
Linguistic Tools for Managing Grammatical Domains
(Work in Progress)

Anders Miltner
Computer Science Dept.

UT Austin

Devon Loehr
Computer Science Dept.

Princeton University

Arnold Mong
Computer Science Dept.

Princeton University

Kathleen Fisher
Computer Science Dept.

Tufts University

David Walker
Computer Science Dept.

Princeton University

Abstract—Many common data types, such as dates, phone
numbers, and addresses, have multiple textual representations.
The possibility of varied representations creates ambiguities when
parsing this data and can easily lead to bugs in what would
otherwise be straightforward data processing applications. In this
work-in-progress paper, we explore this problem and consider
the design of linguistic tools to help manage it. More specifically,
we introduce the idea of a grammatical domain—a set of related
grammars—which we use to characterize the many possible
representations of a date or phone number or other object of
this sort. We also propose the design of a YACC-like language,
which is capable of defining individual grammatical domains,
such as dates, or larger document formats that contain such
ambiguous elements. We illustrate our ideas via example, and
sketch a continuing research agenda aimed at producing tools to
help programmers process these ambiguous formats.

I. INTRODUCTION

Data transformation, cleaning, and processing is a tedious
and difficult task that stands in the way of getting important
information out of the raw text all around us. A single data
set may contain files encoding the same kinds of information
in different formats; if data is drawn from multiple sources,
the chances of formatting inconsistencies skyrocket. This lack
of standardization can have real costs—if an ambiguous file is
incorrectly parsed, it may lead to processing system failures,
silent data corruption that pollutes critical data bases, or even
security vulnerabilities [1].

As an example, consider the myriad possible representations
of a date. Assuming a DD/MM/YY format when a MM/DD/YY
format is used may lead to catastrophic errors. Phone numbers,
addresses, times, names, postal codes, time ranges, abbrevia-
tions (such as for states or provinces), and other common data
types suffer these problems.

More complex formats can suffer similar problems. For
instance, one might expect a “comma-separated-value” (CSV)
file to be formatted as a series of fields separated by commas,
but it is often not. Tabs, vertical bars, semi-colons, spaces, or
carats are all sometimes used instead of commas to separate
fields. Some files use quotes to delimit strings and related
symbols, while others use tildes or single quotes. And of
course, some CSV files are “typed,” with one column expected
to contain integers, and perhaps strings in another.

As a result, the appropriate way to parse a CSV file can
be ambiguous [2]; to avoid incorrectly interpreting it, one
must determine the correct CSV grammar (or “dialect”) to

use for a given data set. In the case of CSVs, there are some
tools to help users – for instance, Microsoft Excel provides a
wizard that allows a user to select the kind of delimiter to use
when importing a CSV file as a spreadsheet. Unfortunately, the
process is a manual one. Python has libraries that implement
“sniffers” to detect CSV dialects, and van den Burg et al. [2]
built their own tool to analyze CSV files and infer the grammar
best suited to parse it.

Another widely-used example domain suffering such prob-
lems is PDF. While PDF has been standardized, different tools
implement different subsets or (or even supersets!) of the
standard. Moreover, some of these PDF variants, and the tools
used to process them, contain vulnerabilities [3], [4]. Hence,
ambiguities in how to process PDF lead not just to bugs, but
possibly to security vulnerabilities. The DARPA SafeDocs
program [1] is currently exploring ways to define safe subsets
of PDF to limit tool vulnerabilities.

In this paper, we introduce the idea of a grammatical domain,
that is, a set of formal grammars that describe the many
possible representations of a data type. For instance, the date
grammatical domain would contain a grammar describing
the DD/MM/YY format, another grammar describing the
MM/DD/YY format, and many other grammars describing
other formats (e.g., MM-DD-YY).

We propose the design of a new language for defining such
domains, called Saggittarius. Such a language is a first step
towards developing more robust data processing tools. Roughly
speaking, SAGGITTARIUS may be viewed as an extension of
a standard YACC-based parser generator. However, whereas
YACC defines a single grammar, SAGGITTARIUS defines a
set of possible grammars—i.e., a grammatical domain. To
do so, SAGGITTARIUS allows grammar engineers to specify
certain grammatical productions as optional. Grammars within
the domain are defined by the subset of optional productions
that they include. SAGGITTARIUS also has features that allow
grammar engineers to declare constraints that force certain
combinations of productions to appear, or not appear, and hence
provides fine control over the grammars in the grammatical
domain in question.

Once a grammatical domain is defined in Saggittarius, it may
be applied to example data. We note that the engineers defining
the domain and those using the domain may (and frequently
will) be different. We call the engineer who defines the domain
the grammar engineer and the engineer who uses the grammar

the instance engineer. These two roles are separate because
we expect heavy reuse of grammatical domains. For instance,
the date domain need only be defined once by an expert. It can
then be used countless times by instance engineers developing
specific data processing tools that contain dates.

When an instance engineer uses the grammatical domain,
a grammar induction algorithm will analyze example data
and pick out the specific grammar from the domain to be
applied in this instance. In other words, it will select the
productions that allow the resulting grammar to parse all
positive examples and none of the negative ones. Because more
than one grammar from the domain may satisfy the provided
examples, SAGGITTARIUS allows grammar engineers to provide
functions to rank the generated grammars. While grammar
engineers require sophisticated knowledge of a grammatical
domain and the SAGGITTARIUS tool, instance engineers need
only supply appropriate examples from the domain in question
and then use the generated parser.

To summarize, in this short paper, we describe the idea of
grammatical domains and propose a language, SAGGITTARIUS,
for describing them. The following section illustrates the
features of SAGGITTARIUS, by applying it to the description
of two canonical domains: the domain of dates and the domain
of CSV formats. Section III describes related work in the area
and Section IV concludes.

II. MOTIVATING EXAMPLES

Grammatical domains appear in many different contexts. In
this section, we show how to use SAGGITTARIUS to define two
useful domains: the domain of calendar dates and the domain
of comma-separated-value (CSV) formats.

A. Example 1: Calendar Dates

Recall that dates are formatted in many different ways, and
so date parsers must be specialized to a particular data set.
The many date formats form a natural grammatical domain,
and different data sets adhere to different grammars within the
domain.

SAGGITTARIUS programs specify grammatical domains
through the use of metagrammars (M), where a metagrammar
is a set of candidate productions (a.k.a candidate rules)
together with (a) constraints that limit which combinations
of productions may appear, and (b) preferences that rank
the grammars, for breaking ties when multiple grammars are
applicable.

The simplest SAGGITTARIUS components specify produc-
tions using a YACC-like syntax with the form N -> RHS.
Here, N is a non-terminal and RHS is a regular expression over
terminals and non-terminals. For instance, to begin construction
of our date grammatical domain, we can specify Digit and
Year non-terminals as follows.

Digit -> ["0"-"9"].
Year -> Digit Digit

| Digit Digit Digit Digit.

This first definition looks like a definition one might find
in an ordinary grammar. It states that Year can have either

two or four digits. The denotation of such a definition is a
grammatical domain—in this case, a grammatical domain (a
set) containing exactly one grammar.

SAGGITTARIUS is more interesting when one defines
metagrammars that include optional productions. Optional
productions are preceded by a “?” symbol. For instance,
consider the following definition.

Digit -> ["0"-"9"].
Year -> ? Digit Digit

? Digit Digit Digit Digit.

The metagrammar above denotes a grammatical domain that
includes four grammars:
1) one grammar in which Year has no productions,
2) two grammars in which Year has one production, and
3) one grammar in which Year has two productions.
To extract a single grammar from this set of four grammars,
one supplies the SAGGITTARIUS grammar induction engine
with positive and negative example data. If no grammar parses
all the data as required, the grammar induction algorithm will
return “no viable grammar.”

Continuing, consider the following specification for days.

Day -> ? ["1" - "9"]
? "0" ["1" - "9"]
| ["1" - "2"] Digit | "30" | "31".

This metagrammar includes grammars for days ranging from
1 to 31. It allows single digit days to be prefixed with a 0.
However, it is natural to require grammars that parse either
single-digit days or 0-prefixed-days, but not both. One way to
specify such a constraint is as follows.

Day -> ? ["1" - "9"]
? "0" ["1" - "9"]
| ["1" - "2"] Digit | "30" | "31".

constraint(|productions(Day)| = 4).

Here, the constraint specifies that the number of production
rules for Day must be exactly 4. Since the last row is always
included, exactly one of the ? production candidates can be in
the solution grammar. Another option is to name productions
and to use the names in constraints.

Day -> ? ["1" - "9"] as SDDays
? "0" ["1" - "9"] as TDDays
| ["1" - "2"] Digit | "30" | "31".

constraint(SDDays + TDDays = 1).

Here, we have given names to each of the rule candidates
which represent indicator variables in the constraint expression;
they evaluate to 1 if the production is included in a given
grammar, and 0 otherwise. In addition to defining constraints
using arithmetic, one may use logical connectives. For instance,
a constraint of the form R1 =⇒ R2 will require R2 to be
included whenever R1 is.

Figure 1 includes the rest of the (simplified) definition of
the date format, adding definitions for separators, months, and

1 Sep -> ? "," ? "/" ? "-" .
2 constraint(|Production(Sep)| = 1)

4 Digit -> ["0"-"9"].

6 Year -> ? Digit Digit
7 ? Digit Digit Digit Digit.
8 constraint(|Production(Year)| = 1)

10 Month -> ? Digit
11 ? "0" Digit
12 | "10" | "11" | "12".
13 constraint(|Production(Month)| = 2)

15 Day -> ? ["1" - "9"]
16 ? "0" ["1" - "9"]
17 | ["1" - "2"] Digit | "30" | "31".
18 constraint(|Productions(Day)| = 2).

20 Date -> ? Day Sep Month Sep Year
21 ? Month Sep Day Sep Year
22 ? Year Sep Month Sep Day
23 ? Year Sep Day Sep Month.
24 constraint(|Productions(Date)| = 1).

26 S -> Date

Fig. 1. Calendar Dates Metagrammar

dates as a whole. Non-terminal S denotes the grammar start
symbol. The use of constraints is common. For instance, notice
the grammar engineer who designed this particular format
allowed for the possibility of several different separators, but
required a single separator to be used consistently throughout
a format. Hence, while a date format may use ”-” or ”/” as a
separator, it never uses both.

To extract a particular grammar from the domain, an instance
engineer will supply positive and/or negative example data. For
example, one could supply U.S.-style dates 12/11/72 and
01/10/72, marking them as positive examples. Having done
so, the SAGGITTARIUS grammar induction algorithm might
generate the example grammar presented in Figure 2. However,
there are other grammars in the domain that are also valid for
this set of examples.

While one might worry that a naive instance engineer could
supply insufficient data and thereby underconstrain the set of
possible solution grammars, such problems could likely be
mitigated through a well-designed user interface that informs a
user when multiple solutions are possible and presents example
data to the user, asking them to choose valid and invalid
instances of the format.

B. Example 2: Mini-CSV

One challenge in specifying a CSV domain is that if we want
the columns of the CSV format to be “typed” — one column
must be integers, another strings or dates, for instance — we
need to consider many, many potential grammar productions.
To facilitate construction of such metagrammars succinctly,
we allow grammar engineers to define indexed collections of
productions. For instance, suppose we would like to specify

1 Sep -> "/".

3 Digit -> ["0"-"9"].

5 Year -> Digit Digit.

7 Month -> "0" Digit | "10" | "11" | "12".

9 Day -> ["1" - "9"]
10 | ["1" - "2"] Digit
11 | "30" | "31".

13 Date -> Month Sep Day Sep Year.

15 S -> Date

Fig. 2. Date Solution Grammar

a spreadsheet with three columns (numbered 0-2) where each
column can contain either a number or a string value. We
might define the ith Cell in each row as follows.

Cell{i in [0,2]} -> ? Number ? String.
for (i in [0,2])
constraint(|Productions(Cell[i])| = 1)

This declaration defines three nonterminals simultaneously:
Cell{0}, Cell{1}, and Cell{2} and provides the same
definition for each of them. However, since each of Cell{0},
Cell{1}, and Cell{2} are separate non-terminals, the
underlying inference engine can specialize them independently
based on the supplied data. For instance, Cell{0} could be a
string and Cell{1} and Cell{2} might both be numbers.1.
Constraints can refer to specific indexed non-terminals as
shown.

While each Cell has the same definition, it is also possible
to define collections of nonterminals with varying definitions
through the use of conditionals. Below, we define Row{i},
a non-terminal for a row containing cells Cell{0} through
Cell{i}. The use of normal context-free definitions allows
Row{i} to refer to Row{i-1}. Notice that separators (Sep)
are not indexed. We want one separator definition that is used
consistently throughout the format, though we do not know
which separator it will be.

Row{i in [0,2]} ->
? if (0 = i) then Cell{i}
? if (0 < i) then Row{i-1} Sep Cell{i}.

Sep -> ? "," ? "|" ? ";".
constraint(|Productions(Sep)| = 1).

Row{i} represents a single row with i Cells. To create a
table with many rows, we might write the following definition.

1Observant readers may worry that the characters “12” could be interpreted
as either a number or a string if the definition of strings includes numbers.
We will explain how to create preferences to disambiguate shortly.

S -> Table.
Table -> MyRow ("\n" MyRow)*.
MyRow -> [? Row{i} for i in [0,2]].

constraint (|Productions(MyRow)| = 1)

Here, we use the standard Kleene star to represent a table
with an arbitrary number of rows. (We could equally well have
written the usual recursive, context-free definition.). To force
every row in the table to have the same shape, we demand
that the kind of row used in the table (i.e., MyRow) be exactly
one of the Row{i} non-terminals. The notation “[? ... for i in
range]” defines several possible productions, one for each value
of i. In this case, it is a choice amongst the many possible
lengths of row.

Figure 3 presents our progress so far on defining a metagram-
mar for simple CSV formats. At the top, we have “imported”
a couple of useful non-terminal definitions—definitions for
String and Number. Users can write such definitions from
scratch, but we have developed a modest library of them to
facilitate quick construction of parsers for ad hoc data formats.

1 import String, Number

3 S -> Table.

5 Table -> MyRow ("\n" MyRow)*.

7 MyRow -> [? Row{i} for i in [0,2]].
8 constraint(|Productions(MyRow)| = 1)

10 Sep -> ? "," ? "|" ? ";".
11 constraint(|Productions(Sep)| = 1).

13 Row{i in [0,2]} ->
14 ? if (0 = i) then Cell{i}
15 ? if (0 < i) then Row{i-1} Sep Cell{i}.

17 Cell{i in [0,2]} ->
18 ? Number
19 ? String.
20 for(i in [0,2])
21 constraint(|Productions(Cell[i])| = 1)

Fig. 3. CSV Metagrammar

C. Ranking Grammars

Consider the following example data.

0,1,Hello world!
1,2,Programming
0,3,rocks!

A human would probably choose the column types to be
Number, Number, String. However, if Numbers can be
Strings then the column types could be String, String,
String. Without guidance, an algorithm will not know how
to choose between potential grammars.

SAGGITTARIUS allows users to steer the underlying gram-
mar induction algorithm towards the grammar of choice by
expressing preferences for one grammar over another. Such
preferences are expressed using prefer clauses, which have
a similar syntax to constraint clauses. Such clauses assign

1 Cell{i in [0,2]} ->
2 ? Number as Num{i}
3 ? String as Str{i}.
4 for(i in [0,infty))
5 constraint (|productions(Cell[i])| = 1).

7 prefer{i in [0,2]} 2.0 Num{i}.
8 prefer{i in [0,2]} 1.0 Str{i}.

Fig. 4. A Metagrammar with Preferences

floating point numbers to boolean formulas. The ranking of
a synthesized grammar is the sum of all satisfied boolean
formulas. SAGGITTARIUS produces grammars with a maximal
ranking. Figure 4 illustrates the use of preferences to force CSV
formats to infer Number cells when they can and String
cells otherwise.

D. Selecting Grammars

After a grammar engineer has specified the grammatical
domain, the next task is for the instance engineer to specialize
it to a testbed of positive and negative examples. But after
the instance engineer has provided these examples, how does
Saggittarius induce which grammar in the domain is the correct
one?

This is done through a combination of full parsing and
MaxSMT. Our full parsing algorithm parses a forest of all
possible parse trees for the examples, assuming every rule
were included. These parse trees are then, along with the
constraints and preferences provided by the user, encoded as
logical formulas, and sent to a MaxSMT solver. This solver
then identifies a subset of the grammar productions that can
be used to parse the positive examples and omit the negative
examples, while optimizing for the user-provided preferences.

E. Existential Quantification

So far, our CSV example can handle files with at most three
columns. Of course, we could have chosen a larger bound, but
in general a CSV file can have an arbitrary number of columns,
which we cannot know in advance. To fully specify the CSV
metagrammar, we need a way to allow rules with an arbitrary
number of productions.

To address this, we plan to add existentially-quantified
variables to represent unknown values. Figure 5 demonstrates
how we might use existentials to define the rows of a CSV
file.

Unfortunately, inferring grammars with existentially quanti-
fied variables is not guaranteed to terminate. We can attempt
to find solutions by iteratively setting rowlen to a constant
number (resulting in a finite metagrammar), and increasing
that constant if our algorithm fails. However, if no solution
grammar exists, this process may continue indefinitely.

Existential variables also allow us to re-think our imple-
mentations of prior metagrammars. For example, previously
we enforced types by having one Cell rule for each column.
Instead we could have one Cell rule for each type, together
with a local existential, as shown in Figure 6.

1 Row{len:nat} ->
2 | if (len = 0) Cell
3 | if (len > 0) Cell Sep Row{len-1}

5 Rows{len:nat} ->
6 | Row{len}
7 | Row{len} Newline Rows{len}

9 exists rowlen:nat

11 S -> Rows{rowlen}

Fig. 5. CSV metagrammar snippet with arbitrary length rows

1 Cell{type:[0,1]} ->
2 | if (type = 0) then Number
3 | if (type = 1) then String

5 Row{len:nat} ->
6 exists type:[0,1].
7 | if (len = 0) Cell{type}
8 | if (len > 0) Cell{type} Sep Row{len-1}

Fig. 6. CSV metagrammar snippet using local existentials

We interpret the local exists to mean that a different type
exists for each different len argument, effectively enforcing
that each column is parsed using the same rule. This format
has a number of benefits; for one, we have reduced an arbitrary
number of Cell rules to just two, regardless of the number
of columns. Furthermore, local exists also have the potential
to replace constraints entirely – for example, notice that
a constraint that Cell has only one production would be
redundant. This has the potential to simplify our internal
representation of the metagrammar, although we expect to
keep constraints in the surface language as a convenience for
users.

III. RELATED WORK

Grammar induction: Grammar induction traces back to at
least the 60s when Gold [5] began studying models for language
learning and their properties. Later, Angluin [6], [7] developed
her famous L∗ algorithm for learning regular languages. As
mentioned earlier, however, such algorithms, on their own,
often require large numbers of examples, even to synthesize
simple regular expressions. More recently, FlashProfile [8] has
shown that regular-expression-like patterns can be learned from
positive examples, by (1) clustering by syntactic similarity, and
(2) inducing programs for given clusters. Inference of context-
free grammars is considerably more difficult than inference of
regular expressions and patterns, and results are limited, but it
has been tackled, for instance, by Stolcke and Omohundro [9],
who use probabilistic techniques to infer grammars. Fisher et
al. [10] explored inference of grammars for “ad hoc” data,
such as system logs, in the context of the PADS project [11].
Lee [12] developed more efficient search strategies for regular
languages in the context of a tool for teaching automata theory.
Both these latter tools tackled restricted kinds of grammars.

Scaling to complex formats using few examples remains a
challenge in either case. The GLADE [13] tool is a more recent
approach to synthesizing grammars. Similarly to L∗, GLADE
uses an active learning algorithm, and generalizes to full
context-free grammars, rather than merely regular expressions,
while requiring relatively fewer membership queries to hone-in
on the desired grammar. The key contributions of this paper
are largely orthogonal to these advances in grammar induction
algorithms over the years. In particular, we introduce the idea of
”grammatical domains,” and a novel language for defining meta-
grammars, to restrict the set of grammars under consideration
during the induction process; doing so has the potential to
improve the performance of almost any grammar induction
algorithm.

Grammatical inference becomes more tractable when one
can introduce bias or constraints—meta-grammars are one
way to introduce such bias but there are others. For instance,
Chen et al. [14] use a combination of examples and natural
language to speed inference of a constrained set of regular
expressions. Internally, their system generates an “h-sketch” as
an intermediate result. These h-sketches are partially-defined
regular expressions that may include holes for unknown regular
expressions. Such h-sketches play a similar role to our meta-
grammars: They denote sets of possible regular expressions
and they constrain the search space for grammatical inference.
However, our language is an extension of YACC and is
designed for humans rather than being a regular-expression-
based intermediate language. We also introduce the idea of
“grammatical domains,” and provide natural examples such as
date and phone number domains, that may be reused across
data sets; each h-sketch is an intermediate representation used
once inside a compiler pipeline.

Related to the notion of grammatical inference is that of
expression repair. RFIXER [15] uses positive and negative
examples to fix erroneous regular expressions. Both RFIXER
and Saggittarius use similar algorithms for finding grammars
that ensure positive examples are in the generated language,
and negative examples are not. Both of these tools encode
these constraints as MaxSMT formulas to ensure the generated
grammars are optimal. Because RFixer does not have a
metagrammar to orient the search, their constraints can only
be used to find character sets that distinguish between the
grammars. Saggittarius permits any constraints that can be
expressed in propositional logic, and the constraints can be
over arbitrary productions, not merely character set choices.
In effect, one could see their algorithm as an instance of our
algorithm, where the meta-grammar they are using is one of
character sets.

Syntax-guided Program Synthesis: . Our work was in-
spired by the progress on syntax-guided program synthesis over
the past decade or so [16], [17], [18], [19]. Much of that work
has focused on data transformations, including spreadsheet
manipulation [20], [21], [22], string transformations [23], [24],
[25], and information extraction [26], [27]. Such problems
have much in common with our work, but they have typically
been set up as searches over a space of program transformation

operations rather than searches over collections of context-free
grammar rules. Particularly inspiring for our work was the
development of FlashMeta [28] and Prose [29]. These systems
are “meta” program synthesis engines—they help engineers
design program synthesis tools for different domain-specific
languages. Similarly, SAGGITTARIUS is a “meta” framework
for syntax-guided grammar induction, helping users perform
grammar induction in domain-specific contexts. Of course,
SAGGITTARIUS, FlashMeta and Prose differ greatly when it
comes to specifics of their language/system designs and the
underlying search algorithms implemented.

Logic Program Synthesis: We were also inspired by work
on Inductive Logic Programming [30], and Logic Program
Synthesis [31], [32]. Parsing with context-free grammars is a
special case of logic programming so it was natural to investi-
gate whether inductive logic programming algorithms would
work well here. ProSynth [31] is a state-of-the-art algorithm in
this field so we experimented with it as a tool for grammatical
inference. However, we found our custom algorithm almost
always outperformed ProSynth on grammatical inference tasks.

IV. CONCLUSION AND CONTINUING RESEARCH

Grammatical domains are sets of related grammars. Such
domains appear whenever a common datatype like a date or a
phone number has multiple textual representations. They also
often appear when data sets are communicated via ASCII text
files, as is the case for CSV files. In this paper, we introduce
the concept of grammatical domains and provide a variety of
examples of such domains.

We also design a language, called SAGGITTARIUS, for
specifying meta-grammars, which define grammatical domains.
SAGGITTARIUS includes features for defining finite and infinite
sets of candidate productions, for constraining the candidate
productions that may and may not appear, and for ranking the
generated grammars.

The next steps in our research agenda are to experiment
with grammar induction algorithms capable of inferring the
intended grammar from a grammatical domain when supplied
with example data. Our initial investigation into this topic
suggests it is possible generate SMT constraints that describe
the necessary productions to parse example formula and then
to use a MaxSMT solver to find the highest ranked solution.
Still, more research and experimentation is required.

We also look forward to extending SAGGITTARIUS with
semantic actions, which are needed to turn SAGGITTARIUS
into a full blown parser generator system like YACC.

Acknowledgements: This research was developed with
funding from the Defense Advanced Research Projects Agency
(DARPA) under the SafeDocs program. The views, opinions
and/or findings expressed are those of the authors and should
not be interpreted as representing the official views or policies
of the Department of Defense or the U.S. Government.

REFERENCES

[1] https://www.darpa.mil/program/safe-documents, 2020.

[2] G. J. J. van den Burg, A. Nazábal, and C. Sutton, “Wrangling messy csv
files by detecting row and type patterns,” Nov. 2018, arXiv:1811.11242v1.
[Online]. Available: https://arxiv.org/pdf/1811.11242.pdf

[3] C. Carmony, X. Hu, H. Yin, A. V. Bhaskar, and M. Zhang,
“Extract me if you can: Abusing PDF parsers in malware
detectors,” in 23rd Annual Network and Distributed System
Security Symposium, NDSS 2016, San Diego, California, USA,
February 21-24, 2016. The Internet Society, 2016. [Online]. Avail-
able: http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/
09/extract-me-if-you-can-abusing-pdf-parsers-malware-detectors.pdf

[4] K. Liu, “Dig into the attack surface of pdf and gain 100+
cves in 1 year,” https://www.blackhat.com/docs/asia-17/materials/
asia-17-Liu-Dig-Into-The-Attack-Surface-Of-PDF-And-Gain-100-
CVEs-In-1-Year-wp.pdf, 2017.

[5] E. M. Gold, “Language identification in the limit,” Information and
Control, vol. 10, no. 5, pp. 447–474, 1967.

[6] D. Angluin, “On the complexity of minimum inference of regular sets,”
Information and Control, vol. 39, no. 3, pp. 337–350, 1978.

[7] ——, “Learning regular sets from queries and counterexamples,” Infor-
mation and Computation, vol. 75, no. 2, pp. 87–106, Nov. 1987.

[8] S. Padhi, P. Jain, D. Perelman, O. Polozov, S. Gulwani, and T. Millstein,
“Flashprofile: A framework for synthesizing data profiles,” Proc. ACM
Program. Lang., vol. 2, no. OOPSLA, Oct. 2018. [Online]. Available:
https://doi.org/10.1145/3276520

[9] A. Stolcke and S. M. Omohundro, “Inducing probabilistic grammars by
bayesian model merging,” CoRR, vol. abs/cmp-lg/9409010, 1994.

[10] K. Fisher, D. Walker, K. Q. Zhu, and P. White, “From dirt to shovels:
Fully automatic tool generation from ad hoc data,” in Proceedings of
the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, ser. POPL ’08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 421–434.

[11] K. Fisher and D. Walker, “The pads project: An overview,” in Proceedings
of the 14th International Conference on Database Theory, ser. ICDT ’11.
New York, NY, USA: Association for Computing Machinery, 2011, p.
11–17.

[12] M. Lee, S. So, and H. Oh, “Synthesizing regular expressions from
examples for introductory automata assignments,” in ACM SIGPLAN
International Conference on Generative Programming, 2016, pp. 70–80.

[13] O. Bastani, R. Sharma, A. Aiken, and P. Liang, “Synthesizing program
input grammars,” SIGPLAN Not., vol. 52, no. 6, p. 95–110, Jun. 2017.
[Online]. Available: https://doi.org/10.1145/3140587.3062349

[14] Q. Chen, X. Wang, X. Ye, G. Durrett, and I. Dillig, “Multi-modal
synthesis of regular expressions,” in ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2020, pp. 487–582.

[15] R. Pan, Q. Hu, G. Xu, and L. D’Antoni, “Automatic repair of regular
expressions,” Proc. ACM Program. Lang., vol. 3, no. OOPSLA, Oct.
2019. [Online]. Available: https://doi.org/10.1145/3360565

[16] A. Solar-Lezama, R. Rabbah, R. Bodı́k, and K. Ebcioğlu, “Programming
by sketching for bit-streaming programs,” SIGPLAN Not., vol. 40, no. 6,
p. 281–294, Jun. 2005. [Online]. Available: https://doi.org/10.1145/
1064978.1065045

[17] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat,
“Combinatorial sketching for finite programs,” SIGARCH Comput. Archit.
News, vol. 34, no. 5, p. 404–415, Oct. 2006. [Online]. Available:
https://doi.org/10.1145/1168919.1168907

[18] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa,
“Syntax-guided synthesis,” in 2013 Formal Methods in Computer-Aided
Design, 2013, pp. 1–8.

[19] R. Alur, R. Singh, D. Fisman, and A. Solar-Lezama, “Search-based
program synthesis,” Commun. ACM, vol. 61, no. 12, p. 84–93, Nov.
2018. [Online]. Available: https://doi.org/10.1145/3208071

[20] S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of P rogramming Languages, ser.
POPL ’11. ACM, 2011.

[21] X. Wang, I. Dillig, and R. Singh, “Synthesis of data completion
scripts using finite tree automata,” Proc. ACM Program. Lang.,
vol. 1, no. OOPSLA, Oct. 2017. [Online]. Available: https:
//doi.org/10.1145/3133886

[22] D. W. Barowy, S. Gulwani, T. Hart, and B. Zorn, “Flashrelate: Extracting
relational data from semi-structured spreadsheets using examples,” in
Proceedings of the 36th ACM SIGPLAN Conference on Programming

Language Design and Implementation, ser. PLDI ’15. New York, NY,
USA: Association for Computing Machinery, 2015, p. 218–228.

[23] A. Miltner, S. Maina, K. Fisher, B. C. Pierce, D. Walker,
and S. Zdancewic, “Synthesizing symmetric lenses,” Proc. ACM
Program. Lang., vol. 3, no. ICFP, Jul. 2019. [Online]. Available:
https://doi.org/10.1145/3341699

[24] A. Miltner, K. Fisher, B. C. Pierce, D. Walker, and S. ve Zdancewic,
“Synthesizing bijective lenses,” in Proceedings of the 45th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Pr ogramming
Languages, ser. POPL 2018, 2018.

[25] X. Wang, I. Dillig, and R. Singh, “Program synthesis using abstraction
refinement,” Proc. ACM Program. Lang., vol. 2, no. POPL, Dec. 2017.
[Online]. Available: https://doi.org/10.1145/3158151

[26] V. Le and S. Gulwani, “Flashextract: A framework for data extraction
by examples,” ACM SIGPLAN Notices, vol. 49, 06 2014.

[27] M. Raza and S. Gulwani, “Automated data extraction using predictive
program synthesis,” in AAAI, 2017, pp. 882–890.

[28] O. Polozov and S. Gulwani, “Flashmeta: A framework for inductive pro-
gram synthesis,” in Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, ser. OOPSLA 2015. New York, NY, USA: Association
for Computing Machinery, 2015, p. 107–126.

[29] M. Research, “Prose,” https://www.microsoft.com/en-us/research/group/
prose/, 2020.

[30] L. De Raedt, “Logical and relational learning,” in Advances in Artificial
Intelligence - SBIA 2008, G. Zaverucha and A. L. da Costa, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 1–1.

[31] M. Raghothaman, J. Mendelson, D. Zhao, M. Naik, and B. Scholz,
“Provenance-guided synthesis of datalog programs,” 2020. [Online].
Available: https://doi.org/10.1145/3371130

[32] X. Si, M. Raghothaman, K. Heo, and M. Naik, “Synthesizing
datalog programs using numerical relaxation,” in Proceedings of
the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19. International Joint Conferences on Artificial
Intelligence Organization, 7 2019, pp. 6117–6124. [Online]. Available:
https://doi.org/10.24963/ijcai.2019/847

