme would be incompatible with
the basic principles of alpha-conversion. However, these dif-
ficulties could likely be overcome by giving bindings both an
internal and external name, as in Harper and Lillibridge’s
translucent sum calculus [7]. Once naming conventions for
the external language have been overcome, the translation
to internal language should be straightforward.

x : t ∈ Γ

P ; Γ ` x : t
term
=⇒ x P ; Γ ` b : bool

term
=⇒ b

P ; Γ ` e1 : bool
term
=⇒ e′1

P ; Γ ` e2 : t
term
=⇒ e′2 P ; Γ ` e3 : t

term
=⇒ e′3

P ; Γ ` if e1 then e2 else e3 : t
term
=⇒ if e′1 then e′2 else e′3

P ; Γ ` ds; e : t
decs
=⇒ e′

P ; Γ ` let ds in e : t
term
=⇒ e′

P ; Γ ` e1 : t1 → t2
term
=⇒ e′1 P ; Γ ` e2 : t1

term
=⇒ e′2

P ; Γ ` e1 e2 : t2
term
=⇒ e′1 e′2

Figure 3: MinAML Interpretation: Terms

ments for terms, for declarations and for advice. The term

translation judgment has the form P ; Γ ` e : t
term
=⇒ e′. It

computes the type t of the term e and, if it is well-formed,
produces a core language term e′ of the same type. The
type-checking context is split into two parts. The context
Γ is a mapping from MinAML variables to types. The con-
text P is a mapping from program points p to pairs of input
and output types for that program point. For example, a
function f : bool → int extends the context P with the
binding f : (bool, int) and extends the typing context Γ
with f :bool→ int.

The term translation type checks external language terms
and translates them into analogous core language constructs.
All of the interesting action happens when translating dec-
larations and advice. Figures 3, 4 and 5 present the details.

The main idea in the translation of function declarations
has already been explained by example. Two new program
points are declared in the course of the translation, one for
the function entry point (fpre) and one for the exit point
(fpost). These two points may be used in advice definitions
declared in the following scope. The translation maintains
the invariant that if the binding p : (t1, t2) appears in P then
the translated term will type check in a context extended
with ppre : t1 label, ppost : t2 label.

The main ideas for the aspect translation have also been
explained informally in previous sections. Before advice for
p is defined to be core language advice triggered by the ppre
join point. After advice for p is triggered by the ppost join
point. Around advice with a proceed statement defines two
pieces of advice, one for the ppre point and one for the ppost
point. Finally, around advice without a proceed statement
is triggered by ppre but returns to ppost.

The main property of the translation is that it produces
well-typed core language terms. Define P(p : (t1, t2)) to be
the context ppre : t1 label, ppost : t2 label and let P(P) be
the point-wise extension of the former translation.

Lemma 3.1 (Translation Type Preservation).

1. If P ; Γ ` e : t
term
=⇒ e′ then Γ,P(P) ` e′ : t.

2. If P ; Γ ` ds; e : t
decs
=⇒ e′ then Γ,P(P) ` e′ : t.

3. If P ; Γ ` ad
adv
=⇒ e′ then Γ,P(P) ` e′ : advice.

P ; Γ ` e : t
term
=⇒ e′

P ; Γ ` ·; e : t
decs
=⇒ e′

P ; Γ ` e1 : bool
term
=⇒ e′1 P ; Γ, x :bool ` ds; e2 : t

decs
=⇒ e′2

P ; Γ `(boolx = e1) ds; e2 : t
decs
=⇒ letx :bool = e′1 in e′2

P ; Γ, x : t1 ` e1 : t2
term
=⇒ e′1

P, f : (t1, t2); Γ, f : t1 → t2 ` ds; e2 : t
decs
=⇒ e′2

P ; Γ `(fun f(x : t1): t2 = e1) ds; e2 : t
decs
=⇒

new fpre : t1. new fpost : t2. let f = eb in e′2

where eb = λx : t1.fpost〈letx : t1 = fpre〈x〉 in e′1〉

P ; Γ ` ad
adv
=⇒ e′1 P ; Γ ` ds; e2 : t

decs
=⇒ e′2

P ; Γ ` ad ds; e2 : t
decs
=⇒ e′1 >> e′2

Figure 4: MinAML Interpretation: Declarations

p : (t1, t2) ∈ P P ; Γ, x : t1 ` e : t1
term
=⇒ e′

P ; Γ ` before p(x)= e
adv
=⇒ {ppre.x → e′}

p : (t1, t2) ∈ P P ; Γ, x : t2 ` e : t2
term
=⇒ e′

P ; Γ ` after p(x)= e
adv
=⇒ {ppost.x → e′}

p : (t1, t2) ∈ P

P ; Γ, x : t1 ` e1 : t1
term
=⇒ e′1 P ; Γ, y : t2 ` e2 : t2

term
=⇒ e′2

P ; Γ ` around p(x)= e1; proceed y → e2
adv
=⇒

{ppre.x → e′1} >> {ppost.y → e′2}

p : (t1, t2) ∈ P P ; Γ, x : t1 ` e : t2
term
=⇒ e′

P ; Γ ` around p(x)= e
adv
=⇒

{ppre.x → return e′ to ppost}

Figure 5: MinAML Interpretation: Aspects

The proof of Lemma 3.1 is by induction on the translation
derivation. Combining Lemma 3.1 with the type safety re-
sult for the core language yields an important safety result
for MinAML.

Theorem 3.1 (MinAML Safety).

Suppose that ·; · ` e : t
term
=⇒ e′. Then either e′ fails to termi-

nate or there is a finished configuration 〈L, A, e′′〉 such that
〈·, ·, e′〉 7−→? 〈L, A, e′′〉

3.2 Objects
The bulk of this paper focuses on using aspects in the

context of a purely functional language. However, we have
tried to design the core language so that each feature is
orthogonal to the others. In particular, the labeled join
points are defined independently of other constructs and
hence can be reused in other computational settings with
little change. In order to justify this claim, we have lifted
Abadi and Cardelli’s first-order object calculus (AC) directly

from their textbook [1]. This section shows how the aspect
language constructs interoperate with it. The main point
is that while we naturally need to add objects to both the
external and core languages, the semantics of join points
remains unchanged. Moreover, while additional syntax is
needed in the external language to allow programmers to
refer to new join points, the underlying semantics of advice
also remains the same. This analysis provides evidence that
the semantic framework is both general and robust.

3.2.1 Object-oriented Core Language
The type system and syntax for the AC object-oriented

language is taken directly from Abadi and Cardelli [1].

t ::= · · · | [mi:ti]
1..n

e ::= · · · | [mi = ς xi.ei]
1..n | e.m | e1.m ⇐ ς x.e2

v ::= · · · | [mi = ς mi.ei]
1..n

AC is a classless language. New objects [mi = ς xi.ei]
1..n

may be defined at any point in a computation. The super-
script 1..n indicates there is a series of n method declara-
tions in the object. Method invocation is denoted e.m and
method update (override) is denoted e1.m ⇐ ς x.e2.

The AC typing rules are straightforward. We have mod-
ified them to permit labels, and slightly more significantly,
we have dropped the subtyping for the sake of simplicity.

Γ, x : [mi:ti]
1..n ` ei : ti

Γ ` [mi = ς xi.ei]
1..n : [mi:ti]

1..n

Γ ` e : [mi:ti]
1..n 1 ≤ j ≤ n

Γ ` e.mj : tj

Γ ` e1 : [mi:ti]
1..n Γ, x : [mi:ti]

1..n ` e2 : tj 1 ≤ j ≤ n

Γ ` e1.mj ⇐ ς x.e2 : [mi:ti]
1..n

Finally, to extend the operational semantics, we define
further evaluation contexts corresponding to the new ex-
pression forms and the appropriate beta rules.

Evaluation Contexts:

E ::= · · · | E.m | E.m ⇐ ς x.e2

Beta Rules:

〈L, A, [mi = ς xi.ei]
1..n.mj〉 7−→β

〈L, A, ej{[mi = ς xi.ei]
1..n/xj}〉

〈L, A, [mi = ς xi.ei]
1..n.mj ⇐ ς x.e〉 7−→β

〈L, A, [m1 = ς x1.e1, . . . , mj = ς x.e, . . . , mn = ς xn.en] 〉

To adapt the progress and preservation theorems stated
in the previous section, we need only fill in the inductive
cases for objects; the overall proof structure remains intact.

3.2.2 Object-oriented External Language
The external language requires a new type for objects, new

declarations for defining objects and new expression forms
for method invocation and update. In addition, we add an
expression form to control monitoring of method updates.
The declaration monitor t.m specifies that any update of
method m to an object with type t may be intercepted and
modified by advice. This declaration also introduces a new
join point t.m, and programmers can declare before, after
and around advice that will be triggered by that join point
(i.e., triggered whenever the associated method update oc-
curs). Programmers can also declare advice triggered by

calls to the m method of object x via the join point x.m.

t ::= · · · | [mi:ti]
1..n

e ::= · · · | e.m | e1.m ⇐ ς x.e2

d ::= · · · | (objectx : t = [mi = ς xi.ei]
1..n) ds

| monitor t.m ds
p ::= · · · | x.m | t.m

As a simple example, consider the following code which
declares an object with two fields. One field holds an integer
and the other holds a function that adds the integer to its
argument. To prevent the integer field from being updated
(effectively rendering it “const”), the program declares that
the field is monitored and installs around advice that re-
places any attempted update with the identity function.

let object x:t =

[i = ςs.3;
plus = ςs.let fun f x = s.i + x in f]

monitor t.i

around (t.i) (x) = x

in ...

where t = [i : int; plus : int -> int]

Interpreting the object-oriented source language in the
core aspect calculus poses no challenges. The monitor dec-
laration translates to a pair of expressions that allocate new
pre- and post-labels used to mark method updates. In-
terpreting both method update in the case that the up-
date is monitored, and object declarations, follows a similar
strategy to compilation of function bodies. The translation
marks the control-flow points just prior to and just after
the operation in question. Advice declarations in the same
scope can manipulate these program points just as they ma-
nipulate function entry and exit points. The full details have
been omitted due to space considerations.

4. Complex Point Cuts
This section investigates two further generalizations of the

basic aspect framework. The first generalization allows ad-
vice to be associated with a set of labels instead of just one
label, which permits the code of the advice to be shared by
many program points. The second generalization is to per-
mit run-time inspection of the labels that appear in the call
stack, which allows advice to make context sensitive deci-
sions about how to modify the program.

4.1 Label Sets
The first generalization associates a set of labels with each

piece of advice. Doing so is useful in situations where the
same advice is applied at many different locations. For ex-
ample, one might want to instrument a collection of related
functions of type t1 → t2 with the same preprocessing of the
argument, yet still allow the possibility of associating other,
different advice with each function. With sets of labels, this
situation can be expressed as:

new pre1:t1.new pre2:t1.

{{pre1,pre2}.x→e1} >> // Runs at either point

{{pre1}.y→e2} >> // Runs at pre1

{{pre2}.z→e3} >> // Runs at pre2

let f = λx:t1. let x = pre1〈x〉 in ... in

let g = λx:t1. let x = pre2〈x〉 in ... in ...

The necessary change to the syntax of the language is
minimal, as shown in the grammar below:

e ::= · · · | {e1, . . . , en} | e1 ∪ e2 | e1 ∩ e2

v ::= · · · | {v1, . . . , vn}

The advice {{l1, . . . , ln}.x → e} is triggered whenever a
point labeled by any of the labels l1 through ln is reached.

To change the operational semantics of advice invocation,
we simply replace the definition of the satisfaction relation
with the following:

l ∈ {l1, . . . , ln}
〈L, A, E[l〈v〉]〉 |= {l1, . . . , ln}

Advice is still applied in the order defined by the list A,
but now advice is triggered by a label l if l is in the set.
Evaluation semantics for the set operators e1∪e2 and e1∩e2

are straightforward to define.
The type system is altered to use the following rules for

type checking point cuts. The type t pc is now implemented
by a set of labels of the same type.

(Γ ` ei : t label)(1≤i≤n)

Γ ` {e1, . . . , en} : t pc

Γ ` e1 : t pc Γ ` e2 : t pc

Γ ` e1 ∪ e2 : t pc

Γ ` e1 : t pc Γ ` e2 : t pc

Γ ` e1 ∩ e2 : t pc

One could imaging further refinements along these lines.
For instance, one refinement would be to put more structure
on the labels themselves, perhaps by introducing a hierarchy
of labels. A piece of advice would then be triggered by its
label or any label lower in the tree. Including a “top” label
in the hierarchy would let one define advice that is triggered
whenever any labeled point is reached.

4.1.1 MinAML Extensions and Interpretation
Extending MinAML’s point cut language to include sets

of labels requires some minor adjustments to the syntax:

pc ::= {p1, . . . , pn}
ad ::= before pc(x)= e

| after pc(x)= e
| around pc(x)= e
| around pc(x)= e1; proceed y → e2

The interpretation also requires some adjustments. One
problem is that around advice can be called from multi-
ple different labeled points, so it is impossible to determine
statically which label it should return to. To circumvent this
difficulty, the translation uses first-class labels: the around
advice is passed the “continuation” label it should return to.

The new translation of function and advice declarations
appears in Figure 6. Given a set s of source-level program
points {p1, . . . , pn}, we use the meta-level function pre(s) to
generate the corresponding set of labels {p1,pre, . . . , pn,pre}.
The function post(s) is similar. The translation of object
expressions (omitted) can be dealt with analogously.

4.2 Stack Patterns
While labeled program expressions suffice to capture some

of the “interesting” program points, whether a point is “in-
teresting” often depends on context. For example, a typical
use of aspects for debugging is to print the arguments of

P ; Γ, x : t1 ` e1 : t2
term
=⇒ e′1

P, f : (t1, t2); Γ, f : t1 → t2 ` ds; e2 : t
decs
=⇒ e′2

P ; Γ `(fun f(x : t1): t2 = e1) ds; e2 : t
decs
=⇒

new fpre : t1 × t2 label. new fpost : t2.
let f = eb in e′2

eb
def
= λx : t1.fpost〈let (x,) = fpre〈(x, fpost)〉 in e′1〉

(p : (t1, t2) ∈ P)p∈s P ; Γ, x : t1 ` e : t1
term
=⇒ e′

P ; Γ ` before s(x)= e
adv
=⇒

{pre(s).x → let (x, l) = x in (e′, l)}

(p : (t1, t2) ∈ P)p∈s P ; Γ, x : t2 ` e : t2
term
=⇒ e′

P ; Γ ` after s(x)= e
adv
=⇒ {post(s).x → e′}

(p : (t1, t2) ∈ P)p∈s

P ; Γ, x : t1 ` e1 : t1
term
=⇒ e′1 P ; Γ, y : t2 ` e2 : t2

term
=⇒ e′2

P ; Γ ` around s(x)= e1; proceed y → e2
adv
=⇒

{pre(s).x → let (x, l) = x in (e′1, l)}
>> {post(s).y → e′2}

(p : (t1, t2) ∈ P)p∈s P ; Γ, x : t1 ` e : t2
term
=⇒ e′

P ; Γ ` around s(x)= e
adv
=⇒

{pre(s).x → let (x, l) = x in return e′ to l}

Figure 6: MinAML Interpretation: Label Sets

a function f when it is called from inside the body of a
second function, g. The debugging advice is not invoked
when f is called from some third function h. To enable this
application, AOPLs provide mechanisms that allow the pro-
grammer to specify in what dynamic contexts advice should
be triggered.

One could tie this contextual information into the advice
construct itself, but it seems more general to provide an
orthogonal mechanism for querying the run-time state of
the program. This section proposes stack patterns as a way
to achieve the desired expressiveness without altering the
advice; this approach leads to a cleaner semantics.

During the course of evaluation, the labeled program points
naturally form a stack, which is a useful model of the com-
putation being carried out by the program. The return

expression already makes use of this fact to determine to
which point control should be passed. Stack patterns allow
programmers to write queries over the label stack.

Aspect-oriented languages also permit queries on the data
stored in the run-time stack. This facility is useful for writ-
ing point-cut designators: triggers that depend on context.
To handle this feature, we extend the core language with a
means of storing data values in the stack by adding a new
expression store x : t = e1 in e2. The semantics of store is
like an ordinary let except that the substitution of the value
for the bound variable is performed explicitly—evaluation
proceeds within the body of the store. The evaluation con-
texts are extended to include:

E ::= . . . | store x = E in e | store x = v in E

Two additional β-rules model the explicit substitutions; here,
the function svars(E) yields the set of variables x such that
E = E′[store x = v in E′′].

〈L, A, store x = v in E[x]〉 7−→β

〈L, A, store x = v in E[v]〉 (x 6∈ svars(E))
〈L, A, store x = v in v′〉 7−→β 〈L, A, v′〉

Allowing evaluation to proceed under the store binding
means that the stack embodied by the evaluation contexts
now includes the stored data. Thus, we can extend stacks
to include values (val : t = v) in addition to the labels, and
extend the stack(−) function to extract the data too:

s ::= · | l | s1 :: s2 | val : t = v
stack(store x : t = v in E) = stack(E) :: (val : t = v)
stack(store x : t = E in e) = stack(E)

Stack patterns are expressions that describe the stack of
labels and stored values present in the dynamic evaluation
context—the metavariable pat is used to emphasize that a
given expression is in fact a stack pattern. A stack pattern
is similar to a regular expression over labels, but it may also
bind stored values. The grammar below summarizes the
additions to the base language needed for stack patterns.

e ::= . . . | l | e1; e2 | e1 | e2 | e∗ | e1 & e2 | ¬e
| val : t | match[t](e)then e1 else e2

v ::= . . . | l | v1; v2 | v1 | v2 | v∗ | v1 & v2 | ¬v
| val : t

The pattern l matches the stack consisting of the label l.
Concatenation of pattern expressions is written e1; e2, union
is written e1 | e2, and a Kleene star operator is written e∗.
The intersection operator e1 & e2 matches patterns in the
intersection of those matched by e1 and e2, binding the data
from both patterns. A negation pattern, ¬e, matches a stack
if there is no possible way to parse the stack successfully
according to e. The pattern val : t matches a value of type
t stored in the stack. Booleans true and false are patterns
that respectively match all stacks and no stacks.

The program form match[t](pat)then e1 else e2 attempts
to match the pattern pat against the dynamic stack, extract-
ing any data bound by val : t patterns. If the stack success-
fully matches the pattern, the expression e1, which must be
a function, is applied to the extracted data. Otherwise the
expression e2 is evaluated.

Consider instrumenting a function f with pre- and post-
labels as in the translation from MinAML. Using store

rather than an ordinary let to bind the argument to f gives
the following:

λx : t. fpost〈store x = fpre〈x〉 in e〉

This new translation allows a stack pattern to extract the
argument passed to f . For example, one can write a piece of
advice that takes action only when g is called directly from
the body of f . In the example, the f ’s argument is bound
to the variable y in the expression e.

{gpre.x → match(gpre;gpost;val : t;fpost;true)
then λy : t. e // take action

else x} // just continue

The stack matches the pattern gpre;gpost;val : t;fpost;true
only when control is inside the precondition advice of g but
before leaving the scope of f . (The tail of the stack, matched
by true, can be anything.) There is some subtlety here,

s |= true⇒ · l |= l ⇒ · val : t = v |= val : t ⇒ v

s |= pat1 ⇒ ~v1 s |= pat2 ⇒ ~v2

s |= pat1 & pat2 ⇒ ~v1, ~v2

s |= pat1 ⇒ ~v1

s |= pat1 | pat2 ⇒ ~v1

s1 |= pat1 ⇒ ~v1 s2 |= pat2 ⇒ ~v2

s1 :: s2 |= pat1; pat2 ⇒ ~v1, ~v2

s |= pat2 ⇒ ~v2

s |= pat1 | pat2 ⇒ ~v2

· |= pat∗ ⇒ ·
s1 |= pat ⇒ · s2 |= pat∗ ⇒ ·

s1 :: s2 |= pat∗ ⇒ ·
s 6|= pat ⇒ ~v

s |= ¬pat ⇒ ·

Figure 7: Stack Pattern Interpretation

though: Unless all functions have been instrumented with
pre- and post-labels, there might be calls to arbitrarily many
unlabeled functions between the fpost and gpre. On the other
hand, this regular expression does not permit any labels
to appear between fpost and gpost on the stack. To allow
that situation, the regular expression gpre;gpost;true;val :
t;fpost;true could be used instead. Which label is desirable
depends on the situation. The point is that this framework
is flexible enough to express many possible choices, several
more of which are explored in the translation of an extended
variant of MinAML discussed below.

Besides adding additional evaluation contexts to handle
the evaluation of the stack patterns themselves, the opera-
tional semantics must define the behavior of the match ex-
pression. Two additional rules are needed:

stack(E) |= pat ⇒ ~v

〈L, A, E[match[t](pat)then e1 else e2]〉 7−→〈L, A, E[e1 (~v)]〉

stack(E) 6|= pat ⇒ ~v

〈L, A, E[match[t](pat)then e1 else e2]〉 7−→ 〈L, A, E[e2]〉

In these evaluation rules, the judgment s |= pat ⇒ ~v de-
termines when the stack s matches the pattern pat. If so,
any values matched by pat are returned in the vector ~v.
A reasonable implementation of stack matching would be
to restrict the regular expressions to be second class values
by permitting only matches against stack predicate values.
This would permit the compiler to generate an efficient au-
tomaton for pattern matching; however, for the sake of gen-
erality, we consider the fully dynamic case here. It is easy
to specify the implementation of s |= pat ⇒ ~v using the
nondeterministic inference rules shown in Figure 7.

The only remaining issue is how to assign types to pat-
terns. The simplest solution is to give stack patterns their
own type, t pat, the type of patterns that binds data of type
t. Booleans and labels can be treated as stack predicates—
rather than use full-blown subtyping, the rules in Figure 8
instead permit the coercion directly. The additional type
machinery is straightforward: stack patterns may be built
compositionally out of stack patterns, and the match ex-
pression takes a pattern, function to handle the successful
match, and an expression to return in case of match failure.

4.2.1 MinAML Extensions and Interpretation
Extending MinAML with richer point-cut designators in

the style of AspectJ requires a change to the source syntax,
as shown in the following grammar.

Γ ` e : bool
Γ ` e : · pat

Γ ` e : t label
Γ ` e : · pat

Γ ` e : ~t pat

Γ ` ¬e : · pat

Γ ` e1 : ~t1 pat Γ ` e2 : ~t2 pat

Γ ` e1 & e2 : ~t1, ~t2 pat

Γ ` e : · pat
Γ ` e∗ : · pat

Γ ` e1 : ~t pat Γ ` e2 : ~t pat

Γ ` e1 | e2 : ~t pat Γ ` val : t : t pat

Γ ` e1 : ~t1 pat Γ ` e2 : ~t2 pat

Γ ` e1; e2 : ~t1, ~t2 pat

Γ ` e : · pat
Γ ` e∗ : · pat

Γ ` e : ~t pat Γ ` e1 : ~t → t′ Γ ` e2 : t′

Γ ` match[t](e)then e1 else e2 : t′

Figure 8: Stack Pattern Typing

(f : (t1, t2) ∈ P)

P ; Γ ` withinf(x) : x : t1
pcd
=⇒ (val : t1); fpost; true

P ; Γ ` pcd : Γ′
pcd
=⇒ pat

P ; Γ ` cflow(pcd) : Γ′
pcd
=⇒ ¬(true; pat; true); pat; true

P ; Γ ` pcd : Γ′
pcd
=⇒ pat

P ; Γ ` cflowtop(pcd) : Γ′
pcd
=⇒ true; pat;¬(true; pat; true)

Figure 9: MinAML Interpretation: Point-cut desig-
nators

pcd ::= withinf(x) | pcd1 & pcd2 | pcd1 | pcd2

| ¬pcd | cflow(pcd) | cflowtop(pcd)
ad ::= before pc(x) when pcd = e

| after pc(x) when pcd = e
| around pc(x) when pcd = e
| around pc(x) when pcd = e1; proceed y → e2

The when clauses specify that the advice will be triggered
only under the conditions given by the point-cut designa-
tor pcd. The withinf(x) designator says that the advice is
triggered only when control is immediately inside the body
of the function f (with no intervening calls). In this case,
the variable x is bound to the argument passed to f . The
cflow(pcd) designator says that the advice is triggered if
a part of the calling context matches pcd, where the ar-
guments bound in the pcd are the nearest such call . For
example, cflow(withinf(x))means that the advice may be
triggered from within arbitrarily deeply nested function calls
reachable from within the body of f and that x will be
bound to the most recent arguments passed to f . Designator
cflowtop(pcd) is similar to cflow except that the arguments
are bound to the earliest calls rather than the most recent.
The pcd1 & pcd2 designator requires the context to match
both pcd1 and pcd2, and pcd1 | pcd2 requires the context to

(p : (t1, t2) ∈ P)p∈s P ; Γ ` pcd : Γ′
pcd
=⇒ pat

P ; Γ, Γ′, x : t1 ` e : t1
term
=⇒ e′ Γ′

ctx
=⇒ t

P ; Γ ` before s(x) when pcd = e
adv
=⇒ Pre(s, x, t, pat, Γ′, e′)

(p : (t1, t2) ∈ P)p∈s P ; Γ ` pcd : Γ′
pcd
=⇒ pat

P ; Γ, Γ′, x : t2 ` e : t2
term
=⇒ e′ Γ′

ctx
=⇒ t

P ; Γ ` after s(x) when pcd = e
adv
=⇒ Post(s, x, t, pat, Γ′, e′)

(p : (t1, t2) ∈ P)p∈s P ; Γ ` pcd : Γ′
pcd
=⇒ pat Γ′

ctx
=⇒ t

P ; Γ, Γ′, x : t1 ` e1 : t1
term
=⇒ e′1 P ; Γ, Γ′, y : t2 ` e2 : t2

term
=⇒ e′2

P ; Γ ` around s(x) when pcd = e1; proceed y → e2
adv
=⇒

Pre(s, x, t, pat, Γ, e′1) >> Post(s, x, t, pat, Γ, e′2)

(p : (t1, t2) ∈ P)p∈s P ; Γ ` pcd : Γ′
pcd
=⇒ pat

Γ′
ctx

=⇒ t P ; Γ, Γ′, x : t1 ` e : t2
term
=⇒ e′

P ; Γ ` around s(x) when pcd = e
adv
=⇒

Return(s, x, t, pat, Γ, e′)

Pre(s, x, t, pat, Γ, e)
def
=

{pre(s).x→ let (x, l) = x in PreBody(s, x, t, pat, Γ, e)

Return(s, x, t, pat, Γ, e)
def
=

{pre(s).x→ let (x, l) = x in

PreBody(s, x, t, pat, Γ, return e to l)

PreBody(s, x, t, pat, Γ, e)
def
=

match[t](oneOf(pre(s)); l; pat) then args(t, Γ, e) else x}

Post(s, x, t, pat, Γ, e)
def
=

{post(s).x→ let (x, l) = x in

match[t](oneOf(post(s)); pat) then args(t, Γ, e) else x}

oneOf(l1, . . . , ln)
def
= (l1|...|ln)

args(t, Γ, e)
def
= λa : t. let (Γ)= a in e

Figure 10: MinAML Interpretation: “when” advice

match at least one of pcd1 and pcd2. Negation, ¬pcd, holds
if there is no possible way of parsing the stack to match pcd.

The new translation assumes that function arguments are
store-bound rather than let-bound. With that slight change
to the MinAML translation, the stack, except for the top of
the stack, is guaranteed to look like:

val : tn :: fn
post :: val : tn−1 :: fn−1

post :: . . . :: val : t0 :: f0
post (?)

The top of the stack is either fn+1
pre ; fn+1

post or fn+1
post , depending

on whether execution is just entering or just leaving f .
A point-cut designator translates to a stack pattern. The

three interesting cases are shown in Figure 9 (the remaining
cases are straightforward). The patterns assume that the
stack is of the form (?)—the translation of the advice dec-
larations themselves take care of the rest of the pattern, as
shown in Figure 10. This translation handles label sets as
well as when clauses, so it threads the return label through
the aspects.

The withinf(x) pattern requires that the top of the stack
have the form val : t :: fpost; the variable x will be bound
to the value matched by the pattern. The cflow(pcd) and
cflowtop(pcd) clauses respectively compile to patterns that
match the closest and farthest occurrence of pat.

The compilation of point-cut designators is similar to the
translation shown in Figure 6. One difference is that the
when clause pattern is matched before proceeding with the
advice. The top of the stack for before advice must have
the corresponding pre label; for after advice the top of the
stack is the post label. Another difference is that the advice
bodies bind the tuple of values extracted from the stack by
the match. In the figure, the notation (Γ) stands for the
tuple of variable bindings evident from the typing context

Γ. Similarly, the notation Γ
ctx

=⇒ t means that t is the tuple
of types found in the context Γ.

This translation of MinAML is also type preserving. Let
P(p : (t1, t2)) be the context

ppre : (t1, t2 label) label, ppost : t2 label

and let P(P) be the point-wise extension.

Lemma 4.1 (Translation Type Preservation).

1. If P ; Γ ` e : t
term
=⇒ e′ then Γ,P(P) ` e′ : t.

2. If P ; Γ ` ds; e : t
decs
=⇒ e′ then Γ,P(P) ` e′ : t.

3. If P ; Γ ` ad
adv
=⇒ e′ then Γ,P(P) ` e′ : advice.

4. If P ; Γ ` pcd : Γ′
pcd
=⇒ pat and Γ′

ctx
=⇒ t then

Γ,P(P) ` pat : t

5. Discussion

5.1 AspectML: A Prototype Implementation
In order to experiment further with our language design,

we have developed a prototype implementation of most of
the features described in this paper, omitting objects, and
negation and value patterns for now. The prototype, which
we call AspectML, is developed in SML/NJ [2] as an exten-
sion to core ML.

The core aspect calculus is implemented as a set of ML
libraries for explicitly manipulating labeled program points,
creating and using higher-order, first-class aspects and query-
ing the calling context via a stack predicate language. The
libraries have three main modules.

• Point manages creation and comparison of the struc-
tured labels used to mark join points.

• RE supplies utilities for building regular expression pat-
terns out of points and matching them against point
lists. It is implemented using the SML/NJ regular ex-
pression matching utilities.

• Aspect implements the operational semantics of the
core calculus.

The library interfaces are included in Appendix C. For
the most part, the implementation follows the theory di-
rectly. One deviation is that rather than limiting program-
mers to some set of domain-specific predicates for specifying
point cuts, we have left the language open for experimenta-
tion. Programmers can use any function from label-stacks

to Booleans as trigger predicates; if the function evaluates
to true at a join point, the advice is invoked. Programmers
can also expose the current label stack as a list of points and
use regular expression queries to construct these functions
or write their own functions over point lists.

One other deviation is that SML’s type system is not quite
strong enough to encode the heterogeneous list of aspects
that makes up the aspect store.4 Hence, before passing data
to an aspect we need to coerce it into a universal data type
(UniversalDT.all), and we need to coerce it back out of a
universal data type on return.

The external language (AspectML) is implemented by
a simple program rewriter that converts “.aml” files into
“.sml” files. AspectML programmers may explicitly call the
core calculus libraries if they wish to manipulate labeled
program points directly. They may also use a new form of
function declaration, afun f (x:t1):t2 = e, which implic-
itly allocates pre- and post-join points for monitoring func-
tion entry and exit as described earlier. Ordinary SML fun

declarations cannot be monitored by aspects. Consequently,
unlike in other aspect-oriented programming languages that
we are aware of, AML programmers can choose to protect
sections of their code from external interference and retain
the standard ML reasoning principles that they are used to.

5.2 Related work
There are a number of aspect-oriented language design

and implementation efforts that have already made a sig-
nificant impact on industry, including AspectJ [10] and Hy-
per/J [13]. However, the study of the semantics of aspect-
oriented languages lags well behind.

Most closely related to this paper is Tucker and Krishna-
murthi’s work on encoding aspects in Scheme [14]. Their
approach uses continuation marks, a construct introduced
by Clements et al. to aid in the implementation of program
debugging tools [5]. Continuation marks are very similar to
labeled program points except that (dynamically) they do
not nest—the outer continuation mark overrides the inner.
In the notation of this paper, the behavior of continuation
marks could be modeled by adding an additional β rule:
l1〈l2〈v〉〉 7−→β l1〈v〉. This difference leads to a slightly more
complex encoding of aspects. A more significant difference
between this work and Tucker and Krishnamurthi’s is that
this paper develops a typed theory of aspects as opposed to
an untyped theory of aspects.

Douence, Motelet and Sudholt [6] give a definition of point-
cuts by encoding them in Haskell; they also provide an im-
plementation in Java. However, the specification of advice is
not integrated into their language. Instead, programs have
two parts, an event (program point) producer and a moni-
tor that consumes and reacts to these program points. Ma-
suhara, Kiczales and Dutchyn [11] specify the semantics of
an aspect-oriented language in Scheme and show how partial
evaluation can be used to compile and optimize it.

A couple of authors have developed small, untyped formal
calculi for reasoning about aspects. For instance, Wand,
Kiczales and Dutchyn [16] have developed a denotational
semantics for pointcuts and advice in a small aspect calcu-

4The aspect store would ideally be a list of ∃t.t label×t → t
elements. Unfortunately, SML does not provide existential
types or the primitives for intensional type analysis that we
would need. Stephanie Weirich suggested the encoding using
universal data types that we currently use.

lus. Jagadeesen, Jeffrey and Riely [9] develop an object-
oriented, aspect-oriented language and give a specification
and correctness proof for weaving. In each case, join points
are directly linked to the semantics of method calls rather
than being developed as an orthogonal programming con-
struct. We believe that elevating join points to the status
of a first-class abstraction allows our semantic framework
to be used in a broader collection of situations, including
functional, imperative and object-oriented languages. We
also feel that staging AOP semantics in terms of core and
external languages is an important development as it helps
modularize the theory and makes it possible to simplify the
core language to its barest minimum.

Bauer, Ligatti and Walker [4] describe a language for con-
structing first-class and higher-order aspects. They also pro-
vide a system of logical combinators for composing advice
and type and effect system to ensure that advice does not
interfere with other advice. Unfortunately, the presence of
aspect combinators makes the operational semantics for the
language very complex. Consequently, their semantics does
not make an appropriate platform for experimenting with
aspect-oriented design in general or for investigating general-
purpose reasoning principles in the presence of aspects.

Stack patterns provide a mechanism similar to stack in-
spection mechanism [15], and it would be interesting to ex-
plore this connection further. One might be able to imple-
ment stack-inspection-like security policies via aspects.

5.3 Future Work
Avenues for future research fall into four main categories:

1. Further development of the semantics of aspects.

2. Program analysis and type systems that promote safe
use of aspect-oriented paradigms.

3. Extension of our AspectML implementation to cover
all of Standard ML, including admitting further im-
plicit program points and integration with ML’s so-
phisticated module system.

4. Analysis of the performance cost of the advanced fea-
tures including first-class advice and stack patterns.

While all of these directions are appealing, we plan to
concentrate on items (1) and (3) in the near future. More
specifically, we wish to consider enriching our simple calcu-
lus by adding new primitives, for example to explicitly delete
advice. In addition, it seems desirable to develop a theory
of contextual equivalence for aspect-oriented programs. We
conjecture that such a theory will be tractable for the mini-
malist core calculus we presented in Section 2. With respect
to item (3), we believe that defining a well-typed and well-
scoped core aspect calculus is a significant step towards de-
veloping an aspect-oriented language that can interoperate
benignly with advanced ML-style modules. In fact, our ini-
tial inspiration for labeled control-flow points was derived in
part from the internal and external labels found in Harper
and Lillibridge’s translucent sum calculus [7].

6. Conclusions
This paper has shown that the main features of aspect-

oriented languages can be modeled by a few relatively simple
constructs in a core calculus. The key features are: labeled

control flow points, support for manipulating data and con-
trol at those points, and a mechanism for inspecting the
run-time stack. This approach leads to a (largely) language
independent, semantically clean way of studying aspects.
We have developed the theory of this core aspect calculus
and demonstrated its applicability by type-directed transla-
tions from MinAML, a fragment of ML with aspects, and
an object-oriented language. We claim that this approach
is scalable, general, and theoretically well founded.

Acknowledgments
Many thanks to Dan Dantas, Kathleen Fisher, Stephanie
Weirich, and the U. Penn. PL Club for their helpful feed-
back on earlier drafts of this work. We also thank Shriram
Krishnamurthi and John Clements for pointing us to the
work on aspects and continuation marks in Scheme.

References
[1] M. Abadi and L. Cardelli. A Theory of Objects.

Monographs in Computer Science. Springer-Verlag,
New York, 1996.

[2] A. W. Appel and D. B. MacQueen. Standard ML of
New Jersey. In M. Wirsing, editor, Third International
Symposium on Programming Language
Implementation and Logic Programming, pages 1–13,
New York, Aug. 1991. Springer-Verlag. Volume 528 of
Lecture Notes in Computer Science.

[3] Aspect-oriented programming. In T. Elrad, R. E.
Filman, and A. Bader, editors, Special Issue of
Communications of the ACM, volume 40(10). Oct.
2001.

[4] L. Bauer, J. Ligatti, and D. Walker. Types and effects
for non-interfereing program monitors. In
International Symposium on Software Security, Tokyo,
Japan, Nov. 2002.

[5] J. Clements, M. Flatt, and M. Felleisen. Modeling an
algebraic stepper. In European Symposium on
Programming, pages 320–334, 2001.

[6] R. Douence, O. Motelet, and M. Südholt. A formal
definition of crosscuts. In Third International
Conference on Metalevel architectures and separation
of crosscutting concerns, volume 2192 of Lecture Notes
in Computer Science, pages 170–186, Berlin, Sept.
2001. Springer-Verlag.

[7] R. Harper and M. Lillibridge. A type-theoretic
approach to higher-order modules with sharing. In
Twenty-First ACM Symposium on Principles of
Programming Languages, pages 123–137, Portland,
OR, January 1994.

[8] R. Harper and C. Stone. A type-theoretic
interpretation of Standard ML. In Proof, Language
and Interaction: Essays in Honour of Robin Milner.
The MIT Press, 1998.

[9] R. Jagadeesan, A. Jeffrey, and J. Riely. A calculus of
untyped aspect-oriented programs. In European
Conference on Object-Oriented Programming,
Darmstadt, Germany, July 2003. To appear.

[10] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. An overview of AspectJ. In
European Conference on Object-oriented
Programming. Springer-Verlag, 2001.

[11] H. Masuhara, G. Kiczales, and C. Dutchyn.
Compilation semantics of aspect-oriented programs. In
G. T. Leavens and R. Cytron, editors, Foundations of
Aspect-Oriented Languages Workshop, pages 17–25,
Apr. 2002.

[12] G. Morrisett, M. Felleisen, and R. Harper. Abstract
models of memory management. In ACM Conference
on Functional Programming and Computer
Architecture, pages 66–77, La Jolla, June 1995.

[13] H. Ossher and P. Tarr. Hyper/J: multi-dimensional
separation of concerns for Java. In International
conference on software engineering, pages 734–737,
Limerick, Ireland, June 2000.

[14] D. B. Tucker and S. Krishnamurthi. Pointcuts and
advice in higher-order languages. In Proceedings of the
2nd International Conference on Aspect-Oriented
Software Development, pages 158–167, 2003.

[15] D. S. Wallach, A. W. Appel, and E. W. Felten. The
security architecture formerly known as stack
inspection: A security mechanism for language-based
systems. ACM Transactions on Software Engineering
and Methodology, 9(4), Oct. 2000.

[16] M. Wand, G. Kiczales, and C. Dutchyn. A semantics
for advice and dynamic join points in aspect-oriented
programming. In G. T. Leavens and R. Cytron,
editors, Foundations of Aspect-Oriented Languages
Workshop, pages 17–25, Apr. 2002. Iowa State
University University technical report 02-06.

[17] A. K. Wright and M. Felleisen. A syntactic approach
to type soundness. Information and Computation,
115(1):38–94, 1994.

APPENDIX

A. Core Language Summary
Types

t ::= bool | t1 → t2 | (t1, . . . , tn)(n≥0)

| t label | t pc | advice | t pat

Base calculus
l ∈ Labels
e ::= x | true | false | if e1 then e2 else e3

| λx : t. e | e1 e2

| (e1, . . . , en)
(n≥0) | let(~x :~t)= e1 in e2

Aspects
| l | {e1.x → e2} | e1〈e2〉 | return e1 to e2

| new x : t. e | e1 >> e2 | e1 << e2

Label sets
| {e1, . . . , en} | e1 ∪ e2 | e1 ∩ e2

Stack patterns
| e1; e2 | e1 | e2 | e∗ | e1 & e2 | ¬e | val : t
| match[t](e)then e1 else e2

| store x : t = e1 in e2

B. MinAML Summary

Types
t ::= bool | t1 → t2 | [mi:ti]

1..n

Expressions
e ::= x | b | if e1 then e2 else e3

| e.m | e1.m ⇐ ς x.e2

| let ds in e | e1 e2

Declarations
ds ::= ·

| (boolx = e) ds
| (fun f(x : t1): t2 = e) ds
| (objectx : t = [mi = ς xi.ei]

1..n) ds
| monitor t.m ds
| ad ds

Program Points
p ::= f | x.m | t.m
Point Cuts
pc ::= {p1, . . . , pn}
Point Cut Designators
pcd ::= withinf(x) | pcd1 & pcd2 | pcd1 | pcd2

| ¬pcd | cflow(pcd) | cflowtop(pcd)
Aspects
ad ::= before pc(x) when pcd = e

| after pc(x) when pcd = e
| around pc(x) when pcd = e
| around pc(x) when pcd = e1; proceed y → e2

C. AspectML Libraries
We have implemented a simple functional aspect-oriented

programming language called AspectML (AML) as an ex-
tension of core SML/NJ. A simple rewriter translates AML
files into well-typed SML/NJ source that can be compiled
and linked to the libraries with the signatures below.

signature POINT = sig
type point
val new : string list -> point
val toStrings : point -> string list
val unique : point -> int
val equals : point * point -> bool

end

signature RE = sig
type re
(* functions to create base REs *)
val primitive : Point.point -> re
val empty : unit -> re
(* functions to create complex REs *)
val opt : re -> re (* 0 or 1 of re *)
val plus : re -> re (* 1 or more of re *)
val star : re -> re (* 0 or more of re *)
val concat : re -> re -> re (* concatenation *)
val alt : re -> re -> re (* alternation *)
(* attempts to match the RE to the point stack *)
val match : re -> Point.point list -> bool

end

signature ASPECT = sig
type aspect
type stack
val toList : stack -> Point.point list
(* create a new aspect *)
val aspect : (stack -> bool)

-> (stack * UniversalDT.all -> UniversalDT.all)
-> aspect

(* functions to add initial and final aspects *)
val << : aspect -> unit
val >> : aspect -> unit
(* mark a control-flow point *)
val mark : Point.point -> (unit -> UniversalDT.all)

-> UniversalDT.all
(* return a value from an aspect to a label *)
val return : UniversalDT.all * Point.point -> ’a

end

