
Formal Methods in Computer-Aided Design 2022

ACORN: Network Control Plane Abstraction using
Route Nondeterminism

Divya Raghunathan
Princeton University

Princeton, USA
dr31@cs.princeton.edu

Ryan Beckett
Microsoft Research

Redmond, USA
ryan.beckett@microsoft.com

Aarti Gupta
Princeton University

Princeton, USA
aartig@cs.princeton.edu

David Walker
Princeton University

Princeton, USA
dpw@cs.princeton.edu

Abstract—Networks are hard to configure correctly, and mis-
configurations occur frequently, leading to outages or security
breaches. Formal verification techniques have been applied to
guarantee the correctness of network configurations, thereby
improving network reliability. This work addresses verification
of distributed network control planes, with two distinct contribu-
tions to improve the scalability of verification. Our first contri-
bution is a hierarchy of abstractions of varying precision which
introduce nondeterminism into the procedure that routers use to
select the best available route. We prove the soundness of these
abstractions and show their benefits. Our second contribution is
a novel SMT encoding which uses symbolic graphs to encode all
possible stable routing trees that are compliant with the given
network control plane configurations. We have implemented
our abstractions and SMT encoding in a prototype tool called
ACORN. Our evaluations show that our abstractions can provide
significant relative speedups (up to 323x) in performance, and
ACORN can scale up to ≈ 37, 000 routers in data center
benchmarks (with FatTree topologies, running shortest-path
routing and valley-free policies) for verifying reachability. This
far exceeds the performance of existing control plane verifiers.

I. INTRODUCTION

Bugs in configuring networks can lead to expensive outages
or critical security breaches, and misconfigurations occur fre-
quently [1], [2], [3], [4], [5], [6]. Thus, there has been great
interest in formal verification of computer network configu-
rations. Many initial efforts targeted the network data plane,
i.e., the forwarding rules in each router that determine how
a given packet is forwarded to a destination. Many of these
methods have been successfully applied in large data centers
in practice [7], [8], [9]. In comparison, formal verification of
the network control plane is more challenging.

Traditional control planes use distributed protocols such
as OSPF, BGP, and RIP [10] to compute a network data
plane based on the route announcements received from peer
networks, the current failures detected, and the router config-
urations. In control plane verification, one must check that all
data planes that emerge due to the router configurations are
correct. There has been much recent progress in control plane
verification. Fully symbolic SMT-based verifiers [11], [12],
[13] usually work well for small-sized networks, but have not
been shown to scale to medium-to-large networks. Simulation-
based verifiers [14], [15], [16], [13], [17], [18] scale better,
but in general, do not provide full symbolic reasoning, e.g.,
for considering all external route announcements. Our work

is motivated by this gap: we aim to provide full symbolic
reasoning and improve the scalability of verification. We
address this challenge with two main contributions – a novel
hierarchy of control plane abstractions, and a new symbolic
graph-based SMT encoding for control plane verification.

Hierarchy of nondeterministic abstractions. Our novel
control plane abstractions introduce nondeterminism in the
procedure that routers use to select a route – we call these the
Nondeterministic Routing Choice (NRC) abstractions. Instead
of forcing a router to pick the best available route, we allow
it to nondeterministically choose a route from a subset of
available routes which includes the best route. The number
of non-best routes in this set determines the precision of
the abstraction; our least precise abstraction corresponds to
picking any available route that is compliant with policy.

Our main insight here is that determining the best route may
not be needed for verification of many correctness properties
that network operators care about, such as reachability (e.g.,
when the number of hops may not matter), valley-freedom, or
no-transit (Gao-Rexford conditions [19]). On the other hand,
for policy-based routing, it is still important to model other
protocol features such as route filters. Our results show, for
the first time, that nondeterministic routing abstractions can
successfully verify such properties and provide significant
gains in performance and scalability. Although some other
efforts [12], [20] have also proposed to abstract the decision
process in BGP (details in §VII), we elucidate and study the
general principle for generic distributed protocols, prove it
sound, and reveal a range of precision-cost tradeoffs.

The potential downside of considering non-best routes is
that our abstractions may lead to false positives, i.e., we could
report property violations although the best route may actually
satisfy the property. In such cases, we propose using a more
precise abstraction that models more of the route selection
procedure. Our experiments (§VI) demonstrate that the NRC
abstractions can successfully verify a wide range of networks
and common policies and offer significant performance and
scalability benefits in symbolic SMT-based verification. Al-
though our abstractions are sound for verification of specified
failures (§IV), we focus on verification without failures here,
and plan to consider failures in future work.

Symbolic graph-based SMT encoding. Our novel SMT

https://doi.org/ This article is licensed under a Creative
Commons Attribution 4.0 International License

https://fmcad.org/FMCAD22
https://doi.org/
https://doi.org/
https://creativecommons.org/licenses/by/4.0/

encoding uses symbolic graphs [21] (where a Boolean variable
is associated with each edge in the network topology) to model
the stable states of a network control plane. Our encoding can
leverage specialized SMT solvers such as MonoSAT [21] that
provide support for graph-based reasoning, as well as standard
SMT solvers such as Z3 [22].

Experimental evaluation. We have implemented our NRC
abstractions and symbolic graph-based SMT encoding in a
prototype tool called ACORN (Abstracting the COntrol plane
using Route Nondeterminism). We present a detailed evalua-
tion on benchmark examples that include synthetic data center
examples with FatTree topologies [23], as well as real topolo-
gies from Topology Zoo [24] and BGPStream [25] running
well-known network policies, where we verify reachability
and other properties of interest. All benchmark examples
are successfully verified using an NRC abstraction (96% of
examples with our least precise abstraction, and the remaining
4% using a more precise abstraction). These benchmarks,
including some new examples that we created, are publicly
available [26]. ACORN could verify reachability in large Fat-
Tree benchmarks with about 37,000 nodes (running common
policies) within an hour. This kind of scalability is needed in
modern data centers with tens of thousands of routers that run
distributed routing protocols such as BGP [27]. We compared
ACORN with two publicly available state-of-the-art control
plane verifiers on the data center benchmarks, and our results
show that our tool scales an order of magnitude better.

To summarize, we make the following contributions:
1) We present a hierarchy of novel control plane abstrac-

tions, called the NRC abstractions, that add nondeter-
minism to a general route selection procedure (§IV).
We prove our abstractions sound and empirically show
that they enable a precision-cost tradeoff in verification.
Although our focus is on SMT-based verification, these
abstractions could be used with other methods as well.

2) We present a novel SMT encoding (§V) (based on
symbolic graphs [21]) to capture distributed control plane
behavior. This leverages SMT solvers that support graph-
based reasoning, as well as standard SMT solvers.

3) We implemented our abstractions and SMT encoding in
a prototype tool called ACORN and present a detailed
evaluation (§VI) on synthetic data center benchmarks and
real-world topologies with well-known network policies.

II. MOTIVATING EXAMPLES

In a distributed routing protocol, routers exchange route
announcements containing information on how to reach vari-
ous destinations. On receiving a route announcement, a router
updates its internal state and sends a route announcement
to neighboring routers after processing it as per the routing
configurations. In well-behaved networks, this distributed de-
cision process converges to a stable state [28] in which the
internal routing information of each router does not change
upon receiving additional route announcements. The best route
selected by each router defines a routing tree: if router u selects

R5 R4

R3

R2

R1

add c1

if c1 then
lp = 200

(a) Example 1

R7

R6

R5

R4

R3

R2

R1

add c1

if c1 then
lp = 200

if c1 then
drop route

if not c1 then
drop route

(b) Example 2

Fig. 1: Examples showing correct verification result with an
NRC abstraction. Red arrows show the routing tree in the real
network, and green arrows show an additional routing tree
allowed in the abstraction.

the route announcement sent by router v for destination d, then
u will forward data packets with destination d to v.

Example 1 (Motivating example). Consider the network in
Figure 1a (from ShapeShifter [16]) with five routers running
the Border Gateway Protocol (BGP), described in Appendix A,
where actions taken by routers are shown along the edges.

The verification task is to check whether routes announced
at R1 can reach R5. The network uses the BGP community
attribute, a list of string tags, to ensure that R4 prefers to
route through R3: the community tag c1 is added along the
edge (R1, R3), which causes the local preference (lp) to be
set to 200 along the edge (R3, R4). Routes with higher local
preference are preferred (the default local preference is 100).
Thus, the best route at R4 is through R3 and the corresponding
routing tree is shown by red (solid) arrows.

Note that R5 can receive a route even if R4 chooses to route
through R2 instead, though this route is not the best for R4.
Thus, R5 can reach the destination regardless of the choice R4

makes. This observation captures the basic idea in our NRC
abstractions– intuitively, we explore multiple available routes
at a node: the best route as well as other routes. Then we
check if R5 receives a route under each of these possibilities.
Since R5 can reach R1 in all routing trees considered by our
abstraction we correctly conclude that it can reach R1.

False positives and refinement. The NRC abstractions are
sound, i.e., when verification with an abstraction is successful,
the property is guaranteed to hold in the network. However,
verification with an abstraction could report a false positive,
i.e., a property violation even when the network satisfies the
property. In Figure 1a, suppose R5 drops routes without the
tag c1. In the real network, R5 will receive a route, since the
route sent by R4 has the tag c1. However, verification with an
abstraction that considers all possible routes would report that
R5 cannot reach the destination, with a counterexample where
R4 routes through R2 and its route announcement is dropped
by R5. Here, an NRC abstraction higher up in the precision
hierarchy, e.g., one which chooses a route with maximum local
preference but abstracts the path length, will verify that R5

receives a route, thereby eliminating the false positive.

Path-sensitive reasoning. Even our least precise abstraction
can verify many interesting policies due to our symbolic SMT-
based approach which tracks correlations between choices
made at different routers, which other tools [16] do not track.

SRP instance: SRP = (G,A, ad,≺, trans), G = (V,E, d)
SRP solution: L : V → A∞

L(u) =

⎧⎪⎨⎪⎩
ad if u = d

∞ if attrsL(u) = ∅
a ∈ attrsL(u), minimal by ≺ if attrsL(u) ̸= ∅

attrsL(u) = {a | (e, a) ∈ choicesL(u)}
choicesL(u) = {(e, a) | e = (v, u),

a = trans(e,L(v)), a ̸= ∞)}
Fig. 2: Cheat sheet for SRP [30].

Example 2 (Path-sensitivity). Figure 1b shows another BGP
network (from Propane [29]), with seven routers and desti-
nation R1. We would like to verify that R7 can reach R1.

In the real network, R4 chooses the route from R3 which has
higher local preference (as shown by red/solid arrows). Under
the least precise NRC abstraction, R4 could choose the route
from R2 instead. Regardless of R4’s choice, the community
tags in the routes received by R5 and R6 are the same, and so
R7 will receive a route either way – our abstraction tracks this
correlation and correctly concludes that R7 can reach R1.

III. PRELIMINARIES

In this section we briefly cover the background on the
key building blocks required to describe our technical con-
tributions. Our NRC abstractions are formalized using the
Stable Routing Problem (SRP) model [30], [13], a formal
model of network routing for distributed routing protocols.
We also briefly describe SMT-based verification using the SRP
model (e.g., Minesweeper [11]) and support for graph-based
reasoning in the SMT solver MonoSAT [21].

Definition 1 (Stable Routing Problem (SRP) [30]). An SRP
is a tuple (G, A, ad, ≺, trans) where G = (V, E, d) is
a graph representing the network topology with vertices V ,
directed edges E, and destination d; A is a set of attributes
representing route announcements; ad ∈ A denotes the initial
route sent by d; ≺ ⊆ A×A is a partial order that models the
route selection procedure (if a1 ≺ a2 then a1 is preferred);
trans : E×A∞ → A∞, where A∞ = A∪{∞} and ∞ denotes
no route, is a transfer function that models the processing of
route announcements sent from one router to another.

Figure 2 summarizes the important notions for the SRP
model [30]. The main difference from routing algebras [31],
[32] is that the SRP model includes a network topology graph
G to reason about a given network and its configurations.

SRP solutions. A solution of an SRP is a labeling function L :
V → A∞ which represents the final route (attribute) chosen
by each node when the protocol converges. An SRP can have
multiple solutions, or it may have none. Any SRP solution
satisfies a local stability condition: each node selects the best
among the route announcements received from its neighbors.

Example 3 (SRP example). The network in Figure 1a run-
ning a simplified version of BGP (simplified for pedagogic

reasons) is modeled using an SRP in which attributes are
tuples comprising an integer (local preference), a set of bit
vectors (community tags), and a list of vertices (the path).
We use a.lp, a.comms, and a.path to refer to the elements
of an attribute a. The initial attribute at the destination,
ad = (100, ∅, []). The preference relation ≺ models the BGP
route selection procedure which is used to select the best route.
The attribute with highest local preference is preferred; to
break ties, the attribute with minimum path length is preferred
(more details are in Appendix A). The transfer function for
edge (R1, R3) adds the tag c1 and prepends R1 to the
path, returning (100, a.comms ∪ {c1}, [R1] + a.path). The
transfer function for edge (R3, R4) sets the local preference
to 200 if the tag c1 is present, i.e., if c1 ∈ a.comms it
returns (200, a.comms, [R3] + a.path); otherwise, it returns
(100, a.comms, [R3]+a.path). The transfer function for other
edges (u, v) prepends u to the path, sets the local preference
to the default value (100), and propagates the community tags.

SMT-based verification using SRP. Minesweeper [11] en-
codes the SRP instance for the network using an SMT formula
N , such that satisfying assignments of N correspond to SRP
solutions. To verify if a property encoded as a formula P
holds, the satisfiability of F = N ∧ ¬P is checked. If F
is satisfiable, a property violation is reported. Otherwise, the
property holds over the network (assuming N is satisfiable;
otherwise there are no stable paths).

SMT with theory solver for graphs. MonoSAT [21] is an
SMT solver with support for monotonic predicates. A predicate
p is (positive) monotonic in a variable u if whenever p(. . . u =
0 . . .) is true, p(. . . u = 1 . . .) is also true. Graph reachability
is a monotonic predicate: if node v1 can reach node v2 in
a graph with an edge removed, it can still reach v2 when
the edge is added. MonoSAT leverages predicate monotonicity
to provide efficient theory support for graph-based reasoning
using a symbolic graph, a graph with a Boolean variable per
edge. Formulas can include these Boolean edge variables as
well as monotonic predicates such as reachability and max-
flow. MonoSAT has been used to check reachability in data
planes in AWS networks [33], [34], but not in control planes,
as we do in this work.

IV. NRC ABSTRACTIONS

We formalize our NRC abstractions as abstract SRP in-
stances, which are parameterized by a partial order.

Definition 2 (Abstract SRP). For an SRP S = (G,A, ad,≺
, trans), an abstract SRP ˆ︁S≺′ is a tuple (G,A, ad,≺′, trans),
where G, A, ad, and trans are defined as in the SRP S, and
≺′ ⊆ A∞ ×A∞ is a partial order which satisfies

∀B ⊆ A, minimal(B,≺) ⊆ minimal(B,≺′) (1)

where minimal(B,≺) = {a ∈ B | ∄a′ ∈ B. a′ ̸= a∧a′ ≺ a}
denotes the set of minimal elements of B according to ≺.
Condition (1) specifies that for any set of attributes B, the
minimal elements of B by ≺ are also minimal by ≺′.

(100, 15)

(100, 10)

(100, 5)

(200, 10)

BGP preference order

(100, 15) (100, 10) (100, 5) (200, 10)

Partial order

Better

Fig. 3: Partial orders in concrete and abstract SRPs.

Note that condition (1) ensures that the solutions (i.e.,
minimal elements) at any node in an SRP are also solutions at
the same node in the abstract SRP, i.e., the NRC abstractions
over-approximate the behavior of an SRP. The precision of
an NRC abstraction depends on the partial order used. Our
least precise abstraction uses ≺∗, in which any two attributes
are incomparable and ∞ is worse than all attributes, and
corresponds to choosing any available route. The following
example illustrates solutions of an abstract SRP ˆ︁S≺∗ .

Example 4 (Abstract SRP ˆ︁S≺∗). Figure 3 shows Hasse
diagrams for partially ordered sets comprising simplified BGP
attributes (pairs with local preference and path length; ∞
denotes no route) at a node u and two partial orders: (1) ≺,
the partial order in the standard (concrete) SRP (lifted to A∞)
that models BGP’s route selection procedure (shown on the
left), and (2) ≺∗, the partial order corresponding to choosing
any available route (shown on the right). Attributes appearing
lower in the Hasse diagram are considered better. Hence, in
the concrete SRP, u will select (200, 10). In the abstract SRP,
any element that is minimal by ≺∗ can be a solution for u so
u nondeterministically selects an available route. Observe that
(200, 10), the solution for u in the concrete SRP, is guaranteed
to be one of the solutions for u in the abstract SRP. This over-
approximation due to condition (1) ensures that our abstraction
is sound, i.e., it will not miss any property violations.

Verification with an NRC abstraction. To verify that a
property holds in a network using an abstraction ≺′, we
construct an SMT formula ˆ︁N such that satisfying assignments
of ˆ︁N are solutions of the abstract SRP ˆ︁S≺′ for the network, and
conjoin it with the negation of an encoding of the property P to
get a formula F = ˆ︁N ∧¬P . If F is unsatisfiable, all solutions
of ˆ︁S≺′ satisfy the property and verification is successful.
Otherwise, we report a violation with a counterexample (a
satisfying assignment), and a user can perform refinement
(described later in this section). Our approach is sound for
properties that hold for all stable states, i.e., properties of
the form ∀L ∈ Sol(S).P (L), where Sol(S) denotes the
SRP solutions for the network. Like Minesweeper [11], our
approach only models the stable states of a network and
cannot verify properties over transient states that arise before
convergence.

Lemma 1. [Over-approximation] For an SRP S and cor-
responding abstract SRP ˆ︁S≺′ with solutions Sol(S) and
Sol(ˆ︁S≺′) respectively, Sol(S) ⊆ Sol(ˆ︁S≺′).

Protocol Partial order Best route

OSPF
≺∗ Any

≺(pathcost) min path cost
≺ospf min path cost, min router ID

BGP

≺∗ Any
≺(lp) max lp (local preference)
≺(lp,pl) max lp, min path length

≺(lp,pl,MED) max lp, min path length, min
MED (Multi-exit Discriminator)

≺bgp max lp, min path length, min
MED, min router ID

Fig. 4: Hierarchy of NRC abstractions for OSPF and BGP.

The proof follows from the definition of SRP solutions and the
over-approximation condition (1) (full proof in Appendix B).

Theorem 1. [Soundness] Given SMT formulas ˆ︁N and N
modeling the abstract and concrete SRPs respectively and
SMT formula P encoding the property to be verified, ifˆ︁N ∧ ¬P is unsatisfiable, then N ∧ ¬P is also unsatisfiable.

The proof follows from Lemma 1 and is shown in Appendix B.

Verification under failures. We model link failures using ∞,
which denotes no route (device failures are modeled as failures
of all incident links). Let F denote a set of failed links. Given
SRP S = (G,A, ad,≺, trans), we model network behavior
under failures F using an SRP SF = (G,A, ad,≺, transF)
where transF returns ∞ along edges in F and is the same as
trans for other edges. We similarly define an abstract SRP for
SF , ˆ︁S≺′F = (G,A, ad,≺′, transF); it only differs from SF

in the partial order ≺′. Since Lemma 1 holds for an arbitrary
concrete SRP S, it holds for SF , i.e., any solution of SF is also
a solution of ˆ︁S≺′F . Hence, the NRC abstractions are sound
for verification under specified failures.

Hierarchy of NRC abstractions. The least precise NRC
abstraction (using ≺∗) does not model the route selection pro-
cedure at all, and chooses any route. More precise abstractions
can be obtained by modeling the route selection procedure
partially. Figure 4 shows partial orders and corresponding
route selection procedures (shown as steps in a ranking func-
tion) for OSPF and BGP, ordered from least precise (≺∗) to
most precise (≺). For example, ≺(lp,pl) corresponds to the
first two steps of BGP’s route selection procedure, i.e., it
first finds routes with maximum local preference, and from
these, selects one with minimum path length. Appendix A has
more details of BGP’s route selection procedure. Abstractions
higher up in the hierarchy are more precise as they model
more of the route selection procedure but are more expensive
as their SMT encodings have more variables and constraints.
This tradeoff between precision and performance is evident in
our experiments: verification with ≺(lp) was successful for all
networks for which verification with ≺∗ gave false positives
(§VI-B), but took up to 2.7x more time.

Abstraction refinement. If verification with an abstraction
fails, we validate the returned counterexample by checking

if each node actually chose the best route. Note that the
selected routes in the counterexample may contain only some
fields, depending on the abstraction used. We first find the
values of the other fields and the set of available routes
by applying the transfer functions along the edges in the
counterexample, starting from the destination router (i.e., by
effectively simulating the counterexample on the concrete
SRP). We then check if all routers selected the best route
that they received. If this is the case, we have found a real
counterexample, i.e., a stable solution in the real network that
violates the property; if not, the counterexample is spurious.
We can eliminate the spurious counterexample by adding a
blocking clause that is the negation of the variable assignment
corresponding to it and repeat verification with the same
abstraction in a CEGAR [35] loop, but this could take many
iterations to terminate. Instead, we suggest choosing a more
precise abstraction which is higher up in the NRC hierarchy.
We could potentially use a local refinement procedure that uses
a higher-precision abstraction only at certain routers, based on
the counterexample. We plan to explore this and other ways of
counterexample-guided abstraction refinement in future work.

V. SMT ENCODINGS

In this section we present our SMT encodings for an
abstract SRP based on symbolic graphs. SRPs [30] can model
many distributed routing protocols (e.g., RIP, BGP, etc.) where
the protocol and configurations determine the partial order
for route selection and the transfer function. We begin by
providing definitions for a symbolic graph and its solutions.

Definition 3 (Symbolic graph [21]). A symbolic graph GRE

is a tuple (G,RE) where G = (V,E) is a graph and RE =
{reuv|(u, v) ∈ E} is a set of Boolean routing edge variables.

Definition 4 (Symbolic graph solutions [21]). A symbolic
graph GRE = (G,RE) and a formula F over RE has
solutions Sol(GRE , F) which are subgraphs of G defined
by assignments to RE that satisfy F , such that an edge (u, v)
is in a solution subgraph iff reuv = 1 in the corresponding
satisfying assignment.

A. Routing Constraints on Symbolic Graphs

We now describe the constraints in our SMT formulation,ˆ︁N , of the abstract SRP ˆ︁S. The symbolic graph solutions
Sol(GRE , ˆ︁N) correspond to solutions of ˆ︁S. The complete
formulation is summarized in Figure 5.

• Routing choice constraints: Each node other than the
destination chooses a neighbor to route through or None,
which denotes no route (eqn. 2). We use a variable
nChoice to denote a node’s choice. The routing edge
revu is true iff u chooses a route from v (eqn. 3).

• Route availability constraints: If a node u chooses to
route through a neighbor v, then v must have a route
to the destination (eqn. 5). If every neighbor v either
has no route (¬hasRoutev) or the route is dropped
(routeDroppedvu), then u must choose None (eqn. 6).

• Attribute transfer and route filtering constraints: If u
chooses to route through neighbor v (i.e., revu = 1), the
transfer function relates their attributes and v’s route must
not be dropped along edge (v, u) (eqns. 7 and 8). The
attribute at the destination is the initial route ad (eqn. 9).

Our formulation is parameterized by three placeholders: (1)
hasRoutev , which is true iff v receives a route from the des-
tination; (2) transvu, the transfer function along edge (v, u);
and (3) routeDroppedvu, which is true iff the route is filtered
along the edge (v, u). Of these, transvu and routeDroppedvu
depend on the network protocol and configuration, and are
shown in an example below. The encodings of hasRoute are
described in the next subsection.

Example 5 (Transfer constraints). The attribute transfer and
route filtering constraints in the abstract SRP (with partial
order ≺∗) are shown below for the network in Figure 1b.

We only model fields used in route filtering (i.e., the
community attribute) and ignore local preference and path
length. We use a bit vector variable commu to denote the
community attribute at node Ru, and a Boolean routing edge
variable reuv for each edge (Ru, Rv). We encode the presence
of community tag c1 as 1, and its absence as 0.

Initial route at destination. We set the community attribute
to 0 at the destination R1 using the constraint comm1 = 0.

Transfer constraints along edge (R1, R3). The transfer func-
tion adds the community tag c1. The route is never dropped
along this edge, so the placeholder routeDropped13 is false.

re13 → comm3 = 1 (15)
re13 → ¬routeDropped13 (16)
routeDropped13 ↔ False (17)

Our implementation simplifies formulas when routeDropped
is a constant, and only asserts equation (15) above.

Transfer constraints along edges (R5, R7) and (R6, R7).
The transfer functions propagate the community attribute and
filter routes based on whether tag c1 is present.

re57 → comm7 = comm5 (18)
re57 → ¬routeDropped57 (19)
routeDropped57 ↔ (comm5 = 1) (20)
re67 → comm7 = comm6 (21)
re67 → ¬routeDropped67 (22)
routeDropped67 ↔ (comm6 = 0) (23)

Transfer constraints along other edges. The transfer func-
tions propagate the community attribute and do not filter
routes.

revu → commu = commv (24)
revu → ¬routeDroppedvu (25)
routeDroppedvu ↔ False (26)

Our implementation simplifies the formulas by substituting the
value of routeDropped, and only asserts equation (24).

Abstract SRP ˆ︁S = (G, A, ad, ≺′, trans), G = (V, E, d)
Symbolic graph GRE = (G, RE)

Variables

attru : bit vector route announcement fields,
∀u ∈ V

nChoiceu : bit vector neighbor choice, ∀u ∈ V \ {d}
hasRouteu : Boolean placeholder for route availabil-

ity, ∀u ∈ V
routeDroppeduv : Boolean route dropped along an edge,

∀(u, v) ∈ E
Constants

nID(u, v) : integer u’s neighbor ID for v, ∀(u, v) ∈ E
Noneu : integer ID denoting no neighbor, ∀u ∈ V

Routing choice constraints⎛⎝ ⋁︂
(v,u)∈E

nChoiceu = nID(u, v)

⎞⎠ ∨ nChoiceu = Noneu

(2)
nChoiceu = nID(u, v) ↔ revu (3)
¬revd ∀(v, d) ∈ E (4)

Route availability constraints

nChoiceu = nID(u, v) → hasRoutev (5)
nChoiceu = Noneu ↔⋀︂
(v,u)∈E

¬hasRoutev ∨ routeDroppedvu (6)

Attribute transfer and route filtering constraints

revu → attru = transvu(attrv) (7)
revu → ¬routeDroppedvu (8)
attrd = ad (9)

Solver-specific constraints

(a) SMT solvers with graph theory support (e.g., MonoSAT):

∀u ∈ V, hasRouteu ↔ GRE .reaches(d, u) (10)

(b) SMT solvers without graph theory support (e.g., Z3):

hasRouted (11)

∀u ̸= d, hasRouteu ↔
⋁︂

v, (v,u)∈E

hasRoutev ∧ revu (12)

rankd = 0 (13)
∀(v, u) ∈ E, revu → ranku = (rankv + 1) (14)

Fig. 5: Symbolic graph-based encoding for an abstract SRP.

B. Solver-specific Constraints

We have two encodings of hasRoute, depending on
whether the SMT solver has graph theory support.

SMT solvers with graph theory support. We use the
reachability predicate GRE .reaches to encode hasRoute:
hasRoutev is true iff GRE .reaches(d, v) (i.e., there is a path
from d to v in the symbolic graph GRE), where d is the destina-
tion (eqn. 10). Additionally, we use the reachability predicate
to model regular expressions over paths, which most tools do
not support. For example, the regular expression “.*ab.*c.*d.*”
(where ‘.’ matches any character and ‘*’ denotes 0 or more
occurrences of the preceding character) matches any path that
traverses edge (a, b), node c, and then node d, and is encoded
as reab ∧ GRE .reaches(b, c) ∧ GRE .reaches(c, d).

Standard SMT solvers. We interpret hasRoute as a reach-
ability marker which indicates whether a route has been
received and add constraints to propagate the marker in the
symbolic graph (eqns. 11 and 12). To prevent solutions with
loops, we use a variable, rank, at each node to track the path
length along with additional constraints (eqns. 13 and 14).

Loop prevention. In BGP, routing loops are prevented using
the AS path attribute, the list of autonomous systems (ASes)
in the route; routers drop routes if the AS path contains their
AS. To model BGP’s loop prevention mechanism exactly,
Minesweeper’s [11] SMT encoding would require O(N2)
additional variables (where N is the number of routers) to
track for each router, the set of routers in the AS path. Since
this is expensive, Minesweeper uses an optimization that relies
on the route selection procedure to prevent loops when routers
use default local preference: the shorter loop-free path will
be selected. Our encodings for hasRoute model BGP’s loop
prevention mechanism exactly with fewer additional variables:
the MonoSAT encoding uses no additional variables and the
Z3 encoding uses O(N) additional variables (rank).

C. Benefits of the NRC Abstractions in SMT Solving

Fewer attributes. The most direct benefit is that with NRC
abstractions many route announcement fields become irrele-
vant and can be removed from the network model, resulting
in smaller SMT formulas. Specifically, all fields required to
model route filtering (i.e., the dropping of route announce-
ments) and the property of interest are retained, but fields used
only for route selection (e.g., local preference) can be removed
depending on the specific abstraction.

Expensive transfers can be avoided during SMT search.
Once a neighbor is selected during the SMT search, then
transfers of attributes from other neighbors become irrelevant.
In contrast, without any abstraction, each node must consider
transfers of attributes from all neighbors to pick the best route.

D. Encoding Properties for Verification

Reachability. We encode the property that a node u can reach
destination d by asserting its negation: nChoiceu = Noneu.

Core

Aggr

ToR
destination

Valley-free path

(a) FatTree topology

Aggr Core if c == 0 then c = 1
else drop route

Aggr ToR
if c == 0 then c = 1
else if c == 1 then c = 2
else c = 3

ToR Aggr if c != 0 then drop route

c: community attribute (bit vector of width 2)

(b) Valley-free policy

Fig. 6: Example data center network with a valley-free policy.

Non-reachability/Isolation. We encode the property that a
node u can never reach d by asserting nChoiceu ̸= Noneu.

No-transit property. Routing policies between autonomous
systems (ASes) are typically influenced by business relation-
ships such as provider-customer or peer-peer [19], [36]. A
provider AS is paid to carry traffic to and from its customers
while peer ASes exchange traffic between themselves and
their customers without any charge. The BGP policies (Gao-
Rexford conditions [19]) between ASes usually ensure that an
AS does not carry traffic from one peer or provider to another.
This is called a no-transit property; its negation is encoded as⋁︁

u∈V

⋁︁
v,w∈PeerProv(u),

v ̸=w

revu ∧ reuw, where PeerProv(u)

denotes neighbors of u that are its peers or providers.

Policy properties. BGP policies can be defined by assigning
meaning to specific community tags. Policy properties can then
be encoded using formulas over the communities at a node.

Example 6 (Valley-free Policy). The valley-free policy pre-
vents paths that have valleys, i.e., paths which go up, down,
and up again between the layers of a FatTree network topol-
ogy [23], [29]; a valley-free path is shown in Figure 6a.
Figure 6b shows an implementation of the valley-free policy
where c denotes the community attribute in BGP. A path
between ToR routers with a valley between the Aggr and Core
layers will cross an Aggr router at least thrice, updating c to
3. Hence, the negation of the valley-free property at a node u
is encoded as commu = 3.

VI. IMPLEMENTATION AND EVALUATION

We implemented our abstractions and SMT encodings in
a prototype tool called ACORN, with backends to MonoSAT
and Z3 solvers. (The SMT encoding for an abstract SRP (§V)
is extended for a concrete SRP using additional constraints
described in Appendix D.) ACORN’s input is an intermediate
representation (IR) of a network topology and configurations
(described in Appendix C) which represents routing policy
using match-action rules, similar to route-maps in Cisco’s con-
figuration language, and could serve as a target for frontends
such as Batfish [14] or NV [13] in the future.

In our evaluation, we measure the effectiveness of the NRC
abstractions and use two back-end SMT solvers – MonoSAT
and Z3 (with bitvector theory and bit-blasting enabled). We use
four settings: (1) abs mono: with NRC abstraction (≺∗), us-
ing MonoSAT; (2) abs z3: with NRC abstraction (≺∗), using
Z3; (3) mono: without abstraction, using MonoSAT; (4) z3:

without abstraction, using Z3. We evaluated ACORN on two
types of benchmarks: (1) data center networks with FatTree
topologies [23] (a commonly used topology), and (2) wide area
networks from Topology Zoo [24] and BGPStream [25] (more
details are in Appendix C). We also compared ACORN with
two state-of-the-art control plane verifiers on the data center
benchmarks. All experiments were run on a Mac laptop with
a 2.3 GHz Intel i7 processor and 16 GB memory.

A. Data Center Networks

We generated data center network benchmarks with FatTree
topologies [23], with 125 to 36,980 nodes running four poli-
cies: (1) shortest-path routing policy, (2) valley-free policy,
(3) an extension of the valley-free policy with an isolation
property – it uses regular expressions to enforce isolation
between a FatTree pod and an external router connected to
the core routers, and (4) a buggy valley-free policy in which
routers in the last pod cannot reach routers in other pods.
We checked reachability for all policies, and a policy-based
property for (2) and (3). The results are shown in Figure 7,
with each graph showing the number of nodes on the x-axis
and the verification time (in seconds) on the y-axis.

Our results show that for all data center examples, and with
both solvers, using the NRC abstraction is uniformly better
than using the no-abstraction setting. In particular, with the
MonoSAT solver, the NRC abstraction can achieve a relative
speed-up of 52x for verifying reachability (when verification
completes within a 1 hour timeout). Note also that MonoSAT
performed better than Z3 by up to 10x; leveraging graph-
based reasoning was clearly beneficial for these examples. Our
abstract settings successfully verified all properties without
any false positives, showing that the NRC abstraction can
handle realistic policies. For networks running the buggy
valley-free policy, our tool correctly reports that the destination
is unreachable (results are in Figure 7f). Furthermore, our
abstraction is effective even in these cases: abs mono finishes
on 3,000 nodes within an hour, while both no-abstraction
settings time out on 2,000 nodes.

In terms of scalability, for both solvers, the no-abstraction
setting times out beyond 4,500 nodes for reachability verifica-
tion, while the abstract setting scales up to about 37,000 nodes
for the shortest-path and valley-free policies, and up to 18,000
nodes for the isolation policy. To the best of our knowledge,
all prior related work has been shown on networks with up to
4,500 nodes (maximum), which are much smaller than large
data centers in operation today.

B. Wide Area Networks

To evaluate ACORN on less regular network topologies than
data centers, we considered wide area network benchmarks.
These typically have small sizes and are not easily parameter-
ized, unlike data center topologies. We evaluated ACORN on
two sets of wide area networks: (1) 10 of the larger networks
from Topology Zoo [24], with 22 to 79 routers, which we
annotated with business relationships (since Topology Zoo
only provides topologies), and (2) 10 example networks based

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7: Results for data center networks: (a) reachability with shortest-path routing, (b) reachability with valley-free policy, (c)
valley-free property, (d) reachability with isolation policy, (e) isolation property, and (f) reachability with a buggy valley-free
policy. Results for BGPStream examples: (g) reachability, (h) no-transit property, refinement using (i) MonoSAT and (j) Z3.

on parts of the Internet that were involved in misconfiguration
incidents as reported on BGPStream [25], which we annotated
with publicly available business relationships (CAIDA AS
relationships dataset [37]). For all benchmarks, we used a BGP
policy that implements the Gao-Rexford conditions [19]: (1)
routes from peers and providers are not exported to other peers
and providers, and (2) routes from customers are preferred
over routes from peers, which are preferred over routes from
providers. We then checked two properties: reachability of all
nodes to a destination, and the no-transit property (§V-D).

Topology Zoo benchmarks. The abstract settings successfully
verify both properties and are up to 3x faster than the respec-
tive no-abstraction settings. All settings take less than 0.5s for
both properties (detailed results are in Appendix C).

BGPStream benchmarks. The results are in Figures 7g to 7j,
with the number of nodes (ASes) on the x-axis and verification
time in seconds on the y-axis (log scale). The abstract settings
successfully verified reachability in 6 networks and gave
false positives (denoted by triangular markers) for 4; when
successful, the abstract settings performed much better than
the no-abstraction settings with relative speedups of up to
323x for MonoSAT and 3x for Z3. For the no-transit property,
abs mono is up to 120x faster than mono, while abs z3 is
faster than z3 for some networks but slower for others.

For the 4 benchmarks with false positives, we used a
more precise abstraction, ≺(lp), which models local preference
(results shown in Figures 7i and 7j). Our ≺(lp) abstraction is
successful on all 4 networks, with relative speedups (over no
abstraction) of up to 133x for MonoSAT and 1.8x for Z3,
and relative slowdowns (over ≺∗) of up to 2.7x for MonoSAT
and 1.5x for Z3. These results demonstrate the precision-cost
tradeoff enabled by the NRC abstraction hierarchy.

C. Comparison with Existing Tools

We compared ACORN with two state-of-the-art control
plane verifiers: ShapeShifter [16] and NV [13] (FastPlane [15]

(a) Shortest-path policy (b) Valley-free policy

Fig. 8: Comparison of tools on data center examples.

and Hoyan [18] are not publicly available). ShapeShifter
uses simulation with abstract interpretation [38], with binary
decision diagrams (BDDs) [39] representing sets of abstract
routing messages. NV is a functional programming language
for modeling and verifying network control planes. It provides
a simulator (based on Multi-Terminal BDDs [40] but without
abstraction of routing messages) and an SMT-based verifier
that uses Z3. (NV’s SMT engine has been shown to perform
better than Minesweeper [13].) NV uses a series of front-end
transformations to generate an SMT formula (we only report
NV’s SMT solving time), but its encoding is not based on
symbolic graphs. A comparison of our no-abstraction settings
against NV SMT gives some indication of the effectiveness
of our SMT encoding. We performed experiments on the data
center benchmarks (§VI-A), where we generated correspond-
ing inputs for ShapeShifter and NV with the same routing
message fields. The results for the shortest-path routing and
valley-free policies are shown in Figure 8, with the number
of nodes shown on the x-axis, verification time in seconds on
the y-axis (log scale), timeouts denoted by ‘x’, and out-of-
memory denoted by ‘OOM’. (ShapeShifter and NV could not
be run on the isolation benchmarks as they do not support
regular expressions over AS paths.) Note that both NV and
ShapeShifter run out of memory for networks with more than
3,000 nodes while ACORN’s mono and abs mono settings can

verify larger networks with 4,500 nodes and 36,980 nodes,
respectively. These results show that SMT-based methods for
network control plane verification can scale to large networks
with tens of thousands of nodes.

D. Discussion and Limitations

ACORN is sound for properties that hold for all stable states
of a network, i.e., properties of the form ∀s P (s) where s is
a stable state, such as reachability, policy-based properties,
device equivalence, and way-pointing. Like many SMT-based
tools, ACORN cannot verify properties over transient states
that arise before convergence. For checking reachability, our
least precise abstraction works well in practice; to verify a
property about the path length between two routers a user
should use an abstraction that models path length (otherwise
our verification procedure would give a false positive). We
have shown that our abstractions are sound under specified
failures; however, our tool does not yet model failures, which
we plan to consider in future work.

VII. RELATED WORK

Our work is related to other efforts in network verification
and the use of nondeterministic abstractions for verification.

Distributed control plane verification. These methods [41],
[12], [42], [17], [11], [13] aim to verify all data planes that
emerge from the control plane. Simulation-based tools [14],
[43], [15] can scale to large networks, but can miss errors
that are triggered only under certain environments. The FAST-
PLANE [15] simulator scales to large data centers (results
shown for ≈2000 nodes) but it requires the network policy
to be monotonic [31] (a route announcement’s preference
decreases along any edge in the network) while our approach
does not. HOYAN [18] uses a hybrid simulation and SMT-
based approach which tracks multiple routes received at each
router to check reachability under failures, but in the context of
the given simulation. The ShapeShifter [16] work is the closest
to ours in terms of route abstractions, but it does not scale as
well as our tool (§VI-C). Moreover, our SMT-based approach
provides better precision by exploring multiple routing choices
at each node and tracking correlations across different nodes,
whereas ShapeShifter uses a conservative abstraction at each
node, much as SMT-based program verification allows path-
sensitivity for more precision than path-insensitive static anal-
ysis. For example, ShapeShifter’s ternary abstraction (which
abstracts each community tag bit to {0, 1, ∗}) would result in
a false positive on Example 2 (§II), while ACORN verifies it
correctly. Bagpipe [12] verifies BGP policies using symbolic
execution and uses a simplified BGP route selection procedure
that chooses routes with maximum local preference, similar to
our NRC abstraction using ≺(lp). Our abstraction hierarchy is
more general and can be applied to any routing protocol.

ARC [44] and QARC [45] use a graph-based abstraction
combined with graph algorithms and mixed-integer linear
programming respectively, but do not support protocol features
such as local preference and community tags. Tiramisu [46]
uses a similar graph-based representation, but with multiple

layers to capture inter-protocol dependencies and was shown
to scale to networks with a few hundred devices. Bonsai [30]
compresses the network control plane to take advantage of
symmetry in the network topology and policy; NRC abstrac-
tions can be applied even when the network is not symmetric.

Some recent approaches [47], [48], [20] use modular ver-
ification techniques to improve the scalability of verification;
the core ideas in modular verification are orthogonal to our
work. Among these efforts, LIGHTYEAR [20] also verifies
BGP policies using an over-approximation that allows routers
to choose any received route – this corresponds to our NRC ab-
straction with partial order ≺∗. However, unlike our approach,
it requires a user to provide suitable invariants.

Data plane verification. These efforts [49], [50], [51], [52],
[53], [54], [55], [56] model the data forwarding rules and
check properties such as reachability, absence of routing loops,
etc. Many such methods have been shown to successfully han-
dle the scale and complexity of real-world networks. Similar
to these methods, our least precise abstraction does not model
the route selection procedure but we verify all data planes that
emerge from the control plane, not just one snapshot.

Nondeterminism and abstractions. Nondeterministic ab-
stractions have been used in many different settings in software
and hardware verification. Examples include control flow non-
determinism in Boolean program abstractions in SLAM [57],
a sequentialization technique [58] that converts control nonde-
terminism (i.e., interleavings in a concurrent program) to data
nondeterminism, and a localization abstraction [59] in hard-
ware designs. Our NRC abstractions use route nondeterminism
to soundly abstract network control plane behavior.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

The main motivation for our work is to improve the scal-
ability of symbolic verification of network control planes.
Our approach is centered around two core contributions: a
hierarchy of nondeterministic routing choice abstractions, and
a new SMT encoding that can leverage specialized SMT
solvers with graph theory support. Our tool, ACORN, has
verified reachability (an important property for network op-
erators) on data center benchmarks (with FatTree topologies
and commonly used policies) with ≈37,000 routers, which far
exceeds what has been shown by existing related tools. Our
evaluation shows that our abstraction performs uniformly bet-
ter than no abstraction for verifying reachability for different
network topologies and policies, and with two different SMT
solvers. In future work, we plan to consider verification under
failures, and combine our abstractions with techniques based
on modular verification of network control planes.

ACKNOWLEDGMENTS

This work was supported in part by NSF Grants 1837030 and
2107138. Any opinions, findings, and conclusions expressed
herein are those of the authors and do not necessarily reflect
those of the NSF. We would also like to thank Anish Athalye
for permitting use of Basalt, a language for graphic design.

APPENDIX A
BGP OVERVIEW

BGP is the protocol used for routing between autonomous
systems (ASes) in the Internet. An autonomous system (AS)
is a network controlled by a single administrative entity,
e.g., the network of an Internet Service Provider (ISP) in a
particular country, or a college campus network. A simplified
version of the decision process used to select best routes in
BGP is shown in Table I [36]. A router compares two route
announcements by comparing the attributes in each row of the
table, starting from the first row. A route announcement with
higher local preference is preferred, regardless of the values
of other attributes; if two route announcements have equal
local preference, then their path lengths will be compared.
BGP allows routes to be associated with additional state via
the community attribute, a list of string tags. Decisions can
be taken based on the tags present in a route announcement;
for example, a route announcement containing a particular tag
can be dropped or the route preference can be altered (e.g., by
increasing the local preference if a particular tag is present).

APPENDIX B
PROOF OF SOUNDNESS OF THE NRC ABSTRACTIONS

Lemma 1. [Over-approximation] For an SRP S and cor-
responding abstract SRP ˆ︁S≺′ with solutions Sol(S) and
Sol(ˆ︁S≺′) respectively, Sol(S) ⊆ Sol(ˆ︁S≺′).

Proof. We need to show that for each labeling L, if L ∈
Sol(S) then L ∈ Sol(ˆ︁S≺′). An SRP solution L is defined by

L(u) =

⎧⎪⎨⎪⎩
ad if u = d

∞ if attrsL(u) = ∅
a ∈ attrsL(u) , minimal by ≺ if attrsL(u) ̸= ∅

where attrsL(u) is the set of attributes that u receives from its
neighbors. The abstract SRP ˆ︁S≺′ differs from the SRP S only
in the partial order. Therefore, to show that L is a solution
of ˆ︁S≺′ , we need to show that if attrsL(u) ̸= ∅, then L(u) is
minimal by ≺′. By the definition of an abstract SRP, the set
of minimal attributes according to ≺′ is a superset of the set
of minimal attributes according to ≺, which means L(u) is
minimal by ≺′. Therefore, any SRP solution L is a solution
of the abstract SRP ˆ︁S≺′ .

Theorem 1. [Soundness] Given SMT formulas ˆ︁N and N
modeling the abstract and concrete SRPs respectively and
SMT formula P encoding the property to be verified, ifˆ︁N ∧ ¬P is unsatisfiable, then N ∧ ¬P is also unsatisfiable.

Proof. If ˆ︁N∧¬P is unsatisfiable, every solution of the abstract
SRP satisfies the given property. By Lemma 1, the property
also holds for all solutions of the concrete SRP S, i.e., there
is no property violation in the real network.

APPENDIX C
ACORN INTERMEDIATE REPRESENTATION (IR) AND

BENCHMARK EXAMPLES

Intermediate Representation (IR). Our IR represents a
transfer function as a list of match-action rules, similar to

Provider Customer

c = 2
lp = 100

Customer Provider

if c != 0 then drop route
else c = 0; lp = 300

Peer Peer

if c != 0 then drop route
else c = 1; lp = 200

c: community attribute (bit vector of width 2)

c = 0: Customer, c = 1: Peer, c = 2: Provider

Fig. 9: BGP policy implementing Gao-Rexford conditions [19]

(a) Reachability (b) No-transit property

Fig. 10: Results for Topology Zoo examples.

route-maps in Cisco’s configuration language. We support
matching on the community attribute and some types of regular
expressions over the AS path. Our implementation currently
supports regular expressions that check whether the path
contains certain ASes or a particular sequence of ASes, and
could be extended to support general regular expressions in the
future. A match can be associated with multiple actions, which
can update route announcement fields such as the community
attribute, local preference, and AS path length.

Benchmark examples. The details of the wide area network
examples we used (§VI-B) are described below.
Topology Zoo benchmarks. We used 10 topologies from the
Topology Zoo [24], which we pre-processed, e.g., by removing
duplicate nodes and nodes with id “None”. The details of the
resulting topologies are shown in Table II. We annotated the
topologies with business relationships, considering each node
as an AS, and used a BGP policy that implements the Gao-
Rexford conditions [19] (Figure 9). The annotated benchmark
files (in GML format) are included in our benchmark reposi-
tory, along with the examples in our IR format.
BGPStream benchmarks. We created a set of 10 examples

based on parts of the Internet involved in BGP hijacking
incidents, as reported on BGPStream [25]. For each hijacking
incident, we created a network with the ASes involved and
used the CAIDA AS Relationships dataset [37] to add edges
between ASes with the given business relationships (customer-
provider or peer-peer). We then removed some ASes (if
required) so that our no-abstraction setting could verify that all
ASes in the resulting network can reach the destination (taken
to be the possibly hijacked AS). We used a BGP policy (shown
in Figure 9) that implements the Gao-Rexford conditions [19].
The details of the examples are shown in Table III.

Results for Topology Zoo examples. Detailed results for the
Topology Zoo benchmark examples are shown in Figure 10.

Step Attribute Description Preference
(Lower/Higher)

1 Local preference An integer set locally and not propagated Higher
2 AS path length The number of ASes the route has passed through Lower
3 Multi-exit Discriminator (MED) An integer influencing which link should be used between two ASes Lower
4 Router ID Unique identifier for a router used for tie breaking Lower

TABLE I: Simplified BGP decision process to select the best route [36].

Benchmark Topology name Size
TZ1 VinaREN 22 nodes, 24 edges
TZ2 FCCN 23 nodes, 25 edges
TZ3 GTS Hungary 27 nodes, 28 edges
TZ4 GTS Slovakia 32 nodes, 34 edges
TZ5 GRnet 36 nodes, 41 edges
TZ6 RoEduNet 41 nodes, 45 edges
TZ7 LITNET 42 nodes, 42 edges
TZ8 Bell South 47 nodes, 62 edges
TZ9 Tecove 70 nodes, 70 edges

TZ10 ULAKNET 79 nodes, 79 edges

TABLE II: Topology Zoo examples.

Benchmark Incident date Size
B1 2021-06-14 261 nodes, 3325 edges
B2 2021-06-17 223 nodes, 2722 edges
B3 2021-06-18 133 nodes, 1205 edges
B4 2021-06-19 210 nodes, 2100 edges
B5 2021-06-21 269 nodes, 3351 edges
B6 2021-06-22 212 nodes, 2233 edges
B7 2021-06-22 294 nodes, 4108 edges
B8 2021-06-22 124 nodes, 860 edges
B9 2021-06-22 73 nodes, 270 edges
B10 2021-06-25 154 nodes, 1176 edges

TABLE III: BGPStream examples.

APPENDIX D
SMT CONSTRAINTS FOR CONCRETE SRP

We extend our abstract SRP formulation (Figure 5) to
encode a concrete SRP by adding additional constraints en-
suring that each node picks the best route, i.e., for every edge
(v, u) ∈ E, if u selects the route from v then v’s route must be
the best route that u receives from its neighbors. This requires
keeping track of the attribute fields used in route selection
(such as path length) and possibly additional variables to
track the minimum or maximum value of an attribute. The
constraints required to model the first two steps in BGP’s route
selection procedure are shown in Example 7.

Example 7 (Encoding route selection in BGP). We keep track
of local preference (denoted lp) and AS path length (denoted
path) and encode transfer constraints over these attributes
(e.g., to increment path length). For each edge (v, u), we use
lpvu to denote the local preference of the route sent from v
to u after applying the transfer function. For each node u we
use maxLpu to track the maximum local preference of routes
node u receives, and minPathu to track the minimum path
length among routes with the maximum local preference.

We define maxLpu below (nV alidvu ↔ hasRoutev ∧
¬routeDroppedvu indicates whether v sends a route to u).⋀︂

(v,u)∈E

nV alidvu → maxLpu ≥ lpvu

nChoiceu ̸= Noneu →
⋁︂

(v,u)∈E

nV alidvu ∧maxLpu = lpvu

We define minPathu using similar constraints:⋀︂
(v,u)∈E

(nV alidvu ∧ lpvu = maxLpu) → minPathu ≤ pathv

nChoiceu ̸= Noneu →⋁︂
(v,u)∈E

nV alidvu ∧ lpvu = maxLpu ∧minPathu = pathv

We then add constraints to ensure that if u chooses a route
from any neighbor v, then v’s route must be the best.

nChoiceu = nID(u, v) → lpvu = maxLpu ∧ pathv = minPathu

REFERENCES

[1] N. Rockwell, “Summary of june 8 outage,” https://www.fastly.com/blog/
summary-of-june-8-outage, 2021.

[2] J. Graham-Cumming, “Cloudflare outage on july 17, 2020,” https:
//blog.cloudflare.com/cloudflare-outage-on-july-17-2020/, 2020.

[3] M. Anderson, “Time warner cable says outages largely re-
solved,” http://www.seattletimes.com/business/time-warner-cable-says-
outages-largely-resolved, NY, NY, 2014.

[4] S. Ragan, “Bgp errors are to blame for monday’s twitter outage,
not ddos attacks,” https://www.csoonline.com/article/3138934/
security/bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-
ddos-attacks.html, 2016.

[5] D. Roberts, “It’s been a week and customers are still mad
at bb&t,” https://www.charlotteobserver.com/news/business/banking/
article202616124.html, 2018.

[6] Y. Sverdlik, “United says it outage resolved, dozen flights canceled
monday,” https://www.datacenterknowledge.com/archives/2017/01/23/
united-says-it-outage-resolved-dozen-flights-canceled-monday, 2017.

[7] K. Jayaraman, N. Bjørner, J. Padhye, A. Agrawal, A. Bhargava, P.-A. C.
Bissonnette, S. Foster, A. Helwer, M. Kasten, I. Lee, A. Namdhari,
H. Niaz, A. Parkhi, H. Pinnamraju, A. Power, N. M. Raje, and P. Sharma,
“Validating datacenters at scale,” in Proceedings of the ACM Special
Interest Group on Data Communication, ser. SIGCOMM ’19. New
York, NY, USA: ACM, 2019, pp. 200–213.

[8] B. Tian, X. Zhang, E. Zhai, H. H. Liu, Q. Ye, C. Wang, X. Wu,
Z. Ji, Y. Sang, M. Zhang, D. Yu, C. Tian, H. Zheng, and B. Y. Zhao,
“Safely and automatically updating in-network acl configurations with
intent language,” in Proceedings of the ACM Special Interest Group on
Data Communication, ser. SIGCOMM ’19. Association for Computing
Machinery, 2019, p. 214–226.

[9] H. Zeng, S. Zhang, F. Ye, V. Jeyakumar, M. Ju, J. Liu, N. McKeown,
and A. Vahdat, “Libra: Divide and conquer to verify forwarding tables
in huge networks,” in NSDI 14, 2014.

[10] L. L. Peterson and B. S. Davie, Computer Networks, Fifth Edition: A
Systems Approach, 5th ed., 2011.

[11] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A general approach
to network configuration verification,” in SIGCOMM, Aug. 2017.

[12] K. Weitz, D. Woos, E. Torlak, M. D. Ernst, A. Krishnamurthy, and
Z. Tatlock, “Formal semantics and automated verification for the border
gateway protocol,” in NetPL, 2016.

[13] N. Giannarakis, D. Loehr, R. Beckett, and D. Walker, “NV: An interme-
diate language for verification of network control planes,” in Proceedings
of the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI 2020, 2020, p. 958–973.

https://www.fastly.com/blog/summary-of-june-8-outage
https://www.fastly.com/blog/summary-of-june-8-outage
https://blog.cloudflare.com/cloudflare-outage-on-july-17-2020/
https://blog.cloudflare.com/cloudflare-outage-on-july-17-2020/
http://www.seattletimes.com/business/time-warner-cable-says-outages-largely-resolved
http://www.seattletimes.com/business/time-warner-cable-says-outages-largely-resolved
https://www.csoonline.com/article/3138934/security/bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-ddos-attacks.html
https://www.csoonline.com/article/3138934/security/bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-ddos-attacks.html
https://www.csoonline.com/article/3138934/security/bgp-errors-are-to-blame-for-monday-s-twitter-outage-not-ddos-attacks.html
https://www.charlotteobserver.com/news/business/banking/article202616124.html
https://www.charlotteobserver.com/news/business/banking/article202616124.html
https://www.datacenterknowledge.com/archives/2017/01/23/united-says-it-outage-resolved-dozen-flights-canceled-monday
https://www.datacenterknowledge.com/archives/2017/01/23/united-says-it-outage-resolved-dozen-flights-canceled-monday

[14] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein, “A general approach to network con-
figuration analysis,” in NSDI, 2015.

[15] N. P. Lopes and A. Rybalchenko, “Fast BGP simulation of large data-
centers,” in Proc. of the 20th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI), Jan. 2019.

[16] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “Abstract interpreta-
tion of distributed network control planes,” Proc. ACM Program. Lang.,
vol. 4, no. POPL, Dec. 2019.

[17] S. Prabhu, K. Y. Chou, A. Kheradmand, B. Godfrey, and M. Caesar,
“Plankton: Scalable network configuration verification through model
checking,” in 17th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 20), 2020, pp. 953–967.

[18] F. Ye, D. Yu, E. Zhai, H. H. Liu, B. Tian, Q. Ye, C. Wang, X. Wu,
T. Guo, C. Jin, D. She, Q. Ma, B. Cheng, H. Xu, M. Zhang, Z. Wang, and
R. Fonseca, “Accuracy, scalability, coverage: A practical configuration
verifier on a global wan,” in Proceedings of the Annual Conference
of the ACM Special Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Protocols for Computer
Communication, ser. SIGCOMM ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 599–614.

[19] L. Gao and J. Rexford, “Stable internet routing without global coordi-
nation,” in SIGMETRICS, 2000.

[20] A. Tang, R. Beckett, K. Jayaraman, T. Millstein, and G. Varghese,
“Lightyear: Using modularity to scale bgp control plane verification,”
arXiv preprint arXiv:2204.09635, 2022.

[21] S. Bayless, N. Bayless, H. H. Hoos, and A. J. Hu, “SAT modulo mono-
tonic theories,” in Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, ser. AAAI’15, 2015, p. 3702–3709.

[22] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in TACAS,
2008.

[23] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in SIGCOMM, 2008.

[24] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765–1775, 2011.

[25] “BGP Stream,” https://bgpstream.com.
[26] “ACORN benchmark repository,” https://github.com/divya-urs/

ACORN benchmarks.
[27] A. Abhashkumar, K. Subramanian, A. Andreyev, H. Kim, N. K. Salem,

J. Yang, P. Lapukhov, A. Akella, and H. Zeng, “Running BGP in data
centers at scale,” in 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21). USENIX Association, 2021,
pp. 65–81.

[28] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths problem
and interdomain routing,” IEEE/ACM Trans. Networking, vol. 10, no. 2,
2002.

[29] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker,
“Don’t mind the gap: Bridging network-wide objectives and device-level
configurations,” in SIGCOMM, 2016.

[30] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “Control plane
compression,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, ser. SIGCOMM ’18,
2018, p. 476–489.

[31] J. a. L. Sobrinho, “An algebraic theory of dynamic network routing,”
IEEE/ACM Trans. Netw., vol. 13, no. 5, pp. 1160–1173, Oct. 2005.

[32] T. G. Griffin and J. L. Sobrinho, “Metarouting,” in Proceedings of
the 2005 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, Aug. 2005, pp. 1–12.

[33] J. Backes, S. Bayless, B. Cook, C. Dodge, A. Gacek, A. J. Hu, T. Kahsai,
B. Kocik, E. Kotelnikov, J. Kukovec, S. McLaughlin, J. Reed, N. Rungta,
J. Sizemore, M. A. Stalzer, P. Srinivasan, P. Subotic, C. Varming, and
B. Whaley, “Reachability analysis for aws-based networks,” in Computer
Aided Verification (CAV), Proceedings, Part II, 2019, pp. 231–241.

[34] S. Bayless, J. Backes, D. DaCosta, B. Jones, N. Launchbury, P. Trentin,
K. Jewell, S. Joshi, M. Zeng, and N. Mathews, “Debugging network
reachability with blocked paths,” in International Conference on Com-
puter Aided Verification. Springer, 2021, pp. 851–862.

[35] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in Computer Aided
Verification, 12th International Conference, CAV, Proceedings, 2000,
pp. 154–169.

[36] M. Caesar and J. Rexford, “BGP routing policies in ISP networks,”
Netwrk. Mag. of Global Internetwkg., vol. 19, no. 6, p. 5–11, Nov. 2005.

[37] “The CAIDA AS Relationships Dataset, May 1 2021,” https://
www.caida.org/catalog/datasets/as-relationships/.

[38] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Proceedings of the 4th ACM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages, ser. POPL ’77, 1977,
p. 238–252.

[39] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Transactions on Computers, vol. 35, no. 8, pp. 677–691,
1986.

[40] E. M. Clarke, M. Fujita, and X. Zhao, “Multi-terminal binary decision
diagrams and hybrid decision diagrams,” in Representations of discrete
functions. Springer, 1996, pp. 93–108.

[41] A. Wang, L. Jia, W. Zhou, Y. Ren, B. T. Loo, J. Rexford, V. Nigam,
A. Scedrov, and C. L. Talcott, “FSR: Formal analysis and imple-
mentation toolkit for safe inter-domain routing,” IEEE/ACM Trans.
Networking, vol. 20, no. 6, 2012.

[42] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. Millstein, V. Sekar, and
G. Varghese, “Efficient network reachability analysis using a succinct
control plane representation,” in OSDI, 2016.

[43] B. Quoitin and S. Uhlig, “Modeling the routing of an autonomous system
with c-bgp,” Netwrk. Mag. of Global Internetwkg., vol. 19, no. 6, pp.
12–19, Nov. 2005.

[44] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan, “Fast
control plane analysis using an abstract representation,” in SIGCOMM,
2016.

[45] K. Subramanian, A. Abhashkumar, L. D’Antoni, and A. Akella, “Detect-
ing network load violations for distributed control planes,” in Proceed-
ings of the ACM SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI, 2020, pp. 974–988.

[46] A. Abhashkumar, A. Gember-Jacobson, and A. Akella, “Tiramisu: Fast
multilayer network verification,” in 17th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 20), 2020, pp.
201–219.

[47] T. A. Thijm, R. Beckett, A. Gupta, and D. Walker, “Kirigami, the
verifiable art of network cutting,” arXiv preprint arXiv:2202.06098,
2022.

[48] ——, “Modular control plane verification via temporal invariants,” arXiv
preprint arXiv:2204.10303, 2022.

[49] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in NSDI, 2012.

[50] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King, “Debugging the data plane with anteater,” in SIGCOMM, 2011.

[51] E. Al-Shaer and S. Al-Haj, “FlowChecker: configuration analysis and
verification of federated openflow infrastructures,” in 3rd ACM Workshop
on Assurable and Usable Security Configuration, SafeConfig 2010, 2010,
pp. 37–44.

[52] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” in NSDI, 2013.

[53] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in NSDI, Apr. 2013, pp. 99–112.

[54] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “NetKAT: Semantic foundations for
networks,” in POPL, 2014.

[55] S. Zhang and S. Malik, “SAT based verification of network data planes,”
in Automated Technology for Verification and Analysis (ATVA), 2013.

[56] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese,
“Checking beliefs in dynamic networks,” in NSDI, 2015.

[57] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani, “Automatic
predicate abstraction of C programs,” in Proceedings of the 2001
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2001, pp. 203–213.

[58] A. Lal and T. W. Reps, “Reducing concurrent analysis under a context
bound to sequential analysis,” in Computer Aided Verification, 20th
International Conference, CAV, Proceedings, 2008, pp. 37–51.

[59] E. M. Clarke, R. P. Kurshan, and H. Veith, “The localization reduction
and counterexample-guided abstraction refinement,” in Time for Verifi-
cation, Essays in Memory of Amir Pnueli, 2010, pp. 61–71.

https://bgpstream.com
https://github.com/divya-urs/ACORN_benchmarks
https://github.com/divya-urs/ACORN_benchmarks
https://www.caida.org/catalog/datasets/as-relationships/
https://www.caida.org/catalog/datasets/as-relationships/

	Introduction
	Motivating Examples
	Preliminaries
	NRC Abstractions
	SMT Encodings
	Routing Constraints on Symbolic Graphs
	Solver-specific Constraints
	Benefits of the NRC Abstractions in SMT Solving
	Encoding Properties for Verification

	Implementation and Evaluation
	Data Center Networks
	Wide Area Networks
	Comparison with Existing Tools
	Discussion and Limitations

	Related Work
	Conclusions and Future Directions
	Appendix A: BGP Overview
	Appendix B: Proof of soundness of the NRC abstractions
	Appendix C: ACORN Intermediate Representation (IR) and Benchmark Examples
	Appendix D: SMT Constraints for Concrete SRP
	References

