
Aspectml: A polymorphic aspect-oriented
functional programming language

DANIEL S. DANTAS and DAVID WALKER

Princeton University

{ddantas,dpw}@cs.princeton.edu

and

GEOFFREY WASHBURN and STEPHANIE WEIRICH

University of Pennsylvania

{geoffw,sweirich}@cis.upenn.edu

This paper defines Aspectml, a typed functional, aspect-oriented programming language. The main
contribution of Aspectml is the seamless integration of polymorphism, run-time type analysis and
aspect-oriented programming language features. In particular, Aspectml allows programmers to
define type-safe polymorphic advice using pointcuts constructed from a collection of polymorphic
join points. Aspectml also comes equipped with a type inference algorithm that conservatively
extends Hindley-Milner type inference. To support first-class polymorphic point-cut designators, a
crucial feature for developing aspect-oriented profiling or logging libraries, the algorithm blends the
conventional Hindley-Milner type inference algorithm with a simple form of local type inference.

We give our language operational meaning via a type-directed translation into an expressive
type-safe intermediate language. Many complexities of the source language are eliminated in
this translation, leading to a modular specification of its semantics. One of the novelties of the
intermediate language is the definition of polymorphic labels for marking control-flow points. When
a set of labels is assembled as a pointcut, the type of each label is an instance of the type of the
pointcut.

Categories and Subject Descriptors: D.3.3 [PROGRAMMING LANGUAGES]: Language Constructs
and Features—abstract data types, polymorphism, control structures; F.3.3 [LOGICS AND MEAN-
INGS OF PROGRAMS]: Software—type structure, program and recursion schemes, functional
constructs; F.4.1 [MATHEMATICAL LOGIC AND FORMAL LANGUAGES]: Mathematical Logic—
Lambda calculus and related systems

General Terms: Design, Languages, Security, Theory

Additional Key Words and Phrases: Aspect-oriented programming, Functional languages, Para-
metric and ad-hoc polymorphism, Type systems, Type inference

This research was supported in part by Arda Grant no. NBCHC030106, National Science
Foundation grants CCR-0238328, CCR-0208601, and 0347289 and an Alfred P. Sloan Fellowship.
This work does not necessarily reflect the opinions or policy of the federal government or Sloan
foundation and no official endorsement should be inferred.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0164-0925/20YY/0500-0001 $5.00

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY, Pages 1–58.

2 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

1. INTRODUCTION

Aspect-oriented programming languages allow programmers to specify what compu-
tations to perform as well as when to perform them. For example, AspectJ [Kiczales
et al. 2001] makes it easy to implement a profiler that records statistics concerning
the number of calls to each method. The what in this example is the computation
that does the recording, and the when is the instant of time just prior to execution
of each method body. In aspect-oriented terminology, the specification of what to do
is called advice and the specification of when to do it is called a pointcut designator.
A collection of pointcut designators and advice organized to perform a coherent task
is called an aspect.

The profiler described above could be implemented without aspects by placing
the profiling code directly into the body of each method. However, at least four
problems arise when the programmer does the insertion manually.

—First, it is no longer easy to adjust when the advice should execute, as the
programmer must explicitly extract and relocate calls to profiling functions.
Therefore, for applications where the “when” is in rapid flux, aspect-oriented
languages are clearly superior to conventional languages.

—Second, there may be a specific convention concerning how to call the profiling
functions. When calls to these functions are spread throughout the code base, it
may be difficult to maintain these conventions correctly. For example, ibm [Colyer
and Clement 2004] experimented with aspects in their middleware product line,
finding that aspects aided in the consistent application of cross-cutting features
such as profiling and improved the overall reliability of the system. Aspect-
oriented features added structure and discipline to ibm’s applications where there
previously was none.

—Third, when code is injected directly into the body of each method, the code
becomes “scattered,” in many cases making it difficult to understand. This
problem is particularly relevant to the implementation of security policies for
programs. Many security experts have argued convincingly that security policies
for programs should be centralized using aspects. Otherwise, security policy
implementations are spread among many modules, making it impossible for a
security expert to audit them effectively. Several researchers have implemented
security systems based on this principle (though many of the experts did not use
the term “aspect-oriented”) and presented their ideas at prestigious conferences
including popl, pldi and ieee Security and Privacy [Evans and Twyman 1999;
Kim et al. 1999; Lee et al. 1999; Colcombet and Fradet 2000; Erlingsson and
Schneider 1999; 2000; Bauer et al. 2005].

—Fourth, in some situations, the source code is unavailable to be examined or
modified. For example, the source code may belong to a third party who is not
willing to provide this proprietary information to its users. Consequently, manual
insertion of function calls is not possible. In these cases, aspects can be used as a
robust form of external software patching [Fiuczynski et al. 2005].

To date there has been much success integrating aspects into object-oriented
languages, but much less research on the interactions between aspects and typed
functional languages. One of the central challenges is constructing a type system that

AspectML: A polymorphic aspect-oriented functional programming language · 3

ensures safety, yet is sufficiently flexible to fit aspect-oriented programming idioms.
In some situations, typing is straightforward. For instance, when defining a piece of
advice for a single monomorphic function, the type of the argument to, and result
of, the advice is directly connected to the type of the advised function. However,
many aspect-oriented programming tasks, including the profiling task mentioned
above, are best handled by a single piece of advice that executes before, after, or
around many different function calls. In this case, the type of the advice is not
directly connected with the type of a single function, but with a whole collection of
functions. To type check advice in such situations, one must first determine the type
for the collection and then link the type of the collection to the type of the advice.
Normally, the type of the collection (the pointcut) will be highly polymorphic, and
the type of each element will be less polymorphic than the collection’s type.

In addition to finding polymorphic types for pointcuts and advice, it is important
for advice to be able to change its behavior depending upon the type of the advised
function. For instance, profiling advice might be specialized so that on calls to
functions with integer arguments, it tracks how often that argument is the value 0.
This and other similar examples require that the advice can determine the type of the
function argument. In AspectJ and other object-oriented languages where subtype
polymorphism is predominant, downcasts are used to determine types. However, in
ml, and other functional languages, parametric polymorphism is predominant, and
therefore run-time type analysis is the appropriate mechanism.

In this paper, we develop a typed functional programming language with first-
class, polymorphic pointcuts, run-time type analysis and a conservative extension
of ml’s Hindley-Milner type inference algorithm. The language we define contains
before, after, and around advice and is oblivious [Filman and Friedman 2005]. In
other words, programmers can add functionality to a program “after-the-fact” in the
typical aspect-oriented style. Furthermore, pointcuts in our language are first-class
objects, an important feature for building effective aspect-oriented libraries. To
provide support for stack-inspection-like security infrastructure, and to emulate
AspectJ’s CFlow, our language also includes a general mechanism for analyzing
metadata associated with functions on the current call stack.

To specify the dynamic semantics of our language, we give a type-directed
translation from the source into a type-safe core calculus with its own operational
semantics. This strategy follows previous work by Walker, Zdancewic and Ligatti
(WZL) [2003], who define the semantics of a monomorphic language in this way.
Defining the operational semantics of a complex language via a translation to a
simpler one has considerable precedent. Our translation could be seen as providing
a denotational semantics for Aspectml. Harper and Stone developed an improved
semantics for Standard ml by elaboration into a simpler language [1998]. More
recently, Avgustinov, et al. have given the first rigorous semantics for the AspectJ
pointcut language via a translation to Safe Datalog [2007].

Our use of a translation helps to modularize the semantics for the source language
by unraveling complex source-language objects into simple, orthogonal core calculus
objects. Indeed, as in WZL, we have worked very hard to give a clean semantics to
each feature in this language, and to separate unrelated concerns. We believe this
will facilitate further exploration and extension of the language.

4 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

Furthermore, we believe that defining the semantics of Aspectml this way makes
it easier to understand the language. It is possible to focus on comprehending the
core language and the translation separately, rather than the composition of the two.
This modular design also makes formal reasoning about the language considerably
easier. This is important as mechanically verified proofs become the norm. For
example, it is unlikely that Lee, Crary, and Harper would have been able to provide a
mechanically verified semantics for Standard ml if they had worked directly from the
The Definition of Standard ML [2007; 1997]. We have not mechanically formalized
the definition of Aspectml, but our design has made it possible for us to prove
important and non-trivial properties of the language.

Our core calculus, though it builds on WZL, is itself an important contribution
of our work. One of the novelties of the core calculus is its first-class, polymorphic
labels, which can be used to mark any control-flow point in a program. Unlike in
WZL, where labels are monomorphic, polymorphism allows us to structure the labels
in a tree-shaped hierarchy. Intuitively, each internal node in the tree represents a
group of control-flow points, while the leaves represent single control-flow points.
Depending upon how these labels are used, there could be groups for all points
just before execution of a function or just after; groups for all labels in a module;
groups for getting or setting references; groups for raising or catching exceptions,
etc. Polymorphism is crucial for defining these groups since the type of a parent
label, which represents a group, must be a polymorphic generalization of the type
of each member of the group.

This paper expands and builds upon the contributions of our earlier work presented
at the th acm sigplan International Conference on Functional Programming [Dan-
tas et al. 2005a].

—We formally define a surface language, called idealized Aspectml,1 that includes
three novel features essential for aspect-oriented programming in a strongly-typed
functional language: polymorphic pointcuts, polymorphic advice and polymorphic
analysis of metadata on the current call stack. In addition, we add run-time type
analysis, which, though not a new feature, is seamlessly integrated into the rest
of the language.

—We define a conservative extension of the Hindley-Milner type inference algorithm
for idealized Aspectml. In the absence of aspect-oriented features and run-time
type analysis, type inference works as usual; inference for aspects and run-time
type analysis is integrated into the system smoothly through a novel form of local
type inference. Additionally, we believe the general principles behind our type
inference techniques can be used in other settings.

—We define an explicitly-typed core calculus, FA, that carefully separates mecha-
nisms for polymorphic first-class function definition, polymorphic advice definition,
and run-time type analysis. This core calculus introduces a new primitive notion
of polymorphic labeled control flow points, to specify pointcuts in an orthogonal
manner. We prove that this core calculus is type safe.

1In our earlier version of this work, we called our language Polyaml [Dantas et al. 2005b]. We
have since chosen to rename it to emphasize the aspect-oriented nature of the language and to
avoid confusion with the implementation of Standard ml called Poly/ml [Matthews 2005].

AspectML: A polymorphic aspect-oriented functional programming language · 5

(polytypes) s ::= <a> t

(pointcut type) pt ::= (<a> t1 ~> t2)

(monotypes) t ::= a | Unit | String | Stack | t1 -> t2 | pc pt

(trigger time) tm ::= before | after | around
(terms) e ::= x | () | c | e1e2 | let d in e | stkcase e1 (p=>e |_=> e2)

| typecase<t> a (t=>e |_=> e) | #x:pt# | any | e:t
(stack patterns) p ::= x | [] | f::p
(frame patterns) f ::= _ | (|e|)<a> (x:t,y)

(declarations) d ::= fun x1 <a> (x2:t1):t2 = e

| advice tm (|e1|) <a> (x:t1,y,z):t2 = e2

| case-advice tm (|e1|) (x:t1,y,z):t2 = e2

Fig. 1. Syntax of idealized Aspectml

—We define the semantics of Aspectml by a translation into FA. We prove that
the translation is type-preserving, and therefore that the surface language is also
type safe.

—We have implemented an extended version of idealized Aspectml for use as a
research language. Therefore we included a number of advanced features necessary
for studying the properties and expressiveness of a modern, functional, aspect-
oriented language.2 Our implemented source language is similar in scope to core
Standard ml.

—We have used the implementation to write several example programs to demon-
strate the usefulness of Aspectml, including a security case study. The case study
examines an Aspectml implementation of the Java stack inspection security
mechanism.

In the remaining sections of this paper, we define and critically analyze our
new polymorphic, functional and aspect-oriented programming language Aspectml.
Section 2 introduces the Aspectml syntax and informally describes the semantics
through a series of examples. Section 3 discusses our implementation and its use in
a security case study of the Java stack inspection mechanism. Section 4 describes
the formal semantics of the Aspectml type system and type inference algorithm.
Section 5 introduces the semantics of our polymorphic core calculus, FA. In Section 6,
we give a semantics to Aspectml in terms of FA. Finally, Sections 7 and 8 describe
related work and conclusions.

2. PROGRAMMING WITH ASPECTS

Aspectml is a polymorphic functional, aspect-oriented language based on the ml
family of languages. Figure 1 presents the syntax of the idealized version of the
language. However, all of the examples of this section are written in full Aspectml,
which extends this syntax with many common constructs following Standard ml.3

In Figure 1 and elsewhere, we use over-bars to denote lists of syntactic objects: x

refers to a sequence x1 . . . xn, and xi stands for an arbitrary member of this sequence.

2Our implementation is available at http://www.cs.princeton.edu/sip/projects/aspectml/
3Details about the full language are available from the documentation that accompanies the
implementation.

6 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

Bold-faced text indicates program text, as opposed to mathematical meta-variables.
We assume the usual conventions for variable binding and α-equivalence of types
and terms.

As in ml, the type structure of Aspectml is divided into polytypes and monotypes.
Polytypes are normally written <a> t where a is a list of binding type variables and
t is a monotype. However, when a is empty, we abbreviate <> t as t.

In addition to type variables, a, simple base types like Unit, String and Stack,
and function types t1 -> t2, the monotypes include pc pt, the type of a pointcut,
which in turn binds a list of type variables in a pair of monotypes. We explain
pointcut types in more detail later. However, note that in Aspectml, the word
“monotype” is a slight misnomer for the syntactic category t as some of these types
contain internal binding structure.

Aspectml expressions include variables, x, constants like unit, (), and strings,
c, function application and let declarations. New functions may be defined in let
expressions. These functions may be polymorphic, and they may or may not be
annotated with their argument and result types. Furthermore, if the programmer
wishes to refer to type parameters within these annotations, they must specify a
binding set of type variables <a>. When the type annotations are omitted, Aspectml
will infer them. It is straightforward to extend idealized Aspectml with other
features such as integers, arithmetic, file and network i/o, tuples, and pattern
matching, and we will make use of such constructs in our examples.

The most interesting features of our language are pointcuts and advice. Advice
in Aspectml is second-class and includes two parts: the body, which specifies what
to do, and the pointcut designator, which specifies when to do it. In Aspectml,
a pointcut designator has two parts, a trigger time, which may either be before,
after, or around, and a pointcut proper, which is a set of function names. The set of
function names may be written out verbatim as #f#, or, to indicate all functions, a
programmer may use the keyword any. In idealized Aspectml, it is always necessary
to provide a type annotation #f:pt# on a pointcut formed from a list of functions.
In our implementation, this annotation is often not necessary.

Informally, the pointcut type, (<a> t1 ~> t2), describes the i/o behavior of a
pointcut. In Aspectml, pointcuts are sets of functions, and t1 and t2 approximate
the domains and ranges of those functions. For example, if there are functions f

and g with types String -> String and String -> Unit respectively, the pointcut
#f,g# has the pointcut type pc (<a> String ~> a). Because their domains are
equal, the type String suffices. However, they have different ranges, so we use a
polytype that generalizes them both, <a> a. Any approximation is a valid type, so
it would have also been fine to annotate the pointcut #f,g# with the pointcut type
pc (<a b> a ~> b). This latter type, is the most general pointcut type, and can be
the type for any pointcut, including any. The semantics of pointcut types is given
precisely in Section 4.

The pointcut designator before (| #f# |) represents the point in time immediately
before executing a call to the function f. Likewise after (| #f# |) represents the
point in time immediately after execution. The pointcut designator around (| #f# |)

wraps around the execution of a call to the function f – the advice triggered by the
pointcut controls whether the function call actually executes or not.

AspectML: A polymorphic aspect-oriented functional programming language · 7

The most basic kind of advice has the form:

advice tm (|e1|) <a> (x:t1,y,z):t2 = e2

Here, tm (|e1|) is the pointcut designator. When the pointcut designator dictates it
is time to execute the advice, the variable x is bound either to the argument (in the
case of before and around advice) or to the result of function execution (in the case
of after advice). The set of binding type variables, <a>, allows the types quantified
by the pointcut to be named within the advice. However, the binding specification
may be omitted if there are no quantified types, or if they are unneeded. The
variable x may optionally be annotated with its type, t1. The variable y is bound
to the current call stack. We explain stack analysis in Section 2.2. The variable
z is bound to metadata describing the function that has been called. In idealized
Aspectml this metadata is a string corresponding to the function name as written
in the source text, but in the implementation it includes not just the name of the
function, but the originating source file and line number. In the future it might
also include security information, such as a version number or the name of the code
signer. Since advice exchanges data with the designated control flow point, before
and after advice must return a value with the same type as the first argument x.
For around advice, x has the type of the argument of the triggering function, and
the advice must return a value with the result type of the triggering function.

A common use of aspect-oriented programming is to add tracing information
to functions. These statements print out information when certain functions are
called or return. For example, we can advise the program below to display messages
before any function is called and after the functions f and g return. The trace of
the program is shown on the right in comments.

(* code *) (* Output trace *)

fun f x = x + 1 (* *)

fun g x = if x then f 1 (* entering g *)

else f 0 (* entering f *)

fun h _ = False (* leaving f => 2 *)

(* leaving g => 2 *)

(* entering h *)

(* advice *)

advice before (| any |) (arg, _, info) =

(print ("entering " ^ (getFunName info) ^ "\n"); arg)

advice after (| #f,g# |) (arg, _, info) =

(print ("leaving " ^ (getFunName info) ^

" => " ^ (int_to_string arg) ^ "\n");

arg)

val _ = h (g True)

Even though some of the functions in this example are monomorphic, polymor-
phism is essential. Because the advice can be triggered by any of these functions
and they have different types, the advice must be polymorphic. Moreover, since

8 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

the argument types of functions f and g have no type structure in common, the
argument arg of the before advice must be completely abstract. On the other hand,
the result types of f and g are identical, so we can fix the type of arg to be Int in
the after advice.

In general, the type of the after advice argument may be the most specific
type t such that the result types of all functions referenced in the pointcut are
instances of t. Inferring t is not a simple unification problem; instead, it requires
anti-unification [Plotkin 1970; 1971]. Our current implementation can often use
anti-unification to compute this type, we describe when this is possible in Section 4.3.

Finally, we present an example of around advice. Again, around advice wraps
around the execution of a call to the functions in its pointcut designator. The arg

passed to the advice is the argument that would have been passed to the function
had it been called. Finally, around advice introduces into the environment the
proceed function. When applied to a value, proceed continues the execution of the
advised function with that value as the new argument. Not that proceed is not a
keyword and may be shadowed by variable binding.

In the following example, a cache is installed “around” the f function. First, a
cache (fCache) is created for the f function with the externally-defined cacheNew

command. Then, around advice is installed such that when the f function is called,
the argument to the function is used as a key in a cache lookup (using the externally-
defined cacheGet function). If a corresponding entry is found in the cache, the entry
is returned as the result of the function. If the corresponding entry is not found,
a call to proceed is used to invoke the original function. The result of this call is
placed in the cache (using the externally-defined cachePut function) and is returned
as the result of the f function.

val fCache : Ref List (Int,Int) = cacheNew ()

advice around (| #f# |) (arg, _, _) =

case (cacheGet (fCache, arg))

of Some res => res

| None => let

val res = proceed arg

val _ = cachePut (fCache, arg, res)

in

res

end

We note that we can transform this example into a general-purpose cache inserter
by wrapping the cache creation and around advice code in a function that takes a
first-class pointcut as its argument as described in Section 2.3. Finally, though not
shown here, the cacheGet and cachePut functions are polymorphic functions that
can be called on caches with many types of keys. As such, the key comparisons use
a polymorphic equality function that relies on the run-time type analysis described
in the next section.

AspectML: A polymorphic aspect-oriented functional programming language · 9

2.1 Run-time type analysis

We might also want a tracing routine to print not only the name of the function
that is called, but also its argument. Aspectml makes this extension easy with an
alternate form of advice declaration, called case-advice, that is triggered both by
the pointcut designator and the specific type of the argument. In the code below,
the second piece of advice is only triggered when the function argument is an integer,
the third piece of advice is only triggered when the function argument is a boolean,
and the first and fourth pieces of advice are triggered by any function call. Advice is
maintained as a stack, so all advice that is applicable to a program point is triggered
in lifo order.

advice before (| any |)(arg, _, info) = (print "\n"; arg)

case-advice before (| any |)(arg : Int, _, _) =

(print (" with arg " ^ (int_to_string arg)); arg)

case-advice before (| any |)(arg : Bool, _, _) =

(print (" with arg " ^ (if arg then "True" else "False")); arg)

advice before (| any |)(arg, _, info) =

(print ("entering " ^ (getFunName info)); arg)

The code below and its trace demonstrates the execution of the advice. Note that
even though h’s argument is polymorphic, because h is called with an Int, the third
advice above triggers instead of the first.

(* code *) (* Output trace *)

fun f x = x + 1 (* *)

fun g x = if x then f 1 (* entering g with arg True *)

else f 0 (* entering f with arg 1 *)

fun h _ = False (* entering h with arg 2 *)

val _ = h (g True)

This ability to conditionally trigger advice based on the type of the argument
means that polymorphism is not parametric in Aspectml– programmers can analyze
the types of values at run-time. However, without this ability we cannot implement
this tracing aspect and other similar examples. For further flexibility, Aspectml
also includes a typecase construct to analyze type variables directly. For example,
consider the following advice:

advice before (| any |)<a b>(arg : a, _, info) =

(print ("entering " ^ (getFunName info) ^ "with arg" ^

(typecase<String> a

of Int => (int_to_string arg) ^ "\n"

| Bool => (if arg then "True\n" else "False\n")

| _ => "<unprintable>\n"));

arg)

10 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

This advice is polymorphic, and the argument type a is bound by the annotation
<a b>.4 Also note that in the example above, to aid typechecking the typecase
expression, the return type is annotated with <String>. Finally, note that because
this example is written in full Aspectml, typecase operates over type patterns rather
than types. However, the only difference between types and type patterns is that
type patterns provide underscore as a wildcard pattern.

There is a nice synergy between aspects and run-time type analysis. Converting
values to strings is an operation that is generally useful, so one might imagine
implementing it as a library function val_to_string to be called by the above
advice:

fun val_to_string <a>(v:a):String =

typecase<String> a

of Bool => bool_to_string v

| String => v

| Int => int_to_string v

| (a, b) => "(" ^ (val_to_string (fst v)) ^ ", " ^

(val_to_string (snd v)) ^ ")"

| _ => "<unprintable>"

Notice that this solution requires that val_to_string be revised every time
a new data type is defined by the user (like ml, the full Aspectml language
allows the creation of new algebraic data types). Instead, we switch to using an
around case-advice idiom:

fun val_to_string <a> (v:a):String = "<unprintable>"

case-advice around (| #val_to_string# |) (v:Bool, _, _) =

bool_to_string v

case-advice around (| #val_to_string# |) (v:String, _, _) = v

case-advice around (| #val_to_string# |) (v:Int, _, _) =

int_to_string v

case-advice around (| #val_to_string# |) (v:(a,b), _, _) =

"(" ^ (val_to_string (fst v)) ^ ", " ^ (val_to_string (snd v)) ^ ")"

Each piece of around case-advice overrides the default behavior of the function
when passed an argument of a particular type. Notice that there are no proceed

calls – we do not want the function to continue to execute once the correct string
conversion function has been selected.

Now, when a programmer defines a data type, they can also update the val_to_string
function to be able to convert values of their new datatype to a string. For example,

4Currently this example requires the type variable b to be bound, even though it never occurs in
the code fragment. The pointcut any is of type pc (<ab> a ~> b), and if the programmer wishes to
name one of quantified variables, in this case a, she must name all of the variables. This is because
the quantified variables are unordered and the type inference algorithm cannot näıvely choose
which of the two variables to name when only given a single name.

AspectML: A polymorphic aspect-oriented functional programming language · 11

we can define a List data type and its output function in the same location5

datatype List = Cons : <a> a -> List a -> List a

| Nil : <a> List a

case-advice around (| #val_to_string# |) (v:List a, _, _):String =

case v

of Cons h t => (val_to_string h) ^ " :: " ^ (val_to_string t)

| Nil => "Nil"

2.2 Reifying the context

When advice is triggered, often not only is the argument to the function important,
but also the context in which it was called. Therefore, this context information is
provided to all advice and Aspectml includes constructs for analyzing it. For example,
below we augment the tracing aspect so that it displays debugging information for
the function f when it is called directly from g and g’s argument is the boolean
True.

advice before (| #f# |)(farg, fstk, _) =

((case fstk

of _ :: (| #g# |)(garg, _) :: _ =>

if garg then

print "entering f from g(True)\n"

else ()

| _ => ());

farg)

The stack argument fstk is a list of Frames, which may be examined using case
analysis.6 Each frame in the list fstk describes a function in the context and can be
matched by a frame pattern: either a wild-card _ or the pattern (|e|)<a>(x,y). The
expression e in a frame pattern must evaluate to a pointcut – the pattern matches
if any function in the pointcut matches the function that frame describes. Like in
advice, the type variable binders are used to optionally name types quantified by
the pointcut. The variable x is the argument of that function, and y is the metadata
of the function. The head of the list contains information about the function that
triggered the advice (e.g. f in the example above).

Consider also the following example, that uses an aspect to implement a stack-
inspection-like security monitor for the program. (We will expand the technique of
using aspects to provide stack-inspection security in our case study in Section 3.)
If the program tries to call an operation that has not been enabled by the current
context, the security monitor terminates the program. Below, assume the function
enables:FunInfo -> FunInfo -> Bool determines whether the first argument (a piece
of function metadata) provides the capability for the second argument (another piece

5Note that Aspectml has a different syntax for data type definition than Standard ml. Here a data
type definition contains the name of the data type and then a list of the data type constructors,
with their types.
6Idealized Aspectml does not make lists primitive, but instead uses the primitive type Stack and
primitive analysis stkcase.

12 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

of function metadata) to execute. We also assume abort:String -> Unit terminates
the program with an error message.

fun walk (stk : List Frame, info : FunInfo) =

case stk of [] => abort "Function not enabled"

| (| any |)(_, info’) :: rest =>

if (enables info’ info) then ()

else

walk (rest, info)

advice before (| #f,g,h# |)(arg, stk, info) = (walk (stk, info); arg)

2.3 First-class pointcuts

The last interesting feature of our language is the ability to use pointcuts as first-class
values. This facility is extremely useful for constructing generic libraries of profiling,
tracing or access control advice that can be instantiated with whatever pointcuts are
useful for the application. For example, recall the first example in Section 2 where
we constructed a logger for the f and g functions. We can instead construct an
all-purpose logger that is passed the pointcut designators of the functions we intend
to log with the following code (Recall that val_to_string is a function, defined in
Section 2.1, that converts values of any type to a string)

fun startLogger (toLog:pc (<a b> a ~> b)) =

let advice before (| toLog |)(arg, _, info) =

((print ("before " ^ (getFunName info) ^ ": " ^

(val_to_string arg) ^ "\n")); arg)

advice after (| toLog |) (res, _, info) =

((print ("after " ^ (getFunName info) ^ ":" ^

(val_to_string res) ^ "\n")); res)

in () end

Another example generalizes the “f within g” pattern presented above. This is a
very common idiom; in fact, AspectJ has a special pointcut designator for specifying
it. In Aspectml we can implement the within combinator using a function that takes
two pointcuts – the first for the callee and the second for the caller – as arguments.
Whenever we wish to use the within combinator, we supply two pointcuts of our
choice as shown below.

fun within (fpc : pc (<a b> a ~> b),

gpc : pc (<c> Bool ~> c),

body : Bool -> Unit) =

let advice before (| fpc |)(farg, fstk, _) =

(case fstk

of _ :: (| gpc |)(garg, _) :: _ => body garg

| _ => ();

farg) in () end

fun entering x = if x then print "entering f from g\n" else ()

val _ = within (#f#, #g#, entering)

AspectML: A polymorphic aspect-oriented functional programming language · 13

Parsing

Post-parsing

Type
inference

Zonking

Core type-
checking

Core
evaluation

Top-level/
file stream

Default parse
environment

Raw abstract
syntax

Translation

Type annotated
source abstract syntax

Type annotated
source abstract syntax

(unification variable free)

Fully type annotated core
abstract syntax

Fully type annotated core
abstract syntax

Default
post-parsing
environment

Default
type inference
environment

Default
translation

environment

Default core
type-checking
environment

Default
evaluation

environment

Unannotated source
abstract syntax

Fig. 2. Aspectml implementation pipeline

Notice that we placed a typing annotation on the formal parameter of within. When
pointcuts are used as first-class objects, it is not always possible to infer types of
function arguments and results. The reason, described fully in Section 4, is that
pointcut types have binding structure that cannot be determined via unification
without the addition of type annotations.

2.4 Aspectml Implementation

As we have described, our implementation of Aspectml is very similar in scope to
core Standard ml. Aside from a number of syntactic differences, Aspectml currently
lacks exceptions, type definitions, and records.

However, full Aspectml also includes a number of extensions beyond what we
have described so far. Our implementation includes support for higher kinded type

14 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

variables, data kinds in the style of Ωmega [Sheard 2005], polymorphic recursion,
algebraic data types with existentials [Läufer and Odersky 1992], generalized alge-
braic data types (gadts) [Peyton Jones et al. 2005], and a form of subsumption,
inspired by first-class polymorphism [Peyton Jones et al. 2005], to allow pointcuts
with a more specific type to be used when a more general one is required. Finally,
Aspectml includes a few specially designed features to aid polytypic programming,
such as defining tuple types in terms of “list” kinds and functions for manipulating
spine-based representations of algebraic data types [Hinze et al. 2006].

Aspectml is implemented in sml/nj. At the time of writing, the combined total of
Standard ml code, ml-lex and ml-yacc specifications, the Aspectml basis library,
and sml/nj Compilation Manager configuration files totals approximately  
lines of code.

Figure 2 provides an overview of our Aspectml implementation. It is composed of
a series of seven “processes” that consume a stream of data and potentially produce
a stream of output.

Parsing. This stage transforms ascii text, using standard regular-expression
lexing and lalr() parsing techniques, into what we call raw abstract syntax.
Raw abstract syntax captures the rough structure of program text, but does not
disambiguate the lexical scope of variables or the application of prefix, postfix, and
infix operators.

Post-parsing. This stage transforms raw abstract syntax into Aspectml abstract
syntax. The lexical scope of variables is established by incrementally building a finite
map between the string representations of variables to our abstract representation
of variables. The resulting abstract syntax tree follows the Barendregt naming
convention as a consequence [1985]. An operator precedence parser resolves the
application of prefix, postfix, and infix operators [Aho et al. 1986]. Additionally,
the post-parser eliminates some syntactic sugar.

Type inference. This stage decorates the abstract syntax tree received from the
post-parser with types, as inferred using an algorithm extending the one described
in Section 4. The most significant difference between the full implementation and
idealized Aspectml is that instead of passing around a substitution, imperative type
unification is used.

Zonking. This stage7, eliminates the indirection created by the use of mutable
references in unification, and instantiates unconstrained type unification variables
to type Unit. The purpose of this stage is to ensure that the type of the program is
fully determined and that translation does not encounter unification variables.

Translation. This stage transforms, using an extension of the algorithm in Sec-
tion 6, an explicitly typed source language abstract syntax tree into an explicitly
type core language aspect syntax tree. This core language is closely related to FA,
described in Section 5.

Core type-checking. In full Aspectml, this stage most closely matches what is
formalized in this paper. This is because FA is expressive enough to implement

7The colourful name for this stage is from Simon Peyton Jones [2005].

AspectML: A polymorphic aspect-oriented functional programming language · 15

just about all of our extensions to idealized Aspectml except defining and pattern
matching on algebraic data types.

Core evaluation. Evaluation of the core calculus is quite different from the op-
erational semantics described in Section 5. Firstly, we use an environment-based
semantics rather than a substitution-based semantics. Secondly, while we retain
a small-step semantics, instead of searching for the next redex, the actual imple-
mentation pushes evaluation contexts onto a stack and deterministically focuses
upon the next reduction problem. As reduction problems are completed, evaluation
contexts are popped off the stack. Evaluation then proceeds by repeatedly stepping
the abstract machine until it reaches a finished or error state. This is reminiscent of
Harper’s C-machine [2005].

2.5 Design decisions

The any pointcut. Programming with the any pointcut takes some care. For
example, we can modify our previous stack-inspection-like security example to use
the any pointcut, instead of specifically stating which functions it is to be triggered
on.

fun walk (stk : List Frame, info : FunInfo) =

case stk of [] => abort ("Function not enabled")

| (| any |)(_, info’) :: rest =>

if (enables info’ info) then ()

else

walk (rest, info)

advice before (| any |)(arg, stk, info) =(walk (stk, info); arg)

Unfortunately, we discovered when we tested this program that that it will always
diverge. The function calls in the body of the advice will trigger the advice itself.

This problem could be solved in a number of ways. One possibility would be to
introduce a primitive, disable e, disables all advice while e is evaluated. The advice
could then be rewritten as

advice before (| any |)(arg, stk, info) =

(disable (walk (stk, info)); arg)

Another option would be to introduce subtractive pointcuts, such as e1 except e2,
that behave here like set difference on names of functions. We could use this to
rewrite the advice as

advice before (| any except #walk,enables# |) (arg, stk, info) =

(walk (stk, info); arg)

This extension has the disadvantage that it the author of the advice must know the
entire potential call tree for walk to properly specify the exception list.

Both of these extensions are straightforward to integrate into our type system, but
the extensions would require some modifications to the core operational semantics
we describe in Section 5.

Anonymous functions. Anonymous functions present several design choices for
aspect-oriented languages. Because they are nameless, it is impossible to write

16 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

explicit pointcuts for them. It is possible that generic pointcuts might implicitly
advise them, such as any, or a new pointcut, anon that refers just to anonymous
functions. There are no technical difficulties to this extension, but on the other hand,
we do not yet see any compelling reasons for advising anonymous functions, either.
Therefore, in our implementation, we have decided to make anonymous functions
non-advisable until we have more experience with programming in Aspectml.

Advising first-class functions. Another design choice we made is that explicit
pointcuts, such as #f# may only refer to term variables that were let-bound to
functions in the current lexical scope. In other words, as illustrated by the following
example, variables corresponding to first-class functions cannot be used in a pointcut.

fun f x = x + 1

val ptc = #f# (* allowed *)

fun h (g : Int -> Int) = #g# (* not allowed *)

We have left this feature out because it increases the complexity of the semantics
of Aspectml without a corresponding increase in usefulness – we have not found
any compelling examples that require advising first-class functions. There are
no technical obstacles to advising first-class functions in Aspectml. Furthermore,
pointcuts are first-class in Aspectml, so if the programmer needs access to g’s
pointcut, h can be rewritten to take a pointcut as an additional argument.

More pointcuts. In a larger language, it might be desirable to extend the language
of pointcuts to allow advising events other than function invocation. However,
given the central importance of functions in Aspectml, not as many extensions are
necessary as might be needed an imperative language like AspectJ. For example,
a Java programmer might find it useful to advise allocating, reading, and writing
mutable state. However, all of these behaviors correspond to functions in Aspectml
that may be directly advised.

3. CASE STUDY

To demonstrate the usefulness of Aspectml, we have implemented a dynamic
security policy manager and stack inspection framework with most of the interesting
components one finds in Java.

We have chosen to focus on security because it appears to be one of the best, most
convincing applications of aspect-oriented programming technology. Indeed, many
previous researchers have argued that aspect-oriented programming mechanisms
enable more modular implementation of access control infrastructure than standard
programming languages. More specifically, since an aspect-oriented implementation
can encapsulate not only the definition of what an access control check is supposed
to do, but also the complete list of places where that access control check should
occur, aspect-oriented policy specifications are easier to understand. This in turn
makes policy specifications easier to audit – the security auditor need not search
through thousands of lines of library or application code to find the relatively few
lines of access control checks. In particular, analysis of the pointcut definitions
used in a policy can often tell the auditor whether or not access control checks
have been omitted. In addition, because all security code is centralized, when

AspectML: A polymorphic aspect-oriented functional programming language · 17

security vulnerabilities are identified, security policy updates can be made more
easily. Moreover, to distribute the changed policy, a single new aspect can be
deployed as opposed to an entire new library or set of libraries. Past systems that
used this kind of aspect-oriented design (occasionally without acknowledging it as
such) include Naccio [Evans and Twyman 1999], sasi [Erlingsson and Schneider
1999], Java mac [Kim et al. 1999; Lee et al. 1999], PoET/Pslang [Erlingsson and
Schneider 2000], and Polymer [Bauer et al. 2005]. All of these systems were situated
in imperative or object-oriented languages and hence were substantially different
from Aspectml.

In the following sections, we first describe the Java security mechanism and then
analyze our implementation of the algorithm in Aspectml.

3.1 Permissions

The basic unit of protection is the permission. Java security defines many permissions
including file system permissions, network socket permissions, system property
permissions, and gui permissions. A permission consists of a permission name and
permission arguments that constitute the internal structure of the permission. For
example, the file system permission name is FilePermission, and the permission
arguments contain the access mask (read/write/delete) and the file path.

Permissions consist of granted permissions and requested permissions. Granted
permissions represent a list of actions a function is allowed to perform. A requested
permission represents a specific action that a function is attempting to perform. If
the granted permissions of a function “imply” the requested permission, then the
requested action can be performed. The specific mechanisms for granting, requesting,
and testing permission implication are described in the following sections.

3.2 Policy Parsing

To determine what permissions will be granted to the executing source code, Java
security reads from a policy file upon start-up. The policy file consists of a set of
grant declarations, each of which specify a segment of source code and the list of
permissions granted to that source code. Granted permissions are specified by the
name of the permission followed by an list of arguments that describe the details of
the permission. We use this same basic format to specify Aspectml security files.

The following is the specification of Java and Aspectml policy file syntax:

grant sourceCodeSpecifier {

permission permissionName1 permissionArgs1;
permission permissionName2 permissionArgs2;
...

};

...

The sourceCodeSpecifier selects the source code to which permissions are granted.
A policy file writer is allowed to select code by specifying a codebase (where the
code is located in the file system), a signer (the key that has cryptographically
signed the code), and a principal (the entity that is executing the code). For the
purposes of this case study, we have chosen to allow only the codebase specifier in
Aspectml policy files.

18 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

The permissionName specifies the name of the permission to grant to the selected
source code, while the permissionArgs specifies the details of the permission. For
the purposes of this case study, we have studied file system and network socket
permissions in Aspectml. A sample Aspectml policy file follows.

grant codebase "example/*" {

permission FilePermission "tmp/*", "read write";

permission SocketPermission "*", "listen accept";

};

This would give all code in files in the example/ directory permission to read and
write to the tmp/ directory. It also allows the code in the example/ directory to start
a network server that accepts connections from any host.

3.3 Permission Specification

As stated earlier, Aspectml security currently specifies file system and network
permissions. We have also provided functions in our security implementation that
allow a user to add new permission types to the policy file and to the underlying
security mechanism. The user must specify the name of the permission (used in policy
file parsing), an addPermission function of type String -> permission that parses
the permission arguments from the policy file and returns the resulting permission,
and an impliesPermission function of type (permission,permission) -> Bool that
takes in a granted permission and a requested permission and returns whether the
first allows the second.

Accordingly, when we added a file system permission type to Aspectml security, we
specified the name FilePermission and an addFilePermission function which parses
file paths and access mask strings like “read write” to an internal representation.
Finally, we specified an impliesFilePermission function which takes a granted file
system permission such as reading and writing to the tmp/ directory and a requested
read, write, or delete action and then determines whether the permission allows the
action.

3.4 Stack Inspection

To determine whether a restricted action should be performed, the permissions
granted by the policy file to the currently executing code are examined to determine
whether they imply the requested permission required by the restricted action. This
test is not enough – if trusted code is called from untrusted code, the untrusted
code may perform malicious actions by proxy. Therefore, Java security is a stack
inspection mechanism, as described by the pseudo-code in Figure 3. The current
stack frame and all subsequent frames must all have the required permission before
an action is approved. Therefore, if the end of the stack is reached, which corresponds
to wildcard pattern branch, True will be returned indicating that the requested
action has been approved.

For example, if function f calls function g which calls function h which then
attempts to read from a file, the call stack will look like this: [fileRead, h, g, f].
The Java security mechanism will ensure that h, g, and then f all have permission
to read from the requested file.

AspectML: A polymorphic aspect-oriented functional programming language · 19

Java stack inspection pseudocode

public bool inspectStack (Stack currentStack) {

for (StackFrame sf : currentStack) {

if (stack frame sf does not allow the action) {

return false;

} else if (stack frame sf is marked as "privileged") {

\\ note that stack frame sf allows the action

return true;

}

}

return true;

}

Aspectml stack inspection code

fun checkStack (stk, requestedPermission) =

case stk of

(| #doPrivileged# |)(_,_) :: (|any|)(_,info) :: _ =>

let

val privFun = getFileName info

val grantedPermissions = getPermissions (privFun, policyfile)

in

impliesPermissions (grantedPermissions, requestedPermission)

end

| (|any|)(_,info) :: stktail =>

let

val currFun = getFileName info

val grantedPermissions = getPermissions (currFun, policyfile)

in

impliesPermissions (grantedPermissions, requestedPermission)

andalso checkStack (stktail, requestedPermission)

end

| _ => True

Fig. 3. Stack inspection comparison: Java and Aspectml

Finally, if trusted code is certain that it can only be used in approved ways, it
can disengage any further stack checks by performing a “privileged” action. This
is useful, for example, if a trusted function carefully checks its inputs or if the
restricted action that it wishes to perform does not depend on data passed to it by
its calling function. A “privileged” action is performed by calling a special security
function doPrivileged, passing it the code to be run. When the security mechanism
walks the stack, it will stop at whatever code called the doPrivileged function.

In the above example, if the function g is certain that it cannot be used inappro-
priately by code that calls it, it can perform a “privileged” call to the h function.
The stack will appear as [fileRead, h, doPrivileged, g, f]. In this case, only h

and g need to have the file read permission – f is not examined by the security
mechanism.

20 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

The Aspectml stack inspection algorithm is compared with its Java counterpart
in Figure 3. As with Java stack inspection, there are three cases, a privileged stack
frame, a regular stack frame, and the end of the stack.

3.5 Security Triggering

We now have described the policy parsing, permission implication, and stack inspec-
tion code. The final step is to trigger this security mechanism when a restricted
action is performed. In Java security, every read-file system call in the source code
is preceded by a call to AccessController.checkPermission(requestedAction).

In our Aspectml implementation, a pointcut is created that contains a list of the
restricted actions that should trigger the aspect. For example, all of the system
calls that will read from a file will trigger the readPC pointcut. Next, an aspect is
created that, when the pointcut is triggered (before a restricted action is performed),
creates the requested permission and checks that the stack allows this requested
permission. In the following example, when code attempts to read from a file,
the readPC pointcut is triggered, calling the checkRead function that creates the
requested FilePermission and performs the security stack inspection check.

val readPC = #fileCanRead, fileExists, fileIsDirectory,

fileIsFile, fileLastModified ,fileLength, fileList,

fileOpenRead#

advice before (| readPC |) (arg, stk, _) =

if checkRead (stk, arg) then

arg

else

abort "Failed security check"

Similar checks are performed when writing files, deleting files, and making and
receiving network connections.

3.6 Issues

A difficulty we encountered during this stage was similar to a problem also described
in another aspect-oriented case study [Sullivan et al. 2005] – occasionally the
crosscutting location is not easily accessible with a pointcut. In the Java security
mechanism, two security checks were in the middle of Java functions, not at the
beginning or the end of the function. This disallowed easy use of before or after

advice to institute the security check. Instead, we were required to split each affected
function into two parts: a function which runs the pre-security-check code, and a
second function which is called by the first and runs the post-security-check code.
We trigger the security check as before advice on this post-security-check function.

Another issue emerged when we discovered that the network security code calls
network i/o code which in turn triggers the Java network security code and so on.
The Java security mechanism handles this by adding a flag to the argument list of
the affected network i/o functions, indicating whether the function is being called
from security code or not.

For example, in the top section of Figure 4, we display the pre-security pseudo-code
for the getAllByName0 function, which looks up the internet address that correspond
to a given hostname string. Because this function both triggers the network security

AspectML: A polymorphic aspect-oriented functional programming language · 21

Pre-security getAllByName0 Java pseudocode

static InetAddress[] getAllByName0 (String host) {...}

Post-security getAllByName0 Java pseudocode

static InetAddress[] getAllByName0 (String host, boolean check) {

if (check) { perform security check }

...

}

static InetAddress[] getAllByName0 (String host) {

return getAllByName0(host, true);

}

Aspectml getAllByName0 security

fun shouldCheck (stk) =

case st of

(| #checkListen,checkAccept,checkConnect# |) (_,_) :: _ => False

| (|any|) (_,_) :: stktail => shouldCheck stktail

| _ => True

advice before (| #netGetAllByName0# |) (host, stk, _) =

if (shouldCheck stk) andalso (not (checkConnect (st, host, ~1))) then

abort "Failed security check"

else

host

Fig. 4. Recursive security: Java and Aspectml

mechanism and is called by it, in the middle section of the figure, getAllByName0
must be converted to a new function that takes both the hostname string and a flag
marking whether the check should be performed or whether getAllByName0 has been
called from within the security mechanism. In addition, the function is overloaded
so that calls to the old getAllByName0 function (calls that are not from within the
security mechanism) call the new function with a check flag value of true

We feel that this solution is suboptimal because it requires modifying the signature
of the original network i/o code in order to add the security feature. In our Aspectml
implementation (displayed in the bottom section of the figure), there is no need to
change the argument list of the function. Instead, we add a shouldCheck function
that performs stack analysis to determine whether the getAllByName0 function has
been called by the security mechanism or not. If it has, then no security check is
performed by the advice to avoid infinite recursion.

3.7 History Inspection

As an aside, several researchers [Schneider 2000; Gordon and Fournet 2003; Abadi
and Fournet 2003] have questioned whether stack inspection is the correct choice
for enforcing common security policies. For example, in order to preserve the
confidentiality of certain files, a user may wish to disallow making or receiving
network connections after reading from the file system. As any file system reads

22 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

will have occurred in the past and will no longer be on the stack when a network
connection is attempted, a stack inspection mechanism will not suffice to enforce
this policy. Instead, the entire execution history – the list of all the functions that
have been run – must be examined. Aspectml can enforce history-based policies
just as easily as the stack-inspection based policies of the previous section. As
an example, the following code implements the simple history-based policy for file
confidentiality described above.

val didRead = ref false

advice after (| #fileOpenRead# |) (res, _, _) =

((didRead := true); res)

advice before (| #netConnect, netServerAccept# |) (arg, _, _) =

if !didRead then

abort "No network after file read\n"

else

arg

The first piece of advice sets a flag when any file is read. The second piece of advice
disallows all network connections if the flag is set.

4. TYPE INFERENCE

Many modern statically typed languages use type inference to eliminate typing
annotations that users must write. In Standard ml, type inference is so effective that
users never need to provide any type annotations. The type system of Aspectml
is carefully designed to permit efficient type inference with an algorithm that is
an extension of one used by many implementations of Standard ml, Damas and
Milner’s (DM) unification-based Algorithm W [1982]. Therefore, type inference in
Aspectml behaves exactly the same as ml for ml programs; all programs that do
not include aspects, type analysis, or any other extensions will type check as they
do in ml.

However, first-class polymorphic point cuts and runtime type analysis cause
difficulties for unification-based type inference, which we discuss in more detail
below. Programs that use these capabilities require annotation – Aspectml does
not permit complete inference. In our design, we have carefully balanced the
number of required annotations with the complexity of type inference. We believe
that programming with aspects is not tedious, yet it is easy for programmers to
understand where type annotations are required. Furthermore, many users provide
typing annotations for function definitions in Standard ml as a form of checked
documentation – most of the time such annotations are sufficient for Aspectml.

The key idea of our type system is a distinction between two different modes of
type inference: local and global typings. Local typings, which generalize the idea of
type annotations, describe when the type of an expression can be determined without
using unification. This process is a simplified version of local type inference [Pierce
and Turner 1998]. Local typings always produce rigid types – that are guaranteed
not to contain any uninstantiated unification variables. On the other hand, global

AspectML: A polymorphic aspect-oriented functional programming language · 23

typings make no such guarantees. They may use unification to determine the type
of an expression, so the resulting type may not be rigid.

In the our implementation of Aspectml there are only four places where some
sort of type annotations are necessary.

(1) Advised pointcuts must have local typings so that the connection between the
pointcut type and the argument of the pointcut is explicit. We discuss this issue
in greater detail in Section 4.1.

(2) Pointcuts created from sets of function names often have local typings (making
them suitable for advisement). However, if any of their member functions have
types that are not rigid, this is not the case. The reason for this requirement is
discussed in greater detail in Section 4.3. However, we expect that this should
be a rare occurrence in practice. Furthermore, the Aspectml implementation
will explicitly tell the user when it does occur.

(3) The typecase expression must be annotated with a type for the entire expression.
Furthermore, during type analysis, the types of some variables in the context
may be improved, but only for variables with local types. These requirements
will be explained in greater detail in Section 4.4.

(4) Type annotations inside polymorphic functions and advice may need to refer to
type variables. Therefore, these type variables must be explicitly brought into
scope with an annotation such as <a>. Some languages, such as OCaml, Standard
ml and Haskell, implicitly bring type variables into scope using lexically scoped
type variables [Shields and Peyton Jones 2002], but we think that explicit binding
is simpler to understand as it makes the binding site more apparent.

To better describe how type inference works in Aspectml, in the rest of this
section we precisely describe a type inference algorithm for idealized Aspectml.
However, before we do that, we discuss the problems with unification-based type
inference and pointcut types that provide part of the motivation for the distinction
between local and global typings.

4.1 Local and global typings

A key component of the DM type inference algorithm is the use of first-order
unification. In idealized Aspectml type inference, unification variables are notated
by X, Y, Z, . . . and are only introduced by the type inference algorithm. Unification
variables are distinct from rigid type variables, a, that result from programmer
annotations and generalization.

Pointcut types, like pc (<a> t1 ~> t2), are problematic for first-order unification
because they bind type variables within monotypes.8 For example, consider the
following contrived, but illustrative, code fragment.

fun f p = let

advice before (| p |) (x, _, _) = ...

in

...

end

8Recall that ml carefully separates types (or monotypes) that may not bind type variables from
type schemes (or polytypes), that may. Only monotypes are unified.

24 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

Contexts

(term variable contexts) Γ ::= · | Γ, x :: s | Γ, x : s
(function context) Φ ::= · | Φ, x
(type variable contexts) ∆ ::= · | ∆, a
(substitutions) Θ ::= · | Θ, t/X

Judgments

Θ ` t1 = t2 ⇒ Θ ′ unification
Θ ` <a> t1 � t2 ⇒ Θ ′ instance

Θ; ∆; Φ; Γ `loc
e ⇒ t; Θ ′ local inference

Θ; ∆; Φ; Γ ` e ⇒ t; Θ ′ global inference
Θ; ∆; Φ; Γ ` d ⇒ Θ ′; Φ ′; Γ ′ declaration inference
Θ; ∆; Φ; Γ ` p ⇒ Θ ′; ∆ ′; Γ ′ pattern inference

Fig. 5. Judgments used in type inference

In traditional DM type inference, while processing f, the variable p would have some
unification variable, X, as its type. However, to give a type to x we need to know the
domain component of the pointcut type. When the same problem occurs with any
other type constructor, say function types, we would just construct a new function
type with fresh unification variables, say Y -> Z, unify X with Y -> Z, and then use
Y for the needed type. However, we cannot do the same for possibly polymorphic
pointcut types for two reasons. First, it would be necessary to guess the correct
set of binding variables a to construct a pointcut type pc (<a> Y ~> Z). Second,
the final instantiation of the unification variables Y and Z may depend upon some
of the variables in a – a dependency that is not captured by first-order unification.
Consequently, higher-order unification would be necessary to guess an appropriate
pointcut type.

Higher-order unification is known to be undecidable, so to keep our inference
algorithm for Aspectml decidable, we solve the problem above by requiring that the
type of p be locally known. That way, any binding in the pointcut type is apparent.
For example, we can repair our example from above by annotating p at its binding
site (an annotation at its use site would also suffice.)

fun f (p : pc (<a b> (a, b) ~> Int)) =

let

advice before (| p |) (x, _, _) = ...

in

...

end

4.2 The formal semantics of local and global typings

Our discussion of local and global inference so far has been very informal. We now
flesh out the details precisely. All judgments used by type inference in this section
can be found in Figure 5.

AspectML: A polymorphic aspect-oriented functional programming language · 25

Unification Θ ` t1 = t2 ⇒ Θ ′

Θ ` t = t ⇒ Θ
uni:eq

X ∈ dom(Θ) Θ ` Θ(X) = t ⇒ Θ ′

Θ ` X = t ⇒ Θ ′ uni:uvar1

X 6∈ dom(Θ) X 6∈ FUV(t)

Θ ` X = t ⇒ Θ, t/X
uni:uvar2

Θ ` X = t ⇒ Θ ′

Θ ` t = X ⇒ Θ ′ uni:uvar3

Θ ` t1 = t3 ⇒ Θ ′ Θ ′ ` t2 = t4 ⇒ Θ ′′

Θ ` t1 -> t2 = t3 -> t4 ⇒ Θ ′′ uni:arr

Θ ` <a> t1 -> t2 � t3 -> t4 ⇒ Θ ′ Θ ′ ` t3 -> t4 � <a> t1 -> t2 ⇒ Θ ′′

Θ ` pc (<a> t1 ~> t2) = pc (t3 ~> t4) ⇒ Θ ′′ uni:pc

Instance Θ ` <a> t1 � t2 ⇒ Θ ′

X fresh Θ ` t1[X/a] = t2 ⇒ Θ ′

b#FTV(Θ ′(<a> t1)) c fresh b#FTV(Θ ′(<c> t2[c/b]))

Θ ` <a> t1 � t2 ⇒ Θ ′�b
iinst

where Θ�b =
{
t/X | ∀(t/X) ∈ Θ, b#FTV(t)

}
Fig. 6. The unification and instance algorithms

Both local and global type inference consume and produce Θ, an idempotent,
ever-growing substitution of monotypes for unification variables. Substitutions have
a composition operator, − ◦−, that is associative. This substitution is extended by
unification. The unification judgment Θ ` t1 = t2 ⇒ Θ ′ is read as:

“With input substitution Θ, types t1 and t2 unify, producing the ex-
tended substitution Θ ′.”

That is, the substitution Θ is extended to produce a new substitution Θ ′ so that
Θ ′(t1) = Θ ′(t2). Furthermore, Θ ′ is the most general unifier for these monotypes.
In this and other judgments, we use the convention that the outputs of the algorithm
appear to the right of the ⇒ symbol. Note that output substitutions cannot refer
to bound type variables. Our unification algorithm is given in Figure 6.

Unification is defined in a mutually recursive fashion with the instance algorithm.
Whenever two pointcut types are compared by the unification algorithm, it verifies
that they are both instances of each other. The relation Θ ` <a> t1 � t2 ⇒ Θ ′,
also defined in Figure 6, is read as:

“Given input substitution Θ, polytype <a> t1 can be shown to at least as
general as polytype t2, by producing an extended substitution Θ ′.”

By “at least as general”, we mean that there exists a substitution Θ ′ for some of
the quantified variables a in t1 such that Θ ′(t1) will be equal to t2. This definition
is the same as in DM type inference.9 We restrict the substitution produced by

9Note that our notation follows the convention of viewing <a> t1 as a subtype of t2.

26 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

Pointcut projection

π(before, (<a> t1 ~> t2)) , <a> t1

π(after, (<a> t1 ~> t2)) , <a> t2

π(around, (<a> t1 ~> t2)) , <a> t1 -> t2

π(stk, (<a> t1 ~> t2)) , <a> t1

Generalization

gen(Γ, t) , <a> t[a/X]

where X = FUV(t) − FUV(Γ)
and a fresh

Context refining substitution

·〈t/a〉 , ·
Γ, x :: s〈t/a〉 , Γ〈t/a〉, x :: s[t/a]

Γ, x : s〈t/a〉 , Γ〈t/a〉

Fig. 7. Auxiliary definitions

the iinst rule, as indicated with Θ ′�b, to enforce the invariant that variables in the
substitution will not escape their scope. This does not affect the correctness of the
algorithm as any unification variables with b in their range will be effectively “dead”
at this point.

The rules for inference are presented in Figure 8. Figure 7 presents some useful
auxiliary definitions. In the local and global type inference judgments, Θ is an input
substitution, Γ the term variable context, ∆ the type variable context, and Φ the
set of function names currently in scope. The need for Φ is explained in Section 4.3.
The local type inference judgment, Θ;∆;Φ; Γ `loc

e ⇒ t;Θ ′, is read as:

“Given the input substitution Θ and the contexts ∆,Φ, and Γ , the term
e has type t, as specified by the programmer, and produces substitution
Θ ′.”

This judgment holds when either the type of e was annotated in the source text or
when e is an expression whose type is “easy” to determine, such as a variable whose
(monomorphic) type was annotated or certain constants. To propagate the type
annotation on variables, the context, Γ , contains two different assertions depending
on whether types are local (x :: s) or perhaps inferred via unification (x : s). We use
the notation Γ(x) = s to refer to either x : s ∈ Γ or x :: s ∈ Γ .

The global type inference judgment, Θ;∆;Φ; Γ ` e ⇒ t;Θ ′, is read as:

“Given the input substitution Θ and the contexts ∆,Φ, and Γ , the term
e has type t and produces substitution Θ ′, possibly requiring unification
to determine t.”

Local and global inference interact via the following two rules

∆ ` t2 Θ;∆;Φ; Γ ` e ⇒ t1;Θ ′ Θ ′ ` t1 = t2 ⇒ Θ ′′

Θ;∆;Φ; Γ `loc
(e:t2) ⇒ t2;Θ ′′ litm:cnv

Θ;∆;Φ; Γ `loc
e ⇒ t;Θ ′

Θ;∆;Φ; Γ ` e ⇒ t;Θ ′ gitm:cnv

AspectML: A polymorphic aspect-oriented functional programming language · 27

Local rules Θ; ∆; Φ; Γ `loc
e ⇒ t; Θ ′

∆ ` t2 Θ; ∆; Φ; Γ ` e ⇒ t1; Θ ′ Θ ′ ` t1 = t2 ⇒ Θ ′′

Θ; ∆; Φ; Γ `loc
(e:t2) ⇒ t2; Θ ′′

litm:cnv

x :: t ∈ Γ

Θ; ∆; Φ; Γ `loc
x ⇒ t; Θ

litm:var
Θ; ∆; Φ; Γ `loc

() ⇒ Unit; Θ
litm:unit

Θ; ∆; Φ; Γ `loc
c ⇒ String; Θ

litm:string

Θ; ∆; Φ; Γ `loc
any ⇒ pc (<ab> a ~> b); Θ

litm:any

∆, a ` t1 ∆, a ` t2

0@ ∀i fi ∈ Φ
Γ(fi) = t1,i -> t2,i

Θi−1 ` <a> t1 -> t2 � t1,i -> t2,i ⇒ Θi

1A
Θ0; ∆; Φ; Γ `loc

#f:(<a> t1 ~> t2)# ⇒ pc (<a> t1 ~> t2); Θn

litm:set-ann

Θ; ∆; Φ; Γ ` d ⇒ Θ ′; Φ ′; Γ ′ Θ ′; ∆; Φ, Φ ′; Γ, Γ ′ `loc
e ⇒ t; Θ ′′

Θ; ∆; Φ; Γ `loc
let d in e ⇒ t; Θ ′′

litm:let

Global rules Θ; ∆; Φ; Γ ` e ⇒ t; Θ ′

Θ; ∆; Φ; Γ `loc
e ⇒ t; Θ ′

Θ; ∆; Φ; Γ ` e ⇒ t; Θ ′ gitm:cnv
Γ(x) = <a> t X fresh

Θ; ∆; Φ; Γ ` x ⇒ t[X/a]; Θ
gitm:var

Θ1; ∆; Φ; Γ ` e1 ⇒ t1; Θ2

Θ2; ∆; Φ; Γ ` e2 ⇒ t2; Θ3 X fresh Θ3 ` t1 = t2 -> X ⇒ Θ4

Θ1; ∆; Φ; Γ ` e1e2 ⇒ X; Θ4

gitm:app

Θ; ∆; Φ; Γ ` e ⇒ Stack; Θ0 Θ0; ∆; Φ; Γ ` e ′ ⇒ t; Θ ′′
0„

∀i Θ ′′
i−1; ∆; Φ; Γ ` pi ⇒ Θi; ∆i; Γi Θi; ∆, ∆i; Φ; Γ, Γi ` ei ⇒ ti; Θ

′
i

Θ ′
i ` ti = t ⇒ Θ ′′

i FTV(ti) # ∆i

«
Θ; ∆; Φ; Γ ` stkcase e (p=>e |_=> e ′) ⇒ t; Θ ′′

n

gitm:scase

a ∈ ∆ ∆ ` t Θ; ∆; Φ; Γ ` e ⇒ t ′; Θ ′ Θ ′ ` t ′ = t ⇒ Θ0„
∀i ∆i = FTV(ti) − ∆ Θi−1; ∆, ∆i; Φ; Γ〈ti/a〉 ` ei[ti/a] ⇒ t ′

i; Θ
′
i

a 6∈ FTV(ti) Θ ′
i ` t ′

i = t[ti/a] ⇒ Θi

«
Θ; ∆; Φ; Γ ` typecase<t> a (t=>e |_=> e) ⇒ t; Θn

gitm:tcase

Θ; ∆; Φ; Γ ` d ⇒ Θ ′; Φ ′; Γ ′ Θ ′; ∆; Φ, Φ ′; Γ, Γ ′ ` e ⇒ t; Θ ′′

Θ; ∆; Φ; Γ ` let d in e ⇒ t; Θ ′′ gitm:let

Fig. 8. Type inference for expressions

28 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

The Rule litm:cnv says that if an expression can be inferred to have type t1 via
global inference, and the programmer annotates the expression with type t2, and t1

and t2 are unifiable, the expression has the local type t2. The Rule gitm:cnv says
that any expression that can be inferred to have a local type can also be inferred to
have a global type.

4.3 First-class polymorphic pointcuts

In Section 4.1, we examined the difficulties that pointcut types cause for type
inference. Pointcut terms, in particular pointcuts sets, are another tricky part of
our type system. Only functions named by a fun declaration may be used as part of
a pointcut set. To ensure this constraint, the Φ component of the typing judgments
keeps track of which function names are currently in scope. All variables in a
pointcut set must be a member of Φ. As we discussed in Section 2.5, this was just a
design decision, and the inference algorithm and translation described in Section 6
could be redesigned to accommodate allowing any variable of function type to be
used as part of a pointcut set.

The Rule litm:set-ann, in Figure 8, requires the type of each function in the set
to be at most as polymorphic as the pointcut annotation (<a> t1 ~> t2) on the
set. To simplify the description of inference for idealized Aspectml, a pointcut
set must always be annotated, and will therefore always have a local type. In
our implementation if the pointcut set is unannotated, that is, written as #f#,
anti-unification may be used to infer the missing annotation. However, the types of
all the functions in the set must be rigid for anti-unification to compute the least
general pointcut type for the set.

In the implementation, a function may not have a rigid type if it is not closed
and the type of the free variable is unconstrained. For example, in the following
fragment g in the unannotated set #g# does not have a rigid type.

fun f x = let

fun g y = x

in

#g# (* g’s type is not rigid -

expression will not type check *)

end

Here the type of g is not rigid because some unification variable X was introduced for
the type of x. However, because X occurs in the environment, it will still be present
in g’s type after it is generalized, per the definition in Figure 7. Our anti-unification
algorithm is only complete (computes the least general type) for types that are
rigid; it will still produce a sound result (a more general type) in the presence of
unification variables. Consequently, we make this restriction so that a user can be
sure that inferred pointcuts have the least general type possible.

4.4 Runtime type analysis

There are two difficulties with combining type inference with run-time type analysis.
First, the return type of a typecase expression is difficult to determine from the
types of the branches. We solve this first problem by simply requiring an annotation
for the result type.

AspectML: A polymorphic aspect-oriented functional programming language · 29

a ∈ ∆ ∆ ` t Θ;∆;Φ; Γ ` e ⇒ t ′;Θ ′ Θ ′ ` t ′ = t ⇒ Θ0(
∀i ∆i = FTV(ti) − ∆ Θi−1;∆, ∆i;Φ; Γ〈ti/a〉 ` ei[ti/a] ⇒ t ′

i;Θ
′
i

a 6∈ FTV(ti) Θ ′
i ` t ′

i = t[ti/a] ⇒ Θi

)
Θ;∆;Φ; Γ ` typecase<t> a (t=>e |_=> e) ⇒ t;Θn

gitm:tcase

As the rule above shows, if the expression should be of type t then a branch for
type ti may be of type t[ti/a]. This substitution is sound because if the branch is
executed, then the type a is the same as the type ti. When type checking each branch,
the context will also change. In Figure 7 we define context refining substitution,
Γ〈ti/a〉. A type ti is substituted for the variable a only in local assumptions x :: s.
Furthermore, global assumptions are eliminated from the context.

The reason for these restrictions is two-fold. Firstly, we must not allow refinement
in parts of the context that contain unification variables because, even with the
return type annotation on typecase, there are some expressions with no principal
type. For example, in the following code fragment:

fun h <a>(x:a) = fn y => typecase<Int> a

of Int => x + y + 1

| _ => 2

we can assign the types <a> a -> a -> Int or <a> a -> Int -> Int to h, and neither
is more general than the other. The problem is that it is equally valid for y to have
type Int or to have a type that refines to Int. By requiring the user to specify the
type of y for refinement to apply, we eliminate this confusion.

Secondly, even if we were to allow global types in the context, but did not refine
them, we run into an inconsistency in the behavior of type inference.

fun h <a b>(x:a -> Int, y:b) = (fn z => typecase<Int> a

of b => x z

| _ => 0)

y

Here the typecase expression chooses b to be the canonical element of the equivalence
class {a, b}, so inside the typecase branch, x has type b -> Int. The variable z has
some unification variable X as its type, and which unifies b due to the application.
Outside the typecase branch y has type b and applying it to a function of type
b -> Int is well typed. But consider the exact same program, but with a swapped
for b in the typecase expression.

fun h <a b>(x:a -> Int, y:b) = (fn z => typecase<Int> b

of a => x z

| _ => 0)

y

Here the typecase expression chooses a to be the canonical element of the equivalence
class {a, b}, so inside the typecase branch, x has type a -> Int. The variable z has
some unification variable X as its type, and which unifies a due to the application.
Outside the typecase branch y has type b and applying it to a function of type
a -> Int is ill-typed.

30 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

Therefore, to make it easier for a programmer to reason about the behavior of
a program, we conservatively eliminate all term variables with global types from
the context. If this rules out a user’s program, they can simply add additional type
annotations to whatever term variables they need inside of a typecase branch.

These issues have arisen before in type inference systems for Generalized Algebraic
Datatypes (also called Guarded Recursive Datatypes or gadts) [Peyton Jones et al.
2005; Simonet and Pottier 2005; Stuckey and Sulzmann 2005]. In these systems, as
in ours, type refinements prevent some unannotated terms from having principal
types.

At present, we believe we might be able to lessen the need to annotate typecase

expressions through the use of other type annotations the user does supply. This
would involve adopting local type inference techniques, such as bidirectional type
inference [Pierce and Turner 1998; Peyton Jones et al. 2005], boxy types [Vytiniotis
et al. 2005], or shape inference [Pottier and Régis-Gianas 2006].

A final subtle point about the type inference rule for typecase is each type pattern
ti is allowed to contain free variables bound in the context ∆. This has a number of
uses, including writing a concise “type-safe cast”.

fun cast <a b>(x:a):Option b = typecase<Option b> a

of b => Some x

| _ => None

However, we do not allow a type variable being analyzed by typecase to appear in
type patterns. This is so that we can ensure that the refined return type t[ti/a] will
not contain the variable. Furthermore, we do not believe there is any way to use the
analyzed type variable in a type pattern that is not trivial or vacuous. Consider,

typecase<...> a

of a => ... (* Fine, but trivial -- binds nothing *)

| (a -> a) => ... (* Impossible, because we do not have

equi-recursive types *)

4.5 Declarations

The inference judgment for declarations, Θ;∆;Φ; Γ ` d ⇒ Θ ′;Φ ′; Γ ′, defined in
Figure 9, is read as:

“Given input substitution Θ, the contexts ∆, Φ, and Γ , the declaration
d is well-formed and produces context extensions Φ ′ and Γ ′ and a new
substitution Θ ′.”

Note that Φ ′ and Γ ′ are only additions to be appended to Φ and Γ , and not entirely
new contexts to be used, as Θ ′ is a new substitution to be threaded through the
remainder of the derivation.

As alluded to in Section 4.1, the typing rules for advice declarations (Rules
id:advice-befaft, id:advice-aro, id:advice-ann-befaft, and id:advice-ann-aro in Figure 9)
state that the type of a pointcut must be determinable using the local type inference
judgment. That way, the inference algorithm need not use higher-order unification
to determine the type pc pt. Note that when the body of the advice is checked, the
parameters are added to the context with known types, even though they need not
be annotated by the user. In our rules, we use the notation π(tm, pt) to indicate

AspectML: A polymorphic aspect-oriented functional programming language · 31

Declarations Θ; ∆; Φ; Γ ` d ⇒ Θ ′; Φ ′; Γ ′

Θ; ∆, a; Φ; Γ, f :: t1 -> t2, x :: t1 ` e1 ⇒ t3; Θ ′

Θ ′ ` t2 = t3 ⇒ Θ ′′ s = <a> t1 → t2 a 6∈ Θ ′′(Γ)

Θ; ∆; Φ; Γ ` fun f <a> (x:t1):t2 = e1 ⇒ Θ ′′; ·, f; ·, f :: s
id:fun-ann

X, Y fresh Θ; ∆; Φ; Γ, f : X -> Y, x : X ` e1 ⇒ t; Θ ′

Θ ′ ` Y = t ⇒ Θ ′′ s = gen(Θ ′′(Γ), Θ ′′(X -> Y))

Θ; ∆; Φ; Γ ` fun f x = e1 ⇒ Θ ′′; ·, f; ·, f : s
id:fun

tm ∈ {before, after} Θ; ∆; Φ; Γ `loc
e1 ⇒ pc pt; Θ ′ π(tm, pt) = <a> t1

Θ ′; ∆, a; Φ; Γ, x :: t1, y :: Stack, z :: String ` e2 ⇒ t2; Θ ′′ Θ ′′ ` t1 = t2 ⇒ Θ ′′′

Θ; ∆; Φ; Γ ` advice tm (|e1|) (x,y,z) = e2 ⇒ Θ ′′′; ·; ·
id:advice-befaft

Θ; ∆; Φ; Γ `loc
e1 ⇒ pc pt; Θ ′ π(around, pt) = <a> t1 -> t2

Θ ′; ∆, a; Φ; Γ, x :: t1, y :: Stack, z :: String, proceed :: t1 -> t2 ` e2 ⇒ t3; Θ ′′

Θ ′′ ` t2 = t3 ⇒ Θ ′′′

Θ; ∆; Φ; Γ ` advice around (|e1|) (x,y,z) = e2 ⇒ Θ ′′′; ·; ·
id:advice-aro

tm ∈ {before, after} Θ; ∆; Φ; Γ `loc
e1 ⇒ pc pt; Θ ′ π(tm, pt) = <a> t1

Θ ′; ∆, a; Φ; Γ, x :: t1, y :: Stack, z :: String ` e2 ⇒ t2; Θ ′′

Θ ′′ ` t2 = t1 ⇒ Θ ′′′

Θ; ∆; Φ; Γ ` advice tm (|e1|) <a> (x:t1,y,z) = e2 ⇒ Θ ′′′; ·; ·
id:advice-ann-befaft

Θ; ∆; Φ; Γ `loc
e1 ⇒ pc pt; Θ ′ π(around, pt) = <a> t1 -> t2

Θ ′; ∆, a; Φ; Γ, x :: t1, y :: Stack, z :: String, proceed :: t1 -> t2 ` e2 ⇒ t3; Θ ′′

Θ ′′ ` t2 = t3 ⇒ Θ ′′′

Θ; ∆; Φ; Γ ` advice around (|e1|) <a> (x:t1,y,z):t2 = e2 ⇒ Θ ′′′; ·; ·
id:advice-ann-aro

tm ∈ {before, after} ∆ ′ = FTV(t1) − ∆ Θ; ∆; Φ; Γ `loc
e1 ⇒ pc pt; Θ ′

Θ ′; ∆, ∆ ′; Φ; Γ, x :: t1, y :: Stack, z :: String ` e2 ⇒ t2; Θ ′′

Θ ′′ ` t1 = t2 ⇒ Θ ′′′

Θ; ∆; Φ; Γ ` case-advice tm (|e1|) (x:t1,y,z) = e2 ⇒ Θ ′′′; ·; ·
id:cadvice-befaft

∆ ′ = FTV(t1) ∪ FTV(t2) − ∆ Θ; ∆; Φ; Γ `loc
e1 ⇒ pc pt; Θ ′

Θ ′; ∆, ∆ ′; Φ; Γ, x :: t1, y :: Stack, z :: String, proceed :: t1 -> t2 ` e2 ⇒ t3; Θ ′′

Θ ′′ ` t2 = t3 ⇒ Θ ′′′

Θ; ∆; Φ; Γ ` case-advice around (|e1|) (x:t1,y,z):t2 = e2 ⇒ Θ ′′′; ·; ·
id:cadvice-aro

Fig. 9. Type inference for declarations

projecting the appropriate polytype from the pointcut type. If tm is before, the
first component will be projected; if it is after, the second will be projected. If tm
is around, both components are projected. There is also a special trigger time, stk,
used only by the type inference algorithm, that is essentially equivalent to before.
This notation is defined in Figure 7.

The typing rules for case-advice (Rules id:cadvice-befaft and id:cadvice-aro in
Figure 9) are similar to that for advice. The case-advice declaration requires a type
annotation on x, the first parameter to the advice, for before and after case-advice,

32 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

Patterns Θ; ∆; Φ; Γ ` p ⇒ Θ ′; ∆ ′; Γ ′

Θ; ∆; Φ; Γ ` [] ⇒ Θ; ·; ·
ipat:nil

Θ; ∆; Φ; Γ ` x ⇒ Θ; ·; ·, x :: Stack
ipat:var

Θ; ∆; Φ; Γ ` p ⇒ Θ ′; ∆ ′; Γ ′

Θ; ∆; Φ; Γ ` _::p ⇒ Θ ′; ∆ ′; Γ ′ ipat:wild

Θ; ∆; Φ; Γ `loc
e ⇒ pc pt; Θ ′ π(stk, pt) = <a> t Θ ′; ∆; Φ; Γ ` p ⇒ Θ ′′; ∆ ′; Γ ′

Θ; ∆; Φ; Γ ` (|e|)(x,z)::p ⇒ Θ ′′; ∆ ′, a; Γ ′, x:t, z:String
ipat:cons

Θ; ∆; Φ; Γ `loc
e ⇒ pc pt; Θ ′

π(stk, pt) = <a> t1 Θ ′; ∆; Φ; Γ ` p ⇒ Θ ′′; ∆ ′; Γ ′ Θ ′′ ` t1 = t2 ⇒ Θ ′′′

Θ; ∆; Φ; Γ ` (|e|)<a>(x:t2,z)::p ⇒ Θ ′′′; ∆ ′, a; Γ ′, x:t2, z:String
ipat:cons-ann

Fig. 10. Type inference for patterns

and on both x and the result for around case-advice. These annotations drive the
underlying run-time type analysis. Note that, unlike regular advice, the programmer
is not required to indicate the binding type variables – they can be determined from
the type annotations.

4.6 Stack and frame patterns

The last syntactic category in idealized Aspectml contains stack and frame pat-
terns. Figure 10 describes the type inference algorithm for patterns for the stkcase

expression. The judgment Θ;∆;Φ; Γ ` p ⇒ Θ ′;∆ ′; Γ ′ is read as:

“Given the input substitution Θ and the contexts ∆,Φ, and Γ , the pattern
p produces context extensions ∆ ′ and Γ ′ and a new substitution Θ ′.”

As with advice declarations, the typing rules for pointcut patterns (Rules ipat:cons
and ipat:cons-ann) require that the type of a pointcut must be determinable using the
local type inference judgment. Additionally, similar to the declaration judgments,
∆ ′ and Γ ′ are only meant to be appended to ∆ and Γ and not to replace them.

4.7 Future work: A declarative specification

Some users of ml rely on the declarative nature of the HM type system, which elides
the uses of unification [Milner 1978]. In Figures 11, 12, 13, and 14, we develop a
similar declarative specification for our type system.

Unfortunately, the rule for annotated pointcuts (litm:set-ann) in Figure 8 has
undesirable interactions with the declarative specification of HM-style type inference.
This rule uses the function fi without instantiation, breaking the following property:
if ∆;Φ; Γ ` e : t and Γ ′ is a more general context than Γ , then ∆;Φ; Γ ′ ` e : t.
This property does not hold because a more general type for a function fi may
require a more general pointcut type annotation when that function appears in a
pointcut set. Because this property fails, our algorithm is not complete with respect
to the standard specification of HM-style inference extended with our new terms.

AspectML: A polymorphic aspect-oriented functional programming language · 33

Types ∆ ` t

∆, a ` t

∆ ` <a> t
wfstp:all

a ∈ ∆

∆ ` a
wfstp:var

∆ ` X
wfstp:unif

∆ ` Unit
wfstp:unit

∆ ` String
wfstp:string

∆ ` Stack
wfstp:stack

∆ ` t1 ∆ ` t2

∆ ` t1 -> t2

wfstp:arr
∆, a ` t1 ∆, a ` t2

∆ ` pc (<a> t1 ~> t2)
wfstp:pc

Type equality ∆ ` t1 = t2

∆ ` t

∆ ` t = t
eq:refl

∆ ` t1 = t3 ∆ ` t2 = t4

∆ ` t1 -> t2 = t3 -> t4

eq:arr

∆ ` <a> t1t2 � t3t4 ∆ ` t3t4 � <a> t1t2

∆ ` pc (<a> t1 ~> t2) = pc (t3 ~> t4)
eq:pc

Instance ∆ ` <a> t1 � t2

∆, a ` t1 ∆, b ` t2 ∆, b ` t1[t/a] = t2

∆ ` <a> t1 � t2

sinst

Fig. 11. Declarative semantics for types

The reason is that the algorithm always uses the most general type for let-bound
variables, whereas the declarative system is free to use a less general type.

For example, the following term type checks according to the rules of our declara-
tive specification, but not according to our algorithm. The declarative rules may
assign f the type String -> String, but our algorithm will always choose the most
general type, <a> a -> a

let

fun f x = x

in

#f : (String ~> String)#

end

We believe this term should not type check, as, given the definition of f, the user
should expect that it has type <a> a -> a and might be used at many types. We
conjecture that if the specification were required to choose the most general type
for let-bound variables, it would correspond exactly with our algorithm, though we
have not proved this fact. Happily, even though we are changing the specification
for pure ml terms, this change would not invalidate any ml programs. It merely
reduces the number of alternate typing derivations for terms that use let. The
derivation that uses the most general type is still available.

34 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

Local Expressions ∆; Φ; Γ `loc
e : t

∆ ` t ∆; Φ; Γ ` e : t

∆; Φ; Γ `loc
(e:t) : t

ltm:cnv
x :: t ∈ Γ

∆; Φ; Γ `loc
x : t

ltm:var

∆; Φ; Γ `loc
() : Unit

ltm:unit
∆; Φ; Γ `loc

any : pc (<ab> a ~> b)
ltm:any

∆, a ` t1 ∆, a ` t2 ∀i
fi ∈ Φ Γ(fi) = t1,i -> t2,i ∆ ` <a> t1 -> t2 � t1,i -> t2,i

∆; Φ; Γ `loc
#f:(<a> t1 ~> t2)# : pc (<a> t1 ~> t2)

ltm:set-ann

∆; Φ; Γ ` d a Φ ′; Γ ′ ∆; Φ, Φ ′; Γ, Γ ′ `loc
e : t

∆; Φ; Γ `loc
let d in e : t

ltm:let

Global Expressions ∆; Φ; Γ ` e : t

∆; Φ; Γ `loc
e : t

∆; Φ; Γ ` e : t
gtm:cnv

Γ(x) = <a> t ∆ ` ti

∆; Φ; Γ ` x : t[t/a]
gtm:var

∆; Φ; Γ ` e1 : t1 -> t2 ∆; Φ; Γ ` e2 : t1

∆; Φ; Γ ` e1e2 : t2

gtm:app

∆; Φ; Γ ` e : Stack ∆; Φ; Γ ` e ′ : t

„
∀i ∆; Φ; Γ ` pi a ∆i; Γi

∆, ∆i; Φ; Γ, Γi ` ei : t

«
∆; Φ; Γ ` stkcase e (p=>e |_=> e ′) : t

gtm:scase

a ∈ ∆ ∆; Φ; Γ ` e : t

0@ ∀i ∆i = FTV(ti) − ∆
a 6∈ FTV(ti)
∆, ∆i; Φ; Γ〈ti/a〉 ` ei[ti/a] : t[ti/a]

1A
∆; Φ; Γ ` typecase<t> a (t=>e |_=> e) : t

gtm:tcase

∆; Φ; Γ ` d a Φ ′; Γ ′ ∆; Φ, Φ ′; Γ, Γ ′ ` e : t

∆; Φ; Γ ` let d in e : t
gtm:let

Fig. 12. Declarative semantics for expressions

4.8 Soundness of type inference

Although our inference algorithm is not complete with respect to our declarative
specification, we can show that our type inference rules are sound with respect to
the declarative semantics.

Definition 4.1 Well-formed inference substitutions. ∆ ` Θ iff for all
X ∈ dom(Θ), ∆ ` Θ(X).

Theorem 4.2 Soundness of inference algorithm. Given ∆ ` Θ1 then

(1) If Θ1 ` t1 = t2 ⇒ Θ2 then ∆ ` Θ2(t1) = Θ2(t2).
(2) If Θ1 ` s1 � s2 ⇒ Θ2 then ∆ ` Θ2(s1) � Θ2(s2).

AspectML: A polymorphic aspect-oriented functional programming language · 35

Declarations ∆; Φ; Γ ` d a Φ ′; Γ ′

∆, a; Φ; Γ, f :: t1 -> t2, x :: t1 ` e1 : t2

∆; Φ; Γ ` fun f <a> (x:t1):t2 = e1 a ·, f; ·, f :: <a> t1 -> t2

wfsd:fun-ann

∆, a ` t1 ∆, a ` t2 ∆, a; Φ; Γ, f : t1 -> t2, x : t1 ` e1 : t2

∆; Φ; Γ ` fun f x = e1 a ·, f; ·, f : <a> t1 -> t2

wfsd:fun

tm ∈ {before, after} π(tm, pt) = <a> t

∆; Φ; Γ `loc
e1 : pc pt ∆, a; Φ; Γ, x :: t, y :: Stack, z :: String ` e2 : t

∆; Φ; Γ ` advice tm (|e1|) (x,y,z) = e2 a ·; ·
wfsd:advice-befaft

π(around, pt) = <a> t1 -> t2 ∆; Φ; Γ `loc
e1 : pc pt

∆, a; Φ; Γ, x :: t1, y :: Stack, z :: String, proceed :: t1 -> t2 ` e2 : t2

∆; Φ; Γ ` advice around (|e1|) (x,y,z) = e2 a ·; ·
wfsd:advice-aro

tm ∈ {before, after} π(tm, pt) = <a> t

∆; Φ; Γ `loc
e1 : pc pt ∆, a; Φ; Γ, x :: t, y :: Stack, z :: String ` e2 : t

∆; Φ; Γ ` advice tm (|e1|) <a> (x:t,y,z) = e2 a ·; ·
wfsd:advice-ann-befaft

π(around, pt) = <a> t1 -> t2 ∆; Φ; Γ `loc
e1 : pc pt

∆, a; Φ; Γ, x :: t1, y :: Stack, z :: String, proceed :: t1 -> t2 ` e2 : t2

∆; Φ; Γ ` advice around (|e1|) <a> (x:t1,y,z):t2 = e2 a ·; ·
wfsd:advice-ann-aro

tm ∈ {before, after} ∆ ′ = FTV(t) − ∆

∆; Φ; Γ `loc
e1 : pc pt ∆, ∆ ′; Φ; Γ, x :: t, y :: Stack, z :: String ` e2 : t

∆; Φ; Γ ` case-advice tm (|e1|) (x:t,y,z) = e2 a ·; ·
wfsd:cadvice-befaft

∆ ′ = FTV(t1) ∪ FTV(t2) − ∆ ∆; Φ; Γ `loc
e1 : pc pt

∆, ∆ ′; Φ; Γ, x :: t1, y :: Stack, z :: String, proceed :: t1 -> t2 ` e2 : t2

∆; Φ; Γ ` case-advice around (|e1|) (x:t1,y,z):t2 = e2 a ·; ·
wfsd:cadvice-aro

Fig. 13. Declarative semantics for declarations

(3) If Θ1;∆;Φ; Γ `loc
e ⇒ t;Θ2 then ∆;Φ;Θ2(Γ) `loc

e : Θ2(t).

(4) If Θ1;∆;Φ; Γ ` e ⇒ t;Θ2 then ∆;Φ;Θ2(Γ) ` e : Θ2(t).

(5) If Θ1;∆;Φ; Γ ` d ⇒ Θ2;Φ ′; Γ ′ then ∆;Φ;Θ2(Γ) ` d a Φ ′;Θ2(Γ ′).

(6) If Θ1;∆;Φ; Γ ` p ⇒ Θ2;∆ ′; Γ ′ then ∆;Φ;Θ2(Γ) ` p a ∆ ′;Θ2(Γ ′).

5. POLYMORPHIC CORE CALCULUS

In the previous section, we defined the syntax and static semantics for Aspectml.
One might choose to define the operational semantics for this language directly
as a step-by-step term rewriting relation, as is often done for λ-calculi. However,
the semantics of certain constructs is very complex. For example, function call,
which is normally the simplest of constructs in the λ-calculus, combines the ordinary
semantics of functions with execution of advice, the possibility of run-time type
analysis and the extraction of metadata from the call stack.

36 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

Patterns ∆; Φ; Γ ` p a ∆ ′; Γ ′

∆; Φ; Γ ` [] a ·; ·
wfspat:nil

∆; Φ; Γ ` x a ·; ·, x :: Stack
wfspat:var

∆; Φ; Γ ` p a ∆ ′; Γ ′

∆; Φ; Γ ` _::p a ∆ ′; Γ ′ wfspat:wild

∆; Φ; Γ `loc
e : pc pt π(stk, pt) = <a> t ∆; Φ; Γ ` p a ∆ ′; Γ ′

∆; Φ; Γ ` (|e|)(x,z)::p a ∆ ′, a; Γ ′, x:t, z:String
wfspat:cons

∆; Φ; Γ `loc
e : pc pt π(stk, pt) = <a> t ∆; Φ; Γ ` p a ∆ ′; Γ ′

∆; Φ; Γ ` (|e|)<a>(x:t,z)::p a ∆ ′, a; Γ ′, x:t, z:String
wfspat:cons-ann

Fig. 14. Declarative semantics for patterns

Rather than attempt to specify all of these features directly, we specify the dynamic
semantics in stages. First, we show how to compile the high-level constructs into a
core calculus, called FA. The translation breaks down complex high-level objects
into substantially simpler, orthogonal concepts. This core calculus is also typed and
the translation is type-preserving. Second, we define an operational semantics for
the core calculus. Since we have proven that the FA type system is sound and the
translation from the source is type-preserving, Aspectml is safe.

Our core calculus differs from the Aspectml in that it is not oblivious – control-
flow points that trigger advice must be explicitly annotated. Furthermore, it is
explicitly typed – type abstraction and applications must also be explicitly marked
in the program, as well as argument types for all functions. Also, we have carefully
considered the orthogonality of the core calculus – for example, it does not include the
combination of advice and type analysis that is found in the case-advice construct.
For these reasons, one would not want to program in the core calculus. However, in
exchange, the core calculus is much more expressive than the source language.

Because FA is so expressive, we can easily experiment with the source language,
by adding new features to scale the language up or removing features to improve
reasoning power. For instance, by removing the single type analysis construct, we
recover a language with parametric polymorphism. In fact, during the process
of developing our Aspectml, we have made numerous changes. Fortunately, for
the most part, we have not had to make many changes in FA. Consequently, we
have not needed to reprove soundness of the target language, only recheck that the
translation is type-preserving, a much simpler task. Finally, in our implementation,
the type checker for the FA has caught many errors in the translation and helped
the debugging process tremendously.

In this section, we describe the semantics of FA, and in Section 6, we sketch the
translation from Aspectml to FA.

AspectML: A polymorphic aspect-oriented functional programming language · 37

5.1 The semantics of explicit join points

The core calculus FA is an extension of the core calculus from WZL [2003] with
polymorphic labels, polymorphic advice, and run-time type analysis. It also improves
upon the semantics of context analysis.

For expository purposes, we begin with a simplified version of FA, and extend it
in the following subsections. The initial syntax is summarized below.

τ ::= 1 | string | τ1 → τ2 | τ1 × . . .× τn | α | ∀α.τ | (α.τ) label
| (α.τ) pc | advice

e ::= 〈〉 | c | x | λx:τ.e | e1e2 | Λα.e | e[τ] | fix x:τ.e

| 〈e〉 | let 〈x〉 = e1 in e2 | new α.τ ≤ e | `

| {e} | e1 ∪ e2 | e1[τ][[e2]] | {e1[α](x:τ1, f:τ1 → τ2) � e2} | ⇑ e

| typecase[α.τ1] τ2 (τ3 ⇒ e1, α ⇒ e2)

The basis of FA is a typed λ-calculus with unit, strings and n-tuples. If e is a
sequence of expressions e1 . . . en for n ≥ 2, then 〈e〉 creates a tuple. The expression
let 〈x〉 = e1 in e2 binds the contents of a tuple to a vector of variables x in the
scope of e2. Unlike WZL, we add impredicative polymorphism to the core calculus,
including type abstraction (Λα.e) and type application (e[τ]). We write 〈〉 for the
unit value and c for string constants.

Abstract labels, `, play an essential role in the calculus. Labels are used to mark
control-flow points where advice may be triggered, with the syntax `[τ][[e]]. We
call such points in the core calculus join points. Unlike the labels in WZL, which
are designed solely for before and after advice, labels in our calculus allow around

advice. The value passed to the join point represents the proceed function that
can be invoked by advice in the source language. The value returned once the join
point executes is a function that executes any advice, or, if there is no advice, is the
proceed function that was passed to the join point. For example, in the addition
expression v1 +(`[τ][[e2]] v3), after e2 has been evaluated to a function v2, evaluation
of the resulting subterm `[τ][[v2]] returns a function that, when applied to v3, causes
any advice associated with ` to be triggered.

Another difference from WZL is that the labels form a tree-shaped hierarchy. The
top label in the hierarchy is U. All other labels ` sit somewhere below U. If `1 ≤ `2

then `1 sits below `2 in the hierarchy. The expression new α.τ ≤ e evaluates e,
obtaining a label `2, and generates a new label `1 defined such that `1 ≤ `2. This
label structure closely resembles the label hierarchy defined by Bruns et al. for their
(untyped) µABC calculus [2004].

First class labels may be grouped into collections using the label set expression,
{e}. Label-sets can then be combined using the union operation, e1 ∪ e2. Label-sets
form the basis for specifying when a piece of advice applies.

All advice in FA is around advice and exchanges data with a particular join
point, making it similar to a function. Note that advice (written {e1[α](x:τ1, f:τ1 →
τ2) � e2}) is first-class. The type variables α and term variables x and f are bound
in the body of the advice e2. The variable f is bound to a “proceed” function for
the around advice, and the variable x is the value that the join point’s resulting
function will be called upon. The expression e1 is a label set that describes when the
advice is triggered. For example, the advice {{`}[](x:int, f:int → int) � e} is triggered

38 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

Labels Σ ` `1 ≤ `2

`:1α.τ ≤ `2 ∈ Σ

Σ ` `1 ≤ `1

labsb:refl
Σ ` `1 ≤ `2 Σ ` `2 ≤ `3

Σ ` `1 ≤ `3

labsb:trans

`1:α.τ ≤ `2 ∈ Σ

Σ ` `1 ≤ `2

labsb:def

Fig. 15. Label subsumption in FA

when control-flow reaches a join point marked with `1, provided `1 is a descendant
of a label in the set {`}. If this advice has been installed in the program’s dynamic
environment, v1 + (`1[][[v2]] v3) evaluates to v1 + (e[v2/f][v3/x]).

When labels are polymorphic, both types and values are exchanged between labeled
control-flow points and advice. For instance, if `1 is a polymorphic label capable of
marking a control-flow point with any type, we might write v1+(`1[int → int][[v2]] v3).
In this case, if the advice {{`1}[α](x:α, f:α → α) � e} has been installed, then the
previous expression evaluates to v1 + (e[int/α][v2/f][v3/x]).

Advice is installed into the run-time environment with the expression ⇑ e. Multiple
pieces of advice may apply to the same control-flow point, so the order advice is
installed in the run-time environment is important. WZL included mechanisms for
installing advice both before or after currently installed advice, for simplicity FA

only allows advice to be installed after.

5.2 Operational semantics

The operational semantics must keep track of both the labels that have been
generated and the advice that has been installed. The main operational judgment
has the form Σ;A; e 7→ Σ ′;A ′; e ′. An allocation-style semantics keeps track of the
set Σ of labels allocated so far (and their associated types) and A, an ordered list
of installed advice. The label hierarchy is determined from the label set Σ by the
relation Σ ` `1 ≤ `2 in Figure 15.

The main rule of the operational semantics, ev:beta in Figure 16, decomposes an
expression into an evaluation context and primitive reduct. The rules in Figure 16
with the form Σ;A; e 7→β Σ ′;A ′; e ′ give the primitive β-reductions for expressions
in the calculus.

We use the following syntax for values v and evaluation contexts E:

v ::= 〈〉 | λx:τ.e | 〈v〉 | Λα.e | ` | {v} | {v[α](x:τ1, f:τ1 → τ2) � e}

E ::= [] | E e | v E | E[τ] | 〈E, . . . , e〉 | 〈v, . . . , E〉 | E ∪ e | v ∪ E

| {E, . . . , e} | {v, . . . , E} | let 〈x〉 = E in e | E[τ][[e]] | v[τ][[E]] | ⇑ E

| {E[α](x:τ, f:τ1 → τ2) � e} | new α.τ ≤ E

This definition of evaluation contexts gives the core aspect calculus a call-by-value,
left-to-right evaluation order, but that choice is orthogonal to the design of the
language.

A third judgment form Σ;A; `; τ1 → τ2 ⇒ v in Figure 17 describes, given a
particular label ` marking a control-flow point, and type τ1 → τ2 for the object

AspectML: A polymorphic aspect-oriented functional programming language · 39

β-reduction Σ; A; e 7→β Σ ′; A ′; e ′

Σ; A; (λx:τ.e)v 7→β Σ; A; e[v/x]
evb:app

Σ; A; (Λα.e)[τ] 7→β Σ; A; e[τ/α]
evb:tapp

Σ; A; fix x:τ.e 7→β Σ; A; e[fix x:τ.e/x]
evb:fix

Σ; A; let 〈x〉 = 〈v〉 in e 7→β Σ; A; e[v/x]
evb:let

Σ; A; {`1} ∪ {`2} 7→β Σ; A; {`1`2}
evb:union

` ′ 6∈ dom(Σ)

Σ; A; new α.τ ≤ ` 7→β Σ, ` ′:α.τ ≤ `; A; ` ′ evb:new

Σ; A; ⇑ v 7→β Σ; v, A; 〈〉
evb:adv-comp

∃Θ.Θ = mgu(τ2, τ3)

Σ; A; typecase[α.τ1] τ2 (τ3 ⇒ e1, α ⇒ e2) 7→β Σ; A; Θ(e1)
evb:tcase1

¬∃Θ.Θ = mgu(τ2, τ3)

Σ; A; typecase[α.τ1] τ2 (τ3 ⇒ e1, α ⇒ e2) 7→β Σ; A; e2[τ2/α]
evb:tcase2

`:α.τ1 → τ2 ≤ ` ′ ∈ Σ Σ; A; `; (τ1 → τ2)[τ/α] ⇒ v ′

Σ; A; `[τ][[v]] 7→β Σ; A; v ′ v
evb:cut

Reduction Σ; A; e 7→ Σ ′; A ′; e ′

Σ; A; e 7→β Σ ′; A ′; e ′

Σ; A; E[e] 7→ Σ ′; A ′; E[e ′]
ev:beta

Fig. 16. Operational semantics for FA

Advice composition Σ; A; `; τ1 → τ2 ⇒ e

Σ; ·; `; τ1 → τ2 ⇒ λf:τ1 → τ2.f
adv:empty

Σ; A; `; τ1 → τ2 ⇒ v Σ ` ` ≤ `i for some i τ1 → τ2 = τ ′
1 → τ ′

2[τ/α]

Σ; A, {{`}[α](x:τ ′
1, f:τ ′

1 → τ ′
2) � e}; `; τ1 → τ2 ⇒ λf:τ1 → τ2.v (λx:τ1.(e[τ/α]))

adv:cons1

Σ; A; `; τ1 → τ2 ⇒ v Σ ` ` 6≤ `i

Σ; A, {{`}[α](x:τ ′
1, f:τ ′

1 → τ ′
2) � e}; `; τ1 → τ2 ⇒ v

adv:cons2

Fig. 17. Advice composition operational semantics for FA

40 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

Types ∆ ` τ

α ∈ ∆

∆ ` α
wftp:var

∆ ` 1
wftp:unit

∆ ` string
wftp:str

∆ ` τ1 ∆ ` τ2

∆ ` τ1 → τ2

wftp:arr
∆, α ` τ

∆ ` ∀α.τ
wftp:all

∀i ∆ ` τi

∆ ` τ1 × . . .× τn
wftp:prod

∆, α ` τ

∆ ` (α.τ) label
wftp:lab

∆, α ` τ

∆ ` (α.τ) pc
wftp:pc

∆ ` advice
wftp:advice

∆ ` stack
wftp:stk

Instance ∆ ` α.τ1 � β.τ2

∆, α ` τ ′ ∆, β ` τ ′′ (∃τ ∆, β ` τi τ ′[τ/α] = τ ′′)

∆ ` α.τ ′ � β.τ ′′ inst

Fig. 18. Well-formed types in FA

at that point, how to pick out and compose the advice in context A that should
execute at the control-flow point. (Note that the type of the object is not used to
select the advice, it merely determines type annotations and instantiations in the
result.) The result of this advice composition process is a function v that may be
applied to a value with type (τ1 → τ2) → τ1 → τ2. The argument of the function
v is the proceed function f with type (τ1 → τ2). The result of applying v to the
proceed function is a function of type τ1 → τ2 whose argument (of type τ1) is
passed as the variable x to the advice.

The advice composition judgment is described by three rules. The first composition
rule represents when no advice is available, and, when passed a proceed function
f and a value x, applies the proceed function f to x. The other rules examine the
advice at the head of the advice heap. If the label ` is descended from one of the
labels in the label set, then that advice is triggered. The head advice is composed
with the function produced from examining the rest of the advice in the list. Not
only does advice composition determine if ` is lower in the hierarchy than some
label in the label set, but it also determines the substitution for the abstract types
α in the body of the advice. The typing rules ensure that if the advice is triggered,
this substitution will always exist, so the execution of this rule does not require
run-time type information.

5.2.1 Type system. The judgments for well-formed types are straightforward
and are described in Figure 18. In addition to the standard unit, string, etc. types,
there are additional types for labels, pointcuts, advice, and stacks. The same figure
also contains the FA instance relation, which is similar to the Aspectml instance
relation contained in Figure 7 and described in Section 4.3.

The primary judgment of the FA type system, ∆; Γ ` e : τ, indicates that the
term e can be given the type τ, where free type variables appear in ∆ and the types

AspectML: A polymorphic aspect-oriented functional programming language · 41

Well-formed terms ∆; Γ ` e : τ

x:τ ∈ Γ

∆; Γ ` x : τ
wft:var

∆; Γ ` c : string
wft:str

∆; Γ ` 〈〉 : 1
wft:unit

∆; Γ, x:τ ` e : τ ∆ ` τ

∆; Γ ` fix x:τ.e : τ
wft:fix

∆; Γ, x:τ1 ` e : τ2 ∆ ` τ1

∆; Γ ` λx:τ1.e : τ1 → τ2

wft:abs

∆; Γ ` e1 : τ1 → τ2 ∆; Γ ` e2 : τ1

∆; Γ ` e1e2 : τ2

wft:app
∆, α; Γ ` e : τ

∆; Γ ` Λα.e : ∀α.τ
wft:tabs

∆; Γ ` e : ∀α.τ ∆ ` τ ′

∆; Γ ` e[τ ′] : τ[τ ′/α]
wft:tapp

∆; Γ ` ei : τi

∆; Γ ` 〈e〉 : τ1 × . . .× τn
wft:tuple

∆; Γ ` e1 : τ1 × . . .× τn ∆; Γ, x:τ ` e2 : τ

∆; Γ ` let 〈x〉 = e1 in e2 : τ
wft:let

`:α.τ ∈ Γ

∆; Γ ` ` : (α.τ) label
wft:lab

∆; Γ ` ei : (αi.τi) label ∆ ` β.τ � αi.τi

∆; Γ ` {e} : (β.τ) pc
wft:pc

∆; Γ ` ei : (α.τi) pc ∆ ` β.τ � α.τi

∆; Γ ` e1 ∪ e2 : (β.τ) pc
wft:union

∆; Γ ` e : (β.τ2) label ∆ ` β.τ2 � α.τ1

∆; Γ ` new (α.τ1) ≤ e : (α.τ1) label
wft:new

∆; Γ ` e1 : (α.τ ′ → τ ′′) label ∆ ` τi ∆; Γ ` e2 : (τ ′ → τ ′′)[τ/α]

∆; Γ ` e1[τ][[e2]] : (τ ′ → τ ′′)[τ/α]
wft:cut

∆; Γ ` e : advice

∆; Γ `⇑ e : 1
wft:adv-inst

∆; Γ ` e1 : (α.τ1 → τ2) pc ∆, α; Γ, x:τ1, f:τ1 → τ2 ` e2 : τ2

∆; Γ ` {e1[α](x:τ1, f:τ1 → τ2) � e2} : advice
wft:advice

∆, α ` τ1 ∆ ` τ2 ∆ ′ = FTV(τ3) − ∆
(Θ = mgu(τ2, τ3) implies ∆, ∆ ′; Θ(Γ) ` Θ(e1) : Θ(τ1[τ3/α])) ∆, α; Γ ` e2 : τ1

∆; Γ ` typecase[α.τ1] τ2 (τ3 ⇒ e1, α ⇒ e2) : τ1[τ2/α]
wft:tcase

Fig. 19. Term typing rules for FA

of term variables and labels appear in Γ . The typing rules for this judgment appear
in Figure 19.

The novel aspect of the FA type system is how it maintains the proper typing
relationship between labels, label sets and advice. Because data is exchanged
between labeled control-flow points and advice, these two entities must agree about
the type of data that will be exchanged. To guarantee agreement, we must be
careful with the types of labels (Rule wft:lab), which have the form α.τ label. To
mark a control-flow point (Rule wft:cut), the label’s type τ must be a function type.

42 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

A label of type α.τ1 → τ2 label may mark control-flow points containing a proceed
function of type τ1 → τ2 and values of any type τ1, where free type variables α are
replaced by other types τ. For example, a label ` with the type α, β.α → β label
may mark any control flow point, as α and β may be instantiated with any type.
For example, below is a well-typed tuple in which ` marks two different control flow
points, one of type γ → γ and the other of type bool → int:

〈Λγ.λx:γ.(`[γ, γ][[λy:γ.y]] x), (`[bool, int][[λy:bool.if y then 1 else 0]] true)〉

Notice that marking control flow points that occur inside polymorphic functions
is no different from marking other control flow points even though `’s abstract
type variables α and β may be instantiated with different types each time the
polymorphic function is called.

Labeling control-flow points correctly is one side of the equation. Constructing sets
of labels and using them in advice safely is the other. Typing label set construction
in the core calculus is quite similar to typing pointcuts in the source. Each label
in the set must be a generic instance of the type of the set. For example, given
labels `1 of type 1 → 1 label and `2 of type (1 → bool) label, a label set containing
them can be given the type (α.1 → α) pc because α.1 → α can be instantiated to
either 1 → 1 or 1 → bool. The rules for label sets and label set union (wft:pc and
wft:union) ensure these invariants.

When typing advice in the core calculus (Rule wft:advice), the advice body must
not make unwarranted assumptions about the types and values it is passed from
labeled control flow points. Consequently, if the label set e1 has type α.τ1 → τ2 pc
then advice {e1[α](f:τ ′

1 → τ ′
2, x:τ ′

1)� e2} type checks only when τ ′
1 → τ ′

2 is τ1 → τ2.
The type τ ′

1 → τ ′
2 cannot be more specific than τ1 → τ2. If advice needs to refine

the type of τ1 → τ2, it must do so explicitly with type analysis. In this respect the
core calculus obeys the principle of orthogonality: advice is completely independent
of type analysis.

The label hierarchy may be dynamically extended with new α.τ ≤ e (Rule
wft:new). The argument e becomes the parent of the new label. For soundness,
there must be a connection between the types of the child and parent labels: the
child label must have a more specific type than its parent (written ∆ ` τ1 � τ2 if
τ2 is more specific than τ1). To see how label creation, labeled control flow points
and advice are all used together in the core calculus, consider the following example.
It creates a new label, installs advice for this label (that calls the proceed function
f on its argument x – essentially an identity function) and then uses this label to
mark a join point inside a polymorphic function.

let l = new α.α → α ≤ U in

let = ⇑ {l[β](x:β, f:β → β) � f x} in

Λγ.l[γ][[λz:γ.z]]

The typecase expression is slightly more general in the core calculus than in the
source language. To support the preservation theorem, we must allow arbitrary types,
not just type variables, to be the object of scrutiny. In each branch of typecase,
we know that the scrutinee is the same as the pattern. In the source language,

AspectML: A polymorphic aspect-oriented functional programming language · 43

Stack reification data(E)

data([]) = •
data(store `[τ][[v]] in E) = data(E) :: `[τ][[v]]

data(E[E ′]) = data(E ′) otherwise

β-reduction Σ; A; e 7→β Σ ′; A ′; e ′

Σ; A; store `[τ][[v1]] in v2 7→β Σ; A; v2

evb:store

Σ ` v ' ϕ � Θ

Σ; A; stkcase v (ϕ ⇒ e1, x ⇒ e2) 7→β Σ; A; Θ(e1)
evb:scase1

Σ ` v 6' ϕ � Θ

Σ; A; stkcase v (ϕ ⇒ e1, x ⇒ e2) 7→β Σ; A; e2[v/x]
evb:scase2

Reduction Σ; A; e 7→ Σ ′; A ′; e ′

data(E) = v

Σ; A; E[stack] 7→ Σ; A; E[v]
ev:stk

Σ; A; e 7→β Σ ′; A ′; e ′

Σ; A; E[e] 7→ Σ ′; A ′; E[e ′]
ev:beta

Stack-matching Σ ` v ' ϕ � Θ

Σ ` • ' •� ·
sm:nil

Σ ` v2 ' ϕ � Θ

`:β.τ2 ≤ ` ′ ∈ Σ Σ ` ` ≤ `i for some i ∃σ.τ2[τ/β] = τ1[σ/α]

Σ ` `[τ][[v1]]::v2 ' {`}[α][[x]]:τ1::ϕ � Θ, σ/α, v1/x
sm:cons

Σ ` v ′ ' ϕ � Θ

Σ ` `[τ][[v]]::v ′ ' ::ϕ � Θ
sm:wild

Σ ` v ' x � ·, v/x
sm:var

Fig. 20. Stack operational semantics

we substituted the pattern for the scrutinized type variable when typechecking
the branches. In the core calculus, however, we must compute the appropriate
substitution, using the most general unifier (mgu). If no unifier exists, the branch
can never be executed. In that case, the branch need not be checked.

The typing rules for the other constructs in the language including strings, unit,
functions and tuples are fairly standard.

5.3 Stacks and stack analysis

Languages such as AspectJ include pointcut operators such as CFlow to enable
advice to be triggered in a context-sensitive fashion. In FA, we not only provide the
ability to reify and pattern match against stacks, as in Aspectml, but also allow
manual construction of stack frames. In fact, managing the structure of the stack is

44 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

Well-formed terms ∆; Γ ` e : τ

∆; Γ ` e1 : (α.τ) label ∆ ` τi ∆; Γ ` e2 : τ[τ/α] ∆; Γ ` e3 : τ ′

∆; Γ ` store e1[τ][[e2]] in e3 : τ ′ wft:store

∆; Γ ` stack : stack
wft:stk

∆; Γ ` • : stack
wft:stk-nil

`:α.τ ∈ Γ ∆ ` τi ∆; Γ ` v1 : τ[τ/α] ∆; Γ ` v2 : stack

∆; Γ ` `[τ][[v1]]::v2 : stack
wft:stk-cons

∆; Γ ` e1 : stack ∆; Γ ` ρ a ∆ ′; Γ ′ ∆, ∆ ′; Γ, Γ ′ ` e2 : τ ∆; Γ, x:stack ` e3 : τ

∆; Γ ` stkcase e1 (ρ ⇒ e2, x ⇒ e3) : τ
wft:scase

Well-formed patterns ∆; Γ ` ρ a ∆ ′; Γ ′

∆; Γ ` • a ·; ·
wfpt:nil

∆; Γ ` x a ·; ·, x:stack
wfpt:var

∆; Γ ` ρ a ∆ ′; Γ ′

∆; Γ ` ::ρ a ∆ ′; Γ ′ wfpt:wild
∆; Γ ` e : (α.τ) pc ∆; Γ ` ρ a ∆ ′; Γ ′

∆; Γ ` e[α][[x]]:τ::ρ a ∆ ′, α; Γ ′, x : τ
wfpt:store

Fig. 21. Stack typing

entirely up to the program itself. Stacks are just one possible extension enabled by
FA’s orthogonality.

WZL’s monomorphic core calculus also contained the ability to query the stack,
but the stack was not first-class and queries had to be formulated as regular ex-
pressions. Our pattern matching facilities are simpler and more general. Moreover,
they fit perfectly within the functional programming idiom. Aside from the poly-
morphic patterns, they are quite similar to the stack patterns used by Dantas and
Walker [2006].

Below are the necessary new additions to the syntax of FA for storing type and
value information on the stack, capturing and representing the current stack as a
data structure, and analyzing a reified stack. The operational rules for execution of
stack commands may be found in Figure 20 and the typing rules in Figure 21.

τ ::= . . . | stack
e ::= . . . | stack | • | `[τ][[v1]]::v2 | store e1[τ][[e2]] in e3

| stkcase e1 (ρ ⇒ e2, x ⇒ e3)
E ::= . . . | store v[τ][[E]] in e | store v1[τ][[v2]] in E

| stkcase E (ρ ⇒ e1, x ⇒ e2)
| stkcase v (P ⇒ e1, x ⇒ e2)

ρ ::= • | e[α][[y]]:τ::ρ | x | ::ρ
ϕ ::= • | v[α][[y]]::ϕ | x | ::ϕ
P ::= E[α][[y]]::ϕ | e[α][[y]]::P | ::P

The operation store e1[τ][[e2]] in e3 allows the programmer to store data e2 marked
by the label e1 in the evaluation context of the expression e3. Because this label may
be polymorphic, it must be instantiated with type arguments τ. The term stack

AspectML: A polymorphic aspect-oriented functional programming language · 45

Term Variable and Label Context ∆ ` Γ

∆ ` U:α.α
wfc:base

∆ ` τ ∆ ` Γ

∆ ` Γ, x:τ
wfc:var

∆, α ` τ ∆ ` Γ

∆ ` Γ, `:α.τ
wfc:lab

Label Heaps ` Σ : Γ

` (U:α.α ≤ U) : (U:α.α)
wflh:base

`2:β.τ2 ≤ `3 ∈ Σ · ` β.τ2 � α.τ1 ` Σ : Γ

` (Σ, `1:α.τ1 ≤ `2) : (Γ, `1:α.τ1)
wflh:cons

Advice Heaps Γ ` A ok

Γ ` · ok
wfah:base

·; Γ ` v : advice Γ ` A ok

Γ ` A, v ok
wfah:cons

Machine Configurations `(Σ; A; e) ok

` Σ : Γ Γ ` A ok ·; Γ ` e : τ

`(Σ; A; e) ok
wfcfg

Fig. 22. Machine configuration typing rules in FA

captures the data stored in its execution context E as a first-class data structure.
This context is converted into a data structure, using the auxiliary function data(E).
We represent a stack using the list with terms • for the empty list and :: (cons) to
prefix an element onto the front of the list. A list of stored stack information may
be analyzed with the pattern matching term stkcase e1 (ρ ⇒ e2, x ⇒ e3). This
term attempts to match the pattern ρ against e1, a reified stack. Note that stack
patterns, ρ, include first-class pointcuts so they must be evaluated to pattern values,
ϕ, to resolve these pointcuts before matching.

If, after evaluation, the pattern value successfully matches the stack, then the
expression e2 evaluates, with its pattern variables replaced with the corresponding
part of the stack. Otherwise execution continues with e3. These rules rely on the
stack matching relation Σ ` v ' ϕ � Θ that compares a stack pattern value ϕ with
a reified stack v to produce a substitution Θ.

5.4 Type Safety

We have shown that FA is type sound through the usual Progress and Preservation
theorems. Figure 22 describes the typing rules for the term variable and label
context Γ , the label heap Σ, and the advice heap A. It should be noted that Γ and Σ

always contain the top label U. We use the judgment `(Σ; A; e) ok in Rule (wfcfg)
to denote a well-formed abstract machine state.

Theorem 5.1 Progress. If `(Σ;A; e) ok then either the configuration is fin-
ished, that is e is a value, or there exists another configuration Σ ′;A ′; e ′ such that
Σ;A; e 7→ Σ ′;A ′; e ′.

Theorem 5.2 Preservation. If ` (Σ;A; e) ok and Σ;A; e 7→ Σ ′;A ′; e ′, then
Σ ′ and A ′ extend Σ and A such that `(Σ ′;A ′; e ′) ok.

46 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

Simple abbreviations

let x : τ = e1 in e2 , (λx:τ.e2)e1

∀a.τ , ∀α1 . . . ∀αn.τ

Λa.e , Λα1 . . . ∀αn.e

e[τ] , e[τ1] . . . [τn]

, x
(where x fresh)

Multi-arm stkcase abbreviation stkcase e ′
1 (ρ ⇒ e, ⇒ e ′

2)

stkcase e1 (ρ ⇒ e, ⇒ e2) ,
let y : stack = e1 in stkcase ′ y (ρ ⇒ e, ⇒ e2)

stkcase ′ e1 (ρ ⇒ e2, x ⇒ e3) , stkcase e1 (ρ ⇒ e2, ⇒ e3)

stkcase ′ e1 (ρ ⇒ e2, ρ ⇒ e, x ⇒ e2) ,
stkcase e1 (ρ ⇒ e2, ⇒ stkcase ′ e1 (ρ ⇒ e, ⇒ e2))

(where y fresh)

Multi-arm typecase abbreviation typecase[α.τ ′
1] α (τ ⇒ e, α ⇒ e ′)

typecase[α.τ ′] α (τ ⇒ e1, α ⇒ e2) , typecase[α.τ ′] α (τ ⇒ e1, α ⇒ e2)

typecase[α.τ ′] α (τ ⇒ e1, τ ⇒ e, α ⇒ e2) ,
typecase[α.τ ′] α (τ ⇒ e1, α ⇒ typecase[α.τ ′] α (τ ⇒ e, α ⇒ e2))

Pointcut splitting helper π(tm, e)

π(around, e) = let 〈x, 〉 = e in x
π(stk, e) = let 〈 , x〉 = e in x

(where x fresh)

Fig. 23. Translation abbreviations

6. TRANSLATION

We give an operational semantics to well-typed Aspectml programs by defining a
type-preserving translation into the FA language. This translation is defined by the
following mutually recursive judgments for over terms, types, patterns, declarations
and pointcut designators. The translation was significantly inspired by those in
found in WZL [2003] and Dantas and Walker [2006].

Throughout the translation we assume that there exists an implicit injection from
Aspectml type and term variables (a, b, . . . and x, y, . . .) and FA type and term
variables (α, β, . . . and x, y, . . .).

We begin by defining several translation abbreviations in Figure 23. These
allow us to specify function abstraction and application translation rules, type
abstraction and application rules, stkcase and typecase rules, and other rules
more succinctly.

The essence of the translation is that join points must be made explicit in FA.
Therefore, we translate functions so that that they include an explicitly labeled join

AspectML: A polymorphic aspect-oriented functional programming language · 47

Type variable context translation ∆ =⇒ ∆ ′

∆ =⇒ ∆ ′ iff for all a ∈ ∆, α ∈ ∆ ′.

Polytype translation ∆ ` s
type
===⇒ τ

∆, a ` t
type
===⇒ τ ′

∆ ` <a> t
type
===⇒ ∀α.τ ′

tpy:all

Monotype translation ∆ ` t
type
===⇒ τ

a ∈ ∆

∆ ` a
type
===⇒ α

ttp:var
∆ ` X

type
===⇒ 1

ttp:unif
∆ ` Unit

type
===⇒ 1

ttp:unit

∆ ` String
type
===⇒ string

ttp:str
∆ ` Stack

type
===⇒ stack

ttp:stk

∆ ` t1
type
===⇒ τ ′

1 ∆ ` t2
type
===⇒ τ ′

1

∆ ` t1 -> t2
type
===⇒ τ ′

1 → τ ′
2

ttp:fun

∆, a ` t1
type
===⇒ τ ′

1 ∆, a ` t2
type
===⇒ τ ′

2

∆ ` pc (<a> t1 ~> t2)
type
===⇒

(α.(τ ′
1 × stack× string) → (τ ′

2 × stack× string)) pc× (α.τ ′
1 × string) pc

ttp:pc

Term variable context translation ∆; Φ ` Γ =⇒ Γ ′

∆; Φ ` · =⇒ Uaround:(αβ.(α× stack× string) → (β× stack× string)) label,
Ustk:(α.α× string) label

tctx:empty

∆; Φ ` Γ =⇒ Γ ′ ∆ ` s
type
===⇒ τ

∆; Φ ` Γ, x :: s =⇒ Γ ′, x:τ
tctx:lc

∆; Φ ` Γ =⇒ Γ ′ ∆ ` s
type
===⇒ τ

∆; Φ ` Γ, x : s =⇒ Γ ′, x:τ
tctx:gc

∆; Φ ` Γ =⇒ Γ ′ f ∈ Φ ∆ ` s
type
===⇒ ∀α.τ1 → τ2

∆; Φ ` Γ, f :: s =⇒ Γ ′, faround:(α.(τ1 × stack× string) → (τ2 × stack× string)) label,
fstk:(α.τ1 × string) label,
f:∀α.τ1 → τ2

tctx:lc-fun

∆; Φ ` Γ =⇒ Γ ′ f ∈ Φ ∆ ` s
type
===⇒ ∀α.τ1 → τ2

∆; Φ ` Γ, f : s =⇒ Γ ′, faround:(α.(τ1 × stack× string) → (τ2 × stack× string)) label,
fstk:(α.τ1 × string) label,
f:∀α.τ1 → τ2

tctx:gc-fun

Fig. 24. Context and type translation

48 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

Programs e : t
prog
===⇒ e ′

·; ·; · ` e : t
term
===⇒ e ′

e : t
prog
===⇒

let Uaround : (αβ.(α× stack× string) → (β× stack× string)) label =
new (αβ.(α× stack× string) → (β× stack× string)) ≤ U in

let Ustk : (α.α× string) label =
new (α.α× string) ≤ U in e ′

tprog

Fig. 25. Program translation

Local term translation ∆; Φ; Γ `loc
e : t

term
===⇒ e ′

∆ ` t ∆; Φ; Γ ` e : t
term
===⇒ e ′

∆; Φ; Γ `loc
e:t : t

term
===⇒ e ′

lttm:cnv
x :: t ∈ Γ

∆; Φ; Γ `loc
x : t

term
===⇒ x

lttm:var

∆; Φ; Γ `loc
c : String

term
===⇒ c

lttm:string
∆; Φ; Γ `loc

() : Unit
term
===⇒ 〈〉

lttm:unit

∀i fi ∈ Φ Γ(fi) = <a> t1,i -> t2,i ∆ ` t1 -> t2 � <a> t1,i -> t2,i

∆; Φ; Γ `loc
#f:(t1 ~> t2)# : pc (t1 ~> t2)

term
===⇒ 〈{faround}, {fstk}〉

lttm:set-ann

∆; Φ; Γ `loc
any : pc (<ab> a ~> b)

term
===⇒ 〈{Uaround}, {Ustk}〉

lttm:any

∆; Φ; Γ ` d ; e : t
decs
===⇒ e ′

∆; Φ; Γ `loc
let d in e : t

term
===⇒ e ′

lttm:let

Fig. 26. Local expression translation

point surrounding the function body and another that stores information on the
stack as the function executes. More specifically, for each function we create two
labels faround, and fstk for these join points. So that Aspectml programs can refer to
the pointcut designators of any function using the any keyword , all labels faround
are derived from a distinguished label Uaround. Likewise, Ustk is the parent of all
fstk. These constructions can be seen in Figure 25, where in Rule tctx:empty, the
Uaround and Ustk labels are created in the FA context. Similarly, in Rules tctx:lc-fun
and tctx:gc-fun, faround and fstk labels are created in the FA term variable context
for each f in the Aspectml context. Finally, the actual Uaround and Ustk labels are
created in Rule tprog directly underneath U in the FA label hierarchy.

Pointcuts are translated into a tuple of two FA pointcuts in Figure 26. The
pointcut any becomes a tuple containing the Uaround and Ustk pointcuts, which, as
explained previously, contain the parents of all around and stk labels respectively.
Sets of functions are translated into tuples of pointcuts containing their associated
before, after, and stk labels. We then use a pointcut splitting helper function to

AspectML: A polymorphic aspect-oriented functional programming language · 49

Declarations ∆; Φ; Γ ` d ; e : t
decs
===⇒ e ′

∆, a ` t1 -> t2
type
===⇒ τ ′

1 → τ ′
2 ∆, a; Φ; Γ, f :: t1 -> t2, x :: t1 ` e1 : t2

term
===⇒ e ′

1

∆; Φ, f; Γ, f :: <a> t1 -> t2 ` e2 : t
term
===⇒ e ′

2

∆; Φ ; Γ ` fun f <a> (x:t1):t2 = e1; e2 : t
decs
===⇒

let faround : (α.(τ ′
1 × stack× string) → (τ ′

2 × stack× string)) label =
new (α.(τ ′

1 × stack× string) → (τ ′
2 × stack× string)) ≤ Uaround in

let fstk : (α.τ ′
1 × string) label = new (α.τ ′

1 × string) ≤ Ustk in
let f : ∀α.τ ′

1 → τ ′
2 = Λα.fix f : τ ′

1 → τ ′
2.λx:τ ′

1.store fstk[α][[〈x, “f”〉]] in
(let 〈x ′′, , 〉 = faround[α][[λw : (τ ′

1 × stack× string).
let 〈x, y, z〉 = w in 〈e ′

1, y, z〉]] (x ′, stack, “f”) in x ′′)
e ′

2

tds:fun-ann

∆, a ` t1 ∆, a ` t2 ∆; Φ; Γ ` fun f <a> (x:t1):t2 = e1 ; e2 : t
decs
===⇒ e ′

∆; Φ; Γ ` fun f x = e1 ; e2 : t
decs
===⇒ e ′

tds:fun

tm ∈ {before, after}

∆, a ` t1 ∆; Φ; Γ ` advice tm (|e1|) <a> (x:t1,y,z) = e2 ; e3 : t2
decs
===⇒ e ′

∆; Φ; Γ ` advice tm (|e1|) (x,y,z) = e2 ; e3 : t2
decs
===⇒ e ′

tds:adv

∆, a ` t2

∆; Φ; Γ ` advice around (|e1|) <a> (x:t1,y,z):t2 = proceed e2 ; e3 : t3
decs
===⇒ e ′

∆; Φ; Γ ` advice before (|e1|) <a> (x:t1,y,z) = e2 ; e3 : t3
decs
===⇒ e ′

tds:adv-bef

∆, a ` t2 ∆; Φ; Γ ` advice around (|e1|) <a> (x:t1,y,z):t2 =

(let x : t2 = (proceed x) in e2) ; e3 : t3
decs
===⇒ e ′

∆; Φ; Γ ` advice after (|e1|) <a> (x:t2,y,z) = e2 ; e3 : t3
decs
===⇒ e ′

tds:adv-aft

∆, a ` t1

∆, a ` t2 ∆; Φ; Γ ` advice around (|e1|) <a> (x:t1,y,z):t2 = e2 ; e3 : t3
decs
===⇒ e ′

∆; Φ; Γ ` advice around (|e1|) (x,y,z) = e2 ; e3 : t3
decs
===⇒ e ′

tds:adv-aro

Fig. 27. Declaration translation (Part 1)

pick either the first or second element of the pointcut tuple depending on whether
we attempting to use the pointcut in advice or in a stack pattern.

The translation of functions (Rule tds:fun-ann) in Figure 27 begins by creating
the labels, faround and fstk for the function’s join points. Inside the body of the
translated function, a store statement marks the function’s stack frame with the
fstk label. The function’s body is η-expanded and passed to the join point to be
used as the proceed function f by any advice triggered by the faround label. Because
Aspectml advice expects the current stack and a string of the function name, we
also insert stacks and string constants into the join points.

Advice translation is defined in Figures 27 and 28. The most significant difference
between advice in Aspectml and FA is that FA has no notion of a trigger time.
Because the pointcut argument of the advice will translate into a tuple of two FA

pointcuts, tm is used to determine which component is used. The translation also

50 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

Declarations ∆; Φ; Γ ` d ; e : t
decs
===⇒ e ′

∆; Φ; Γ `loc
e1 : pc pt

term
===⇒ e ′

1 π(around, pt) = <a> t1 → t2

π(around, e ′
1) = e ′′

1 ∆, a ` t1 → t2
type
===⇒ τ ′

1 → τ ′
2

∆, a; Φ; Γ, x:t1, y:Stack, z:String, proceed:t1 → t2 ` e2 : t2
term
===⇒ e ′

2

∆; Φ; Γ ` e3 : t3
term
===⇒ e ′

3

∆; Φ ; Γ ` advice around (|e1|) <a> (x:t1,y,z):t2 = e2; e3 : t3
decs
===⇒

let : 1 =⇑ {e ′′
1 .α(x:(τ ′

1 × stack× string),
f:(τ ′

1 × stack× string) → (τ ′
2 × stack× string)) →

let 〈x, y, z〉 = x in
〈e ′

2[λx : τ ′
1.let 〈x, , 〉 = f 〈x, y, z〉 in x/proceed], y, z〉}

in e ′
3

tds:adv-ann

∆; Φ; Γ ` case-advice around (|e1|) (x:t1,y,z):a = proceed e2 ; e3 : t2
decs
===⇒ e ′

∆; Φ; Γ ` case-advice before (|e1|) (x:t1,y,z) = e2 ; e3 : t2
decs
===⇒ e ′

tds:cadv-bef

∆; Φ; Γ ` case-advice around (|e1|) (x:a,y,z):t1 =

(let x : t1 = (proceed x) in e2) ; e3 : t2
decs
===⇒ e ′

∆; Φ; Γ ` case-advice after (|e1|) (x:t1,y,z) = e2 ; e3 : t2
decs
===⇒ e ′

tds:cadv-aft

∆; Φ; Γ `loc
e1 : pc pt

term
===⇒ e ′

1 π(around, pt) = <a> t1 → t2

π(around, e ′
1) = e ′′

1 b = FTV(t3) ∪ FTV(t4) − ∆

∆, a ` t1 → t2
type
===⇒ τ ′

1 → τ ′
2 ∆, b ` t3 → t4

type
===⇒ τ ′

3 → τ ′
4

∆, b; Φ; Γ, x:t3, y:Stack, z:String, proceed:t3 → t4 ` e2 : t4
term
===⇒ e ′

2

∆; Φ; Γ ` e3 : t
term
===⇒ e ′

3

∆; Φ ; Γ ` case-advice around (|e1|) (x:t3,y,z):t4 = e2; e3 : t
decs
===⇒

let : 1 =⇑ {e ′′
1 .αx:(τ ′

1 × stack× string),
f:(τ ′

1 × stack× string) → (τ ′
2 × stack× string) →

let 〈x, y, z〉 = x in
〈typecase[α.α] τ ′

1 → τ ′
2

(τ ′
3 → τ ′

4 ⇒ e ′
2[λx : τ ′

1.let 〈x, , 〉 = f 〈x, y, z〉 in x/proceed],
α ⇒ x), y, z〉}

in e ′
3

tds:cadv-aro

Fig. 28. Declaration translation (Part 2)

splits the input of the advice into the two arguments that Aspectml expects and
immediately installs the advice.

To simplify the translation, only the rules for around advice (tds:adv-ann and
tds:cadv-aro) are directly defined – before advice (Rules tds:adv-bef and tds:cadv-bef)
becomes around advice where the before advice is executed, then proceed is called
on the result. Similarly, after advice (Rules tds:adv-aft and tds:cadv-aft) becomes
around advice where the proceed function executes the function body, and then the
after advice is run on the result. Finally, the around case-advice declaration (Rule
tds:cadv-aro) uses a typecase expression to perform the necessary type analysis.

Finally, we include the global expression translation rules (Figure 29) and the
pattern translation rules (Figure 30). In Rule tpat:cons-ann, the second, stack

AspectML: A polymorphic aspect-oriented functional programming language · 51

Pattern splitting helper split(Ξ, e)

split(·, e) = e
split(Ξ, x 7→ (y, z), e) = split(Ξ, let 〈y, z〉 = x in e)

Global term translation ∆; Φ; Γ ` e : t
term
===⇒ e ′

∆; Φ; Γ `loc
e : t

term
===⇒ e ′

∆; Φ; Γ ` e : t
term
===⇒ e ′

gttm:cnv
Γ(x) = <a> t ∆ ` ti

type
===⇒ τ ′

i

∆; Φ; Γ ` x : t[t/a]
term
===⇒ x[τ ′]

gttm:var

∆; Φ; Γ ` e1 : t1 -> t2
term
===⇒ e ′

1 ∆; Φ; Γ ` e2 : t1
term
===⇒ e ′

2

∆; Φ; Γ ` e1e2 : t2
term
===⇒ e ′

1e ′
2

gttm:app

∆; Φ; Γ ` e : Stack
term
===⇒ et0B@ ∀i ∆; Φ; Γ ` pi

pat
==⇒ ρ ′

i a ∆i; Γi; Ξi

∆, ∆i; Φ; Γ, Γi ` ei : t
term
===⇒ e ′

i

∆; Φ; Γ ` e ′ : t
term
===⇒ e ′

t

1CA
∆; Φ; Γ ` stkcase e (p=>e |_=> e ′) : t

term
===⇒

stkcase et (ρ ′ ⇒ split(Ξ, e ′), x ⇒ e ′
t)

gttm:scase

∆, a ` t
type
===⇒ τ ′ ∆; Φ; Γ ` e : t

term
===⇒ e ′

∀i ∆i = FTV(ti) − ∆ ∆, ∆i ` ti
type
===⇒ τ ′

i

a 6∈ FTV(ti) ∆, ∆i; Φ; Γ〈ti/a〉 ` ei[ti/a] : t[ti/a]
term
===⇒ e ′

i

!
∆; Φ; Γ ` typecase<t> a (t=>e |_=> e) : t

term
===⇒

typecase[α.τ ′] α (τ ′ ⇒ e ′, α ⇒ e ′)

gttm:tcase

∆; Φ; Γ ` d ; e : t
decs
===⇒ e ′

∆; Φ; Γ ` let d in e : t
term
===⇒ e ′

gttm:let

Fig. 29. Global expression translation

element of the pointcut tuple is selected by the π function as the pointcut to be
used by the stkcase expression.

It is straightforward to show that programs that are well-typed with respect to
our algorithm will produce a translation.

Theorem 6.1 Translation defined on well-typed programs. If ·; ·; ·; · `
e ⇒ t;Θ then Θ(e) : Θ(t)

prog
===⇒ e ′

We have proved that the translation always produces well-formed FA programs.

Theorem 6.2 Translation type soundness. If e : t
prog
===⇒ e ′ then ·; · ` e ′ :

τ ′ where · ` t
type
===⇒ τ ′.

Furthermore, because we know that FA is a type safe language, Aspectml inherits
safety as a consequence.

Theorem 6.3 Aspectml safety. Suppose e : t
prog
===⇒ e ′ then either e ′ fails to

terminate or there exists a sequence of reductions ·; ·; e ′ 7→∗ Σ;A; e ′′ to a finished
configuration.

52 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

Splitting context translation ∆; Γ ` Ξ =⇒ Γ ′

∆; · ` · =⇒ ·
tsctx:empty

∆; Γ ` Ξ =⇒ Γ ′

∆; Γ, x:Stack ` Ξ =⇒ Γ ′, x:stack
tsctx:cons1

∆; Γ ` · =⇒ Γ ′

∆; Γ, x:t ` · =⇒ Γ ′ tsctx:cons2

∆; Γ ` Ξ =⇒ Γ ′ ∆ ` t
type
===⇒ τ

∆; Γ, y:t, z:String ` Ξ, x 7→ (y, z) =⇒ Γ ′, x:τ× string,
tsctx:cons3

Patterns ∆; Φ; Γ ` p
pat
==⇒ ρ a ∆ ′; Γ ′; Ξ

∆; Φ; Γ ` []
pat
==⇒ • a ·; ·; ·

tpat:nil
∆; Φ; Γ ` x

pat
==⇒ x a ·; ·, x:Stack; ·

tpat:var

∆; Φ; Γ ` p
pat
==⇒ ρ ′ a ∆ ′; Γ ′; Ξ

∆; Φ; Γ ` _::p
pat
==⇒ ::ρ ′ a ∆ ′; Γ ′; Ξ

tpat:wild

∆, a ` t ∆; Φ; Γ ` (|e|)<a>(x:t,z)::p
pat
==⇒

ρ ′ a ∆ ′; Γ ′; Ξ

∆; Φ; Γ ` (|e|)(x,z)::p
pat
==⇒ ρ ′ a ∆ ′; Γ ′; Ξ

tpat:cons

∆; Φ; Γ `loc
e : pc (<a> t1 ~> t2)

term
===⇒ e ′

π(stk, e ′) = e ′′ ∆; Φ; Γ ` p
pat
==⇒ ρ ′ a ∆ ′; Γ ′; Ξ y fresh

∆; Φ; Γ ` (|e|)<a>(x:t1,z)::p
pat
==⇒

e ′′[α][[y]]::ρ ′ a ∆ ′, a; Γ ′, x:t1, z:String; Ξ, y 7→ (x, z)

tpat:cons-ann

Fig. 30. Pattern translation

7. RELATED WORK

Over the last several years, researchers have begun to build semantic foundations
for aspect-oriented programming paradigms [Wand et al. 2003; Douence et al. 2001;
Clifton and Leavens 2002; Jagadeesan et al. 2003a; 2003b; Masuhara et al. 2002;
Walker et al. 2003; Douence et al. 2004; Bruns et al. 2004]. As mentioned earlier, our
work builds upon the framework proposed by Walker, Zdancewic, and Ligatti [2003],
but extends it with polymorphic versions of functions, labels, label sets, stacks,
pattern matching, advice and the auxiliary mechanisms to define the meaning of
each of these constructs. We also define “around” advice and a novel type inference
algorithm that is conservative over Hindley-Milner inference, which were missing
from WZL’s work.

Our core calculus also has interesting connections to Bruns et al.’s µABC calculus
in that the structure of labels in the two systems are similar. However, the connection
is not so deep, as µABC is untyped. It would be interesting to explore whether the
type structure of our calculus can be used to define a type system for µABC.

AspectML: A polymorphic aspect-oriented functional programming language · 53

Concurrently with our research,10 Masuhara, Tatsuzawa, and Yonezawa [2005]
have implemented an aspect-oriented version of core O’Caml they call Aspectual
Caml. Their implementation effort is impressive and deals with several features
we have not considered here including curried functions and datatypes. Although
there are similarities between Aspectml and Aspectual Caml, there are also many
differences:

—Pointcut designators in Aspectml can only reference names that are in scope.
Aspectml names are indivisible and α-vary as usual. In Aspectual Caml, pro-
grammers use regular expressions to refer to all names that match the regular
expression in any scope. For instance, get* references all objects with a name
beginning with get in all scopes.

—Aspectual Caml does not check pointcut designators for well-formedness. When
a programmer writes the pointcut designator call f (x:int), the variable f is
assumed to be a function and the argument x is assumed to have type int. There
is some run-time checking to ensure safety, but it is not clear what happens in the
presence of polymorphism or type definitions. Aspectual Caml does not appear
to have run-time type analysis.

—Aspectual Caml pointcuts are second-class citizens. It is not possible to write
down the type of a pointcut in Aspectual Caml, or pass a pointcut to a function,
store it in a tuple, etc.

—The previous two limitations have made it possible to develop a two-phase type
inference algorithm for Aspectual Caml (ordinary O’Caml type inference occurs
first and inference for pointcuts and advice occurs second), which bears little
resemblance to the type inference algorithm described in this paper.

—There is no formal description of the Aspectual Caml type system, type inference
algorithm or operational semantics. We have a formal description of both the
static semantics and the dynamic semantics of Aspectml. Aspectml’s type system
has been proven sound with respect to its operational semantics.

Since we first published work on Aspectml, Meng Wang, Kung Chen, and Siau-
Cheng Khoo have also begun to examining language design problems in combining
aspects with a polymorphic functional language [2006]. Their design makes funda-
mentally different assumptions about aspects that lead to significant differences in
expressiveness:

—Their advice is scoped such that it is not possible to install advice that will affect
functions that have already been defined. We feel that this has both positive
and negative consequences for the language. It is positive, because they use a
type-directed weaving algorithm (not unlike the way type classes are compiled to
dictionary passing in Haskell) to completely eliminate the need to dynamically
calculate advice composition, as our operational semantics does. However, we
feel that this design decision does not adequately take into account the needs
of separate compilation: A programmer could not compile a program separately

10We made a preliminary report describing our type system available on the Web in October ,
and a technical report with more details in December . As far as we are aware, Masuhara et
al.’s work first appeared in March .

54 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

from its advice. Furthermore, some of our most interesting uses of advice so far
have involved advising an already defined function.

—Their advice is named. Not only is this useful as mnemonic for the programmer,
but it allows them to advise advice. We do not presently name our advice, but
there is no fundamental reason that we cannot, and likewise support advice
advisement.

—Like Aspectual Caml, their pointcuts are second-class. We believe that first-class
pointcuts are an important step toward allowing programmers to develop reusable
libraries of advice.

—Their design does not provide a mechanism for examining the call-stack or
obtaining information about the specific function being advised. But we do not
see any technical challenges that would prevent them from adding such features.

To our knowledge, the only other previous study of the interaction between
polymorphism and aspect-oriented programming features has occurred in the context
of Lieberherr, Lorenz and Ovlinger’s Aspectual Collaborations [2003]. They extend
a variant of AspectJ with a form of module that allows programmers to choose the
join points (i.e., control-flow points) that are exposed to external aspects. Aspectual
Collaborations has parameterized aspects that resemble the parameterized classes
of Generic Java. When a parameterized aspect is linked into a module, concrete
class names replace the parameters. Since types are merely names, the sort of
polymorphism necessary is much simpler (at least in certain ways) than required
by a functional programming language. For instance, there is no need to develop a
generalization relation and type analysis may be replaced by conventional object-
oriented down-casts. Overall, the differences between functional and object-oriented
language structure have caused our two groups to find quite different solutions to
the problem of constructing generic advice.

Closely related to Aspectual Collaborations is Aldrich’s notion of Open Mod-
ules [2005]. The central novelty of this proposal is a special module sealing operator
that hides internal control-flow points from external advice. Aldrich used logical
relations to show that sealed modules have a powerful implementation-independence
property. In earlier work [Dantas and Walker 2003], we suggested augmenting
these proposals with access-control specifications in the module interfaces that allow
programmers to specify whether or not data at join points may be read or written.
Neither of these proposals consider polymorphic types or modules that can hide
type definitions.

Dantas and Walker [2006] have developed “harmless advice”. With harmless
advice, aspects may only observe computations performed by the program, they
may not alter them. Specifically Dantas and Walker prove a noninterference-style
result showing that a program using mutable references may be composed with
arbitrary advice and not impact the behavior of original program.

Additionally, building on concurrent work by Washburn and Weirich [2005], we
are working on extending Aspectml with protection mechanisms that ensure data
abstractions are respected even in the presence of type-analyzing advice. This
extended language, called Informl, will feature a simple module system of dependent
sums in addition to its information-flow type and kind system. We expect that the

AspectML: A polymorphic aspect-oriented functional programming language · 55

same policies that can be used to track and restrict the flow of type information
can also provide guarantees similar to harmless advice.

Tucker and Krishnamurthi [2003] developed a variant of Scheme with aspect-
oriented features. They demonstrate the pleasures of programming with point-cuts
and advice as first-class objects. Of course, Scheme is dynamically typed. Under-
standing the type structure of statically-typed polymorphic functional languages
with advice is the main contribution of this paper. In particular, we develop a type
inference algorithm and reconcile the typing of advice with polymorphic functions.

8. CONCLUSION

This paper defines Aspectml, a new functional and aspect-oriented programming
language. In particular, we focus on the synergy between polymorphism and aspect-
oriented programming – the combination is clearly more expressive than the sum
of its parts. At the simplest level, our language allows programmers to reference
control-flow points that appear in polymorphic code. However, we have also shown
that polymorphic pointcuts are necessary even when the underlying code base is
completely monomorphic. Otherwise, there is no way to assemble a collection of
join points that appear in code with different types. In addition, run-time type
analysis allows programmers to define polymorphic advice that behaves differently
depending upon the type of its argument.

From a technical standpoint, we have defined a type inference algorithm for
Aspectml that handles first-class polymorphic pointcuts in a simple but effective
way, allowing programmers to write convenient security, profiling or debugging
libraries. We give Aspectml a semantics by compiling it into a typed intermediate
calculus. We have proven the intermediate calculus is type-safe. The reason for
giving Aspectml a semantics this way is to first decompose complex source-level
syntax into a series of simple and orthogonal constructs. Giving a semantics to the
simple constructs of the intermediate calculus and proving the intermediate calculus
sound is quite straightforward.

The definition of the intermediate calculus is also an important contribution of
this work. The most interesting part is the definition of our label hierarchy, which
allows us to form groups of related control flow points. Here, polymorphism is
again essential: it is not possible to define these groups in a monomorphic language.
The second interesting element of our calculus is our support for reification of the
current call stack. In addition to being polymorphic, our treatment of static analysis
is more flexible, simpler semantically and easier for programmers to use than the
initial proposition by WZL. Moreover, it is a perfect fit with standard data-driven
functional programming idioms.

ACKNOWLEDGMENT

We appreciate the insightful comments by anonymous reviewers on earlier revisions
of this work.

56 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

REFERENCES

Abadi, M. and Fournet, C. 2003. Access control based on execution history. In Proceedings of
the 10th Symposium on Network and Distributed System Security (San Diego, CA). Internet
Society, Reston, VA, 107–121.

Aho, A. V., Sethi, R., and Ullman, J. D. 1986. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Boston, MA.

Aldrich, J. 2005. Open modules: Modular reasoning about advice. In Proceedings of the 19th
European Conference on Object-Oriented Programming (Glasgow, UK). 144–168.

Avgustinov, P., Hajiyev, E., Ongkingco, N., de Moor, O., Sereni, D., Tibble, J., and
Verbaere, M. 2007. Semantics of static pointcuts in AspectJ. To appear.

Barendregt, H. 1985. The lambda calculus: its syntax and semantics. Number 103 in Studies in
Logic. North Holland.

Bauer, L., Ligatti, J., and Walker, D. 2005. Composing security policies in polymer. In
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and
Implementation (Chicago, IL). ACM Press, New York, NY, USA, 305–314.

Bruns, G., Jagadeesan, R., Jeffrey, A., and Riely, J. 2004. muABC: A minimal aspect
calculus. In Proceedings of the 15th International Conference on Concurrency Theory (London,
UK), P. Gardner and N. Yoshida, Eds. Lecture Notes in Computer Science, vol. 3170. Springer,
Berlin, Germany, 209–224.

Clifton, C. and Leavens, G. T. 2002. Observers and assistants: A proposal for modular aspect-
oriented reasoning. In Proceedings of the 2002 Workshop on Foundations of Aspect-Oriented
Languages (Enschede, The Netherlands). 33–44.

Colcombet, T. and Fradet, P. 2000. Enforcing trace properties by program transformation. In
Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Boston, MA). ACM Press, New York, NY, USA, 54–66.

Colyer, A. and Clement, A. 2004. Large-scale AOSD for middleware. In Proceedings of the 3rd
International Conference on Aspect-Oriented Software Development. ACM Press, New York,
NY, USA, 56–65.

Damas, L. and Milner, R. 1982. Principal type schemes for functional programs. In Proceedings
of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(Albuquerque, NM). ACM Press, New York, NY, USA, 207–212.

Dantas, D. S. and Walker, D. 2003. Aspects, information hiding and modularity. Tech. Rep.
TR-696-04, Princeton University. Nov.

Dantas, D. S. and Walker, D. 2006. Harmless advice. In Proceedings of the 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Charleston, SC).
ACM Press, New York, NY, USA, 383–396.

Dantas, D. S., Walker, D., Washburn, G., and Weirich, S. 2005a. PolyAML: A polymorphic
aspect-oriented functional programming language. In Proceedings of the 10th ACM SIGPLAN
International Conference on Functional Programming (Tallinn, Estonia). ACM Press, New
York, NY.

Dantas, D. S., Walker, D., Washburn, G., and Weirich, S. 2005b. PolyAML: A polymorphic
aspect-oriented functional programmming language (extended version). Tech. Rep. MS-CIS-05-
07, University of Pennsylvania. May.

Douence, R., Fradet, P., and Südholt, M. 2004. Composition, reuse and interaction analysis
of stateful aspects. In Proceedings of the 3rd International Conference on Aspect-Oriented
Software Development (Lancaster, UK). ACM Press, New York, NY, USA, 141–150.

Douence, R., Motelet, O., and Südholt, M. 2001. A formal definition of crosscuts. In
Proceedings of 3rd International Conference on Metalevel Architectures and Separation of
Crosscutting Concerns (Kyoto, Japan), A. Yonezawa and S. Matsuoka, Eds. Lecture Notes in
Computer Science, vol. 2192. Springer-Verlag, Berlin, Germany, 170–186.

Erlingsson, Úlfar. and Schneider, F. B. 1999. SASI enforcement of security policies: A
retrospective. In Proceedings of the Workshop on New Security Paradigms (Caledon Hills,
Canada). ACM Press, New York, NY, USA, 87–95.

AspectML: A polymorphic aspect-oriented functional programming language · 57

Erlingsson, Úlfar. and Schneider, F. B. 2000. IRM enforcement of Java stack inspection. In
Proceedings of the 2000 IEEE Symposium on Security and Privacy (Oakland, California). IEEE
Computer Society, Washington, DC, 246–255.

Evans, D. and Twyman, A. 1999. Flexible policy-directed code safety. In Proceedings of the 1999
IEEE Symposium on Security and Privacy (Oakland, CA). IEEE Computer Society, Washington,
DC, 32–45.

Filman, R. E. and Friedman, D. P. 2005. Aspect-Oriented Software Development. Addison-
Wesley, Boston, MA, Chapter Aspect-Oriented Programming is Quantification and Obliviousness,
21–35.

Fiuczynski, M., Cody, Y., Grimm, R., and Walker, D. 2005. Patch(1) considered harmful.
In Proceedings of the 10th Workshop on Hot Topics in Operating Systems (Santa Fe, NM).
USENIX.

Gordon, A. and Fournet, C. 2003. Stack inspection: theory and variants. ACM Transactions
on Programming Languages and Systems 25, 3 (May), 360–399.

Harper, R. and Stone, C. 1998. A type-theoretic interpretation of Standard ML. In Proof,
Language and Interaction: Essays in Honour of Robin Milner. The MIT Press.

Harper, R. W. 2005. Programming Languages: Theory and Practice. In preparation, a draft can
be obtained from http://www.cs.cmu.edu/∼rwh/plbook/.

Hinze, R., Löh, A., and Oliveira, B. C. 2006. “scrap your boilerplate” reloaded. In Proceedings
of the 8th International Symposium on Functional and Logic Programming (Fuji Susono, Japan).

Jagadeesan, R., Jeffrey, A., and Riely, J. 2003a. A calculus of typed aspect-oriented programs.
Unpublished manuscript.

Jagadeesan, R., Jeffrey, A., and Riely, J. 2003b. A calculus of untyped aspect-oriented
programs. In Proceedings of the 17th European Conference on Object-Oriented Programming
(Darmstadt, Germany).

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. 2001.
An overview of AspectJ. In Proceedings of the 15th European Conference on Object-Oriented
Programming (Budapest, Hungary). Springer-Verlag.

Kim, M., Viswanathan, M., Ben-Abdallah, H., Kannan, S., Lee, I., and Sokolsky, O. 1999.
Formally specified monitoring of temporal properties. In Proceedings of the 11th Euromicro
Conference on Real-Time Systems (York, UK).

Läufer, K. and Odersky, M. 1992. An extension of ML with first-class abstract types. In
Proceedings of the SIGPLAN Workshop on ML and its Applications (San Fransisco, California).
78–91.

Lee, D. K., Crary, K., and Harper, R. 2007. Towards a mechanized metatheory of Standard ML.
In Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. Nice, France. To appear. Draft available at http://www.cs.cmu.edu/∼rwh/papers/tslf/

full.pdf.

Lee, I., Kannan, S., Kim, M., Sokolsky, O., and Viswanathan, M. 1999. Run-time assurance
based on formal specifications. In Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications (Las Vegas, NV).

Lieberherr, K. J., Lorenz, D., and Ovlinger, J. 2003. Aspectual collaborations – combining
modules and aspects. The Computer Journal 46, 5 (September), 542–565.

Masuhara, H., Kiczales, G., and Dutchyn, C. 2002. Compilation semantics of aspect-oriented
programs. In Proceedings of the Workshop on Foundations of Aspect-Oriented Languages
(Lancaster, UK), G. T. Leavens and R. Cytron, Eds. 17–25.

Masuhara, H., Tatsuzawa, H., and Yonezawa, A. 2005. Aspectual caml: an aspect-oriented
functional language. In Proceedings of the 10th ACM SIGPLAN International Conference on
Functional Programming (Tallinn, Estonia). ACM Press, New York, NY, USA, 320–330.

Matthews, D. 2005. Poly/ML. http://www.polyml.org/.

Milner, R. 1978. A theory of type polymorphism in programming. Journal of Computer and
System Sciences 17, 3.

Milner, R., Tofte, M., Harper, R., and MacQueen, D. 1997. The Definition of Standard ML
(Revised). MIT Press, Cambridge, Massachussetts.

58 · D. S. Dantas, D. Walker, G. Washburn, and S. Weirich

Peyton Jones, S., Vytiniotis, D., Weirich, S., and Washburn, G. 2005. Simple unification-
based type inference for GADTs.

Peyton Jones, S. L., Vytiniotis, D., Weirich, S., and Shields, M. 2005. Practical type
inference for arbitrary-rank types. Under consideration for publication in Journal of Functional
Programming.

Pierce, B. C. and Turner, D. N. 1998. Local type inference. In Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Diego, CA).
ACM Press, New York, NY, USA, 252–265.

Plotkin, G. D. 1970. A note on inductive generalization. In Machine Intelligence. Vol. 5.
Edinburgh University Press, 153–163.

Plotkin, G. D. 1971. A further note on inductive generalization. In Machine Intelligence. Vol. 6.
Edinburgh University Press, 101–124.

Pottier, F. and Régis-Gianas, Y. 2006. Stratified type inference for generalized algebraic
data types. In Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (Charleston, South Carolina, USA). ACM Press, New York, NY,
232–244.

Schneider, F. B. 2000. Enforceable security policies. ACM Transactions on Information and
Systems Security 3, 1 (Feb.), 30–50.

Sheard, T. 2005. Putting Curry-Howard to work. In Proceedings of the 2005 ACM SIGPLAN
Workshop on Haskell (Tallinn, Estonia). ACM, 74–85.

Shields, M. and Peyton Jones, S. 2002. Lexically scoped type variables. Microsoft Research.
Available at http://research.microsoft.com/Users/simonpj/papers/scoped-tyvars.

Simonet, V. and Pottier, F. 2005. Constraint-based type inference for guarded algebraic data
types. Tech. Rep. Research Report 5462, INRIA. Jan.

Stuckey, P. J. and Sulzmann, M. 2005. Type inference for guarded recursive data types.
Submitted for publication.

Sullivan, K., Griswold, W. G., Song, Y., Cai, Y., Shonle, M., Tewari, N., and Rajan,
H. 2005. Information hiding interfaces for aspect-oriented design. In Proceedings of the 10th
Conference on European Software Engineering held jointly with the 13th ACM SIGSOFT
International Symposium on the Foundations of Software Engineering (Lisbon, Portugal). ACM
Press, New York, NY, USA, 166–175.

Tucker, D. B. and Krishnamurthi, S. 2003. Pointcuts and advice in higher-order languages.
In Proceedings of the 2nd International Conference on Aspect-Oriented Software Development
(Boston, MA). ACM Press, New York, NY, USA, 158–167.

Vytiniotis, D., Weirich, S., and Peyton Jones, S. 2005. Boxy types: inference for higher-rank
types and impredicativity.

Walker, D., Zdancewic, S., and Ligatti, J. 2003. A theory of aspects. In Proceedings of the
8th ACM SIGPLAN International Conference on Functional Programming (Uppsala, Sweden).
ACM Press, New York, NY, USA.

Wand, M., Kiczales, G., and Dutchyn, C. 2003. A semantics for advice and dynamic join
points in aspect-oriented programming. ACM Transactions on Programming Languages and
Systems 26, 5, 890–910.

Wang, M., Chen, K., and Khoo, S.-C. 2006. On the pursuit of staticness and coherence.
In Proceedings of the 5th Workshop on Foundations of Aspect-Oriented Languages (Bonn,
Germany).

Washburn, G. and Weirich, S. 2005. Generalizing parametricity using information flow. In
Proceedings of the 20th IEEE Symposium on Logic in Computer Science (Chicago, IL, USA).
IEEE Computer Society Press, 62–71.

