Alias Types *

Frederick Smith David Walker Greg Morrisett

October 28, 1999

Abstract

Linear type systems allow destructive operations such as object deallocation and imperative
updates of functional data structures. These operations and others, such as the ability to reuse
memory at different types, are essential in low-level typed languages. However, traditional linear
type systems are too restrictive for use in low-level code where it is necessary to exploit pointer
aliasing. We present a new typed language that allows functions to specify the shape of the store
that they expect and to track the flow of pointers through a computation. Our type system is
expressive enough to represent pointer aliasing and yet safely permit destructive operations.

1 Introduction

Linear type systems [24, 23] give programmers explicit control over memory resources. The critical
invariant of a linear type system is that every linear value is used exactly once. After its single use,
a linear value is dead and the system can immediately reclaim its space or reuse it to store another
value. Although this single-use invariant enables compile-time garbage collection and imperative
updates to functional data structures, it also limits the use of linear values. For example, x is used
twice in the following expression: let z = (1,2) in let y = fst(z) in let z = snd(z) in y + z.
Therefore, x cannot be given a linear type, and consequently cannot be deallocated early.

Several authors have extended pure linear type systems to allow greater flexibility. Wadler [24], for
example, introduced a new let-form let! (z) y = e; in ez that permits the variable z to be used
as a non-linear value in e; (i.e. it can be used many times, albeit in a restricted fashion) and then
later used as a linear value in es. Similarly, Kobayashi [9] replaced linear values with pseudo-linear
values that can be used locally a number of times before being deallocated. Concurrent Clean is a
production-quality lazy function language that uses a related notion called uniqueness types [3] to
enable static garbage collection.

Because these solutions have focused on high-level user programming languages, they have empha-
sized simple typing rules that programmers can understand and/or typing rules that admit effective

*This material is based on work supported in part by the AFOSR grant F49620-97-1-0013 and the National Science
Foundation under Grant No. EIA 97-03470. Any opinions, findings, and conclusions or recommendations expressed
in this publication are those of the authors and do not reflect the views of these agencies.

type inference techniques. These issues are not as much of a concern for low-level typed languages
designed as compiler intermediate languages [20, 18] or as secure mobile code platforms, such as
the Java Virtual Machine [10], Proof-Carrying Code [13] or Typed Assembly Language (TAL) [12].
These languages are designed for machine, not human, consumption. However, the implementa-
tion of strongly typed low-level languages requires a variety of new type-theoretic mechanisms. In
particular, our experience with TAL has revealed at least two new challenges:

1. Low-level languages require even more destructive operations than their high-level counter-
parts. In high-level languages, every location is stamped with a single type for the lifetime of
the program. Failing to maintain this invariant has resulted in unsound type systems or misfea-
tures (witness the interaction between parametric polymorphism and references in ML [21, 26],
and covariant arrays in Java [14]). In low-level languages that aim to expose the resource con-
straints of the underlying machine, this invariant is untenable. For instance, because machines
contain a limited number of registers, each register cannot be stamped with a single type.
Also, when two stack-allocated objects have disjoint lifetimes, compilers naturally reuse the
stack space, even when the two objects have different types. Finally, in a low-level language
exposing initialization, even the simplest objects change type. For example, a pair z of type
(int, int) may be created through the following sequence of instructions:

malloc z,2; (* z has type (junk, junk) *)
z[1]:=1; (* z has type (int, junk) *)
z[2]:=2; (* z has type (int, int) *)

Type systems for low-level languages should support values whose types change.

2. Efficient and natural low-level code often copies values. In fact, the job of the register allocator
is to copy values between the stack and registers intelligently. However, when pointer values
are copied, the objects they point to are shared:

STACK R1 STACK R1

Copy To Register

This sharing can be eliminated by invalidating one of the copies (presumably the pointer on the
stack). However, should the pointer be live, it might not be possible to keep it in a register for
the rest of its lifetime. For example, imagine that z is the current stack frame and assume the
top of the stack contains a pointer: let r; = z[1] in --- spill register r; ---let r1 = =z[1].
In an untyped calculus, the spilling operation need not copy the pointer back onto the stack
because the register allocator can easily remember that the pointer is already stored on the
stack. Unfortunately, if the type system forces us to invalidate one of our copies, we will have
to perform this extra copy.

Pointer aliasing and data sharing also occur naturally in other data structures introduced
by a compiler. For example, compilers often use a top-of-stack pointer and a frame pointer,
both of which point to the same data structure. Compiling a language like Pascal using
displays [1] generalizes this problem to having an arbitrary (but statically known) number of

pointers into the same data structure. In each of these examples, a flexible type system will
allow aliasing but ensure that no inconsistencies arise.

Type systems for low-level languages should represent sharing.

1.1 Overview

We have devised a new type system that is capable of tracking sharing in data structures and
that admits operations for memory reuse at different types, object initialization, and deallocation.
This paper formalizes the type system and provides a theoretical foundation for safely integrating
operations that depend upon pointer aliasing with type systems that include polymorphism and
higher-order functions.

The main new feature of our language is a collection of aliasing constraints. Aliasing constraints
describe the shape of the store and every function uses them to specify the store that it expects. If
the current store does not conform to the constraints specified, then the type system ensures that
the function cannot be called. To illustrate how our constraints abstract a concrete store, we will
consider the following example:

s STACK R1
\/

Here, sp is a pointer to a stack frame, which has been allocated on the heap (as might be done in
the SML/NJ compiler [2], for instance). This frame contains a pointer to a second object, which is
also pointed to by register r;.

In our program model, every heap-allocated object occupies a particular memory location. For
example, the stack frame might occupy location £, and the second object might occupy location £,.
In order to track the flow of pointers to these locations accurately, we reflect locations into the type
system: A pointer to a location £ is given the singleton type ptr(£). Each singleton type contains
exactly one value (the pointer in question). This property allows the type system to reason about
pointers in a very fine-grained way. In fact, it allows us to represent the graph structure of our
example store precisely:

P © 7 sTACK R1
LN

Is | INT . PTR(lo)
lo:
q

PTR(l0)

We represent this picture in our formal syntax by declaring the program variable sp to have
type ptr(€s) and r; to have type ptr(£,). The store itself is described by the constraints {£s; —
(int, bool, ptr(€,))} & {€, — (int)}, where the type (71,...,7,) denotes a memory block containing
values with types 7; through 7,.

Constraints of the form {£ — 7} are a reasonable starting point for an abstraction of the store.
However, they are actually too precise to be useful for general-purpose programs. Consider, for
example, the simple function deref, which retrieves an integer from a reference cell. There are two
immediate problems if we demand that code call deref when the store has a shape described by
{€ — (int)}. First, deref can only be used to derefence the location ¢, and not, for example, ¢' or
£". This problem is easily solved by adding location polymorphism. The exact name of a location
is usually unimportant; we need only establish a dependence between pointer type and constraint.
Hence we could specify that deref requires a store {p — (int)} where p is a location variable instead
of some specific location £. Second, the constraint {£ — (int)} specifies a store with exactly one
location £ although we may want to dereference a single integer reference amongst a sea of other
heap-allocated objects. Since deref does not use or modify any of these other references, we should
be able to abstract away the size and shape of the rest of the store. We accomplish this task using
store polymorphism. An appropriate constraint for the function deref is € & {p — (int)} where € is
a constraint variable that may instantiated with any other constraint..

The third main feature of our constraint language is the capability to distinguish between linear con-
straints {p — 7} and non-linear constraints {p — 7}“. Linear constraints come with the additional
guarantee that the location on the left-hand side of the constraint (p) is not aliased by any other
location (p'). This invariant is maintained despite the presence of location polymorphism and store
polymorphism. Intuitively, because p is unaliased, we can safely deallocate its memory or change
the types of the values stored there. The key property that makes our system more expressive than
traditional linear systems is that although the aliasing constraints may be linear, the pointer values
that flow through a computation are not. Hence, there is no direct restriction on the copying and
reuse of pointers.

The following example illustrates how the type system uses aliasing constraints and singleton types
to track the evolution of the store across a series of instructions that allocate, initialize, and then
deallocate storage. In this example, the instruction malloc z, p,n allocates storage which is bound
to the variable p (this instruction binds both p and z). We trust that malloc has been implemented
so that it always returns a fresh location ¢ which is used to instantiate p. The free instruction
deallocates storage. Deallocated storage has type junk and the type system prevents any future use
of that space.

Instructions Constraints (Initially the constraints €)
1. malloc sp,p1,2; e ® {p1 — (junk, junk)} sp = ptr(p1)
2. sp[l]:=1; e® {p1 = (int, junk)}
3. mallocry,pe,l; € ® {p1 — (int, junk), ps — (junk)} r1 : ptr(p2)
4. sp[2]:=r; € ® {p1 = (int, ptr(p2)), p2 = (junk)}
5. ri[1]:=2; € ® {p1 = (int, ptr(p2)), p2 — (int)}
6. freery; e ® {p1 — (int, ptr(p2)), p2 — junk}
7. free sp; €@ {p1 — junk, po — junk}

Again, we can intuitively think of sp as the stack pointer and r; as a register that holds an alias of
an object on the stack. Notice that on line 5, the initialization of r; updates the type of the memory
at location p2. This has the effect of simultaneously updating the type of 71 and of sp[1]. Both of
these paths are similarly affected when r; is freed in the next instruction. Despite the presence of
the dangling pointer at sp[1], the type system will not allow that pointer to be derefenced.

By using singleton types to accurately track pointers, and linear constraints to model the shape of

the store, our type system can represent aliasing and simultaneously ensure safety in the presence
of destructive operations

1.2 Summary

We have extended the Typed Assembly Language (TAL) implementation with the features described
in this paper.! It was quite straightforward to augment the existing F“-based type system because
many of the basic mechanisms, including polymorphism and singleton types, were already present in
the type constructor language. Popcorn, an optimizing compiler for a safe C-like language, generates
code for the new TAL type system and uses the alias tracking features of our type system.

Rather than formalizing the type system in the context of TAL, we present our ideas in terms of a
more familiar lambda calculus. Section 2 describes the core language including the linear aliasing
constraints. In Section 3, we extend this language with non-linear constraints. Even though non-
linear constraints do not admit destructive operations, the aliasing information they contain is still
useful. In particular, when code performs a dynamic type test, it is possible to refine the types of
several aliases simultaneously. We explore this application in Section 3 as well. In Section 4 we
show how to compile a simple imperative language with displays into the language of locations. The
key feature of our translation is that the stack is explicitly allocated and deallocated. Finally, in
Section 5 and Section 6, we discuss future and related work.

2 The Language of Locations

This section describes our new type-safe “language of locations.” The syntax for the language
appears in Figure 1.

2.1 Values, Instructions, and Programs

A program is a pair of a store (S) and a list of instructions (¢). The store maps locations (£) to
values (v). Normally, the values held in the store are memory blocks ((7,...,7,)), but after the
memory at a location has been deallocated, that location will point to the unusable value junk.
Other values include integer constants (i), variables (z or f), and, of course, pointers (ptr(£)).

The main instructions manipulate memory blocks. As discussed in the introduction, the instruction
malloc z, p,n allocates a memory block of size n at a new location £, binds the variable z to the
pointer ptr(£) and binds the location variable p to the concrete location £. After allocation, the
components of the new memory block are uninitialized (filled with junk). There are two memory
access instructions. The instruction z=v[i] substitutes the ith component of the memory block
pointed to by v for . The variable x is considered bound by this expression and its scope extends
through the rest of the instruction sequence. The instruction v[i]:=v' stores v' in the ith component
of the block pointed to by v. The final memory management primitive, free v, deallocates the

1See http://www.cs.cornell.edu/talc for the latest software release.

p € LabelVar € € ConstraintVar ¢ € Locations x, f € ValueVar

locations n == L|p

constraints C == 0Dlel{n—7}|CrLaCs

types T u=int | junk| ptr(n) | (11,-..,) | V[A;C).(T1,...,Tn)—0

value ctxts r == -|Tz:7

constructor ctzts A = -|A,p|Ae

program ctxts ® == A;C;T

values v u= z|i]|junk|ptr(d) | {vi,...,v,) | fix f[®].4 |
vln] [v[C]

instructions v == mallocz,p,n;t | z=v[i];¢ | v[i]:=0";¢ | free v;e |
v(vg,...,vy,) | halt

stores S u= {li—v,..., 0y v}

programs P == (S0

Figure 1: Language of Locations: Syntax
storage pointed to by v. If v is the pointer ptr(f) then deallocation is modeled by updating the
store (S) so that the location £ maps to junk.

The following example shows the evaluation of a program to allocate, initialize, and finally deallocate
a pair of integers beginning with an empty store:

Store Instructions

{} malloc z,p,n (x allocate new location /£, *)
(* substitute ptr(f),f for z,p *)

{€ — (junk, junk)} ptr(f)[1]:=3 (* initialize field 1 *)

{€— (3, junk)} ptr(¢)[2]:=5 (* initialize field 2 *)

{t—(3,5)} free ptr({) (* free storage *)

{¢ — junk}

A sequence of instructions (:) ends in either a halt instruction, which stops computation imme-
diately, or a function application (v(vy,...,v,)). In order to simplify the language and its typing
constructs, our functions never return. However, a higher-level language that contains call and re-
turn statements can be compiled into our language of locations by performing a continuation-passing
style (CPS) transformation [15, 16]. It is possible to define a direct-style language, but doing so is
less elegant. Such a choice would force us to adopt an awkward syntax that allows functions to
return portions of the store. In a CPS style, all control-flow transfers are handled symmetrically by
calling a continuation.

Functions are defined using the form fix f[A; C;T']... These functions are recursive (f may appear
in ¢). The context (A; C;T') specifies a pre-condition that must be satisfied before the function can
be invoked. The type context A binds the set of type variables that can occur free in the term; C is
a collection of aliasing constraints that statically approximates a portion of the store; and I' assigns
types to free variables in .

To call a polymorphic function, code must first instantiate the type variables in A using the value

(S,mallocz, p,n;t) — (S{€+— (junk,,...,junk,)},c[¢/p][ptr(¢)/z])

where £ € S
(S{ — v}, freeptr(f);t) +— (S{€+— junk},)
if v="(v1,...,vn)

(S{L> 0}, pre(Offi=v'50) > (S{Er> (1, e,V 1,0y Vit oy U} 1)
ifv=(v1,...,0p)and 1 <i<n

(S{t> o}, a=ptr(Ofil;) — (S{E+> v}, ofvi/a))
ifv=(vy,...,vp)and 1 <i<n

(S,v(v1,...,vp)) — (S)iers - sem/ By Bl v, - 00/ X1, 2)])
if v="12'[c1,...,Cm]
and v' = £ix f[A; Cs;21:711, ..« Ty L

and Dom(A) = B1,---,Bm (where (8 ranges over p and ¢)

Figure 2: Language of Locations: Operational Semantics

form: v[n] or v[C]. These forms are treated as values because type application has no computational
effect (types and constraints are only used for compile-time checking; they can be erased before
executing a program). Figure 2 formally defines the operational semantics. Here and elsewhere, the
notation X|[ei,...,en/T1,...,2,] denotes capture-avoiding substitution of ¢y,..., ¢, for variables
T1y...,Tn in X.

2.2 Type Constructors

There are three kinds of type constructors: locations? (1), types (), and aliasing constraints (C).

The simplest types are the base types, which we have chosen to be integers (int). A pointer to
a location 7 is given the singleton type ptr(n). The only value in the type ptr(n) is the pointer
ptr(n), so if v; and v, both have type ptr(n), then they must be aliases. Memory blocks have types
({71, ...,Ts)) that describe their contents.

A collection of constraints, C, establishes the connection between pointers of type ptr(n) and the
contents of the memory blocks they point to. The main form of constraint, written {n — 7},
models a store with a single location n containing a value of type 7. Collections of constraints are
constructed from more primitive constraints using the join operator (®). The empty constraint is
denoted by 0. We often abbreviate {n — 7} & {n' = 7'} with {n » 7,1’ —» 7'}.

2.3 Static Semantics

Store Typing The central invariant maintained by the type system is that the current constraints
C are a faithful description of the current store S. We write this store-typing invariant as the
judgment F S : C. Intuitively, whenever a location £ contains a value v of type 7, the constraints

2We use the meta-variable £ to denote concrete locations, p to denote location variables, and 7 to denote either.

should specify that location ¢ maps to 7 (or an equivalent type 7'). Formally:

SN T 51 S
F{li—v,.... oy {1, by Th}

where for 1 <4 < n, the locations ¢; are all distinct. And,

FS:C' -FC'=C
FS:C

Instruction Typing Instructions are type checked in a context A; C;I". The judgment A; C;T F ¢
states that the instruction sequence is well-formed. A related judgment, A;T' F v : 7, ensures that
the value v is well-formed and has type 7.

Our presentation of the typing rules for instructions focuses on how each rule maintains the store-
typing invariant. With this invariant in mind, consider the rule for projection:

AT vz ptr(n)
AFC=C®{nw— (11,...,7n)} A;C T e b z¢T
A;C;T R z=v[i]; e (1 Sign)

The first pre-condition ensures that v is a pointer. The second uses C' to determine the contents of
the location pointed to by v. More precisely, it requires that C' equal a store description C' & {n —
(71,...,7)}. The store is unchanged by the operation so the final pre-condition requires that the
rest of the instructions be well-formed under the same collection of constraints C'.

Next, examine the rule for the assignment operation:
A;T o ptr(n) AT R 7

AFC=C®{n- (r,...,Tn)} A;C"O{ne Typper T H
A;C;T R oli]:=v"50

<i<n)

3 !
where Ta,fter 1S <7—17---;7—i71;7— ;Ti+17---77_n)

Once again, the value v must be a pointer to some location 7. The type of the contents of 1 are
given in C' and must be a block with type (r1,...,7,). This time the store has changed, and the
remaining instructions are checked under the appropriately modified constraint C' & {n — Tafter}.

How can the type system ensure that the new constraints C' @ {1 + T,fep} correctly describe the
store? If v' has type 7' and the contents of the location 7 have type (11,...,7,), then {n = T g}
describes the contents of the location 7 after the update accurately. However, we must avoid a
situation in which C' continues to contain an outdated type for the contents of the location n. This
task may appear trivial: Search C” for all occurrences of a constraint {n — 7} and update all of the
mappings appropriately. Unfortunately, in the presence of location polymorphism, this approach
will fail. Suppose a value is stored in location p; and the current constraints are {p1 — 7, p2 — 7}.
We cannot determine whether or not p; and p» are aliases and therefore whether the final constraint
set should be {p1 — 7/, p2 = 7'} or {p1 — 7', p2 — T}

Our solution uses a technique from the literature on linear type systems. Linear type systems pre-
vent duplication of assumptions by disallowing uses of the contraction rule. We use an analogous
restriction in the definition of constraint equality: The join operator @ is associative, and commu-
tative, but not idempotent. By ensuring that linear constraints cannot be duplicated, we can prove
that p; and py from the example above cannot be aliases. The other equality rules are unsurprising.
The empty constraint collection is the identity for & and equality on types 7 is syntactic up to
alpha-conversion of bound variables and modulo equality on constraints. Therefore:

{py = (int)} @ {ps > (bool)} = {ps = (bool)} ® {py > (int)}

but,
{p = (int)} @ {ps > (bool)} # {py = (int)} ® {p1 = (int)} & {ps ~ (bool)}

Given these equality rules, we can prove that after an update of the store with a value with a new
type, the store typing invariant is preserved:

Lemma 1 ((Store Update)) If- S{{ = v} :CO{{ = 7} and ;- F o' : 7' thent S{f — v'} :
Co{l—r1'}.

where S{f — v} denotes the store S extended with the mapping £ — v (provided £ does not already
appear on the left-hand side of any elements in S).

Function Typing The rule for function application v(vy,...,v,) is the rule one would expect. In
general, v will be a value of the form v'[¢1]- - [¢,] where v’ is a function polymorphic in locations
and constraints and the type constructors ¢; through ¢, instantiate its polymorphic variables. After
substituting ¢; through ¢, for the polymorphic variables, the current constraints must equal the
constraints expected by the function v. This check guarantees that the no-duplication property is
preserved across function calls. To see why, consider the polymorphic function foo where the type
context A is (p1, p2,€) and the constraints C are e ® {p1 — (int), p2 — (int)}:

fix foo[A; C; z:ptr(p1), y:ptr(p2), cont:V[; €].(int)—0].

free x; (* constraints = e® {p2 — (int)} *)
z=y[0]; (* ok because y: ptr(pz) and {p2 — (int)} *)
free y; (* constraints =€ *)
cont(2) (* return/continue *)

This function deallocates its two arguments, x and y, before calling its continuation with the contents
of y. It is easy to check that this function type-checks, but should it? If foo is called in a state where
p1 and po are aliases, a run-time error will result when the second instruction is executed because the
location pointed to by y will already have been deallocated. Fortunately, our type system guarantees
that foo can never be called from such a state.

Suppose that the store currently contains a single integer reference: {£ +— (3)}. This store can be
described by the constraints {£ — (int)}. If the programmer attempts to instantiate both p; and
p2 with the same label £, the function call foo[l, £, B](ptr(£)) will fail to type check because the
constraints {£ — (int)} do not equal the pre-condition) & {£ — (int), £ — {int)}.

Figure 3 contains the typing rules for values and instructions.

A;T Fi:int AT Rz :T(x) A; T+ junk : junk

AbFnqg A;TFovim AT Ro, 7,
A;T Fptr(n) : ptr(n) AT E (U1, eevn) i (Tt ooy Th)

AR VI[A,;C)(11,. .., Th)—0
AN C T, VAL CL (T, oy Tn) 0,211, - o, Zpi T E L

AT Ffix f[A;Cszrim, .o &nim)-0 VA Cl(Ta, - oy 70) =0

(f,wl,...,:cn &’F)

Abkn AT Fo:V[p, AL ClL(ma, ...y Tn)—0
AT Fofn] - V[A; Cl(T1, ..., Tn)—0[n/p]

AFC A;Fl_v:V[eaA;Cl]'(Tla"'aTn)_)O A;F"U:T' A}_TIZT
AT Fo[C] :V[A; C'(71y- - .,) —0[C/€] AsThwo:T

[N

A p;C® {p (junk,,...,junk,)};T,z:ptr(p) -«
A;C;T Fmalloc z, p,n;t

(z¢T,p ¢ A)

A;T R o ptr(n)
AFC=C®{n— (r,...,7n)} A;C e {n > junk}; T o
A;C;TF free v;t

A;T R o ptr(n) AFC=C®{n— (T1,-..,7n)}
ATHY 7 ACT®{ne (T, Timt, T Tits -, T) s T 0

A; C;T Fofi]:=v'50

A;TF o ptr(n')
AFC=C®{n' - {r,...,7)} A;C T,z B z¢T
A;C; T F z=u[i]; e (1 <i< n>

AT Fo:V[5C (.0, Th)—0 AFC=C
A;ThHov i AT Fo, i

A;CT Fo(ug, .-, vp) A;C;T F halt

Figure 3: Language of Locations: Value and Instruction Typing

10

2.4 Soundness

Our typing rules enforce the property that well-typed programs cannot enter stuck states. A state
(S,¢) is stuck when no reductions of the operational semantics apply and ¢ # halt. The following
theorem captures this idea formally:

Theorem 2 (Soundness) If - S : C and ;C;- F ¢ and (S,t) — ... —> (S',) then (S',/) is
not a stuck state.

We prove soundness syntactically in the style of Wright and Felleisen [27]. The full proof appears
in Appendix A.

3 Non-linear Constraints

Most linear type systems contain a class of non-linear values that can be used in a completely
unrestricted fashion. Qur system is similar in that it admits non-linear constraints, written {n —
7}“. They are characterized by the axiom:

A{p—r} =10 {n-1}*

Unlike the constraints of the previous section, non-linear constraints may be duplicated. Therefore,
it is not sound to deallocate memory described by non-linear constraints or to use it at different
types. Because there are strictly fewer operations on non-linear constraints than linear constraints,
there is a natural subtyping relation between the two: {n — 7} < {n — 7}¥. We extend the
subtyping relationship on single constraints to collections of constraints with rules for reflexivity,
transitivity, and congruence. For example, assume add has type V[p1, p2,€ {p1 — (int)}* & {p2 —
(int) }* @ €].(ptr(p1), ptr(p2))—0 and consider this code:

Instructions Constraints (Initially ()

malloc z, p, 1; Cy = {p > (junk)}, z: ptr(p)

z[0]:=3; Cy = {p+— (int)}

addp, p, 0](z,) Co <{p > (int)}* = {p > (int)} ® {p— (int)}* &0

Typing rules for non-linear constraints are presented in Figure 4.

3.1 Non-linear Constraints and Dynamic Type Tests

Although data structures described by non-linear constraints cannot be deallocated or used to store
objects of varying types, we can still take advantage of the sharing implied by singleton pointer types.
More specifically, code can use weak constraints to perform a dynamic type test on a particular object
and simultaneously refine the types of many aliases of that object.

11

A;T o ptr(n)
AFC=C"®{n— (11,...,m)}¥ N;C T, b z¢T
A;C;T R z=v[i]; e (1§i§n>

AT F o ptr(n) AT RO 7
AFC=C®{n—{m,...,m)}* AT =1 A;C;T Ry

<1<
A;C;T F ofil=v';0 <i<n)
AT Fo:V[5C (..., Th)—0 AFC <
A;TRo i AT Roy 7y FS:C FO'<C

A;C;T Fo(vy ..., vn) FS:C

Figure 4: Language of Locations: Non-linear Constraints

To demonstrate this application, we extend the language discussed in the previous section with a
simple form of option type ?(r,...,7,) (see Figure 5). Options may be null or a memory block
(t1,...,7n). The mknull operation associates the name p with null and the tosum v, 7 instruction
injects the value v (a location containing null or a memory block) into a location for the option type
N71,..., 7). In the typing rules for tosum and ifnull, the annotation ¢ may either be w, which
indicates a non-linear constraint or -, the empty annotation, which indicates a linear constraint.

The ifnull v then 1; else 1y construct tests an option to determine whether it is null or not.
Assuming v has type ptr(n), we check the first branch (1) with the constraint {5 — null}? and the
second branch with the constraint {n — {7, ...,7,)}? where (71, ..., 7,) is the appropriate non-null
variant. As before, imagine sp is the stack pointer, which contains an integer option.

(* comstraints = {n— (ptr(n")),n' — ?(int)}, sp:ptr(n) *)
r1=sp[1]; G+ r1:ptr(n’) *)
ifnull r; then halt (* null check *)
else --- (* constraints = {n — (ptr(n'))}®{n' — (int)}**)

Notice that a single null test refines the type of multiple aliases; both r; and its alias on the stack
sp[1] can be used as integer references in the else clause. Future loads of r; or its alias will not have
to perform a null-check.

We have proven these additional features of our language sound.

4 Compiling displays

One of Pascal’s distinctive features is that it supports lexical scoping, nested functions, and yet
treats functions as second class citizens (functions cannot be returned or stored in data structures).

12

Syntax:

types T ou= | Nm,. ., T | null
values v u= ...|mull
instructions ¢ = ...|mknull z,p;¢ | tosumv, N{1y,...,Ty) |

ifnull v then 11 else iy

Operational semantics:

(S,mknull z, p;¢) — (S{€— null},.[¢/p][ptr(¢)/x])
where £ € S

(S, tosum v, {71, ...,Tn);t) — (S,)

(S{¢~ null},
ifnull ptr(f) then ¢; elsetz) +—— (S{¢+~ null},s)

(S{e = <1)1, s ,Un>},
ifnull ptr(f) then iy elsety) +— (S{€ (v1,...,0n)},t2)

Static Semantics:

A, p;Ca{p— null};T,z:ptr(p) F o
A;T F null : null A; C; T F mknull z, p; ¢

(z¢T,p ¢ A)

A;T o ptr(n) AFC=C®{nw null}?
AFNr,. oy Ta) A;C'e{n Ur, o) YT R
A;C;T F tosumw, A7y, ..., Tn)it

A;T F o ptr(n)
AFC=C'o{n—(r1,...,Ta)}? A;C'o{ne Ur, o) YT R

A;C;T F tosumw, {7y, ..., T)it

A;T o ptr(n) ArC=C®{n- Ur,...,m)}?¢
A C' o {n e null};T Ry AC' o (T,)} T F oy
A;C;T F ifnull v then () else iy

Figure 5: Language of Locations: Extensions for option types

13

x € ArgVar
f € ProcedureVar

types T u= int| (int,...,int)—>int
declarations D 1= zx=wv
functions F == funf(x1,...,2,)

letFy...F,, Dy{...Dyin.
values v on= iz
instructions 1 z:=v;t|z:= f(vr,...,v,);t | return z

Figure 6: A Simple Lexically-scoped Imperative Language (SIL)

This feature permits the use of a display to look up variables residing in outer scopes. Following
the description in Aho, Sethi and Ullman [1], a display is a heap-allocated array of pointers to the
dynamically closest enclosing activation record or stack frame. A function at lexical depth d accesses
a variable at depth d' < d from the stack frame pointed to by display[d']. The display is maintained
by each function on entry and exit. On entry, a function at depth d saves the contents of display|d]
on its stack, and overwrites display[d] with a pointer to its own stack frame. On exit, the function
restores display[d].

It is possible to track the aliases created by displays precisely using alias types. To demonstrate this
fact, we show how to compile a simple imperative language making use of displays into the language
of locations in such a way that heap-allocated stack frames can be safely and explicitly deallocated.
In order to highlight issues regarding displays, SIL has been kept extremely simple. Figure 6 shows
its syntax. SIL only has arguments and results of integer type. Furthermore, declarations may not
be mutually recursive. By design, SIL’s only interesting feature is that it supports lexical scoping
for nested functions. The typing rules and dynamic semantics for this language are easy to define
and have therefore been omitted.

In the remainder of this section, we show how SIL terms are compiled into the language of locations.
Our translation assumes that terms have been renamed so that all variable names are distinct,
and that the whole program text is available. In order to simplify the presentation, we extend the
language of locations with a new binding construct = w;¢ which has the operational effect of
substituting the value v for z in ¢, and has the obvious type-checking rule. Given these caveats,
we believe our translation is type-preserving and semantics-preserving, although we do not have a
formal proof.

Table 1 shows the naming conventions we use, and Figure 7 shows a snapshot of a translated
program during execution. The display is bound to variable zp, and the current stack frame to
zy. Throughout the translation we use M to denote the maximum lexical depth in the program.
As shown in the figure, the display is an array of M elements. The translation is broken up into
the type, value, declaration, function, and instruction sub-translations. Before continuing, we define
some notation.

Definition 3 (Notation) For any variable z, function variable f, and integer d,

14

name | description
ps | Location of the current stack frame
zy | ptr(ps)

psp | Location of the previous stack frame
psy | Location of the the saved display slot
pri | py for parent at lexical depth i

psp for parent at lexical depth ¢

Psv,i | Psv for parent at lexical depth

€S The rest of the store

pp | Location of the display

zp | pitr(pp)
Teont | Continuation

Psp,i

Table 1: Variable naming conventions

D

—_> ...

ptr(pys)

1 ptr(ps,ar)

zy T
tr(l sp)
itr(zsv) \ [

arguments

locals

\

Figure 7: Snapshot of the stack and display during the execution of a translated program.

15

1. (x)? is syntactic shorthand for zi,...,zq. For variables with compound subscripts, (psp)?
corresponds 0 Psp.1s-- -, Psp,d-

2. depth(z) is the lexical depth at which x is defined in the program.
3. offset(x) is the offset of x within its stack frame.

4. locals(f) is the number of local variable declarations in the body of f.

The most important part of the translation is the type translation because it encodes most of the
dynamic invariants, and shows how the language of locations is able to track sharing and aliases.

Definition 4 (Type translation helper functions) In the following d, n, k, and M denote in-
tegers.

1. A(d, M) = PfsPsps PD; (psp)da (Psv)da (Pf)M; €s
A(d, M) is the translated typing context for a function at lexical depth d. The variables in
(psp)? and (psy)? are needed to give types to the enclosing stack frames which mention these
locations. The variables in (ps)™ are used to give a type to the display.

2. 15(n, k) = (ptr(psp), junk,int1, . . ., inty, junk, , . . . junk,)
Tr(n, k) is the type of the stack frame for an n argument function containing k local variables
on entry.

3. C(.,.)d = {pf,l — 7'1} B...0 {pf,d — Td}
The types 71, ..., Tn correspond to the types of the enclosing stack frames. C(;ya represents the
constraint which ties the types of the stack frames (t;) to their locations (pys;). These types are
needed so that variables in outer scope, which reside in those stack frames, will be accessible.

4- Dy = {pp = (ptr(ps1),-- -, ptr(ps,a))}

Dy is the constraint giving the type of the display in a program with mazimum lezical depth
M.

The type translation depends on three aspects of the program context: the globally maximum lexical
scope M, the types of the stack frames of the lexically enclosing functions (7)?, and the number of
local variables contained in the function whose type we are translating k.

Definition 5 (Type translation)

| int ‘(T)d;k = int
| (inty, .. .,int,)—int |(7—)d;k =
V[A(da M)a {pf = Ty (’I’L, k)} D C(T)d Desd DM]-(PtT(Pf); PtT(PD), Tcont)_>0

where Teont = Y[+ {ps = junk} @ C(rya ® €s ® Dy (ptr(pp),int)—0

Because the translated types are so precise, they capture many of the invariants of the translation.
The type of the current stack frame (75) on function entry is

(ptr(psp), junk, int1,. .., inty, junk,, . .. junk,)

16

indicating that the caller will allocate the callee’s stack frame (this is possible because all functions
are statically known). Furthermore, the caller will put the arguments in positions 3 through n + 2,
and will install a pointer in the first position. The continuation demands that {p; + junk} forcing
the callee to free its stack frame if it wishes to return. And, because the type of the display is
unchanged in 7,,,;, the continuation must be called with the same set of stack frames in the display
— although the contents of the frames may have changed. It would be a typing error for the callee
to forget to restore the display before returning!

The remaining translations are the obvious ones given the constraints placed on them by the type
translation and by the intended semantics.

The value translation produces a sequence of instructions, and a value. As formally defined our
instruction sequences must end in either halt or a function call. For the purpose of this translation,
we allow sequences to end arbitrarily. We use the notation - to denote an empty sequence of
instructions.

Definition 6 (Value Translation)

li| = ()

|z| = (2'=zp[depth(x)];z"=1z'[offset(z)], z")

where ' and 1" are fresh variables.

The declaration translation is similar to the value translation for variables. The difference is that
we are initializing a variable in the current stack frame so we do not have to access the variable
through the display.

Definition 7 (Declaration Translation)
le=v| = U;zp[offset(z)]:=0

where (V',v") =| v |

As stated earlier, the function translation needs to bind the name of the nested function within the
body of its parent. In keeping the language of locations simple, we did not include such a binding
form. We introduce one now for convenience.

17

Definition 8 (Function Translation) Let z' and " denote fresh variables in the following.

funf(z1,...,%,)
let
BoBnd o p o pix fla(e, M)
D, ...Dy
in {ps = 750, k)} ® C(rya © €s © D
L Tf ZptT'(pf),(CD :ptr(pD), mcont:'rcont]'
(m)¢ (* Save the display slot *)
rx=zpld+ 1];
zy2):=x;
zpld+ 1]:=xy;
(* Translate the nested functions *)
| F1 |(T)d+1; ey | Fm |(T)d+1;
(* Initialize the local variables *)
| Dy [5---;] D |5
(* Translate the body *)
| ¢ {(ryar
where Tqy1 = (Ptr(psp,a+1), PEr{Psv,a+1),int1, . .., inty4 k)

and Teont 4S the same as in the type translation.

The instruction translation is straightforward except that the lexical depth d is one greater than the
lexical depth of the function in which the instruction occurs (see the function translation). Therefore
p#,d is not bound (see the definition of A(d, M)). Instead it is represented by ps. Similar problems
occur with pgy g and p,p 4. These problems lead to the special casing of A’ and €} in the translation
of function application depending on whether the call is to a function in an outer scope, or to an
immediate child.

Definition 9 (Instruction Translation) Let z', 2", p}, and :c'f denote fresh wvariables. FEach
instruction is translated as follows.

1. Let (V/,v") =| v [(7)a in the following.

| T =051 |(7)a= s
z'=zpldepth(z)];
z'[offset(z)]:=v';
| L|(T)d

18

2. In the following, let d' = depth(f), k' = locals(f), and (v}, v;) =| vi |(r)a for 1 <i <m/'.

| #:= f(v1,--,vms);t |(rya= (* Allocate a new stack frame %)
malloc z', pls,m' + k' +2;
(* Initialize the parameters *)
15 7y [3]:=v1;

U3 Ty [m' + 2]:=v,5
(* Initialize the new frame’s back pointer *)
x’f[l]:zzz:f;
(* Call f %)
f[AI] [6.15'] (:EI axDa'Ucont)
f

where
Veont = Tix fcont[';
{p} = junk} & {ps — 14} ® C(7)a-1 ® €s ® D
Ip - PtT(PD); Lreturn * int]-
zg=zp[d];
z"=zp[depth(x)];
z"[offset(z)]|:=Treturn;
¢]y
The definitions of A' and € vary depending on whether d' =d or d' < d.
If d’ < d then

A = pff7pf7pD7(psp)d7(psv)d7pf,17"'7pf,d—17pfapf,d+17"'7pf,M
{pras1 = 1op} @ ... @ {psa1= a1} ®{ps = Ta} Des

!
€s
If d' = d then
A" = 005 (sp)? Y Papy (Ps0)t T P PR - PR 15 PEs PR s PEM
€5 = €5
3. Let (V/,v") =| z | in the following.
| return z |(;ju= (* Load the return value *)
[/’
(* Restore the saved display slot *)
"= [2];
zpld:=z";

free xy;
(* Call the continuation *)

Lcont ('TD) U,)

5 Related Work

Because our type system is constructed from standard type-theoretic building blocks, including
linear and singleton types, it is relatively straightforward to implement these ideas in a modern

19

type-directed compiler. Our Typed Assembly Language (TAL) implementation already contained
many of the required constructors. In particular, singleton types were already used to enable array
bounds check elimination in the style of Xi and Pfenning [28] and run-time type analysis [5], and
may soon be used to facilitate static checking of expressive security policies [25]. Moreover TAL,
like other F“-based type-directed compilers such as TIL(T) [20] and FLINT [18], already had a rich
kind structure so adding location and store polymorphism just involved adding two base kinds.

In some ways, our new mechanisms simplify previous work. Previous versions of TAL [12, 11]
possessed two separate mechanisms for initializing data structures. Uninitialized heap-allocated
data structures were stamped with the type at which they would be used. On the other hand,
stack slots could be overwritten with values of arbitrary types. Our new system allows us to treat
memory more uniformly. In fact, our new language can encode stack types similar to those described
by Morrisett [11] except that activation records are allocated on the heap rather than using a
conventional call stack. In this report, we have shown how our new language can compile a
simple imperative language in such a way that it explicitly manages its own memory on a stack and
uses a display. We believe we could also encode the exception-handling mechanisms described by
Morrisett.

The development of our language was inspired by the Calculus of Capabilities [4] (CC). CC provides
an alternative to the region-based type system developed by Tofte and Talpin [22]. Because safe
region deallocation requires that no aliases be used in the future, CC tracks region aliases. In our
new language we adapt CC’s techniques to track both object aliases and object type information.

Our work also has close connections with research on alias analyses [6, 19, 17]. Much of that work
aims to facilitate program optimizations that require aliasing information in order to be correct.
However, these optimizations do not necessarily make it harder to check the safety of the resulting
program. Other work [8, 7] attempts to determine when programs written in unsafe languages, such
as C, perform potentially unsafe operations. Our goals are closer to the latter application but differ
because we are most interested in compiling safe languages and producing low-level code that can be
proven safe in a single pass over the program. Moreover, our main result is not to present some new
analysis technique, but rather to represent and check the results of analysis, and, in particular, to
represent aliasing in low-level compiler-introduced data structures rather than to represent aliasing
in source-level data. As we discussed above, the principle advantage of our techniques is that they
can be integrated smoothly and efficiently into polymorphic and higher-order type systems such as
TAL.

6 Future Work

The language of locations is a flexible framework for reasoning about sharing and destructive oper-
ations in a type-safe manner. However, our work to date is only a first step in this area and we are
investigating a number of extensions. For instance, functions that do not destructively modify their
arguments may be indifferent towards the sort of constraint they require. If we augmented our type
system with polymorphism over the sort of constraint (linear or non-linear) then we could preserve
the sort of constraint across function calls. Bounded polymorphism provides even more expressive
power as it allows linear constraints to be temporarily viewed as non-linear constraints before re-
covering the linear information. Finally, we are also working on integrating recursive types into the

20

type system. Recursive types would allow us to capture regular repeating structure in the store. We
think it will be possible to integrate this collection of features into the language; however we are as
yet unsure of the precise form each should take. When combined, we believe these mechanisms will
provide us with a safe, but rich and reusable, set of memory abstractions.

References

[1]

[2]

[6]

[7]

[8]
[9]
[10]

[11]

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In Martin Wirsing,
editor, Third International Symposium on Programming Language Implementation and Logic
Programming, pages 1-13, New York, August 1991. Springer-Verlag. Volume 528 of Lecture
Notes in Computer Science.

Erik Barendsen and Sjaak Smetsers. Conventional and uniqueness typing in graph rewrite
systems (extended abstract). In Thirteenth Conference on the Foundations of Software Tech-
nology and Theoretical Computer Science, pages 41-51, Bombay, 1993. In Shyamasundar, ed.,
Springer-Verlag, LNCS 761.

Karl Crary, David Walker, and Greg Morrisett. Typed memory management in a calculus of
capabilities. In Twenty-Sizth ACM Symposium on Principles of Programming Languages, pages
262-275, San Antonio, January 1999.

Karl Crary and Stephanie Weirich. Flexible type analysis. In ACM International Conference
on Functional Programming, pages 233—248, Paris, September 1999.

Alain Deutsch. Interprocedural may-alias analysis for pointers: Beyond k-limiting. In ACM

Conference on Programming Language Design and Implementation, pages 230-241, Orlando,
June 1994.

Nurit Dor, Michael Rodeh, and Mooly Sagiv. Detecting memory errors via static pointer
analysis (preliminary experience). In ACM Workshop on Program Analysis for Software Tools
and Engineering (PASTE’98), Montreal, June 1998.

David Evans. Static detection of dynamic memory errors. In ACM Conference on Programming
Language Design and Implementation, Philadelphia, May 1996.

Naoki Kobayashi. Quasi-linear types. In Twenty-Sizth ACM Symposium on Principles of
Programming Languages, pages 29-42, San Antonio, January 1999.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-Wesley,
1996.

Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based Typed Assembly
Language. In Second International Workshop on Types in Compilation, pages 95-117, Kyoto,
March 1998. Published in Xavier Leroy and Atsushi Ohori, editors, Lecture Notes in Computer
Science, volume 1473, pages 28-52. Springer-Verlag, 1998.

21

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to Typed Assembly
Language. ACM Transactions on Programming Languages and Systems, 3(21):528-569, May
1999.

George Necula. Proof-carrying code. In Twenty-Fourth ACM Symposium on Principles of
Programming Languages, pages 106-119, Paris, 1997.

Martin Odersky and Philip Wadler. Pizza into java: Translating theory into practice. In
Twenty-Fourth ACM Symposium on Principles of Programming Languages, pages 146-159,
Paris, January 1997.

G. D. Plotkin. Call-by-name, call-by-value, and the lambda calculus. Theoretical Computer
Science, 1:125-159, 1975.

John C. Reynolds. Definitional interpreters for higher-order programming languages. In Con-
ference Record of the 25th National ACM Conference, pages 717-740, Boston, August 1972.

M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with de-
structive updating. ACM Transactions on Programming Languages and Systems, 20(1):1-50,
January 1996.

Z. Shao. An overview of the FLINT/ML compiler. In Workshop on Types in Compilation,
Amsterdam, June 1997. ACM. Published as Boston College Computer Science Dept. Technical
Report BCCS-97-03.

B. Steensgaard. Points-to analysis in linear time. In Twenty- Third ACM Symposium on Prin-
ciples of Programming Languages, January 1996.

D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-directed
optimizing compiler for ML. In ACM Conference on Programming Language Design and Im-
plementation, pages 181-192, Philadelphia, May 1996.

Mads Tofte. Type inference for polymorphic references. Information and Computation, 89:1-34,
November 1990.

Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Information and
Computation, 132(2):109-176, 1997.

David N. Turner, Philip Wadler, and Christian Mossin. Once upon a type. In ACM International
Conference on Functional Programming and Computer Architecture, San Diego, CA, June 1995.

Philip Wadler. Linear types can change the world! In M. Broy and C. Jones, editors, Pro-
gramming Concepts and Methods, Sea of Galilee, Israel, April 1990. North Holland. IFIP TC 2
Working Conference.

David Walker. A type system for expressive security policies. In Twenty-Seventh ACM Sympo-
sium on Principles of Programming Languages, Boston, January 2000. To appear.

A. K. Wright. Simple imperative polymorphism. LISP and Symbolic Computation, 8(4), De-
cember 1995.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information
and Computation, 115(1):38-94, 1994.

22

[28] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through dependent types.
In ACM Conference on Programming Language Design and Implementation, pages 249-257,
Montreal, June 1998.

A Proof of Type Soundness

This section states and then proves a theorem about the soundness of the type system of our language.
We use the syntactic proof technique popularized by Wright and Felleisen [27]. The central lemmas
required by the proof technique are Preservation, which states that well-formed programs always
step to well-formed programs and Progress, which states that well-formed programs can always take
a step (unless they have already halted gracefully using the halt instruction).

In order to use this technique, all of the intermediate steps in the computation must type-check. This
is not the case for the type system defined in the body of the paper! Intermediate programs may
fail to type check because we have defined no relationship between the types null and ?{m,...,7,),
and similarly, between (r,...,7,) and ?(r,...,7,). The tosum instruction does relate these types
locally, but that correspondence is lost when type-checking the remaining instructions. To maintain
this information, we introduce a subtyping relationship. Because we have only added rules to the
type system, strictly more programs type check. Therefore, type soundness of the new type system
implies type soundness of the original system. The new subtying rules follow. The typing rules in
their entirety are presented in Appendix B.

Al eeesTn
(7-sub-null) (1, Tn)

AFnull <y, Tn)

-sub-tupl
(T su Upe) A}—(Tl’,,.,Tn)S?<Tla---77—n>

Arr=1 Abr< 7" AR <7
(7-sub-eq) AFr<r (7-sub-trans) Arr<r
AFC<C
!
(C—sub) Abr<T (¢:-0r¢:w)

AF{nm71}° <{n—7'}?

We make use of several notational conveniences in this appendix as well. We let the meta-variable
¢ range over constraint “flags,” - (the empty flag that denotes a linear constraint) and w (for the
flag that denotes a non-linear constraint). We let the meta-variable 3 range over location variables
p and constraint variables e. We let the meta-variable ¢ range over locations n and constraints C.
We use the notation X = X' to denote syntactic equality of objects X and X' up to a-conversion
of bound variables. The one exception is a store S where S = S’ denotes syntactic equality up
to alpha-conversion of bound variables and re-ordering of the elements of the store. Definitional
equality is always preceded by a turnstyle and typing context: A+ X = X'. The notation S{£ — v}
denotes the store S extended with the mapping {£ — v}. It is undefined if £ appears in the domain
of S.

23

The rest of the appendix gives a formal statement and proof of the type soundness theorem.

Definition 10 (Stuck State) A state (S,¢) is stuck if ¢ # halt and there does not exist another
state (S',1") such that (S,1) —> (S',4).

Theorem 11 (Soundness) IfF S: C and -;C;- ¢ then there is no evaluation sequence (S,t) —
. — (8", such that (S',1') is a stuck state.

Proof:

We prove Soundness by induction on the length of the evaluation sequence. By Progress, the initial
state (S,¢) is not stuck. Assume all evaluation sequences of length 4, for 7 > 0 do not lead to stuck
states. Suppose (S,t) — (S”,t") — ... — (S',/) is an evaluation sequence of length i + 1.
Since - (S,:) and -;C;- I 1, Preservation states that there exists a C" such that - S” : C" and
- C"; -+ ", By induction, (S',+) is not stuck.

O

The proofs of Preservation and Progress rely on a number of supplementary lemmas. To aid in read-
ing the proof, we have broken the lemmas into various subsections. The first subsection presents
standard lemmas describing well-formedness, substitution, and canonical forms. The second subsec-
tion establishes some key properties of constraint equality and subtyping. The third section proves
lemmas that relate the store to the constraints. Finally, the fourth section presents the proofs for
preservation and progress.

A.1 Standard Lemmas

This section begins with a number of standard substitution lemmas for various kinds of variables
(p, € and z). In each case the lemma states that substitution preserves well-formedness. The proofs
are all by induction on the typing derivation in question, and have been omitted.

Lemma 12 (Type Substitution) Let X and X' be one of 7 and 7', n and ', or C and C'. And
let Y andY' be one of T and 7', or C and C'.

1. If p, AL X and - - 0" then A+ X[n"/p]

Ife, A X and -+ C" then A+ X[C" /€]
Ifp,AF X =X'" and -+ 0" then A+ X[n"/p] = X'[n" [p]
Ife, AFX =X and -+ C" then A+ X[C"[e] = X'[C" /€]
Ifp,ARY <Y' and -+ 0" then AFY[n"/p] <Y'[n"/p]
Ife, AFY <Y' and -+ C" then AFY[C"/e] <Y'[C" /€]

S TN N

24

Lemma 13 (p-substitution) Let C' = C[¢/p], I' =T[¢/p], ' = [l/p], v' = v[f/p], and 7" =
T[/p].

1. If p, A;C;T & o then A;C; T

2. If p, A;TFw:T then A;T Fo' o 7

Lemma 14 (e-substitution) Let C' = C[C"/e], I' = T'[C"/e], V' = 4[C" /€], v' = v[C" /€], and
7' =7[C"/€].

1. If - HC" and e, A;C;T' o then A;C; TV Y
2. If - =C" and ¢, A;T F w7 then AT Fo' o 7/

Lemma 15 (x-substitution) If A;T'F v : 7 then
1. If A;Csz o7, T o then A; C; T F ufu/x]

2. If Asz -, TR 7' then A;T Ho'lv/z] - 7'

The next group of lemmas describes a series of standard derived rules about the well-formedness of
one object given the well-formedness of another object.

Lemma 16

1. IfArTor AT and Ar7=71"then Ab7and AT’
2. IfAFnorAbry and AbFn=1' then AF7 and A F 1f
3 IfAFC or AFC" and AF-C =C" then AFC and A+ C'
4. IfAFC or AFC and AFC < C' then A+ C and A+ C'

Proof:

Parts 1, 2, and 3 are proven by a simultaneous induction on the height of the typing derivations.
Part 4 is also proven by induction on the typing derivation and follows from part 3.

O

Lemma 17 If A;T - wv: 7 and for all 7' € Rng(T), A+ 7' then A 7.

25

Proof:

The proof is by induction on the typing derivation for values. All cases but rules v-p and v-€ are
immediate or follow directly from the induction hypothesis. The rules v-p and v-€¢ employ the Type
Substitution Lemma (Lemma 12) after using the induction hypothesis.

O
Lemma 18 Assuming well-formed types, if - = 7' < i, ..., 7,) then 7' is one of null, (r{,...,7}),
or Ur{,...,7),) where -+ 7] =1; for 1 <i<n.

Proof: By induction on the subtyping derivation.

Lemma 19 For any types 71 and 15 such that -+ 7, < 79, one of the following must hold:

1. -|—T1:T2

2. 7 =null and 75 = 1{,...,7})
3. m=(r,...,7). and 7o =2(r{,..., 7))
Proof:

The proof proceeds by induction on the height of the derivation - F 74 < 7.

O

Lemma 20 (Canonical Forms) If ;- F v : 7 then

T = ptr(f) implies v = ptr({)

T = junk implies v = junk

7 = null tmplies v = null
T={(Ti,...,Tn) implies v = (v1,...,0,)

T=V[A;C').(11,...,7)—=0 implies v = (fix f[A;C;T].0)[ca,- .., cm] and
A :ﬂla"wﬂm-l-k :/617"'7ﬂM7AI and

— ! !
'=zmq,..., 257,
T=UT1,. -, Tp) implies v =null or v = (vy,...,v,)

Proof:

The proof proceeds by induction on the height of the typing derivation.

26

o ptr(f)

Only the rules v-£ and v-sub can generate a conclusion of this form. If rule v-£ is the last rule
in the derivation then inspection of the rule reveals that v = ptr(£). If rule v-sub is the last
rule in the derivation then we know that - - 7' < ptr(f) and that -;- F v : 7'. By inspection of
the rules for equality and subtyping, we can conclude that 7' is ptr(€). By induction, we can

conclude that v = ptr(f).
o junk

Only v-junk and v-sub have conclusions of this form. The case for v-junk is immediate. The

case for v-sub proceeds similarly to the argument for ptr(£) above.
o null

Only v-null and rlev-sub have conclusions of this form. The case for v-junk is immediate. The

case for v-sub proceeds similarly to the argument for ptr(£) above.

° <T1,...,Tn)

Only v-tuple and v-sub have conclusions of this form. The case for v-tuple is immediate. The

case for v-sub proceeds similarly to the argument for ptr(£) above.
o V[A;C'.(T1,...,Tn)—0

Multiple rules can generate types of this form: v-fix, v-p, v-€, and v-sub. The case for v-fix is
immediate. The case for v-sub proceeds similarly to the argument for ptr(£). Consider the case

for rule v-p (rule v-¢ is similar):
-Fn oV, A" CV (A, ..., Th)—0
5ol (VAT CY(, - 1) = 0) [/ pl
By induction, we have that:
v = (fix f[A; C;T).)[ets - - -, o] and
A=01,...sBmsk =B, Bm,p, A" and

IF'=x1m,..., 207

Thus our result follows trivially. In particular: v[n] = (fix f[A; C;T).)[ea, - - - em][n]

L] ?(Tl,...,Tn)
The rules with conclusions of this form are v-opt, and v-sub. If v-opt is used then by the
induction hypothesis v = (v1,...,v,), giving the desired result. v-sub follows because the only
subtype of ?{(71,...,7.), are either null or {ry,...,7,).

O

Lemma 21 (Value Types) If ;- Fv:7 then

v = ptr(¥) implies T = ptr(f)

v = junk implies T = junk

v = null implies T = null or there exists 1y,...,T, such that
T=UT1,. oy Tn)

v=(V1,...,0p) implies for 1 <1 < n there exists 7; such that
-k T oand
T={T1,...,Tn) O T =71, .., Tn)

v=(fix f[A; C;T))[ery .- -y em] implies A;C;T F o and

where A = 0y,..., Btk T =8S(V[Bm+1s- -+ Bmtk; Cl-(11, - .., 7)—0) and

and ' = x1:711, ..., Zn:Tn S is the substitution [c1,...,¢m/B1,-- -, Bm)

27

Proof:

For each different value, the proof is by induction on the height of the typing derviation for values.
For the values ptr(f) and junk there are two typing rules that apply — one for the value itself and
the v-sub rule. If the height of the derivation is 1, we must have used the first rule and we have our
result immediately. If the height is greater than one, the last rule must be v-sub. Inspection of the
equality and subtyping rules reveals that v-sub preserves the shape of the type in question. Hence,
by induction we have our result.

For the value (fix f[B1,..., Bm+k; C;21:T1, . - ., Tn:Tp].L)[c1, - - ., Cm], the rules v-fix, v-p, v-¢, v-sub
might have appeared last. If rule v-fix or v-sub appeared last then the argument given for the case of
ptr(£) applies here as well. If rule v-p or rule v-¢ appeared last then the result follows by induction.
For the values null and (7y,...,7,), there are also two rules that apply. Consider the case for the
value null (the case for (11,...,7,) is similar). Once again, the base case (v-null) is trivial. For rule
v-sub, we have:

A;T Foull: 7 AT <1
A;TFnull: T

By induction, we know that 7' is either null or ?{(r,...,7,). By inspection of the equality and
subtyping rules, we can deduce that the shapes of these types are preserved and therefore that 7 is
null or N1y,...,7}).

O

Lemma 22 If;-Fv:7,5-Fo:7, and ;- Fv:7"; and furthermore - 7' <7, and -+ 7" < 7,
then either - =7 < 7" or -+ 7" <7,

Proof:

The proof proceeds by cases given the possibilities in Lemma, 19. If any two of the three types are
equal the proof is complete by transitivity of subtyping. In the remaining cases 7 must be an option

!

type (let 7 be ?(r1,...,7,)), and 7’ and 7" must be one of null or (r{,...,7}).

By Lemma 20 and ;- F v : 2(m,...,7), v = null or v = {(v1,...,0,).

e v =null
By Lemma 21, 7' and 7" are each either an option type or null. If both are null then the proof
is complete. If one of them is an option type then it must be equal to 7 by Lemma 19.

o v={(v1,...,05)
By Lemma 21, 7' and 7" are each either a tuple type or an option type. If one of them is
an option type the argument is the same as in the previous case. If both are tuple types
then by Lemma 18, through their common ancestor 7, and the definition of equality on tuples,
B =

28

A.2 Properties of Constraints

Preservation relies on the aliasing constraints C' remaining a faithful description of the store across
operations such as free and malloc. To prove that this relationship is maintained throughout
execution, we must reason about how aliasing constraints are related as types change.

To do so we define a notion of substitution which uniformly changes the type associated with a
location () in a constraint (C) to a new type (7). The constraint [[C]],, is C with every primitive
constraint {n — 7'}¢ replaced by {n — 7}°.

Definition 23 [[C]],r is a constraint C, defined as follows.

[0]psr = 0
[ellpsr = €
[{n= 7}]nsr = o} (foré=:orw)
[{n' = 7}Nsr = 0" =Y (if0' #n)
[(C1® Collpsr = [Cillposr @ [Collpr

The following definitions provide us with several useful abstractions we will use to prove facts about
constraints. Id, is the set of types equal to 7 and Sup, is the set of supertypes of 7. If {n — 7}¢
appears in C then 7 and all types equal to it are in the “image” of n; in other words, they are in
Im(C,n). The set S, 7(C) contains all the constraints generated by replacing occurences of {n — 7}¢
with {n — 7'} where 7’ is in the set of types T

Definition 24 Id, and Sup, are sets of types, defined as follows.

Ia, = {|-Fr=7"}
Sup, = {r'|-F7<7}
Definition 25 Im(C,n) is a set of types, defined as follows.
Im(@, n) =0
Im(e,n) =0
In({n+7}%n) = Id
In({n = 7}%,7) = 0 (if n #n')
Im(cl D 027 77) = Im(cla 77) U Im(027 77)

Sn,T(m) =0

Sp,r(€) = €

Spr({ne7'}?) = {{n—7}?|7€T}

Spr({n' = 7'}9) = {{n' = 1'}?} (fn#n')
Sp,(C1 @ Cy) = {C]Cy|Cf €S,r(C1) and Cj € S, 7(C2) }

29

The following lemmas specify properties of the interactions between [[C]],—-, Im(C,n) and S, 7(C).

Lemma 27 For any constraint C' and type T such that -+ 7,

1. C € 8y,14,(C) if and only if Im(C,n) C I4,.
2. C € Sy sup_(C) if and only if Im(C,n) C Sup, .

Proof: Both directions can be shown by induction on the structure of C.

Lemma 28 For all locations n and constraints Cy and Cs,

1. If -+ Cy = Cs then Im(C1,n) = In(Cs,n).
2. If - + Cy < Cy then for all 7 € Im(C2,n) there exists a type 7' € Im(C1,n) such that -+ 7" < 1.

Proof:

Part 1 is by induction on the height of the equality derivation. Part 2 is by induction on the height
of the subtyping derivation.

O

Lemma 29 For all locations 1, types T, and constraints C1 and Cs,

1. If -+ C1 =Cy then -+ [[Cl]]ni—}‘r = [[02]]77'_“"
2. If -+ C1 < Cy then - - [[Ch]lpesr < [[Collposr-

Proof:

Part 1 is by induction on the height of the equality derivation. Part 2 is by induction on the height
of the subtyping derivation.

O

Lemma 30 For all locations n, types T such that - = 7, and constraints C, if C1 € Sp 14, (C) and
Cy e SﬂaSuPT (C) then -+ Cy < Cy.

Proof:

30

By induction on the structure of C. The only non-trivial case is C = {n — 7}?. In this case,
Cy = {n~ 7'}? for some 7' such that (1) - -7 = 7" and Cy = {n — 7"}? for some 7" such that (2)
-+ 7 < 7". By rule C-sub, we have - - C; < Cs since (1) and (2) imply that -+ 7' < 7.

O

Lemma 31 For all constraints Cy and Cy such that - - Cy < Cs, and all types T such that -+ 7. If
C: € ST/,Id-r (Cl) then Cy € Sn,SUPT (02)

Proof:

By Lemma 28, for each 7 € Im(Cy,n) there is a 7' € Im(Cy,n) such that (1) - - 7/ < 7. Now, we
can use our assumption and Lemma 27, part 1, to conclude Im(C1,7n) = Id, and therefore that (2)
-F7=7". By (1) and (2), - - 7 < 7" and we conclude that Im(C5,7n) C Sup,. Hence we have the
result via Lemma 27, part 2.

O
The following “cardinality” lemmas will be used to conclude that for any C such that S : C' and

for any £ occuring in a linear constraint in C, £ occurs exactly once on the left-hand side of any
constraint in C.

Definition 32 |C|? is an integer, defined as follows.

87 = 0
el = 0
e 13l = 1
e =9 = 0 (ift #£Lor ¢ #¢)
IC1 & Calf IC11¢ + |G}

Lemma 33 For any constraints Cy and Cs, and any location ¢,

1. If F C1 = Cy then |Cl|£ = |02|[

Proof:

Part 1 is proven by induction on the height of the derivation of - - C; = Cs. Part 2 is proven using
Part 1 for the case C-sub-eq, and a similar induction argument.

O

31

Lemma 34 For any constraints Cy and Cs,

1. If -+ Cy =Cy and |C1] =0 or |Ci|y =0 then |C1]§ =0 and |Ca|y = 0.
2. If -+ C1 < Cs, |Cl|£ = |02|13 and |Cl|7 =0 then |02|L; =0.

Proof:

Both parts are proven by induction on the height of the derivation. Most cases are trivial. The
exception is the case for rule C-sub-trans in part 2. In this case, we have:

A+ Ci <Cs At C3 <0
At CL <0y

and the facts that (1) |Ci|, = |Cz|; and |C1|{ = 0. By Lemma 33, part 2, we know that |Cy|, >
|Cs]; > |Ca|,. However, from (1), we can deduce that these cardinalities are in fact equal: |Cy[, =
|C3|;, = |Ca|;- Therefore, we can use induction on the first sub-derivation to conclude that |C3|§ = 0,
and subsequently, by induction on the second sub-derivation, we have our result, |C5[§ = 0.

O

A.3 Relating Stores and Constraints

Lemma 35 If+ S :C then -+ C.
Proof:

By induction on the height of the derivation - S : C. Assume the final rule in the derivation is
S-base. By inspection of the rule, we can see there are no free variables in C' and therefore that
-+ C. If, on the other hand, we assume rule S-sub was the final rule in the derivation:

FS:C' -FCO'LC
FS:C

then by induction, we have - - C’'. Further, by Lemma 16, we can conclude - - C.

O

The following lemma proves to be very useful. Basically it says that any derivation of - S : C' need
have at most one application of S-base and one application of S-sub.

Lemma 36 If - S : C then there is a Cygse such that b S : Cpese is derivable from the rule S-base
alone, and - F Chase < C.

32

Proof: By induction on the derivation of F S : C, using transitivity of subtyping on constraints
(C-sub-trans).

Lemma 37 If+ S{{ — v} : C then there exists a T such that -;- v : T.

Proof: By induction on the typing derivation - S{£ +— v} : C.

Lemma 38 If{ & Dom(S),FS:C and ;- Fv:7 thenk S{{—v}:C o {{— 7}.
Proof:

The proof is by induction on the derivation of - S : C'. Case S-base is true by definition. For case
S-sub we assume:

FS:C FC'<C
FS:C
Therefore, by induction, we know that F S@® {£ — v} : C'® {£ — 7}. Using the fact that - - C' < C

and the congruence rules for subtyping, we can conclude that - F C'" @ {{ —» 7} < C® {{ — 7}
completing the proof.

O

The following lemma states simply that if two values have the same type, then we can type the store
in the same way regardless of which value is in the store.

Lemma 39 If-S{{—v}:Cand-;-Fv:7 and ;- F v :7 thent S{{— '} : C.

Proof: By induction on the typing derivation - S{£ — v} : C.

The following lemma formally encapsulates the central idea of the paper. The same location can be
used to store two values of different types. We do not need to “stamp” a location with a single type.
Moreover, the types of each store are identical except for modification at a single location.

Lemma 40 (Update) If+- S{{—v}:C®{l— 7} and ;- F o' : 7' thenkF S > v'}: C o {{—
T'}.

Proof:

To simplify the presentation we separate the proof into two parts. First, we prove that (1) F S{{ —
v'} : [[C @ {€ — 7}]]esrr. Second, we prove that (2) [[C @ {€ — T}]osr = C @ {€ —~ 7'} — equality
here is syntactic equality. Together, these two facts imply the result.

By Lemma 36, there is a constraint, Cpgse, such that F S : Cygse is derivable using rule S-base only
and - F Cpese < C @ {£ — 7}. Now, parts (1) and (2):

33

1. By rule S-base applied to S{¢ — v'} we can conclude that - S{£ — v'} : [[Chase]]ler'- Next,
by Lemma 29, - F [[Chasellemsr < [[C @ {€ — 7}]]e—r. Finally, by rule S-sub we obtain that
FS{—v'}:[[Co{l— T}emr

2. Note that |Cpese|s = 0 and [Cpgse|; = 1 by the definition of S-base. Furthermore, by Lemma 33,
|C @ {€— 7}|; < |Chase|; < 1. But inspection of the definition of |-|, reveals that |C @& {€ — 7}|, >
1 and therefore |C' @ {£ — 7}|; is, in fact, equal to 1. Therefore, we can apply Lemma 34
and conclude that |C'® {{+— 7} = 0. These two facts together means that there is ex-
actly one occurence of £ in C @ {{ — 7} so there must be no occurences in C. Therefore

[Ce{t— e =Ca[{l— THesr =Ce {1}
O

The next lemma describes a property of the store that we require for the progress proof: If a location
appears in a constraint then it also appears in the store and contains a value of an appropriate type.

Lemma 41 (Well-formed store) If+S:C® {{ —~ 7}° for ¢ =w or -, then S = S'{{ — v} and
furthermore -;-F v : 7

Proof:

By Lemma 36, there is a Cy,se derived using S-base alone, such that - - Cpese < C @ {£+— 7}%. By
Lemma 28, there is a 7 in Im(Cpgse, £) such that (1) -+ 7' < 7.

By inspection of the definition of Im(-,-), the constraint {£ — 7"} is in Chpqse for some 7" and (2)
-+ 7" = 7'. By inspection of the rule S-base, there can only be 1 occurence of £ in Dom(S) and
there must exist a v such that S = S{£ — v}. Moreover, -;- - v : 7. By (1) and (2) and inspection
of the rules for subtyping, we can conclude - F 7" < 7. Consequently, by use of the rule v-sub, we
have our result: ;- F v : 7.

O

Lemma 42 (Store-subtype) Ift- S{{+—v}:C @ {{— 7}? and ;- v : 7" where - - 7' < 7 then
FS{tmov}:Ca{t— T}

Proof:

In the following let

C' represent C @ {l+ T}¢
C" represent C @ {f+> 7'}?
By Lemma 36, there is a constraint Cpase derived from S-base such that - F Chpese < C'. By

Lemma 28, there is a 7" € Im(Chqgse, £) such that - F 7" < 7. By inspection of the rule S-base, £ only
occurs once in Cpgse and ;- - v : 7. Therefore, (1) In(Chase,) = Id .

Without loss of generality, assume that (2) {£ — 7"} appears in Cpsse (rather than some other
constraint {£ — 7"} where "' is equal to 7""). Now, because -;- F v : 7", we can apply Lemma 22
to conclude that either - - 7" < 7' or -+ 7' < 7.

34

1. - 7" <7
This case is proven in two parts. In the first part we show that - F Cpse < [[C"']]emsr- In the
second part we show that - F [[C"]]gsr» < C". From these two results and the rule S-sub, we
can conclude that F S{¢+— v} : C". This is the desired result by the definition of C".
(a) Proof of - F Chase < [[C"]]esr -
By Lemma 29, - F [[Chase]]esr < [[C']]e—s+. By fact (2), [[Chase]]lesr is syntactically
equal to Cpgse. Therefore, - F Cpase < [[C']omrrr-
Using the definition of [[C']]s— -, we show that [[C']]¢— -+ is syntactically equal to [[C"']]oy -

[[C s [[Clesrn @ [[{€ = T}T e
= ([Cllor & (€ 7}
[[Cllesrn @ [[{€ = 7'} Nesrn
= [[C" e
From the above equalities and - F Chgase < [[C"]]e—s+, we can conclude that - F Chese <

1C" s

(b) Proof of - F [[C"]]e—srn < C"
By Lemma 27, part 1, and fact (1), Chase € St,1a,,, (Chase). Now using - F Cpese < C' once
again, and Lemma 31, we have that (3) C' € Sy sup_, (C').
By the definition of C’, fact (3) can be rewritten as

Co{lr 7}° € Spsup.., (C® {1 T}?)

By the definition of S¢ sy, (C'), we can conclude that C' € Sysup_, (C). Furthermore
because {€ — 7'}? € Sy sup_, ({€ > 7'}?), it follows that
C” S SZ,Sup_ru (C”)
Inspection of the definitions shows that (4) [[C"]]¢mr» € S¢,1a.,(C"'). Together facts (3)
and (4) allow us to apply Lemma 30 to conclude that - F [[C"]]grn < C".
2. -7 <"
By inspection of the rule S-base, we can conclude that - S{¢ — v} : C} ., where C}, ., =
[[Chase]lesr- Since - F 7' < 7", we can prove that - = C},.. < Chase by use of the rules C-cong
and C-sub. Therefore, by transitivity, - - C},,, < C' and consequently, we have the derivation:
|_ S : CIINISE i |_ CIINISC S Cl
FS:C'

where the type {¢ — 7'}? appears in C},,,. Obviously (by reflexivity), - - 7/ < 7'. Hence, we
can reason as in case 1 above and obtain the result: - S{¢ — v} : C & {£— 7'}¢

A.4 Preservation and Progress

Lemma 43 (Preservation) Ift S : C, C;- Fu, and (S,1) — (5',1/) then there is a C" such
that = S': C', and -;C";- =1/

35

Proof:

The proof proceeds by cases on the structure of .. Each case begins by stating the operational rule
(OR) that must have been used given the shape of ¢. It also states the relevant parts of the typing
derivation for the instruction (TD) specialized to the particular case and the store (STD) being
considered.

To simplify the presentation, whenever judgements of the form -;- F ptr(¢) : ptr(n) occur in the
typing derivation (TD), we have implicitly used Lemma 20 to conclude that = £.

e mallocx,p,n;t

OR:
(S,malloc z,p,n;t) +— (S{€+— (junk,,...,junk,)},¢[¢/p][ptr(£)/x]) where £ ¢ S
TD:

p;C @ {p > (junk,,...,junk,)}; z:ptr(p) -1
-;C;- Fmalloc x, p,n;t

STD:
FS:C

First, we show the new store S’ = S{¢ — (junk,,...,junk,)} can be typed by C' = C & {£ —
(junk,, ..., junk,)}. Using typing rules v-tuple and v-junk, we can conclude

5+ F (junk,,..., junk,) : (junk,..., junk,) (1)

Therefore, since £ ¢ S, by Lemma, 38, we know - S’ : C'.
Second, we need to prove the new instruction sequence is well-formed. From TD and Lemma 13
(p-substitution) we can conclude:

5 C @& {€ (junk,,...,junk,)};z : ptr(€) F u[e/p]

By (1) above, (junk,, ..., junk,) is well-formed. Therefore, we can apply our second substitu-
tion lemma (Lemma, 15), and obtain the final result:

5 C @l (junky,...,junk,)};-F €/ p]lptr(f)/x]

e mknull z, p;¢
Similar to the case for malloc.

o z=ptr({)[i];.
OR:
(S0 (or,- o o o=pbr(Oli;) — (S{Er ey v)botlr/z]) i 1<i<n
TD:

- ptr(f) : ptr(f) FC=C"o{l— {r1,...,T)}® sCimm b
5 O+ F a=ptr()[i];¢

36

STD:
FS:C

The resulting store is the same as the initial store, so the first requirement, - S : C, is trivially
satisfied.
As for the second requirement, using STD, the subtyping condition from TD and the store
typing rule S-sub, we can conclude - S : C'@{€ — (11, ...,7,)}*. Consequently, by Lemma 41,
S=8{{— v}and ;- Fv:{(m,..., 7). By Canonical Forms, v = (v1,...,v,) and also (1)
S R
Now, from TD

sCimm b

Using this fact and (1), we can apply Lemma 15 (Substitution) and obtain the required result:

5O+ bl /2]

ptr(€)[i]:=v; ¢
Let vpes = (U1, .-+, Vi—1,0, V541, ---,Vp) in the following.

OR:

(S{l— (v1,...,o0)},ptr(O)[i]:=v;1) +— (S{€ Vres},t)
STD:
FS{l— (vi,...,0)}: C

There are two possible typing derivations of this term: one for ¢ = w, and one for ¢ = -. Hence
we have split this case into two parts.

—p=w

TD:

- Fptr(f) : ptr(f) ok
FC=C"o{l— {T,...,Ta)}¥ 5 Ci

-+ C; - F ptr(0)[i]:=v;¢

(1<i<n)

First, we prove b S{f — v,¢s} : C. By Lemma 37 there exists a type 7 such that (1)

5+ F {v1,...,v,) : 7. By Lemma 21, 7 has the form (r,...,7,) and (2) ;- F v; : 75 for
1 < j < n. Now, by the typing judgement TD, we have -; - I v : 7;. Therefore, using this fact
and (2), we can conclude by inspection of the rule v-tuple that (3) ;- b vpes : {71, .., Tn)-

Finally, by (1) and (3) and STD, we can conclude that F S{£— v,.s} : C.

Our second obligation, to prove -; C;- I ¢, follows immediately from TD.
—p=-

Let Tyes = (T4, -, Tim1, T, Tit1, - - - , Tn) in the following.

TD:

-5 F ptr(f) : ptr(f) sokvrT FC=C'a{{—(m,...,m)}
SC" Dl Tres); o
5 Cs- F ptr(O)[i]:=v;

(1<i<n)

37

Our first proof obligation is to show that - S{£ — v,es} : C' @ {€ — Tres}. Using STD,
the equality - - C = C' @ {{ — (m1,...,7)} from TD, and the rules S-sub and C-sub-eq,
we can prove F S{€ — (v1,...,v5)} : C'"® {€ — {11,...,7)}. Now, by Lemma 21 and
v-tuple, we have that ;- F v : Tres. Therefore we can apply Lemma 40 to conclude that
FS{l vpes} : C' @ {€ > Tres}
The second proof obligation, -; C! @ {£ — T.es};- F ¢, follows directly from TD.
e freeptr(f);/
Similar to assignment with ¢ = -.
e tosum v, {7y, ..., Tn);t'
OR:
(S,tosumv, 2{11,...,7a);t") = (S,1)

There are two possible typing rules that could have been used: either i-tosuml or i-tosum2.
Here we coalesce them into one rule where 7 either has the shape null (corresponding to i-

tosuml) or (r,...,7,) (corresponding to i-tosum2).
TD:
- v ptr(n) FC=C"®{n—T1}?
N1, Ta) 5C' e Uty)} 0
5 Cs-Ftosumw, 1, ..., Th); 0t
STD:
FS:C

From the judgement -;- - v : ptr(n), we can conclude there exists an £ such that n = ¢ and
v = ptr(£) using Lemma 17 and Lemma 21.
Given these facts, we will proceed to prove our first obligation: - S : C' @ {€ — ?{(ry,...,)}
By STD, we have (1) - S : C. By TD, we have (2) - - C = C' ® {{ = 7}¢. From (2) and
rule C-sub-eq, we have (3) - - C < C" @ {f — 7}%. Because - - 7 < 27i,...,7,) (recall
that 7 is either null or {71,...,7,)), and through the use of rules C-sub-cong and C-sub, we
can conclude (4) - F C'"®{l = 7} < C'"® {l — Y m,...,m7)}? . By C-sub-trans and (4),
FC <O {l— Urt,...,ma)}?.
The second proof obligation follows directly from TD: -;C" @ {£ +— 11, ..., Tn)}?;- 1

e ifnull ptr({) then (; else 1y
There are two operational rules that may have been applied, o-ifnulll or o-ifnull2. Here, we
show preservation when the first branch of the if is taken. The other alternative is similar.
OR:

(S{¢ — null}, ifnull ptr(¥) then i1 else i2) — (S{£ —~ null},)

The constraints that appear in the typing judgement may either be linear constraints or non-
linear constraints. The case for linear constraints follows using an argument similar to the
arguments for rules i-al and i-free. Thus, we assume that the constraints in the judgement are
non-linear constraints:
TD:
;- F ptr(f) : ptr(f) FC=C"o{l— Ur1,...,Ta)}¥
SC' {0 null}Y;-F oy SC'e{l{r,...,ma) ¥ F g

-;C;- F ifnull ptr(f) then ¢; else iy

38

STD:
FS{{+ null}: C

Now, our first obligation is to prove that - S{{ — null} : C' & {¢{ — null}*. From TD
and STD, using rules S-sub and C-sub-eq, we can conclude that - S{¢ — null} : C' @ {{ —
N7i,...,Tn)}¥. From Lemma 42 we conclude that - S{¢ — null} : C' & {¢ — null}¥.

The second obligation is to show that ;C' @ {£ — null}*;- F 11, which is immediate from the
typing derivation TD.

v(v1, ..., p)
OR:

(S,v(v1,...,00)) = (S,tfer - -sem/Bry - B[V 015y on)/ fri 1, oy T0)]

where v = v'[e1, ..., ¢p] and v = £ix f[B1,. .., Bm; C" 52171, - o« Byt Tt
TD:
ooV CN (e, .., Th)—0 o<

sekwvrim S
5C;-Fovr, ... vn)

STD:
FS:C

The first proof obligation is to show that - S : C'. This is trivial using STD, the typing
derivation above which states that - = C < C’ and the rule S-sub.

The second proof obligation is to show that the function body type checks:

5Cl ke sem /By B[V v, 00 T, - T

By Lemma 21, v’ has an appropriate function type and its body type-checks under the assump-
tions in its precondition. By induction on the number of type applications and repeated use of
the p-, e- and z-substitution lemmas, the body type checks under C' and we have our result.

Lemma 44 (Progress) If - S : C and -;C;- b ¢« then either © = halt or (S,1) —> (S',¢') for
some (S',1).

Proof:

The proof is by a case analysis on the shape of «. The Well-formed Stores Lemma (Lemma 41)
in conjunction with the Canonical Forms Lemmas (Lemma 20) ensure that the store allows the
triggered rule to evaluate. (In what follows we write CF for the Canonical Forms Lemma and WFS
for the Well-formed Stores Lemma)

39

mallocz,p,n;t

o-malloc always applies.
z=v[i];L

By static semantics rule i-let,

-5+ F v optr(n) -I—C=C'@{77H<7'1;---77'n)}¢

By Lemma 17, there are no free location variables and therefore n = ¢ for some £. By CF,
v =rptr(f). By (S-sub), FS:C'® {n+~ (m1,...,7)}?. By WFS, S = §'{{ — v'} for some S’
and ;- F o' : (r1,...,7,). By CF, v' = (vy,...,v,). Therefore, operational rule o-let applies.
v[i]:=v';e
This instruction must have been type-checked under either i-al or i-a2. In either case we have
that:

5+ ko ptr(n) FC=C'o{n=(r,...,m)}*®
In exactly the same way as in the previous case, we conclude that v = ptr(f) and S = S'{{ —
(v1,...,vn)}. Therefore o-a applies.

freev;t
By the rule i-free,

-5+ B optr(n) FC=C'o{n{r,...,m)}

As in the previous cases, we conclude n = ¢, v = ptr(f), and S = S'{£ — v'}. Consequently
rule o-free applies.

(v, ..., Up)
Although this is the most complicated instruction, this step is easy. From i-app we have:

ek V5 CN(my .., Th)—0 RO <

sebkwvim N

By CF, v = (fix f[®].t)[c1, . . -, ¢,]- This suffices to apply o-app.
halt
The result holds trivially.
mknull z, p; ¢
o-mknull always applies.
tosum v, {71, ..., Tn)
o-tosum always applies.
ifnull v then ¢ else 1y
By i-ifnull,
- o soptr(n) FC=C"o{ne Hm,...,)}

As before, we may conclude n = £. By WFS, S = S'"{{ —»v'} and ;- o' : ?(mq,..., 7). By
CF, v = ptr(f) and either v' = null or v' = (11,..., 7).
In the first case o-ifnulll applies and in the second case o-ifnull2 applies.

40

B Complete rules

This appendix contains the complete description of the language of locations.

B.1 Syntax
p € LabelVar
e € CapVar
b € BaseType
¢ € Locations
locations n u= Llp
constraints C == Dle|{n—71}|{n—7}|CLaC
types T u= int | junk| ptr(n) | (t1,...,) | V[A;C)(11,...,Tn)—0 |
N7,y Tn) | null
value contexts r == -|T,ar
constructor conterts A = | A,p|Ae
values v == z|i]|junk|ptr(d) | (v1,...,v,) | £ix f[®].c | v[n] | v[C] | null
instructions ¢ == mallocz,p,n;t | z=vi];e | v[i]:=v";¢ | free vyt | v(vy,...,v,) |
halt | mknull z,p;¢ | tosumv, {71, .., Tp) |
ifnull v then ¢; else (s
stores S = {1 v,..., by v}
programs P == (S,0)
B.2 Static Semantics
AT AFn AFRC|
FV(r)C A FV(n) CA Fv(C)C A
(Wf—type) T"T (Wf—lOC) T (Wf—COH) TO

A"T]_:Tg A"HIZTIQ‘

Standard equality up to alpha-conversion of bound variables modulo equality on constraints.

Rules omitted.

AF{(T,...,Tn
(T-sub-null) (n Tn)

AFnull <NryyeooyTn)

-sub-tupl
(T su uPe) A}—(Tl,,,.,Tn)§?<Tla---a7—n>

41

Arr=1 AkFr< 7! AR <7
(7-sub-eq) Arr<r (T-sub-trans) AFr<r
AFCL =05
AFC=CC ArC' =" AFC'=C
(C—reﬁex) m (C—trans) AFC=C" (C_symm) ArC—C
(C-0) Arcal=C (C-comm) AT C eG=Gar,
(C-assoc) (C-w)

AFCL®(Ca®Cs) =(C1 @C2) ®Cs AF{np=ri={nmr}*e{n-1}*

AFCi®C,=Cl®C)

AFr=1
AF{np— 1} ={n—1'}?

AFCL <0

(C-atom) (p=wor:) (C-cong)

AFC =
AFC<LC

(C-sub-eq) (C-sub-w)

AF{n—T1}<{n-r1}

(C-sub-forget) AFO<0

AFC<LC ARC <O AFCL L<Cf AFCy <0y

(C-sub-trans) (C-sub-cong)

AFC<LC" AFCi®C, <Cl®CY
!
(C-sub) ArFT<T
AF{ne 7} <{nw7r'}?
(v-int) AT Hic:int (v-junk) A;T + junk : junk (v-null) A;T F null : null
(v-var) AT Rz :T(2) (v-6) A;T F ptr(f) : ptr(f)

42

A;TFo im A;TRo, 7y
A;TF (U1, e ey Un) i {T1, e ey Th)

(v-tuple)

A FV[AC (11, .., Tn)—0
A AL CHT, FV[ALC (T ey Tn) 20, 81T, oo Tt F 0

(v-fix) AT F fix fIAS Clmyim, - T] s VA O (T, - -2, 70) =0

(f,.’L’l,...,ZL'n ¢F)

Aknp AT Ro:V[p, A C' (11, .., Tn)—0
(V) AT o] -VIAT O (11, . 7) =01/]

ARC AT Fo:Ve,A;C" (11, ..., Tn)—0
A;T Fo[C'] :V[A; C" (71, .. ., 7)) —0[C /€]

(v-€

A;TRo: 7 AT <7t

(v-sub) AsTRo:T
®Fy

o S et T # T)
) A;T o ptr(n) AFC=C®{n— (11,....,T)} A;C" @ {n - junk}; T o
(i-free) A;C;T F freev;e

A;T o ptr(n) AT R 7 AFC=C®{n—{(r,...,)}
e

A;TF o ptr(n) AT RO o7y
(1-a2) AFC=C&{n— {T1,...,T)}¥ A;C;T o <i<n)

A;C;T R wli]:=v';e
A;T o ptr(n') AFC=Co{n v (T1,...,m)}? A;C T,z B (gl)
A;C;T F z=v[i]; e
AT Ro V5 C (1, ..., Tn)—0 AFC <L
AThor:m AT o, i,

A;C; TR, ... 0p)

A, p;C @ {p— null};T, z:ptr(p) - o
A; 5T+ mknull z, p; ¢

(i-let)

(i-app)

(i-mknull) (zg¢T,pégA)

43

A;ThRoiptr(n) AFC=C'®{n~ null}?
AbFNr, ..o) AsC'o{ne U,)Y T R

i-t 1
(i-tosum1) A;C;T F tosum v, 71,0, Tr)i b
A;T F o ptr(n) ArC=Ca{ne (11,...,ma)}?
A C'®{ne Ur, .., 19T R
(i-tosum?2)

A;C;T F tosumw, {7y, ..., Tn); L

A;T o ptr(n) AFC=C'®o{ne 2m,...,m)}?
A;C'@ {n null}?;TF oy ANC'o{ne (T,)} T ag

(i-ifnull) A;C;T F ifnull v then 1y else 1y
FS:C
FS:C FC'<C
(S-sub) FS:C
(S-base) AN O - T (for 1 <i < n,¥; distinct)

|‘{£1l—)i)l,...,fnl—)’un}:{ﬁll—)ﬁ}@...@{fnl—)’rn}

B.3 Operational Semantics

[

(o-malloc) (S,malloc z,p,n;t)
where £ & S

and o = u[¢/p][ptr(£)/x]

(S{€— (junk,,...,junk,)},¢)

(o-free) (S{€— (v1,...,v,)},freeptr(f);t) +— (S{£{— junk},:)
(0-a) (S{l— (v1,...,op)},ptr(D)[i]:=v;1) +— (S{€— (V1. ., 01,0, V41, -.,Un)}, L)
if1<i<n
(o-let) (S{t— (v1,...,vn)},z=ptr(D)[i];1) +— (S{€ (v1,...,0n)},tvi/2])
f1<i<n
(o-app) (S,v(v1,...,n)) — (S5,0)
ifv="1"er,...,cm]
and v' = £ix f[A;C x0T, . . ., TniTy] L
and o = ifer, ..., em /By, B[V 1,0 fixL, e T
and Dom(A) = B1,...,8m (where (3 ranges over p and €)
(o-mknull) (S, mknull z, p; 1) — (S{€+— null},.[¢/p][ptz(L)/x])
where £ ¢ S
(o-tosum) (S,tosum v, ?(T1,...,7Tn);t) — (S,1)
(o-ifnulll) (S{¢+ null},
ifnull ptr(¢) then (1 else o) — (S{¢{+— null},u)
(o-ifnull2) (S{€+— (v1,...,vn)},
ifnull ptr(f) then ¢; else io) — (S{€— (v1,...,un)}, 12)

44

